1
|
Huo JY, Feng YL, Chen YT, Yang B, Zhi YT, Wang HJ, Yang HQ. Caveolin-3 negatively regulates endocytic recycling of cardiac K ATP channels. Am J Physiol Cell Physiol 2023; 325:C1106-C1118. [PMID: 37746698 DOI: 10.1152/ajpcell.00266.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
Sarcolemmal ATP-sensitive potassium (KATP) channels play a vital role in cardioprotection. Cardiac KATP channels are enriched in caveolae and physically interact with the caveolae structural protein caveolin-3 (Cav3). Disrupting caveolae impairs the regulation of KATP channels through several signaling pathways. However, the direct functional effect of Cav3 on KATP channels is still poorly understood. Here, we used the cardiac KATP channel subtype, Kir6.2/SUR2A, and showed that Cav3 greatly reduced KATP channel surface density and current amplitude in a caveolae-independent manner. A screen of Cav3 functional domains revealed that a 25 amino acid region in the membrane attachment domain of Cav3 is the minimal effective segment (MAD1). The peptide corresponding to the MAD1 segment decreased KATP channel current in a concentration-dependent manner with an IC50 of ∼5 μM. The MAD1 segment prevented KATP channel recycling, thus decreasing KATP channel surface density and abolishing the cardioprotective effect of ischemic preconditioning. Our research identified the Cav3 MAD1 segment as a novel negative regulator of KATP channel recycling, providing pharmacological potential in the treatment of diseases with KATP channel trafficking defects.NEW & NOTEWORTHY Cardiac KATP channels physically interact with caveolin-3 in caveolae. In this study, we investigated the functional effect of caveolin-3 on KATP channel activity and identified a novel segment (MAD1) in the C-terminus domain of Caveolin-3 that negatively regulates KATP channel surface density and current amplitude by impairing KATP channel recycling. The peptide corresponding to the MAD1 segment abolished the cardioprotective effect of ischemic preconditioning.
Collapse
Affiliation(s)
- Jian-Yi Huo
- Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Yu-Long Feng
- Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Yue-Tong Chen
- Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Bo Yang
- Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Ya-Ting Zhi
- Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Hao-Jie Wang
- Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Hua-Qian Yang
- Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| |
Collapse
|
2
|
Ng KM, Ding Q, Tse YL, Chou OHI, Lai WH, Au KW, Lau YM, Ji Y, Siu CW, Tang CSM, Colman A, Tsang SY, Tse HF. Isogenic Human-Induced Pluripotent Stem-Cell-Derived Cardiomyocytes Reveal Activation of Wnt Signaling Pathways Underlying Intrinsic Cardiac Abnormalities in Rett Syndrome. Int J Mol Sci 2022; 23:ijms232415609. [PMID: 36555252 PMCID: PMC9779632 DOI: 10.3390/ijms232415609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder caused by MeCP2 mutations. Nonetheless, the pathophysiological roles of MeCP2 mutations in the etiology of intrinsic cardiac abnormality and sudden death remain unclear. In this study, we performed a detailed functional studies (calcium and electrophysiological analysis) and RNA-sequencing-based transcriptome analysis of a pair of isogenic RTT female patient-specific induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CMs) that expressed either MeCP2wildtype or MeCP2mutant allele and iPSC-CMs from a non-affected female control. The observations were further confirmed by additional experiments, including Wnt signaling inhibitor treatment, siRNA-based gene silencing, and ion channel blockade. Compared with MeCP2wildtype and control iPSC-CMs, MeCP2mutant iPSC-CMs exhibited prolonged action potential and increased frequency of spontaneous early after polarization. RNA sequencing analysis revealed up-regulation of various Wnt family genes in MeCP2mutant iPSC-CMs. Treatment of MeCP2mutant iPSC-CMs with a Wnt inhibitor XAV939 significantly decreased the β-catenin protein level and CACN1AC expression and ameliorated their abnormal electrophysiological properties. In summary, our data provide novel insight into the contribution of activation of the Wnt/β-catenin signaling cascade to the cardiac abnormalities associated with MeCP2 mutations in RTT.
