1
|
Zhang J, Jiang Y, Zhang Z, Li S, Fan H, Gu J, Mao R, Xu X. Repulsive guidance molecules b (RGMb): molecular mechanism, function and role in diseases. Expert Rev Mol Med 2024; 26:e24. [PMID: 39375839 PMCID: PMC11488336 DOI: 10.1017/erm.2024.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/26/2023] [Revised: 12/23/2023] [Accepted: 06/11/2024] [Indexed: 10/09/2024]
Abstract
Repulsive guidance molecule b (RGMb), a glycosylphosphatidylinositol-anchored member of the RGM family, is initially identified as a co-receptor of bone morphogenetic protein (BMP) in the nervous system. The expression of RGMb is transcriptionally regulated by dorsal root ganglion 11 (DRG11), which is a transcription factor expressed in embryonic DRG and dorsal horn neurons and plays an important role in the development of sensory circuits. RGMb is involved in important physiological processes such as embryonic development, immune response, intercellular adhesion and tumorigenesis. Furthermore, RGMb is mainly involved in the regulation of RGMb-neogenin-Rho and BMP signalling pathways. The recent discovery of programmed death-ligand 2 (PD-L2)-RGMb binding reveals that the cell signalling network and functional regulation centred on RGMb are extremely complex. The latest report suggests that down-regulation of the PD-L2-RGMb pathway in the gut microbiota promotes an anti-tumour immune response, which defines a potentially effective immune strategy. However, the biological function of RGMb in a variety of human diseases has not been fully determined, and will remain an active research field. This article reviews the properties and functions of RGMb, focusing on its role under various physiological and pathological conditions.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Yijing Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Zijian Zhang
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Shilin Li
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Haowen Fan
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Jinhua Gu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity & Child Healthcare Hospital of Nantong University, Nantong, Jiangsu, China
| | - Renfang Mao
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Xiaohong Xu
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong University, Nantong, Jiangsu, People's Republic of China
| |
Collapse
|
2
|
Xue Y, Pei X, Xia Y, Chen H, Yu H, Wang W, Mao D. RGMb expression in goat uterine tissues: possible role of RGMb in the proliferation and apoptosis of endometrial epithelial cells. Reprod Fertil Dev 2023; 35:723-732. [PMID: 37967584 DOI: 10.1071/rd23121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/16/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023] Open
Abstract
Context Bone morphogenetic proteins (BMPs) play an important role in the uteri. Repulsive guidance molecule b (RGMb; a.k.a. Dragon) has been confirmed as the coreceptor of BMPs to function through drosophila mothers against decapentaplegic protein (Smads) and mitogen-activated protein kinases (MAPK) pathways. We hypothesise that RGMb regulates the uterine function through the Smads and MAPK pathways. Aims This study aimed to investigate the expression of RGMb in goat uteri and the potential role of RGMb in the endometrial epithelial cells (EECs). Methods The localisation of RGMb in goat uterine tissues was detected by immunohistochemistry (IHC), EECs were isolated and transfected with siRNA to investigate the role of RGMb in proliferation, and apoptosis. The expression levels of Smads and MAPK members was measured by western blot (WB) and real-time PCR (RT-PCR). Key results IHC showed that RGMb was localised in goat endometrial luminal cells, glandular epithelial cells, and circular muscle fibres, but not in stromal cells. RT-PCR results showed that treatment with RGMb siRNA suppressed the expressions of proliferation-related genes cyclin D1 (CCND1 , P =0.0291), cyclin-dependent kinase 2 (CDK2 P =0.0107), and proliferating cell nuclear antigen (PCNA, P =0.0508), leading to the reduced viability of EECs (P =0.0010). WB results showed that the expression ratio of cleaved-caspase 3/caspase 3 (P =0.0013) was markedly increased after RGMb siRNA transfection. Likewise, the level of phospho-extracellular signal-regulated kinase 1/2 (p-ERK1/2, P =0.0068) and p-Smad1/5/8 (P =0.0011) decreased significantly, while there were no appreciable differences in the level of p-P38 MAPK expression (P >0.05). Conclusions RGMb might participate in the regulation of cell proliferation and apoptosis through Smads and ERK signalling pathways in goat EECs. Implications RGMb is involved in regulating the proliferation and apoptosis in goat endometrial epithelial cells.
