1
|
Dong W, Cheng Y, Zhou Y, Zhang J, Yu X, Guan H, Du J, Zhou X, Yang Y, Fang W, Wang X, Song H. The nucleocapsid protein facilitates p53 ubiquitination-dependent proteasomal degradation via recruiting host ubiquitin ligase COP1 in PEDV infection. J Biol Chem 2024; 300:107135. [PMID: 38447796 PMCID: PMC10998216 DOI: 10.1016/j.jbc.2024.107135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 03/08/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly contagious enteric pathogen of the coronavirus family and caused severe economic losses to the global swine industry. Previous studies have established that p53 is a host restriction factor for PEDV infection, and p53 degradation occurs in PEDV-infected cells. However, the underlying molecular mechanisms through which PEDV viral proteins regulate p53 degradation remain unclear. In this study, we found that PEDV infection or expression of the nucleocapsid protein downregulates p53 through a post-translational mechanism: increasing the ubiquitination of p53 and preventing its nuclear translocation. We also show that the PEDV N protein functions by recruiting the E3 ubiquitin ligase COP1 and suppressing COP1 self-ubiquitination and protein degradation, thereby augmenting COP1-mediated degradation of p53. Additionally, COP1 knockdown compromises N-mediated p53 degradation. Functional mapping using truncation analysis showed that the N-terminal domains of N protein were responsible for interacting with COP1 and critical for COP1 stability and p53 degradation. The results presented here suggest the COP1-dependent mechanism for PEDV N protein to abolish p53 activity. This study significantly increases our understanding of PEDV in antagonizing the host antiviral factor p53 and will help initiate novel antiviral strategies against PEDV.
Collapse
Affiliation(s)
- Wanyu Dong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Yahao Cheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Yingshan Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Jingmiao Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Xinya Yu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Haicun Guan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Jing Du
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Xingdong Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Yang Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Weihuan Fang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Xiaodu Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China.
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China.
| |
Collapse
|
2
|
Das U, Chawla-Sarkar M, Gangopadhyay SR, Dey S, Sharma RD. Role of Influenza A virus protein NS1 in regulating host nuclear body ND10 complex formation and its involvement in establishment of viral pathogenesis. PLoS One 2024; 19:e0295522. [PMID: 38166085 PMCID: PMC10760828 DOI: 10.1371/journal.pone.0295522] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/21/2023] [Indexed: 01/04/2024] Open
Abstract
Influenza viral infection is a seasonal infection which causes widespread acute respiratory issues among humans globally. This virus changes its surface receptor composition to escape the recognition process by the host's immune cells. Therefore, the present study focussed to identify some other important viral proteins which have a significant role in establishment of infection and having apparent conserved structural composition. This could facilitate the permanent vaccine development process or help in designing a drug against IAV (influenza A virus) infection which will eliminate the seasonal flu shot vaccination process. The NS1 (Non-structural protein 1) protein of IAV maintains a conserved structural motif. Earlier studies have shown its significant role in infection establishment. However, the mechanism by which viruses escape the host's ND10 antiviral action remains elusive. The present study clearly showed that IAV infection and NS1 transfection in A549 cells degraded the main component of the ND10 anti-viral complex, PML and therefore, inhibited the formation of Daxx-sp100-p53-PML complex (ND10) at the mid phase of infection/transfection. PML degradation activated the stress axis which increased cellular ROS (reactive oxygen species) levels as well as mitochondrial dysfunction. Additionally, IAV/NS1 increased cellular stress and p53 accumulation at the late phase of infection. These collectively activated apoptotic pathway in the host cells. Along with the inactivation of several interferon proteins, IAV was found to decrease p-IKKε. A549 cells transfected with pcDNA3.1-NS1 showed a similar effect in the interferon axis and IKKε. Moreover, NS1 induced the disintegration of the host's ND10 complex through the changes in the SUMOylation pattern of the PML nuclear body. These findings suggest the possible mechanism of how NS1 helps IAV to establish infection in the host cells. However, it demands further detailed study before targeting NS1 to develop permanent vaccines or novel drugs against IAV in future.
Collapse
Affiliation(s)
- Ujjal Das
- Barrackpore Rastraguru Surendranath College, Barrackpore, India
- Endocrine Research Facilities, Department of Animal Science, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | | | - Sanjit Dey
- Department of Physiology, University of Calcutta, Kolkata, India
| | - Rakhi Dey Sharma
- Barrackpore Rastraguru Surendranath College, Barrackpore, India
- Natural Science Research Centre of Belda College under Vidyasagar University and Department of Physiology, Belda College, Belda, Paschim Medinipur, India
| |
Collapse
|
3
|
Wang X, Liu Y, Li K, Hao Z. Roles of p53-Mediated Host–Virus Interaction in Coronavirus Infection. Int J Mol Sci 2023; 24:ijms24076371. [PMID: 37047343 PMCID: PMC10094438 DOI: 10.3390/ijms24076371] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
The emergence of the SARS-CoV-2 coronavirus has garnered global attention due to its highly pathogenic nature and the resulting health crisis and economic burden. Although drugs such as Remdesivir have been considered a potential cure by targeting the virus on its RNA polymerase, the high mutation rate and unique 3’ to 5’ exonuclease with proofreading function make it challenging to develop effective anti-coronavirus drugs. As a result, there is an increasing focus on host–virus interactions because coronaviruses trigger stress responses, cell cycle changes, apoptosis, autophagy, and the dysregulation of immune function and inflammation in host cells. The p53 tumor suppressor molecule is a critical regulator of cell signaling pathways, cellular stress responses, DNA repair, and apoptosis. However, viruses can activate or inhibit p53 during viral infections to enhance viral replication and spread. Given its pivotal role in cell physiology, p53 represents a potential target for anti-coronavirus drugs. This review aims to summarize the relationship between p53 and coronaviruses from various perspectives, to shed light on potential targets for antiviral drug development and vaccine design.
Collapse
Affiliation(s)
| | | | | | - Zhihui Hao
- Correspondence: ; Tel./Fax: +86-010-6273-1192
| |
Collapse
|
4
|
How Influenza A Virus NS1 Deals with the Ubiquitin System to Evade Innate Immunity. Viruses 2021; 13:v13112309. [PMID: 34835115 PMCID: PMC8619935 DOI: 10.3390/v13112309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022] Open
Abstract
Ubiquitination is a post-translational modification regulating critical cellular processes such as protein degradation, trafficking and signaling pathways, including activation of the innate immune response. Therefore, viruses, and particularly influenza A virus (IAV), have evolved different mechanisms to counteract this system to perform proper infection. Among IAV proteins, the non-structural protein NS1 is shown to be one of the main virulence factors involved in these viral hijackings. NS1 is notably able to inhibit the host's antiviral response through the perturbation of ubiquitination in different ways, as discussed in this review.