Collapse
Affiliation(s)
- Kwong-Man Ng
- Cardiology Division, Department of Medicine, Li Ka-Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Center for Translational Stem Cell Biology, Hong Kong SAR, China
| | - Qianqian Ding
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yiu-Lam Tse
- Cardiology Division, Department of Medicine, Li Ka-Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Oscar Hou-In Chou
- Cardiology Division, Department of Medicine, Li Ka-Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wing-Hon Lai
- Cardiology Division, Department of Medicine, Li Ka-Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ka-Wing Au
- Cardiology Division, Department of Medicine, Li Ka-Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yee-Man Lau
- Cardiology Division, Department of Medicine, Li Ka-Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yue Ji
- Department of Surgery, Li Ka-Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chung-Wah Siu
- Cardiology Division, Department of Medicine, Li Ka-Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Clara Sze-Man Tang
- Department of Surgery, Li Ka-Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China
| | - Alan Colman
- Harvard Department of Stem Cells and Regenerative Biology, Cambridge, MA 02138, USA
| | - Suk-Ying Tsang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Institute for Tissue Engineering and Regenerative Medicine (iTERM), The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hung-Fat Tse
- Center for Translational Stem Cell Biology, Hong Kong SAR, China
- Hong Kong-Guangdong Stem Cell and Regenerative Medicine Research Centre, The University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Hong Kong SAR, China
- Heart and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- Correspondence:
| |
Collapse
|
3
|
TASK-1 regulates mitochondrial function under hypoxia. Biochem Biophys Res Commun 2021; 578:163-169. [PMID: 34571371 DOI: 10.1016/j.bbrc.2021.09.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 11/23/2022]
Abstract
TASK-1, TWIK-related acid-sensitive potassium channel 1, is a member of the two-pore- domain potassium channel family. It is constitutively active at resting potentials and strongly expressed in the heart. However, little is known about the role of TASK-1 channels in hypoxia. A cellular model of hypoxia and reoxygenation from rat heart-derived H9c2 cells or TASK-1 deficient HEK293T cells was employed to explore the role of TASK-1 channels in cytoprotection against hypoxia. The cell viability assay revealed that TASK-1 expression increased the number of viable cells subjected to 2 h of hypoxia followed by 2 h of reoxygenation (H/R). To dissect the protective role of TASK-1 on mitochondrial function, mitochondrial membrane potential (MMP) was assessed by tetramethylrhodamine fluorescence. It was demonstrated that MMP was significantly decreased by H/R, but it was maintained by TASK-1 expression or pretreatment with cyclosporin A, an inhibitor of mitochondrial permeability transition pore (mPTP). The effect of cyclosporin A on MMP was not further altered by TASK-1 expression. Moreover, TASK-1 expression significantly blocked cytochrome c release induced by H/R. While a small fraction of endogenous TASK-1 was found to colocalize with the mitochondrial marker MitoTracker in H9c2 cells, H/R did not alter the extent of colocalization of TASK-1 with MitoTracker. The total TASK-1 protein level was not significantly affected by H/R. In summary, we provided the evidence that TASK-1 channels confer cytoprotection against hypoxia-reoxygenation injury, possibly by their capacity of maintaining the mitochondrial membrane potential via inhibiting MPTP opening.
Collapse
|
4
|
Phloretin Alleviates Arsenic Trioxide-Induced Apoptosis of H9c2 Cardiomyoblasts via Downregulation in Ca 2+/Calcineurin/NFATc Pathway and Inflammatory Cytokine Release. Cardiovasc Toxicol 2021; 21:642-654. [PMID: 34037972 DOI: 10.1007/s12012-021-09655-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/27/2021] [Indexed: 01/25/2023]
Abstract
Arsenic trioxide (ATO) is among the first-line chemotherapeutic drugs for treating acute promyelocytic leukemia patients, but its clinical use is hampered due to cardiotoxicity. The present investigation unveils the mechanism underlying ATO-induced oxidative stress that promotes calcineurin (a ubiquitous Ca2+/calmodulin-dependent serine/threonine phosphatase expressed only during sustained Ca2+ elevation) expression, inflammatory cytokine release and apoptosis in H9c2 cardiomyoblasts, and its possible modulation with phloretin (PHL, an antioxidant polyphenol present in apple peel). ATO caused Ca2+ overload resulting in elevated expression of calcineurin and its downstream transcriptional effector NFATc causing the release of cytokines such as IL-2, IL-6, MCP-1, IFN-γ, and TNF-α in H9c2 cardiomyoblast. There was a visible increase in the nuclear fraction of NF-κB and ROS-mediated apoptotic cell death. The expression levels of cardiac-specific genes (troponin, desmin, and caveolin-3) and genes of the apoptotic signaling pathway (BCL-2, BAX, IGF1, AKT, ERK1, -2, RAF1, and JNK) in response to ATO and PHL were studied. The putative binding mode and the potential ligand-target interactions of PHL with calcineurin using docking software (Autodock and iGEMDOCKv2) showed the high binding affinity of PHL to calcineurin. PHL co-treatment significantly reduced Ca2+ influx and normalized the expression of calcineurin, NFATc, NF-κB, and other cytokines. PHL co-treatment resulted in activation of BCL-2, IGF1, AKT, RAF1, ERK1, and ERK2 and inhibition of BAX and JNK. Overall, these results revealed that PHL has a protective effect against ATO-induced apoptosis and we propose calcineurin as a druggable target for the interaction of PHL in ATO cardiotoxicity in H9c2 cells.