Collapse
Affiliation(s)
- Yang Xue
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiaomeng Pei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuting Xia
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hengguang Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hao Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wei Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Dagan Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
3
|
Wu CC, Brugeaud A, Seist R, Lin HC, Yeh WH, Petrillo M, Coppola G, Edge ASB, Stankovic KM. Altered expression of genes regulating inflammation and synaptogenesis during regrowth of afferent neurons to cochlear hair cells. PLoS One 2020; 15:e0238578. [PMID: 33001981 PMCID: PMC7529247 DOI: 10.1371/journal.pone.0238578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/07/2020] [Accepted: 08/19/2020] [Indexed: 12/20/2022] Open
Abstract
The spiral ganglion neurons constitute the primary connection between auditory hair cells and the brain. The spiral ganglion afferent fibers and their synapse with hair cells do not regenerate to any significant degree in adult mammalian ears after damage. We have investigated gene expression changes after kainate-induced disruption of the synapses in a neonatal cochlear explant model in which peripheral fibers and the afferent synapse do regenerate. We compared gene expression early after damage, during regeneration of the fibers and synapses, and after completion of in vitro regeneration. These analyses revealed a total of 2.5% differentially regulated transcripts (588 out of 24,000) based on a threshold of p<0.005. Inflammatory response genes as well as genes involved in regeneration of neural circuits were upregulated in the spiral ganglion neurons and organ of Corti, where the hair cells reside. Prominent genes upregulated at several time points included genes with roles in neurogenesis (Elavl4 and Sox21), neural outgrowth (Ntrk3 and Ppp1r1c), axonal guidance (Rgmb and Sema7a), synaptogenesis (Nlgn2 and Psd2), and synaptic vesicular function (Syt8 and Syn1). Immunohistochemical and in situ hybridization analysis of genes that had not previously been described in the cochlea confirmed their cochlear expression. The time course of expression of these genes suggests that kainate treatment resulted in a two-phase response in spiral ganglion neurons: an acute response consistent with inflammation, followed by an upregulation of neural regeneration genes. Identification of the genes activated during regeneration of these fibers suggests candidates that could be targeted to enhance regeneration in adult ears.
Collapse
Affiliation(s)
- Chen-Chi Wu
- Eaton Peabody Laboratories and Department of Otolaryngology—Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
- Department of Otolaryngology—Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Aurore Brugeaud
- Eaton Peabody Laboratories and Department of Otolaryngology—Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
- Department of Otolaryngology—Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Richard Seist
- Eaton Peabody Laboratories and Department of Otolaryngology—Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
- Department of Otolaryngology—Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Otorhinolaryngology-Head and Neck Surgery, Paracelsus Medical University, Salzburg, Austria
| | - Hsiao-Chun Lin
- Eaton Peabody Laboratories and Department of Otolaryngology—Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
- Department of Otolaryngology—Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Wei-Hsi Yeh
- Eaton Peabody Laboratories and Department of Otolaryngology—Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
- Department of Otolaryngology—Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marco Petrillo
- Eaton Peabody Laboratories and Department of Otolaryngology—Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
- Department of Otolaryngology—Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Giovanni Coppola
- Program in Neurogenetics, Department of Neurology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Albert S. B. Edge
- Eaton Peabody Laboratories and Department of Otolaryngology—Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
- Department of Otolaryngology—Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Konstantina M. Stankovic
- Eaton Peabody Laboratories and Department of Otolaryngology—Head and Neck Surgery, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
- Department of Otolaryngology—Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
4
|
Chen J, Shifman MI. Inhibition of neogenin promotes neuronal survival and improved behavior recovery after spinal cord injury. Neuroscience 2019; 408:430-447. [PMID: 30943435 DOI: 10.1016/j.neuroscience.2019.03.055] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/20/2018] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 01/09/2023]
Abstract
Following spinal cord trauma, axonal regeneration in the mammalian spinal cord does not occur and functional recovery may be further impeded by retrograde neuronal death. By contrast, lampreys recover after spinal cord injury (SCI) and axons re-connected to their targets in spinal cord. However, the identified reticulospinal (RS) neurons located in the lamprey brain differ in their regenerative capacities - some are good regenerators, and others are bad regenerators - despite the fact that they have analogous projection pathways. Previously, we reported that axonal guidance receptor Neogenin involved in regulation of axonal regeneration after SCI and downregulation of Neogenin synthesis by morpholino oligonucleotides (MO) enhanced the regeneration of RS neurons. Incidentally, the bad regenerating RS neurons often undergo a late retrograde apoptosis after SCI. Here we report that, after SCI, expression of RGMa mRNA was upregulated around the transection site, while its receptor Neogenin continued to be synthesized almost inclusively in the "bad-regenerating" RS neurons. Inhibition of Neogenin by MO prohibited activation of caspases and improved the survival of RS neurons at 10 weeks after SCI. These data provide new evidence in vivo that Neogenin is involved in retrograde neuronal death and failure of axonal regeneration after SCI.
Collapse
Affiliation(s)
- Jie Chen
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Philadelphia, PA 19140, USA
| | - Michael I Shifman
- Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Philadelphia, PA 19140, USA; Department of Neuroscience, Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA.
| |
Collapse
|
5
|
Nickel J, Ten Dijke P, Mueller TD. TGF-β family co-receptor function and signaling. Acta Biochim Biophys Sin (Shanghai) 2018; 50:12-36. [PMID: 29293886 DOI: 10.1093/abbs/gmx126] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/01/2017] [Accepted: 11/08/2017] [Indexed: 01/04/2023] Open
Abstract
Transforming growth factor-β (TGF-β) family members, which include TGF-βs, activins and bone morphogenetic proteins, are pleiotropic cytokines that elicit cell type-specific effects in a highly context-dependent manner in many different tissues. These secreted protein ligands signal via single-transmembrane Type I and Type II serine/threonine kinase receptors and intracellular SMAD transcription factors. Deregulation in signaling has been implicated in a broad array of diseases, and implicate the need for intricate fine tuning in cellular signaling responses. One important emerging mechanism by which TGF-β family receptor signaling intensity, duration, specificity and diversity are regulated and/or mediated is through cell surface co-receptors. Here, we provide an overview of the co-receptors that have been identified for TGF-β family members. While some appear to be specific to TGF-β family members, others are shared with other pathways and provide possible ways for signal integration. This review focuses on novel functions of TGF-β family co-receptors, which continue to be discovered.