Collapse
|
5
|
Trujillo-Uscanga A, Gutiérrez-Escolano AL. Host cell p53 associates with the feline calicivirus major viral capsid protein VP1, the protease-polymerase NS6/7, and the double-stranded RNA playing a role in virus replication. Virology 2020; 550:78-88. [PMID: 32890980 PMCID: PMC7451061 DOI: 10.1016/j.virol.2020.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 11/03/2022]
Abstract
p53 is implicated in several cellular pathways such as induction of cell-cycle arrest, differentiation, senescence, and apoptosis. p53 is activated by a broad range of stress signals, including viral infections. While some viruses activate p53, others induce its inactivation, and occasionally p53 is differentially modulated during the replicative cycle. During calicivirus infections, apoptosis is required for virus exit and spread into the host; yet, the role of p53 during infection is unknown. By confocal microscopy, we found that p53 associates with FCV VP1, the protease-polymerase NS6/7, and the dsRNA. This interaction was further confirmed by proximity ligation assays, suggesting that p53 participates in the FCV replication. Knocked-down of p53 expression in CrFK cells before infection, resulted in a strong reduction of the non-structural protein levels and a decrease of the viral progeny production. These results indicate that p53 is associated with the viral replication complex and is required for an efficient FCV replication. Host cell p53 protein levels and subcellular localization do not change during FCV infection. Host cell p53 associates with FCV major viral capsid protein VP1, protease-polymerase NS6/7, and the dsRNA in FCV infected cells. Host cell p53 is required for a FCV replication.
Collapse
Affiliation(s)
- Adrian Trujillo-Uscanga
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico
| | - Ana Lorena Gutiérrez-Escolano
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico.
| |
Collapse
|
6
|
Aloni-Grinstein R, Charni-Natan M, Solomon H, Rotter V. p53 and the Viral Connection: Back into the Future ‡. Cancers (Basel) 2018; 10:cancers10060178. [PMID: 29866997 PMCID: PMC6024945 DOI: 10.3390/cancers10060178] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 01/14/2023] Open
Abstract
The discovery of the tumor suppressor p53, through its interactions with proteins of tumor-promoting viruses, paved the way to the understanding of p53 roles in tumor virology. Over the years, accumulating data suggest that WTp53 is involved in the viral life cycle of non-tumor-promoting viruses as well. These include the influenza virus, smallpox and vaccinia viruses, the Zika virus, West Nile virus, Japanese encephalitis virus, Human Immunodeficiency Virus Type 1, Human herpes simplex virus-1, and more. Viruses have learned to manipulate WTp53 through different strategies to improve their replication and spreading in a stage-specific, bidirectional way. While some viruses require active WTp53 for efficient viral replication, others require reduction/inhibition of WTp53 activity. A better understanding of WTp53 functionality in viral life may offer new future clinical approaches, based on WTp53 manipulation, for viral infections.
Collapse
Affiliation(s)
- Ronit Aloni-Grinstein
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel.
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Box 19, 74100 Ness-Ziona, Israel.
| | - Meital Charni-Natan
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel.
| | - Hilla Solomon
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel.
| | - Varda Rotter
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel.
| |
Collapse
|
7
|
Wang B, Lam TH, Soh MK, Ye Z, Chen J, Ren EC. Influenza A Virus Facilitates Its Infectivity by Activating p53 to Inhibit the Expression of Interferon-Induced Transmembrane Proteins. Front Immunol 2018; 9:1193. [PMID: 29904383 PMCID: PMC5990591 DOI: 10.3389/fimmu.2018.01193] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/14/2018] [Indexed: 11/16/2022] Open
Abstract
Human influenza virus (IAV) are among the most common pathogens to cause human respiratory infections. A better understanding on interplay between IAV and host factors may provide clues for disease prevention and control. While many viruses are known to downregulate p53 upon entering the cell to reduce the innate host antiviral response, IAV infection is unusual in that it activates p53. However, it has not been clear whether this process has proviral or antiviral effects. In this study, using human isogenic p53 wild-type and p53null A549 cells generated from the CRISPR/Cas9 technology, we observed that p53null cells exhibit significantly reduced viral propagation when infected with influenza A virus (strain A/Puerto Rico/8/1934 H1N1). Genome-wide microarray analysis revealed that p53 regulates the expression of a large set of interferon-inducible genes, among which the interferon-induced transmembrane family members IFITM1, IFITM2, and IFITM3 were most significantly downregulated by the expression of p53. Knockdown of interferon-induced transmembrane proteins (IFITMs) by short interfering RNAs enhanced influenza virus infectivity in p53null A549 cells, while overexpressed IFITMs in A549 cells blocked virus entry. Intriguingly, regulation of IFITMs by p53 is independent of its transcriptional activity, as the p53 short isoform Δ40p53 recapitulates IFITM regulation. Taken together, these data reveal that p53 activation by IAV is an essential step in maintaining its infectivity. This novel association between human p53 and the broad spectrum antiviral proteins, the IFITMs, demonstrates a previous mechanism employed by influenza virus to enhance its propagation via p53 inhibition of IFITMs.
Collapse
Affiliation(s)
- Bei Wang
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Tze Hau Lam
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Mun Kuen Soh
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Zhiyong Ye
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Ee Chee Ren
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
8
|
Pizzorno A, Dubois J, Machado D, Cartet G, Traversier A, Julien T, Lina B, Bourdon JC, Rosa-Calatrava M, Terrier O. Influenza A viruses alter the stability and antiviral contribution of host E3-ubiquitin ligase Mdm2 during the time-course of infection. Sci Rep 2018; 8:3746. [PMID: 29487367 PMCID: PMC5829072 DOI: 10.1038/s41598-018-22139-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/19/2018] [Indexed: 11/09/2022] Open
Abstract
The interplay between influenza A viruses (IAV) and the p53 pathway has been reported in several studies, highlighting the antiviral contribution of p53. Here, we investigated the impact of IAV on the E3-ubiquitin ligase Mdm2, a major regulator of p53, and observed that IAV targets Mdm2, notably via its non-structural protein (NS1), therefore altering Mdm2 stability, p53/Mdm2 interaction and regulatory loop during the time-course of infection. This study also highlights a new antiviral facet of Mdm2 possibly increasing the list of its many p53-independent functions. Altogether, our work contributes to better understand the mechanisms underlining the complex interactions between IAV and the p53 pathway, for which both NS1 and Mdm2 arise as key players.