Collapse
|
5
|
Potier-Cartereau M, Raoul W, Weber G, Mahéo K, Rapetti-Mauss R, Gueguinou M, Buscaglia P, Goupille C, Le Goux N, Abdoul-Azize S, Lecomte T, Fromont G, Chantome A, Mignen O, Soriani O, Vandier C. Potassium and Calcium Channel Complexes as Novel Targets for Cancer Research. Rev Physiol Biochem Pharmacol 2020; 183:157-176. [PMID: 32767122 DOI: 10.1007/112_2020_24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The intracellular Ca2+ concentration is mainly controlled by Ca2+ channels. These channels form complexes with K+ channels, which function to amplify Ca2+ flux. In cancer cells, voltage-gated/voltage-dependent Ca2+ channels and non-voltage-gated/voltage-independent Ca2+ channels have been reported to interact with K+ channels such as Ca2+-activated K+ channels and voltage-gated K+ channels. These channels are activated by an increase in cytosolic Ca2+ concentration or by membrane depolarization, which induces membrane hyperpolarization, increasing the driving force for Ca2+ flux. These complexes, composed of K+ and Ca2+ channels, are regulated by several molecules including lipids (ether lipids and cholesterol), proteins (e.g. STIM), receptors (e.g. S1R/SIGMAR1), and peptides (e.g. LL-37) and can be targeted by monoclonal antibodies, making them novel targets for cancer research.
Collapse
Affiliation(s)
| | - William Raoul
- N2C UMR 1069, University of Tours, INSERM, Tours, France
| | - Gunther Weber
- N2C UMR 1069, University of Tours, INSERM, Tours, France
| | - Karine Mahéo
- N2C UMR 1069, University of Tours, INSERM, Tours, France
| | | | | | - Paul Buscaglia
- LBAI UMR 1227, University of Brest, INSERM, Brest, France
| | - Caroline Goupille
- N2C UMR 1069, University of Tours, INSERM, CHRU de Tours, Tours, France
| | - Nelig Le Goux
- LBAI UMR 1227, University of Brest, INSERM, Brest, France
| | | | - Thierry Lecomte
- EA 7501 GICC, University of Tours, CHRU de Tours, Department of Hepato-Gastroenterology and Digestive Oncology, Tours, France
| | - Gaëlle Fromont
- N2C UMR 1069, University of Tours, INSERM, CHRU de Tours, Department of Pathology, Tours, France
| | | | - Olivier Mignen
- LBAI UMR 1227, University of Brest, INSERM, Brest, France
| | - Olivier Soriani
- iBV, INSERM, CNRS, University of the Côte d'Azur, Nice, France
| | | |
Collapse
|
6
|
Herrera F, Sevrain CM, Jaffrès PA, Couthon H, Grélard A, Dufourc EJ, Chantôme A, Potier-Cartereau M, Vandier C, Bouchet AM. Singular Interaction between an Antimetastatic Agent and the Lipid Bilayer: The Ohmline Case. ACS OMEGA 2017; 2:6361-6370. [PMID: 30023517 PMCID: PMC6045331 DOI: 10.1021/acsomega.7b00936] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/08/2017] [Indexed: 06/08/2023]
Abstract
SK3 channels are abnormaly expressed in metastatic cells, and Ohmline (OHM), an ether lipid, has been shown to reduce the activity of SK3 channels and the migration capacity of cancer cells. OHM incorporation into the plasma membrane is proposed to dissociate the protein complex formed between SK3 and Orai1, a potassium and a calcium channel, respectively, and would lead to a modification in the lipid environment of both the proteins. Here, we report the synthesis of deuterated OHM that affords the determination, through solid-state NMR, of its entire partitioning into membranes mimicking the SK3 environment. Use of deuterated lipids affords the demonstration of an OHM-induced membrane disordering, which is dose-dependent and increases with increasing amounts of cholesterol (CHOL). Molecular dynamics simulations comfort the disordering action and show that OHM interacts with the carbonyl and phosphate groups of stearoylphosphatidylcholine and sphingomyelin and to a minor extent with CHOL. OHM is thus proposed to remove the CHOL OH moieties away from their main binding sites, forcing a new rearrangement with other lipid groups. Such an interaction takes its origin at the lipid-water interface, but it propagates toward the entire lipid molecules and leads to a cooperative destabilization of the lipid acyl chains, that is, membrane disordering. The consequences of this reorganization of the lipid phases are discussed in the context of the OHM-induced inhibition of SK3 channels.