Collapse
Affiliation(s)
- Joachim Nickel
- Universitätsklinikum Würzburg, Lehrstuhl für Tissue Engineering und Regenerative Medizin und Fraunhofer Institut für Silicatforschung (ISC), Translationszentrum "Regenerative Therapien", Röntgenring 11, D-97070 Würzburg, Germany
| | - Peter Ten Dijke
- Department of Molecular and Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands
| | - Thomas D Mueller
- Lehrstuhl für molekulare Pflanzenphysiologie und Biophysik, Julius-von-Sachs Institut für Biowissenschaften, Universität Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| |
Collapse
|
6
|
Li J, Ye L, Shi X, Chen J, Feng F, Chen Y, Xiao Y, Shen J, Li P, Jiang WG, He J. Repulsive guidance molecule B inhibits metastasis and is associated with decreased mortality in non-small cell lung cancer. Oncotarget 2017; 7:15678-89. [PMID: 26910889 PMCID: PMC4941269 DOI: 10.18632/oncotarget.7463] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/23/2015] [Accepted: 01/26/2016] [Indexed: 11/25/2022] Open
Abstract
Repulsive guidance molecules (RGMs) are co-receptors of bone morphogenetic proteins (BMPs) and programmed death ligand 2 (PD-L2), and might be involved in lung and other cancers. We evaluated repulsive guidance molecule B (RGMB) expression in 165 non-small cell lung cancer (NSCLC) tumors and 22 normal lung tissue samples, and validated the results in an independent series of 131 samples. RGMB was downregulated in NSCLC (P ≤ 0.001), possibly through promoter hypermethylation. Reduced RGMB expression was observed in advanced-stage tumors (P = 0.017) and in tumors with vascular invasion (P < 0.01), and was significantly associated with poor overall survival (39 vs. 62 months, P < 0.001) and with disease-associated patient mortality (P = 0.015). RGMB knockdown promoted cell adhesion, invasion and migration, in both NSCLC cell lines and an in vivo mouse model, which enhanced metastatic potential. Conversely, RGMB overexpression and secretion suppressed cancer progression. The tumor-suppressing effect of RGMB was exerted through inhibition of the Smad1/5/8 pathway. Our results demonstrate that RGMB is an important inhibitor of NSCLC metastasis and that low RGMB expression is a novel predictor or a poor prognosis.
Collapse
Affiliation(s)
- Jin Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou 510530, China
| | - Lin Ye
- Cardiff-China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Xiaoshun Shi
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou 510530, China
| | - Jingyi Chen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou 510530, China
| | - Fenglan Feng
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou 510530, China
| | - Yaoqi Chen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou 510530, China
| | - Yiren Xiao
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jianfei Shen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou 510530, China
| | - Peng Li
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Wen G Jiang
- Cardiff-China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Jianxing He
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou 510530, China
| |
Collapse
|
7
|
Expression of RGMb in brain tissue of MCAO rats and its relationship with axonal regeneration. J Neurol Sci 2017; 383:79-86. [DOI: 10.1016/j.jns.2017.10.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/10/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 11/24/2022]
|
8
|
Li N, Qiao M, Zhao Q, Zhang P, Song L, Li L, Cui C. Effects of maternal lead exposure on RGMa and RGMb expression in the hippocampus and cerebral cortex of mouse pups. Brain Res Bull 2016; 127:38-46. [DOI: 10.1016/j.brainresbull.2016.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/29/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 11/26/2022]
|
9
|
Martins AF, Xavier Neto J, Azambuja A, Sereno ML, Figueira A, Campos-Junior PH, Rosário MF, Toledo CBB, Silva GAB, Kitten GT, Coutinho LL, Dietrich S, Jorge EC. Repulsive Guidance Molecules a, b and c Are Skeletal Muscle Proteins, and Repulsive Guidance Molecule a Promotes Cellular Hypertrophy and Is Necessary for Myotube Fusion. Cells Tissues Organs 2015; 200:326-38. [PMID: 26397945 DOI: 10.1159/000433491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 05/21/2015] [Indexed: 11/19/2022] Open
Abstract
Repulsive guidance molecules (RGMs) compose a family of glycosylphosphatidylinositol (GPI)-anchored axon guidance molecules and perform several functions during neural development. New evidence has suggested possible new roles for these axon guidance molecules during skeletal muscle development, which has not been investigated thus far. In the present study, we show that RGMa, RGMb and RGMc are all induced during skeletal muscle differentiation in vitro. Immunolocalization performed on adult skeletal muscle cells revealed that RGMa, RGMb and RGMc are sarcolemmal proteins. Additionally, RGMa was found to be a sarcoplasmic protein with a surprisingly striated pattern. RGMa colocalization with known sarcoplasmic proteins suggested that this axon guidance molecule is a skeletal muscle sarcoplasmic protein. Western blot analysis revealed two RGMa fragments of 60 and 33 kDa, respectively, in adult skeletal muscle samples. RGMa phenotypes in skeletal muscle cells (C2C12 and primary myoblasts) were also investigated. RGMa overexpression produced hypertrophic cells, whereas RGMa knockdown resulted in the opposite phenotype. RGMa knockdown also blocked myotube formation in both skeletal muscle cell types. Our results are the first to show an axon guidance molecule as a skeletal muscle sarcoplasmic protein and to include RGMa in a system that regulates skeletal muscle cell size and differentiation.