Collapse
Affiliation(s)
- Andrés Pizzorno
- Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, CNRS UMR5308, France
| | - Julia Dubois
- Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, CNRS UMR5308, France
| | - Daniela Machado
- Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, CNRS UMR5308, France
- Laboratoire des Pathogènes Emergents, Fondation Mérieux. CIRI, UCBL1- INSERM U1111, ENS Lyon, CNRS UMR5308, Lyon, France
| | - Gaëlle Cartet
- Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, CNRS UMR5308, France
| | - Aurelien Traversier
- Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, CNRS UMR5308, France
| | - Thomas Julien
- Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, CNRS UMR5308, France
| | - Bruno Lina
- Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, CNRS UMR5308, France
- Laboratoire de Virologie, Centre National de Référence des virus Influenza, Institut des Agents Infectieux, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, France
| | - Jean-Christophe Bourdon
- Division of Cancer Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Manuel Rosa-Calatrava
- Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, CNRS UMR5308, France
| | - Olivier Terrier
- Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, CNRS UMR5308, France.
| |
Collapse
|
9
|
Drayman N, Ben-Nun-Shaul O, Butin-Israeli V, Srivastava R, Rubinstein AM, Mock CS, Elyada E, Ben-Neriah Y, Lahav G, Oppenheim A. p53 elevation in human cells halt SV40 infection by inhibiting T-ag expression. Oncotarget 2018; 7:52643-52660. [PMID: 27462916 PMCID: PMC5288138 DOI: 10.18632/oncotarget.10769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 07/14/2016] [Indexed: 11/25/2022] Open
Abstract
SV40 large T-antigen (T-ag) has been known for decades to inactivate the tumor suppressor p53 by sequestration and additional mechanisms. Our present study revealed that the struggle between p53 and T-ag begins very early in the infection cycle. We found that p53 is activated early after SV40 infection and defends the host against the infection. Using live cell imaging and single cell analyses we found that p53 dynamics are variable among individual cells, with only a subset of cells activating p53 immediately after SV40 infection. This cell-to-cell variabilty had clear consequences on the outcome of the infection. None of the cells with elevated p53 at the beginning of the infection proceeded to express T-ag, suggesting a p53-dependent decision between abortive and productive infection. In addition, we show that artificial elevation of p53 levels prior to the infection reduces infection efficiency, supporting a role for p53 in defending against SV40. We further found that the p53-mediated host defense mechanism against SV40 is not facilitated by apoptosis nor via interferon-stimulated genes. Instead p53 binds to the viral DNA at the T-ag promoter region, prevents its transcriptional activation by Sp1, and halts the progress of the infection. These findings shed new light on the long studied struggle between SV40 T-ag and p53, as developed during virus-host coevolution. Our studies indicate that the fate of SV40 infection is determined as soon as the viral DNA enters the nucleus, before the onset of viral gene expression.
Collapse
Affiliation(s)
- Nir Drayman
- Department of Hematology, Hebrew University Faculty of Medicine and Hadassah University Hospital, Jerusalem, Israel.,Department of Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Orly Ben-Nun-Shaul
- Department of Hematology, Hebrew University Faculty of Medicine and Hadassah University Hospital, Jerusalem, Israel
| | - Veronika Butin-Israeli
- Department of Hematology, Hebrew University Faculty of Medicine and Hadassah University Hospital, Jerusalem, Israel
| | - Rohit Srivastava
- Department of Hematology, Hebrew University Faculty of Medicine and Hadassah University Hospital, Jerusalem, Israel
| | - Ariel M Rubinstein
- Department of Hematology, Hebrew University Faculty of Medicine and Hadassah University Hospital, Jerusalem, Israel
| | - Caroline S Mock
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Ela Elyada
- The Lautenberg Center for Immunology and Cancer Research, Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Yinon Ben-Neriah
- The Lautenberg Center for Immunology and Cancer Research, Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Galit Lahav
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Ariella Oppenheim
- Department of Hematology, Hebrew University Faculty of Medicine and Hadassah University Hospital, Jerusalem, Israel
| |
Collapse
|
10
|
Guo H, Fu X, Lin Q, Liu L, Liang H, Huang Z, Li N, Su J. Mandarin fish p53: Genomic structure, alternatively spliced variant and its mRNA expression after virus challenge. FISH & SHELLFISH IMMUNOLOGY 2017; 70:536-544. [PMID: 28923524 DOI: 10.1016/j.fsi.2017.09.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
A number of size variants of the p53 protein have been described in mammal, but little is known about alternative splicing of p53 expression and function in the fish. In our previous study, the immune defense and antiviral responses of p53 had been determined in mandarin fish (Siniperca chuatsi). However, the role of its splicing variants remains unknown. In the present study, the organization of mandarin fish p53 (Sc-p53) genome sequence was determined and a novel splice variant was characterized. The Sc-p53 genomic sequence was composed of 5543 bp, containing 11 exons and 10 introns, which was similar to other species. Then, a 1106 bp full-length cDNA of a novel splice variant p53 from mandarin fish (designed as Sc-p53I6) was cloned and characterized. Quantitative real-time PCR assays revealed that Sc-p53I6 was expressed in all tissues examined, and it was most abundant in the gill, hemocyte and hind kidney. Western blotting analysis revealed that Sc-p53I6 protein was abundant in liver, trunk kidney, hind kidney, stomach and heart. In addition, the regulation of Sc-p53I6 gene expression after virus infection was determined and characterized. The results showed twice rise expression pattern of Sc-p53I6 in CPB cells and spleen of mandarin fish in response to infectious kidney and spleen necrosis virus (ISKNV). However, a different expression pattern, once rise, of Sc-p53I6 in response to Siniperca chuatsi rhabdovirus (SCRV) infection was found. The mRNA expression of Sc-p53I6 was significantly up-regulated in CPB at 4 h and spleen of mandarin fish at 12 h post-infection. These results will shed a new light on antiviral response mechanisms of p53 in mandarin fish.
Collapse
Affiliation(s)
- Huizhi Guo
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou 510380, China
| | - Xiaozhe Fu
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou 510380, China
| | - Qiang Lin
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou 510380, China
| | - Lihui Liu
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou 510380, China
| | - Hongru Liang
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou 510380, China
| | - Zhibin Huang
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou 510380, China
| | - Ningqiu Li
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou 510380, China.
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
11
|
Pohl MO, von Recum-Knepper J, Rodriguez-Frandsen A, Lanz C, Yángüez E, Soonthornvacharin S, Wolff T, Chanda SK, Stertz S. Identification of Polo-like kinases as potential novel drug targets for influenza A virus. Sci Rep 2017; 7:8629. [PMID: 28819179 PMCID: PMC5561215 DOI: 10.1038/s41598-017-08942-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 07/21/2017] [Indexed: 02/06/2023] Open
Abstract
In recent years genome-wide RNAi screens have revealed hundreds of cellular factors required for influenza virus infections in human cells. The long-term goal is to establish some of them as drug targets for the development of the next generation of antivirals against influenza. We found that several members of the polo-like kinases (PLK), a family of serine/threonine kinases with well-known roles in cell cycle regulation, were identified as hits in four different RNAi screens and we therefore studied their potential as drug target for influenza. We show that knockdown of PLK1, PLK3, and PLK4, as well as inhibition of PLK kinase activity by four different compounds, leads to reduced influenza virus replication, and we map the requirement of PLK activity to early stages of the viral replication cycle. We also tested the impact of the PLK inhibitor BI2536 on influenza virus replication in a human lung tissue culture model and observed strong inhibition of virus replication with no measurable toxicity. This study establishes the PLKs as potential drug targets for influenza and contributes to a more detailed understanding of the intricate interactions between influenza viruses and their host cells.