Collapse
Affiliation(s)
- Aline Fagundes Martins
- Departamento de Morfologia, Instituto de Cix00EA;ncias Biolx00F3;gicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Meng C, Guo N, Wei Q, Shi F, Schneyer AL, Xia Y, Mao D. Expression of repulsive guidance molecule b (RGMb) in the uterus and ovary during the estrous cycle in rats. Acta Histochem 2014; 116:1231-6. [PMID: 25085051 DOI: 10.1016/j.acthis.2014.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/24/2014] [Revised: 07/12/2014] [Accepted: 07/13/2014] [Indexed: 10/25/2022]
Abstract
Repulsive guidance molecule b (RGMb; a.k.a. Dragon), initially identified in the embryonic dorsal root ganglion, is the first member of the RGM family shown to enhance bone morphogenetic protein (BMP) signaling by acting as a BMP co-receptor. BMP signaling has been demonstrated to play an important role in the reproductive organs. Our previous study found that RGMb was expressed in the reproductive axis, but whether RGMb expression in reproductive organs changes across the estrous cycle remains unknown. Here, we show in the rat that RGMb mRNA expression in the uterus was significantly higher during metesterus and diestrus than during proestrus and estrus. Western blotting indicated that RGMb protein was significantly lower during estrus compared with the other three stages. Immunohistochemistry revealed that RGMb protein was mainly localized to the uterine luminal and glandular epithelial cells of the endometrium. RGMb mRNA and protein in the ovary remained unchanged during the estrous cycle. RGMb protein was expressed in the oocytes of all follicles. Weak staining for RGMb protein was also found in corpora lutea. RGMb was not detected in granulosa cells and stromal cells. Taken together, RGMb expression in the uterus and ovary across the estrus cycle demonstrate that RGMb may be involved in the regulation of uterine function, follicular development as well as luteal activity.
Collapse
|
11
|
Sanders AJ, Ye L, Li J, Mason MD, Jiang WG. Tumour angiogenesis and repulsive guidance molecule b: a role in HGF- and BMP-7-mediated angiogenesis. Int J Oncol 2014; 45:1304-12. [PMID: 24970050 DOI: 10.3892/ijo.2014.2508] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/07/2014] [Accepted: 05/26/2014] [Indexed: 11/05/2022] Open
Abstract
Hepatocyte growth factor (HGF) is a key growth factor linked to promoting cancer progression and angiogenesis. The present study identifies repulsive guidance molecule b (RGMb), a bone morphogenetic protein (BMP) co-receptor, as a gene whose expression is regulated by HGF and explores the potential of RGMb to contribute to the process of angiogenesis. Microarray analysis was used to identify HGF responsive genes in HECV endothelial cells, identifying RGMb. RGMb was subsequently targeted using a ribozyme transgene system and its role in angiogenesis assessed using in vitro and in vivo assays. The importance of RGMb in pro-angiogenic responses to HGF and BMP-7 was also assessed. Microarray analysis identified RGMb as a gene upregulated as a result of HGF treatment. Knockdown of RGMb, in HECV cells, had minimal effects on tubule formation, brought about a general, although non-significant increase in cell growth and enhanced cell migration. Similarly, no significant effect of RGMb knockdown was found in vivo using a co-inoculation angiogenesis model. Knockdown of RGMb was, however, found to reduce the responsiveness of HECV cells to HGF treatment and particularly to BMP-7 treatment in regard to the enhanced migratory and tubule formation brought about by these treatments in vitro. Our results indicate that RGMb expression can be influenced by HGF treatment. Whilst this molecule appears to have minimal impact on angiogenic traits individually, it demonstrates an involvement in propagating pro-angiogenic effects of HGF and particularly BMP-7 and thus, may play a role in regulating angiogenic responses to HGF and BMP-7.