Collapse
Affiliation(s)
- Marie O Pohl
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Life Sciences Zurich Graduate School, ETH and University of Zürich, 8057, Zurich, Switzerland
| | - Jessica von Recum-Knepper
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Ariel Rodriguez-Frandsen
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Caroline Lanz
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Life Sciences Zurich Graduate School, ETH and University of Zürich, 8057, Zurich, Switzerland
| | - Emilio Yángüez
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Stephen Soonthornvacharin
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Thorsten Wolff
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch Institute, 13353, Berlin, Germany
| | - Sumit K Chanda
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
12
|
Guo H, Fu X, Li N, Lin Q, Liu L, Wu S. Molecular characterization and expression pattern of tumor suppressor protein p53 in mandarin fish, Siniperca chuatsi following virus challenge. FISH & SHELLFISH IMMUNOLOGY 2016; 51:392-400. [PMID: 26980610 DOI: 10.1016/j.fsi.2016.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 06/05/2023]
Abstract
In recent years, the tumor suppressor protein p53, which is crucial for cellular defense against tumor development, has also been implicated in host antiviral defense. In the present study, a 1555 bp full-length cDNA of p53 from mandarin fish (Siniperca chuatsi) (Sc-p53) was cloned and characterized. Quantitative real-time PCR assays revealed that Sc-p53 was expressed in all tissues examined, and it was most abundant in the gill and kidney. Recombinant Sc-p53 fused with a His·Tag was expressed in Escherichia coli BL21 (DE3) cells and a rabbit polyclonal antibody was raised against recombinant Sc-p53. In addition, the regulation of Sc-p53 gene expression after experimental viral infection was determined and characterized. The mRNA and protein expression of Sc-p53 were significantly up-regulated in the Chinese perch brain (CPB) cell line and mandarin fish after infection with infectious kidney and spleen necrosis virus (ISKNV). The results showed a biphasic expression pattern of Sc-p53 protein in CPB. However, a different expression pattern of Sc-p53 in response to S. chuatsi rhabdovirus (SCRV) infection was found. The mRNA expression of Sc-p53 was significantly up-regulated in CPB at 6 h and spleen of mandarin fish at 24 h post-infection. The protein expression of Sc-p53 was significantly up-regulated in CPB at 1 h, remained elevated at 4 h, and then decreased to control level at 8 h post-infection by SCRV. All of these data suggested that Sc-p53 plays a critical role in immune defense and antiviral responses.
Collapse
Affiliation(s)
- Huizhi Guo
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou 510380, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Xiaozhe Fu
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou 510380, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Ningqiu Li
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou 510380, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| | - Qiang Lin
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou 510380, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Lihui Liu
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou 510380, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| | - Shuqin Wu
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Provinces, Guangzhou 510380, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China
| |
Collapse
|
13
|
Wang X, Shao C, Wang L, Li Q, Song H, Fang W. The viral non-structural protein 1 alpha (Nsp1α) inhibits p53 apoptosis activity by increasing murine double minute 2 (mdm2) expression in porcine reproductive and respiratory syndrome virus (PRRSV) early-infected cells. Vet Microbiol 2016; 184:73-9. [PMID: 26854347 DOI: 10.1016/j.vetmic.2016.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 01/09/2016] [Accepted: 01/11/2016] [Indexed: 11/25/2022]
Abstract
Apoptosis is one of the most important mechanisms of pathogenesis in porcine reproductive and respiratory syndrome virus (PRRSV)-infected cells. The tumor suppressor p53 plays a critical role in apoptotic induction in viral infections. In the present study, we found that p53 activity was inhibited at the early stage of PRRSV infection in both the highly pathogenic (HP) and lowly pathogenic (LP) PRRSV isolates. Bax expression showed a similar change pattern to that of p53. Murine double minute 2 (mdm2) expressed higher in PRRSV-infected cells than in uninfected cells at the early stage of infection and promoted p53 degradation. We show for the first time that the non-structural protein 1 alpha (Nsp1α) of PRRSV is a negative regulator of p53 activity through increasing mdm2 expression and p53 ubiquitination, while p53 is inhibitory to PRRSV replication at the early stage of infection. We conclude that PRRSV manipulates the host factors mdm2 and p53 via its Nsp1α for increased replication at the early stage of infection. These provide a novel perspective to understand the interaction between apoptosis and replication of PRRSV.
Collapse
Affiliation(s)
- Xiaodu Wang
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China.
| | - Chunyan Shao
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China.
| | - Luyan Wang
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China.
| | - Qunjing Li
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China.
| | - Houhui Song
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China.
| | - Weihuan Fang
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an, China; Zhejiang University Institute of Preventive Veterinary Medicine, Zhejiang Province Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China.
| |
Collapse
|
14
|
Yan W, Wei J, Deng X, Shi Z, Zhu Z, Shao D, Li B, Wang S, Tong G, Ma Z. Transcriptional analysis of immune-related gene expression in p53-deficient mice with increased susceptibility to influenza A virus infection. BMC Med Genomics 2015; 8:52. [PMID: 26282854 PMCID: PMC4539693 DOI: 10.1186/s12920-015-0127-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 08/06/2015] [Indexed: 11/18/2022] Open
Abstract
Background p53 is a tumor suppressor that contributes to the host immune response against viral infections in addition to its well-established protective role against cancer development. In response to influenza A virus (IAV) infection, p53 is activated and plays an essential role in inhibiting IAV replication. As a transcription factor, p53 regulates the expression of a range of downstream responsive genes either directly or indirectly in response to viral infection. We compared the expression profiles of immune-related genes between IAV-infected wild-type p53 (p53WT) and p53-deficient (p53KO) mice to gain an insight into the basis of p53-mediated antiviral response. Methods p53KO and p53WT mice were infected with influenza A/Puerto Rico/8/1934 (PR8) strain. Clinical symptoms and body weight changes were monitored daily. Lung specimens of IAV-infected mice were collected for analysis of virus titers and gene expression profiles. The difference in immune-related gene expression levels between IAV-infected p53KO and p53WT mice was comparatively determined using microarray analysis and confirmed by quantitative real-time reverse transcription polymerase chain reaction. Results p53KO mice showed an increased susceptibility to IAV infection compared to p53WT mice. Microarray analysis of gene expression profiles in the lungs of IAV-infected mice indicated that the increased susceptibility was associated with significantly changed expression levels in a range of immune-related genes in IAV-infected p53KO mice. A significantly attenuated expression of Ifng (encoding interferon (IFN)-gamma), Irf7 (encoding IFN regulator factor 7), and antiviral genes, such as Mx2 and Eif2ak2 (encoding PKR), were observed in IAV-infected p53KO mice, suggesting an impaired IFN-mediated immune response against IAV infection in the absence of p53. In addition, dysregulated expression levels of proinflammatory cytokines and chemokines, such as Ccl2 (encoding MCP-1), Cxcl9, Cxcl10 (encoding IP-10), and Tnf, were detected in IAV-infected p53KO mice during early IAV infection, reflecting an aberrant inflammatory response. Conclusion Lack of p53 resulted in the impaired expression of genes involved in IFN signaling and the dysregulated expression of cytokine and chemokine genes in IAV-infected mice, suggesting an essential role of p53 in the regulation of antiviral and inflammatory responses during IAV infection. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0127-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenjun Yan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai,, 200241, PR China.