Collapse
Affiliation(s)
- Andrew J Sanders
- Cardiff University-Peking University Cancer Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Lin Ye
- Cardiff University-Peking University Cancer Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Jin Li
- Cardiff University-Peking University Cancer Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Malcolm D Mason
- Section of Oncology and Palliative Medicine, Cardiff University School of Medicine, Cardiff, UK
| | - Wen G Jiang
- Cardiff University-Peking University Cancer Institute, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
12
|
Lykissas MG, Aichmair A, Sama AA, Hughes AP, Lebl DR, Cammisa FP, Girardi FP. Nerve injury and recovery after lateral lumbar interbody fusion with and without bone morphogenetic protein-2 augmentation: a cohort-controlled study. Spine J 2014; 14:217-24. [PMID: 24269858 DOI: 10.1016/j.spinee.2013.06.109] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/04/2013] [Accepted: 06/29/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Despite common use of intraoperative electrophysiologic neuromonitoring, injuries to the lumbar plexus during lateral lumbar interbody fusion (LLIF) have been reported. Emerging data suggest that recombinant human bone morphogenetic protein-2 (rhBMP-2) use during an anterior or transforaminal lumbar interbody fusion may be associated with an increased risk of neurological deficit. Clinical data on the sequelae of rhBMP-2 implantation in close proximity to the lumbosacral plexus during LLIF remains to be understood. PURPOSE The purpose of this study was to compare the incidence of neurologic deficits and pain in patients undergoing LLIF with and without rhBMP-2. STUDY DESIGN/SETTING Retrospective outcome analysis in controlled cohorts undergoing the lateral exposure technique for LLIF with and without rhBMP-2. METHODS The electronic medical records of patients undergoing LLIF with and without supplemental posterior fusion for degenerative spinal conditions were retrospectively reviewed over a 6-year period. Patients with previous lumbar spine surgery or follow-up of less than 6 months were excluded. Patients were divided into 2 groups, Group 1 (rhBMP-2 use; n=72) and Group 2 (autograft/allograft use; n=72), and were matched according to the age at the time of surgery, gender, weight, body mass index, side of approach, total number of treated spinal segments, use of supplemental posterior fusion, and length of follow-up. RESULTS Immediately after surgery, a sensory deficit was recorded in 33 patients in Group 1 and 35 patients in Group 2 (odds ratio [OR] 0.895; 90% confidence interval [CI] 0.516-1.550; p=.739). At last follow-up, a persistent sensory deficit was identified in 29 patients whose LLIF procedure was supplemented by rhBMP-2 and 20 patients in whom autograft/allograft was used (OR 1.754; 90% CI 0.976-3.151; p=.115). A motor deficit was recorded in 37 patients immediately after the rhBMP-2 procedure and 28 patients treated with autograft/allograft (OR 1.661; 90% CI 0.953-2.895; p=.133). A persistent motor deficit was recorded in 35 and 17 patients in Groups 1 and 2, respectively, at last follow-up (OR 3.060; 90% CI 1.681-5.571; p=.002). During the first postoperative examination, 37 patients in Group 1 and 25 patients in Group 2 complained of anterior thigh or groin pain (OR 1.987; 90% CI 1.133-3.488; p=.045). At last follow-up, there was a significantly higher number of patients in Group 1 who complained of persistent anterior thigh or groin pain than Group 2 (8 vs. 0 patients) (OR 16.470; 90% CI 1.477-183.700; p=.006). CONCLUSIONS Our results provide evidence of an increased rate of postoperative neurologic deficit and anterior thigh/groin pain after LLIF using rhBMP-2, when compared with matched controls without rhBMP-2 exposure. This study suggests a potential direct deleterious effect of rhBMP-2 on the lumbosacral plexus.
Collapse
Affiliation(s)
- Marios G Lykissas
- Department of Orthopedic Surgery, Spine and Scoliosis Service, Hospital for Special Surgery, Weill Cornell Medical College, 535 E. 70th St, New York, NY 10021, USA.
| | - Alexander Aichmair
- Department of Orthopedic Surgery, Spine and Scoliosis Service, Hospital for Special Surgery, Weill Cornell Medical College, 535 E. 70th St, New York, NY 10021, USA
| | - Andrew A Sama
- Department of Orthopedic Surgery, Spine and Scoliosis Service, Hospital for Special Surgery, Weill Cornell Medical College, 535 E. 70th St, New York, NY 10021, USA
| | - Alexander P Hughes
- Department of Orthopedic Surgery, Spine and Scoliosis Service, Hospital for Special Surgery, Weill Cornell Medical College, 535 E. 70th St, New York, NY 10021, USA
| | - Darren R Lebl
- Department of Orthopedic Surgery, Spine and Scoliosis Service, Hospital for Special Surgery, Weill Cornell Medical College, 535 E. 70th St, New York, NY 10021, USA
| | - Frank P Cammisa
- Department of Orthopedic Surgery, Spine and Scoliosis Service, Hospital for Special Surgery, Weill Cornell Medical College, 535 E. 70th St, New York, NY 10021, USA
| | - Federico P Girardi
- Department of Orthopedic Surgery, Spine and Scoliosis Service, Hospital for Special Surgery, Weill Cornell Medical College, 535 E. 70th St, New York, NY 10021, USA
| |
Collapse
|
13
|
Brugeaud A, Tong M, Luo L, Edge ASB. Inhibition of repulsive guidance molecule, RGMa, increases afferent synapse formation with auditory hair cells. Dev Neurobiol 2013; 74:457-66. [PMID: 24123853 DOI: 10.1002/dneu.22136] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/31/2013] [Revised: 09/03/2013] [Accepted: 09/23/2013] [Indexed: 11/12/2022]
Abstract
The peripheral fibers that extend from auditory neurons to hair cells are sensitive to damage, and replacement of the fibers and their afferent synapse with hair cells would be of therapeutic interest. Here, we show that RGMa, a repulsive guidance molecule previously shown to play a role in the development of the chick visual system, is expressed in the developing, newborn, and mature mouse inner ear. The effect of RGMa on synaptogenesis between afferent neurons and hair cells, from which afferent connections had been removed, was assessed. Contact of neural processes with hair cells and elaboration of postsynaptic densities at sites of the ribbon synapse were increased by treatment with a blocking antibody to RGMa, and pruning of auditory fibers to achieve the mature branching pattern of afferent neurons was accelerated. Inhibition by RGMa could thus explain why auditory neurons have a low capacity to regenerate peripheral processes: postnatal spiral ganglion neurons retain the capacity to send out processes that respond to signals for synapse formation, but expression of RGMa postnatally appears to be detrimental to regeneration of afferent hair cell innervation and antagonizes synaptogenesis. Increased synaptogenesis after inhibition of RGMa suggests that manipulation of guidance or inhibitory factors may provide a route to increase formation of new synapses at deafferented hair cells.