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai,, 200241, PR China.
| | - Xufang Deng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai,, 200241, PR China.
| | - Zixue Shi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai,, 200241, PR China.
| | - Zixiang Zhu
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai,, 200241, PR China.
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai,, 200241, PR China.
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai,, 200241, PR China.
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai,, 200241, PR China.
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai,, 200241, PR China.
| |
Collapse
|
15
|
Nailwal H, Sharma S, Mayank AK, Lal SK. The nucleoprotein of influenza A virus induces p53 signaling and apoptosis via attenuation of host ubiquitin ligase RNF43. Cell Death Dis 2015; 6:e1768. [PMID: 25996295 PMCID: PMC4669709 DOI: 10.1038/cddis.2015.131] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 12/18/2022]
Abstract
The interplay between influenza virus and host factors to support the viral life cycle is well documented. Influenza A virus (IAV) proteins interact with an array of cellular proteins and hijack host pathways which are at the helm of cellular responses to facilitate virus invasion. The multifaceted nature of the ubiquitination pathway for protein regulation makes it a vulnerable target of many viruses including IAV. To this end we conducted a yeast two-hybrid screen to search for cellular ubiquitin ligases important for influenza virus replication. We identified host protein, RING finger protein 43 (RNF43), a RING-type E3 ubiquitin ligase, as a novel interactor of nucleoprotein (NP) of IAV and an essential partner to induce NP-driven p53-mediated apoptosis in IAV-infected cells. In this study, we demonstrate that IAV leads to attenuation of RNF43 transcripts and hence its respective protein levels in the cellular milieu whereas in RNF43 depleted cells, viral replication was escalated several folds. Moreover, RNF43 polyubiquitinates p53 which further leads to its destabilization resulting in a decrease in induction of the p53 apoptotic pathway, a hitherto unknown process targeted by NP for p53 stabilization and accumulation. Collectively, these results conclude that NP targets RNF43 to modulate p53 ubiquitination levels and hence causes p53 stabilization which is conducive to an enhanced apoptosis level in the host cells. In conclusion, our study unravels a novel strategy adopted by IAV for utilizing the much conserved ubiquitin proteasomal pathway.
Collapse
Affiliation(s)
- H Nailwal
- School of Science, Monash University Malaysia, Bandar Sunway, 47500 Petaling Jaya, Selangor DE, Malaysia
| | - S Sharma
- Virology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - A K Mayank
- Virology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - S K Lal
- 1] School of Science, Monash University Malaysia, Bandar Sunway, 47500 Petaling Jaya, Selangor DE, Malaysia [2] Virology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
16
|
Guo G, Cui Y. New perspective on targeting the tumor suppressor p53 pathway in the tumor microenvironment to enhance the efficacy of immunotherapy. J Immunother Cancer 2015; 3:9. [PMID: 25806108 PMCID: PMC4372251 DOI: 10.1186/s40425-015-0053-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 02/26/2015] [Indexed: 12/17/2022] Open
Abstract
About 50% of human cancers harbor somatic mutations of the tumor suppressor p53 (p53 or Trp53) gene. Many of those mutations result in the inactivation of the p53 pathway and are often associated with the stabilization and accumulation of mutant p53 proteins. Therefore, increased p53 expression in tumors is frequently used as a surrogate marker for p53 mutation and inactivation. Moreover, this elevated p53 expression also makes it an ideal tumor associated antigen (TAA) for cancer vaccines. Recent advances in our understanding of p53 as a crucial transcription factor reveal that p53 is an important sensor of cellular stress under genotoxic, chemotoxic, pathological, and even normal physiological conditions. Experimental and clinical observations by our laboratory and others have demonstrated that p53 also participates in immune regulation as p53 dysfunction skews host immune responses towards pro-inflammation, which further promotes tumor progression. Furthermore, recent studies using a genetic approach revealed that p53-restoration or re-activation led to tumor regression and clearance, which were at least partially caused by the activation of innate antitumor immunity. Since many of the currently used cancer therapeutics, including radiotherapy and chemotherapy, disrupt tumor growth by inducing DNA damage via genotoxic or chemotoxic stress, which activates the p53 pathway in the tumor microenvironment, we postulate that some of those observed therapeutic benefits might also be partially mediated through their immune stimulatory effects. Here, we briefly review our current understanding of the potential cellular and molecular mechanisms by which p53 participates in immune regulation and, subsequently, extend our discussion to the immunostimulatory potential of existing and new approaches of targeting the p53-pathway to alter the immunological landscape of tumors for maximizing immunotherapy outcome.
Collapse
Affiliation(s)
- Gang Guo
- Department of Biochemistry and Molecular Biology, Cancer Immunology, Inflammation & Tolerance Program, Georgia Regents University Cancer Center, Augusta, GA 30912 USA
| | - Yan Cui
- Department of Biochemistry and Molecular Biology, Cancer Immunology, Inflammation & Tolerance Program, Georgia Regents University Cancer Center, Augusta, GA 30912 USA
| |
Collapse
|
17
|
Zhang H, Yu H, Wang J, Zhang M, Wang X, Ahmad W, Duan M, Guan Z. The BM2 protein of influenza B virus interacts with p53 and inhibits its transcriptional and apoptotic activities. Mol Cell Biochem 2015; 403:187-97. [DOI: 10.1007/s11010-015-2349-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/30/2015] [Indexed: 12/14/2022]
|
18
|
Zhu Z, Yang Y, Wei J, Shao D, Shi Z, Li B, Liu K, Qiu Y, Zheng H, Ma Z. Type I interferon-mediated immune response against influenza A virus is attenuated in the absence of p53. Biochem Biophys Res Commun 2014; 454:189-95. [PMID: 25450379 DOI: 10.1016/j.bbrc.2014.10.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/14/2014] [Indexed: 01/10/2023]
Abstract
Influenza A virus (IAV) infection induces secretion of type I interferon (IFN) and activation of p53, which play essential roles in the host defense against tumor development and viral infection. In this study, we knocked down p53 expression by RNA interference. The expression levels of IFN-stimulated genes (ISGs) including IFN regulatory factor (IRF) 5, IRF9, ISG15, ISG20, guanylate-binding protein 1, retinoic acid-inducible gene-I and 2'-5'-oligoadenylate synthetase 1 were significantly attenuated in response to IAV infection and IFN-α stimulation in p53-knockdown cells. This attenuated expression of ISGs was associated with enhanced replication of IAV. Pretreatment of p53-knockdown cells with IFN-α failed to inhibit IAV replication, indicating impaired antiviral activity. These findings indicate that p53 plays an essential role in the enhancement of the type I IFN-mediated immune response against IAV infection.
Collapse
Affiliation(s)
- Zixiang Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Shanghai 200241, PR China; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1, Xujiaping Road, Lanzhou 730046, PR China
| | - Yifan Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Zixue Shi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Shanghai 200241, PR China
| | - Haixue Zheng
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1, Xujiaping Road, Lanzhou 730046, PR China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Shanghai 200241, PR China.
| |
Collapse
|
19
|
Zhang R, Chi X, Wang S, Qi B, Yu X, Chen JL. The regulation of autophagy by influenza A virus. BIOMED RESEARCH INTERNATIONAL 2014; 2014:498083. [PMID: 24779013 PMCID: PMC3980786 DOI: 10.1155/2014/498083] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/27/2014] [Indexed: 11/17/2022]
Abstract
Influenza A virus is a dreadful pathogen of animals and humans, causing widespread infection and severe morbidity and mortality. It is essential to characterize the influenza A virus-host interaction and develop efficient counter measures against the viral infection. Autophagy is known as a catabolic process for the recycling of the cytoplasmic macromolecules. Recently, it has been shown that autophagy is a critical mechanism underlying the interaction between influenza A virus and its host. Autophagy can be induced by the infection with influenza A virus, which is considered as a necessary process for the viral proliferation, including the accumulation of viral elements during the replication of influenza A virus. On the other hand, influenza A virus can inhibit the autophagic formation via interaction with the autophagy-related genes (Atg) and signaling pathways. In addition, autophagy is involved in the influenza virus-regulated cell deaths, leading to significant changes in host apoptosis. Interestingly, the high pathogenic strains of influenza A virus, such as H5N1, stimulate autophagic cell death and appear to interplay with the autophagy in distinct ways as compared with low pathogenic strains. This review discusses the regulation of autophagy, an influenza A virus driven process.
Collapse
Affiliation(s)
- Rong Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaojuan Chi
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Song Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Baomin Qi
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoqiang Yu
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, MO 64110, USA
| | - Ji-Long Chen
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China ; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| |
Collapse
|
20
|
Novel pandemic influenza A (H1N1) virus infection modulates apoptotic pathways that impact its replication in A549 cells. Microbes Infect 2014; 16:178-86. [DOI: 10.1016/j.micinf.2013.11.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/21/2013] [Accepted: 11/07/2013] [Indexed: 12/25/2022]
|
21
|
Terrier O, Diederichs A, Dubois J, Cartet G, Lina B, Bourdon JC, Rosa-Calatrava M. Influenza NS1 interacts with p53 and alters its binding to p53-responsive genes, in a promoter-dependent manner. FEBS Lett 2013; 587:2965-71. [PMID: 23954291 DOI: 10.1016/j.febslet.2013.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/12/2013] [Accepted: 08/05/2013] [Indexed: 11/25/2022]
Abstract
The interplay between influenza A viruses (IAV) and p53 has only been reported in a limited number of studies, mainly focusing on the antiviral role of p53. We investigated the impact of IAV infection on p53 stability and transcriptional activity. Our results indicate that IAV-induced stabilization of p53 only partially correlates with modulation of p53 transcriptional activity measured during infection. Moreover, we show that the viral non-structural protein 1 (NS1) is able to inhibit p53 transcriptional activity, in a promoter-dependent manner. Based on these data, we propose that NS1 may contribute to p53-mediated cell fate decision during IAV infection.
Collapse
Affiliation(s)
- Olivier Terrier
- Laboratoire de Virologie et Pathologie Humaine VirPath, Equipe VirCell, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.
| | | | | | | | | | | | | |
Collapse
|
22
|
Macrophages, inflammation, and tumor suppressors: ARF, a new player in the game. Mediators Inflamm 2012; 2012:568783. [PMID: 23316105 PMCID: PMC3538382 DOI: 10.1155/2012/568783] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 11/07/2012] [Indexed: 01/10/2023] Open
Abstract
The interaction between tumor progression and innate immune system has been well established in the last years. Indeed, several lines of clinical evidence indicate that immune cells such as tumor-associated macrophages (TAMs) interact with tumor cells, favoring growth, angiogenesis, and metastasis of a variety of cancers. In most tumors, TAMs show properties of an alternative polarization phenotype (M2) characterized by the expression of a series of chemokines, cytokines, and proteases that promote immunosuppression, tumor proliferation, and spreading of the cancer cells.
Tumor suppressor genes have been traditionally linked to the regulation of cancer progression; however, a growing body of evidence indicates that these genes also play essential roles in the regulation of innate immunity pathways through molecular mechanisms that are still poorly understood. In this paper, we provide an overview of the immunobiology of TAMs as well as what is known about tumor suppressors in the context of immune responses. Recent advances regarding the role of the tumor suppressor ARF as a regulator of inflammation and macrophage polarization are also reviewed.
Collapse
|
23
|
Gene expression profiling of hybridoma cells after bursal-derived bioactive factor BP5 treatment. Amino Acids 2012; 43:2443-56. [DOI: 10.1007/s00726-012-1323-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Accepted: 05/15/2012] [Indexed: 12/25/2022]
|
24
|
Influenza A viruses control expression of proviral human p53 isoforms p53β and Delta133p53α. J Virol 2012; 86:8452-60. [PMID: 22647703 DOI: 10.1128/jvi.07143-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Previous studies have described the role of p53 isoforms, including p53β and Δ133p53α, in the modulation of the activity of full-length p53, which regulates cell fate. In the context of influenza virus infection, an interplay between influenza viruses and p53 has been described, with p53 being involved in the antiviral response. However, the role of physiological p53 isoforms has never been explored in this context. Here, we demonstrate that p53 isoforms play a role in influenza A virus infection by using silencing and transient expression strategies in human lung epithelial cells. In addition, with the help of a panel of different influenza viruses from different subtypes, we also show that infection differentially regulates the expressions of p53β and Δ133p53α. Altogether, our results highlight the role of p53 isoforms in the viral cycle of influenza A viruses, with p53β and Δ133p53α acting as regulators of viral production in a p53-dependent manner.