Collapse
Affiliation(s)
- Aurore Brugeaud
- Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts, 02115; Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, 02114
| | | | | | | |
Collapse
|
14
|
Tian C, Liu J. Repulsive guidance molecules (RGMs) and neogenin in bone morphogenetic protein (BMP) signaling. Mol Reprod Dev 2013; 80:700-17. [PMID: 23740870 DOI: 10.1002/mrd.22199] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/12/2013] [Accepted: 05/28/2013] [Indexed: 02/06/2023]
Abstract
Bone morphogenetic proteins (BMPs) belong to the transforming growth factor-beta (TGFβ) superfamily. BMPs mediate a highly conserved signal transduction cascade through the type-I and type-II serine/threonine kinase receptors and intracellular Smad proteins, which regulate multiple developmental and homeostatic processes. Mutations in this pathway can cause various diseases in humans, such as skeletal disorders, cardiovascular diseases, and various cancers. Multiple levels of regulation, including extracellular regulation, help to ensure proper spatiotemporal control of BMP signaling in the right cellular context. The family of repulsive guidance molecules (RGMs) and the type-I transmembrane protein neogenin, a paralog of DCC (Deleted in Colorectal Cancer), have been implicated in modulating the BMP pathway. In this review, we discuss the properties and functions of RGM proteins and neogenin, focusing on their roles in the modulation of BMP signal transduction.
Collapse
Affiliation(s)
- Chenxi Tian
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | | |
Collapse
|
15
|
Bell CH, Healey E, van Erp S, Bishop B, Tang C, Gilbert RJ, Aricescu AR, Pasterkamp RJ, Siebold C. Structure of the repulsive guidance molecule (RGM)-neogenin signaling hub. Science 2013; 341:77-80. [PMID: 23744777 PMCID: PMC4730555 DOI: 10.1126/science.1232322] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022]
Abstract
Repulsive guidance molecule family members (RGMs) control fundamental and diverse cellular processes, including motility and adhesion, immune cell regulation, and systemic iron metabolism. However, it is not known how RGMs initiate signaling through their common cell-surface receptor, neogenin (NEO1). Here, we present crystal structures of the NEO1 RGM-binding region and its complex with human RGMB (also called dragon). The RGMB structure reveals a previously unknown protein fold and a functionally important autocatalytic cleavage mechanism and provides a framework to explain numerous disease-linked mutations in RGMs. In the complex, two RGMB ectodomains conformationally stabilize the juxtamembrane regions of two NEO1 receptors in a pH-dependent manner. We demonstrate that all RGM-NEO1 complexes share this architecture, which therefore represents the core of multiple signaling pathways.
Collapse
Affiliation(s)
- Christian H. Bell
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Eleanor Healey
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Susan van Erp
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, CG Utrecht 3584, Netherlands
| | - Benjamin Bishop
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Chenxiang Tang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Robert J.C. Gilbert
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - A. Radu Aricescu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - R. Jeroen Pasterkamp
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, CG Utrecht 3584, Netherlands
| | - Christian Siebold
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
16
|
Spatiotemporal expression of repulsive guidance molecules (RGMs) and their receptor neogenin in the mouse brain. PLoS One 2013; 8:e55828. [PMID: 23457482 PMCID: PMC3573027 DOI: 10.1371/journal.pone.0055828] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/27/2012] [Accepted: 01/02/2013] [Indexed: 02/07/2023] Open
Abstract
Neogenin has been implicated in a variety of developmental processes such as neurogenesis, neuronal differentiation, apoptosis, migration and axon guidance. Binding of repulsive guidance molecules (RGMs) to Neogenin inhibits axon outgrowth of different neuronal populations. This effect requires Neogenin to interact with co-receptors of the uncoordinated locomotion-5 (Unc5) family to activate downstream Rho signaling. Although previous studies have reported RGM, Neogenin, and/or Unc5 expression, a systematic comparison of RGM and Neogenin expression in the developing nervous system is lacking, especially at later developmental stages. Furthermore, information on RGM and Neogenin expression at the protein level is limited. To fill this void and to gain further insight into the role of RGM-Neogenin signaling during mouse neural development, we studied the expression of RGMa, RGMb, Neogenin and Unc5A-D using in situ hybridization, immunohistochemistry and RGMa section binding. Expression patterns in the primary olfactory system, cortex, hippocampus, habenula, and cerebellum were studied in more detail. Characteristic cell layer-specific expression patterns were detected for RGMa, RGMb, Neogenin and Unc5A-D. Furthermore, strong expression of RGMa, RGMb and Neogenin protein was found on several major axon tracts such as the primary olfactory projections, anterior commissure and fasciculus retroflexus. These data not only hint at a role for RGM-Neogenin signaling during the development of different neuronal systems, but also suggest that Neogenin partners with different Unc5 family members in different systems. Overall, the results presented here will serve as a framework for further dissection of the role of RGM-Neogenin signaling during neural development.