Collapse
|
25
|
Wang X, Deng X, Yan W, Zhu Z, Shen Y, Qiu Y, Shi Z, Shao D, Wei J, Xia X, Ma Z. Stabilization of p53 in influenza A virus-infected cells is associated with compromised MDM2-mediated ubiquitination of p53. J Biol Chem 2012; 287:18366-75. [PMID: 22474335 DOI: 10.1074/jbc.m111.335422] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Influenza A virus (IAV) induces apoptosis of infected cells. In response to IAV infection, p53, a tumor suppressor involved in regulating apoptosis and host antiviral defense, accumulates and becomes activated. This study was undertaken to examine the mechanism of p53 accumulation in IAV-infected cells. Here we show that p53 accumulation in IAV-infected cells results from protein stabilization, which was associated with compromised Mdm2-mediated ubiquitination of p53. In IAV-infected cells, p53 was stabilized and its half-life was remarkably extended. The ladders of polyubiquitinated p53 were not detectable in the presence of the proteasome inhibitor MG132 and were less sensitive to proteasome-mediated degradation. IAV infection did not affect the abundance of Mdm2, a major ubiquitin E3 ligase responsible for regulating p53 ubiquitination and degradation, but weakened the interaction between p53 and Mdm2. Viral nucleoprotein (NP) was able to increase the transcriptional activity and stability of p53. Furthermore, NP was found to associate with p53 and to impair the p53-Mdm2 interaction and Mdm2-mediated p53 ubiquitination, demonstrating its role in inhibiting Mdm2-mediated p53 ubiquitination and degradation.
Collapse
Affiliation(s)
- Xiaodu Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Feng XL, Liu QT, Cao RB, Zhou B, Wang FQ, Deng WL, Qiu YF, Zhang Y, Ishag H, Ma ZY, Zheng QS, Chen PY. A bursal pentapeptide (BPP-I), a novel bursal-derived peptide, exhibits antiproliferation of tumor cell and immunomodulator activity. Amino Acids 2011; 42:2215-22. [DOI: 10.1007/s00726-011-0961-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Accepted: 06/08/2011] [Indexed: 01/12/2023]
|
27
|
Lazo PA, Santos CR. Interference with p53 functions in human viral infections, a target for novel antiviral strategies? Rev Med Virol 2011; 21:285-300. [PMID: 21726011 DOI: 10.1002/rmv.696] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 05/02/2011] [Accepted: 05/06/2011] [Indexed: 12/11/2022]
Abstract
Viral infections cause a major stress in host cells. The cellular responses to stress are mediated by p53, which by deregulation of cell cycle and apoptosis, may also be part of the host cell reaction to fight infections. Therefore, during evolutionary viral adaptation to host organisms, viruses have developed strategies to manipulate host cell p53 dependent pathways to facilitate their viral life cycles. Thus, interference with p53 function is an important component in viral pathogenesis. Many viruses have proteins that directly affect p53, whereas others alter the regulation of p53 in an indirect manner, mediated by Hdm2 or Akt, or induction of interferon. Rescue of p53 activity is becoming an area of therapeutic development in oncology. It might be feasible that manipulation of p53 mediated responses can become a therapeutic option to limit viral replication or dissemination. In this report, the mechanisms by which viral proteins manipulate p53 responses are reviewed, and it is proposed that a pharmacological rescue of p53 functions might help to control viral infections.
Collapse
Affiliation(s)
- Pedro A Lazo
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, Salamanca, Spain.
| | | |
Collapse
|
28
|
Terrier O, Josset L, Textoris J, Marcel V, Cartet G, Ferraris O, N'guyen C, Lina B, Diaz JJ, Bourdon JC, Rosa-Calatrava M. Cellular transcriptional profiling in human lung epithelial cells infected by different subtypes of influenza A viruses reveals an overall down-regulation of the host p53 pathway. Virol J 2011; 8:285. [PMID: 21651802 PMCID: PMC3127840 DOI: 10.1186/1743-422x-8-285] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 06/08/2011] [Indexed: 12/23/2022] Open
Abstract
Background Influenza viruses can modulate and hijack several cellular signalling pathways to efficiently support their replication. We recently investigated and compared the cellular gene expression profiles of human lung A549 cells infected by five different subtypes of human and avian influenza viruses (Josset et al. Plos One 2010). Using these transcriptomic data, we have focused our analysis on the modulation of the p53 pathway in response to influenza infection. Results Our results were supported by both RT-qPCR and western blot analyses and reveal multiple alterations of the p53 pathway during infection. A down-regulation of mRNA expression was observed for the main regulators of p53 protein stability during infection by the complete set of viruses tested, and a significant decrease in p53 mRNA expression was also observed in H5N1 infected cells. In addition, several p53 target genes were also down-regulated by these influenza viruses and the expression of their product reduced. Conclusions Our data reveal that influenza viruses cause an overall down-regulation of the host p53 pathway and highlight this pathway and p53 protein itself as important viral targets in the altering of apoptotic processes and in cell-cycle regulation.
Collapse
Affiliation(s)
- Olivier Terrier
- Laboratoire de Virologie et Pathologie Humaine VirPath, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kuchipudi SV, Dunham SP, Nelli R, White GA, Coward VJ, Slomka MJ, Brown IH, Chang KC. Rapid death of duck cells infected with influenza: a potential mechanism for host resistance to H5N1. Immunol Cell Biol 2011; 90:116-23. [PMID: 21423263 PMCID: PMC3257048 DOI: 10.1038/icb.2011.17] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Aquatic birds are the natural reservoir for most subtypes of influenza A, and a source of novel viruses with the potential to cause human pandemics, fatal zoonotic disease or devastating epizootics in poultry. It is well recognised that waterfowl typically show few clinical signs following influenza A infection, in contrast, terrestrial poultry such as chickens may develop severe disease with rapid death following infection with highly pathogenic avian influenza. This study examined the cellular response to influenza infection in primary cells derived from resistant (duck) and susceptible (chicken) avian hosts. Paradoxically, we observed that duck cells underwent rapid cell death following infection with low pathogenic avian H2N3, classical swine H1N1 and ‘classical' highly pathogenic H5N1 viruses. Dying cells showed morphological features of apoptosis, increased DNA fragmentation and activation of caspase 3/7. Following infection of chicken cells, cell death occurred less rapidly, accompanied by reduced DNA fragmentation and caspase activation. Duck cells produced similar levels of viral RNA but less infectious virus, in comparison with chicken cells. Such rapid cell death was not observed in duck cells infected with a contemporary Eurasian lineage H5N1 fatal to ducks. The induction of rapid death in duck cells may be part of a mechanism of host resistance to influenza A, with the loss of this response leading to increased susceptibility to emergent strains of H5N1. These studies provide novel insights that should help resolve the long-standing enigma of host–pathogen relationships for highly pathogenic and zoonotic avian influenza.
Collapse
Affiliation(s)
- Suresh V Kuchipudi
- Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Glasgow, UK
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Many viruses interact with the host cell division cycle to favor their own growth. In this study, we examined the ability of influenza A virus to manipulate cell cycle progression. Our results show that influenza A virus A/WSN/33 (H1N1) replication results in G(0)/G(1)-phase accumulation of infected cells and that this accumulation is caused by the prevention of cell cycle entry from G(0)/G(1) phase into S phase. Consistent with the G(0)/G(1)-phase accumulation, the amount of hyperphosphorylated retinoblastoma protein, a necessary active form for cell cycle progression through late G(1) into S phase, decreased after infection with A/WSN/33 (H1N1) virus. In addition, other key molecules in the regulation of the cell cycle, such as p21, cyclin E, and cyclin D1, were also changed and showed a pattern of G(0)/G(1)-phase cell cycle arrest. It is interesting that increased viral protein expression and progeny virus production in cells synchronized in the G(0)/G(1) phase were observed compared to those in either unsynchronized cells or cells synchronized in the G(2)/M phase. G(0)/G(1)-phase cell cycle arrest is likely a common strategy, since the effect was also observed in other strains, such as H3N2, H9N2, PR8 H1N1, and pandemic swine H1N1 viruses. These findings, in all, suggest that influenza A virus may provide favorable conditions for viral protein accumulation and virus production by inducing a G(0)/G(1)-phase cell cycle arrest in infected cells.
Collapse
|
31
|
Li W, Wang G, Zhang H, Xin G, Zhang D, Zeng J, Chen X, Xu Y, Cui Y, Li K. Effects of NS1 variants of H5N1 influenza virus on interferon induction, TNFalpha response and p53 activity. Cell Mol Immunol 2010; 7:235-42. [PMID: 20228833 PMCID: PMC4002919 DOI: 10.1038/cmi.2010.6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/21/2009] [Accepted: 01/17/2010] [Indexed: 02/05/2023] Open
Abstract
Non-structural protein 1 (NS1) is an important virulence factor of the highly pathogenic H5N1 avian influenza virus. A five-amino-acid (5 aa) deletion at position 80-84 and an aspartic acid to glutamic acid substitution at position 92 (D92E) are two major NS1 mutations that are highly correlated with enhanced virulence. To investigate the effect of these mutations in H5N1 virulence, three H5N1-NS1 variants were constructed: NS51 (lacking 5 aa at position 80-84), NS51(I) (carrying a 5-aa insertion at position 80-84) and NS51(IM) (carrying both the 5-aa insertion and the D92E mutation). We examined the effects of these mutations on interferon (IFN) induction, tumor-necrosis factor (TNF)alpha response, p53 activity and apoptosis. We found that the D92E mutation eliminated NS1's repressive effect on IFN induction, while the 5-aa deletion resulted in enhanced resistance to TNFalpha responses. We also observed that all three variants exhibited a similar suppressive effect on p53 transcriptional activity, although none of them significantly influenced apoptosis of host cells. Our findings shed new light on the role of NS1 in the pathogenicity of H5N1 virus.
Collapse
Affiliation(s)
- Weizhong Li
- Department of Microbiology and Immunology, Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wang X, Shen Y, Qiu Y, Shi Z, Shao D, Chen P, Tong G, Ma Z. The non-structural (NS1) protein of influenza A virus associates with p53 and inhibits p53-mediated transcriptional activity and apoptosis. Biochem Biophys Res Commun 2010; 395:141-5. [PMID: 20361939 DOI: 10.1016/j.bbrc.2010.03.160] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 03/28/2010] [Indexed: 12/18/2022]
Abstract
NS1 protein of influenza A virus is involved in regulating the apoptosis of infected cells. We found that exogenously expressed NS1 was able to associate with the tumor suppressor p53 that plays an essential role in regulating apoptosis of influenza A virus-infected cells. Exogenous expression of NS1 resulted in inhibition of p53-mediated transcriptional activity and apoptosis. The p53 inhibitory domain of NS1 was located between amino acids 144 and 188. This domain is necessary for NS1 to inhibit p53 activity, but it requires additional region(s) to cooperatively exert this inhibitory function.
Collapse
Affiliation(s)
- Xiaodu Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, PR China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Rivas C, Aaronson SA, Munoz-Fontela C. Dual Role of p53 in Innate Antiviral Immunity. Viruses 2010; 2:298-313. [PMID: 21994612 PMCID: PMC3185551 DOI: 10.3390/v2010298] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 01/11/2010] [Accepted: 01/19/2010] [Indexed: 01/10/2023] Open
Abstract
Tumor suppressor p53 is widely known as 'the guardian of the genome' due to its ability to prevent the emergence of transformed cells by the induction of cell cycle arrest and apoptosis. However, recent studies indicate that p53 is also a direct transcriptional target of type I interferons (IFNs) and thus, it is activated by these cytokines upon viral infection. p53 has been shown to contribute to virus-induced apoptosis, therefore dampening the ability of a wide range of viruses to replicate and spread. Interestingly, recent studies also indicate that several IFN-inducible genes such as interferon regulatory factor 9 (IRF9), IRF5, IFN-stimulated gene 15 (ISG15) and toll-like receptor 3 (TLR3) are in fact, p53 direct transcriptional targets. These findings indicate that p53 may play a key role in antiviral innate immunity by both inducing apoptosis in response to viral infection, and enforcing the type I IFN response, and provide a new insight into the evolutionary reasons why many viruses encode p53 antagonistic proteins.
Collapse
Affiliation(s)
- Carmen Rivas
- Centro Nacional de Biotecnologia, CSIC, Darwin 3, Campus Universidad Autónoma, Madrid 28049, Spain; E-Mail: (C.R.)
| | - Stuart A. Aaronson
- Department of Oncological Sciences, Mount Sinai School of Medicine, One Gustave L. Levy Place Box 1130, New York, NY 10029, USA; E-Mail: (S.A.A.)
| | - Cesar Munoz-Fontela
- Department of Oncological Sciences, Mount Sinai School of Medicine, One Gustave L. Levy Place Box 1130, New York, NY 10029, USA; E-Mail: (S.A.A.)
| |
Collapse
|
34
|
|