Collapse
|
17
|
Jorge EC, Ahmed MU, Bothe I, Coutinho LL, Dietrich S. RGMa and RGMb expression pattern during chicken development suggest unexpected roles for these repulsive guidance molecules in notochord formation, somitogenesis, and myogenesis. Dev Dyn 2012; 241:1886-900. [PMID: 23073896 DOI: 10.1002/dvdy.23889] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/29/2012] [Revised: 10/01/2012] [Accepted: 10/01/2012] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Repulsive guidance molecules (RGM) are high-affinity ligands for the Netrin receptor Neogenin, and they are crucial for nervous system development including neural tube closure; neuronal and neural crest cell differentiation and axon guidance. Recent studies implicated RGM molecules in bone morphogenetic protein signaling, which regulates a variety of developmental processes. Moreover, a role for RGMc in iron metabolism has been established. This suggests that RGM molecules may play important roles in non-neural tissues. RESULTS To explore which tissues and processed may be regulated by RGM molecules, we systematically investigated the expression of RGMa and RGMb, the only RGM molecules currently known for avians, in the chicken embryo. CONCLUSIONS Our study suggests so far unknown roles of RGM molecules in notochord, somite and skeletal muscle development.
Collapse
Affiliation(s)
- Erika Cristina Jorge
- Universidade Federal de Minas Gerais-Departamento de Morfologia, Belo Horizonte, MG, Brazil.
| | | | | | | | | |
Collapse
|
18
|
Li J, Ye L, Sanders AJ, Jiang WG. Repulsive guidance molecule B (RGMB) plays negative roles in breast cancer by coordinating BMP signaling. J Cell Biochem 2012; 113:2523-31. [PMID: 22415859 DOI: 10.1002/jcb.24128] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022]
Abstract
Repulsive guidance molecules (RGMs) coordinate axon formation and iron homestasis. These molecules are also known as co-receptors of bone morphogenetic proteins (BMPs). However, the role played by RGMs in breast cancer remains unclear. The present study investigated the impact of RGMB on functions of breast cancer cells and corresponding mechanisms. RGMB was knocked down in breast cancer cells by way of an anti-RGMB ribozyme transgene. Knockdown of RGMB resulted in enhanced capacities of proliferation, adhesion, and migration in breast cancer cells. Further investigations demonstrated RGMB knockdown resulted in a reduced expression and activity of Caspase-3, accompanied with better survival in RGMB knockdown cells under serum starvation, which might be induced by its repression on MAPK JNK pathway. Up-regulations of Snai1, Twist, FAK, and Paxillin via enhanced Smad dependent sigaling led to increased capacities of adhesion and migration. Our current data firstly revealed that RGMB may act as a negative regulator in breast cancer through BMP signaling.
Collapse
Affiliation(s)
- Jin Li
- Metastasis & Angiogenesis Research Group, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | | | | | | |
Collapse
|
19
|
Sun Y, Lim Y, Li F, Liu S, Lu JJ, Haberberger R, Zhong JH, Zhou XF. ProBDNF collapses neurite outgrowth of primary neurons by activating RhoA. PLoS One 2012; 7:e35883. [PMID: 22558255 PMCID: PMC3338794 DOI: 10.1371/journal.pone.0035883] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/05/2011] [Accepted: 03/23/2012] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Neurons extend their dendrites and axons to build functional neural circuits, which are regulated by both positive and negative signals during development. Brain-derived neurotrophic factor (BDNF) is a positive regulator for neurite outgrowth and neuronal survival but the functions of its precursor (proBDNF) are less characterized. METHODOLOGY/PRINCIPAL FINDINGS Here we show that proBDNF collapses neurite outgrowth in murine dorsal root ganglion (DRG) neurons and cortical neurons by activating RhoA via the p75 neurotrophin receptor (p75NTR). We demonstrated that the receptor proteins for proBDNF, p75NTR and sortilin, were highly expressed in cultured DRG or cortical neurons. ProBDNF caused a dramatic neurite collapse in a dose-dependent manner and this effect was about 500 fold more potent than myelin-associated glycoprotein. Neutralization of endogenous proBDNF by using antibodies enhanced neurite outgrowth in vitro and in vivo, but this effect was lost in p75NTR(-/-) mice. The neurite outgrowth of cortical neurons from p75NTR deficient (p75NTR(-/-)) mice was insensitive to proBDNF. There was a time-dependent reduction of length and number of filopodia in response to proBDNF which was accompanied with a polarized RhoA activation in growth cones. Moreover, proBDNF treatment of cortical neurons resulted in a time-dependent activation of RhoA but not Cdc42 and the effect was absent in p75NTR(-/-) neurons. Rho kinase (ROCK) and the collapsin response mediator protein-2 (CRMP-2) were also involved in the proBDNF action. CONCLUSIONS proBDNF has an opposing role in neurite outgrowth to that of mature BDNF. Our observations suggest that proBDNF collapses neurites outgrowth and filopodial growth cones by activating RhoA through the p75NTR signaling pathway.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport/genetics
- Adaptor Proteins, Vesicular Transport/metabolism
- Animals
- Antibodies/pharmacology
- Brain-Derived Neurotrophic Factor/antagonists & inhibitors
- Brain-Derived Neurotrophic Factor/pharmacology
- Brain-Derived Neurotrophic Factor/physiology
- Cells, Cultured
- Ganglia, Spinal/cytology
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/physiology
- Gene Expression Regulation, Developmental/physiology
- Mice
- Mice, Knockout
- Nerve Fibers/drug effects
- Nerve Fibers/physiology
- Neurites/drug effects
- Neurites/physiology
- Protein Precursors/pharmacology
- Protein Precursors/physiology
- Pseudopodia/drug effects
- Pseudopodia/physiology
- Receptors, Nerve Growth Factor/deficiency
- Receptors, Nerve Growth Factor/genetics
- Signal Transduction/physiology
- Time-Lapse Imaging
- rho GTP-Binding Proteins/agonists
- rho GTP-Binding Proteins/genetics
- rho GTP-Binding Proteins/metabolism
- rhoA GTP-Binding Protein
Collapse
Affiliation(s)
- Ying Sun
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Yoon Lim
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
- Division of Health Science, Sansom Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Fang Li
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Shen Liu
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, Australia
- Division of Health Science, Sansom Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Jian-Jun Lu
- Division of Health Science, Sansom Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Rainer Haberberger
- Department of Anatomy and Histology and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Jin-Hua Zhong
- Division of Health Science, Sansom Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Xin-Fu Zhou
- Division of Health Science, Sansom Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
20
|
The BMP coreceptor RGMb promotes while the endogenous BMP antagonist noggin reduces neurite outgrowth and peripheral nerve regeneration by modulating BMP signaling. J Neurosci 2012; 31:18391-400. [PMID: 22171041 DOI: 10.1523/jneurosci.4550-11.2011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022] Open
Abstract
Repulsive guidance molecule b (RGMb) is a bone morphogenetic protein (BMP) coreceptor and sensitizer of BMP signaling, highly expressed in adult dorsal root ganglion (DRG) sensory neurons. We used a murine RGMb knock-out to gain insight into the physiological role of RGMb in the DRG, and address whether RGMb-mediated modulation of BMP signaling influences sensory axon regeneration. No evidence for altered development of the PNS and CNS was detected in RGMb(-/-) mice. However, both cultured neonatal whole DRG explants and dissociated DRG neurons from RGMb(-/-) mice exhibited significantly fewer and shorter neurites than those from wild-type littermates, a phenomenon that could be fully rescued by BMP-2. Moreover, Noggin, an endogenous BMP signaling antagonist, inhibited neurite outgrowth in wild-type DRG explants from naive as well as nerve injury-preconditioned mice. Noggin is downregulated in the DRG after nerve injury, and its expression is highly correlated and inversely associated with the known regeneration-associated genes, which are induced in the DRG by peripheral axonal injury. We show that diminished BMP signaling in vivo, achieved either through RGMb deletion or BMP inhibition with Noggin, retarded early axonal regeneration after sciatic nerve crush injury. Our data suggest a positive modulatory contribution of RGMb and BMP signaling to neurite extension in vitro and early axonal regrowth after nerve injury in vivo and a negative effect of Noggin.
Collapse
|
21
|
King-Robson J. Encouraging regeneration in the central nervous system: Is there a role for olfactory ensheathing cells? Neurosci Res 2011; 69:263-75. [DOI: 10.1016/j.neures.2010.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/13/2010] [Revised: 12/16/2010] [Accepted: 12/17/2010] [Indexed: 10/18/2022]
|
22
|
Schnichels S, Heiduschka P, Julien S. Different spatial and temporal protein expressions of repulsive guidance molecule a and neogenin in the rat optic nerve after optic nerve crush with and without lens injury. J Neurosci Res 2011; 89:490-505. [DOI: 10.1002/jnr.22584] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/23/2010] [Revised: 11/10/2010] [Accepted: 11/22/2010] [Indexed: 12/30/2022]
|
23
|
Abstract
The BMP signaling pathway controls a number of cell processes during development and in adult tissues. At the cellular level, ligands of the BMP family act by binding a hetero-tetrameric signaling complex, composed of two type I and two type II receptors. BMP ligands make use of a limited number of receptors, which in turn activate a common signal transduction cascade at the intracellular level. A complex regulatory network is required in order to activate the signaling cascade at proper times and locations, and to generate specific downstream effects in the appropriate cellular context. One such regulatory mechanism is the repulsive guidance molecule (RGM) family of BMP co-receptors. This article reviews the current knowledge regarding the structure, regulation, and function of RGMs, focusing on known and potential roles of RGMs in physiology and pathophysiology.
Collapse
|