Collapse
Affiliation(s)
- Fernando
E. Herrera
- Physics
Department, Universidad Nacional del Litoral,
Ciudad Universitaria, 3000 Santa Fe, Argentina
| | - Charlotte M. Sevrain
- Université
de Brest, CEMCA, UMR CNRS 6521, IBSAM, 6, Avenue Victor le Gorgeu, 29238 Brest, France
- Network
and Cancer-Canceropole Grand Ouest, (IC-CGO), Maison de la Recherche
en Santé, 63 Quai
Magellan, 44000 Nantes, France
| | - Paul-Alain Jaffrès
- Université
de Brest, CEMCA, UMR CNRS 6521, IBSAM, 6, Avenue Victor le Gorgeu, 29238 Brest, France
- Network
and Cancer-Canceropole Grand Ouest, (IC-CGO), Maison de la Recherche
en Santé, 63 Quai
Magellan, 44000 Nantes, France
| | - Hélène Couthon
- Université
de Brest, CEMCA, UMR CNRS 6521, IBSAM, 6, Avenue Victor le Gorgeu, 29238 Brest, France
- Network
and Cancer-Canceropole Grand Ouest, (IC-CGO), Maison de la Recherche
en Santé, 63 Quai
Magellan, 44000 Nantes, France
| | - Axelle Grélard
- Université
Bordeaux, Institute of Chemistry & Biology of Membranes &
Nanoobjects, UMR5248 CNRS, Allée de Geoffroy St Hilaire Bât B14 Pessac, 33600 Bordeaux, France
| | - Erick J. Dufourc
- Université
Bordeaux, Institute of Chemistry & Biology of Membranes &
Nanoobjects, UMR5248 CNRS, Allée de Geoffroy St Hilaire Bât B14 Pessac, 33600 Bordeaux, France
| | - Aurélie Chantôme
- Network
and Cancer-Canceropole Grand Ouest, (IC-CGO), Maison de la Recherche
en Santé, 63 Quai
Magellan, 44000 Nantes, France
- Université
François Rabelais de Tours, Nutrition, Croissance et Cancer, Inserm UMR1069, 10 Boulevard Tonnellé Bât. Dutrochet, 2ème étage, 37032 Tours, France
| | - Marie Potier-Cartereau
- Network
and Cancer-Canceropole Grand Ouest, (IC-CGO), Maison de la Recherche
en Santé, 63 Quai
Magellan, 44000 Nantes, France
- Université
François Rabelais de Tours, Nutrition, Croissance et Cancer, Inserm UMR1069, 10 Boulevard Tonnellé Bât. Dutrochet, 2ème étage, 37032 Tours, France
| | - Christophe Vandier
- Network
and Cancer-Canceropole Grand Ouest, (IC-CGO), Maison de la Recherche
en Santé, 63 Quai
Magellan, 44000 Nantes, France
- Université
François Rabelais de Tours, Nutrition, Croissance et Cancer, Inserm UMR1069, 10 Boulevard Tonnellé Bât. Dutrochet, 2ème étage, 37032 Tours, France
| | - Ana M. Bouchet
- Network
and Cancer-Canceropole Grand Ouest, (IC-CGO), Maison de la Recherche
en Santé, 63 Quai
Magellan, 44000 Nantes, France
- Université
François Rabelais de Tours, Nutrition, Croissance et Cancer, Inserm UMR1069, 10 Boulevard Tonnellé Bât. Dutrochet, 2ème étage, 37032 Tours, France
| |
Collapse
|
7
|
Kang C, Hernandez VA, Hu K. Functional interaction of the two-pore domain potassium channel TASK-1 and caveolin-3. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017. [DOI: 10.1016/j.bbamcr.2017.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
See Hoe LE, May LT, Headrick JP, Peart JN. Sarcolemmal dependence of cardiac protection and stress-resistance: roles in aged or diseased hearts. Br J Pharmacol 2016; 173:2966-91. [PMID: 27439627 DOI: 10.1111/bph.13552] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/25/2022] Open
Abstract
Disruption of the sarcolemmal membrane is a defining feature of oncotic death in cardiac ischaemia-reperfusion (I-R), and its molecular makeup not only fundamentally governs this process but also affects multiple determinants of both myocardial I-R injury and responsiveness to cardioprotective stimuli. Beyond the influences of membrane lipids on the cytoprotective (and death) receptors intimately embedded within this bilayer, myocardial ionic homeostasis, substrate metabolism, intercellular communication and electrical conduction are all sensitive to sarcolemmal makeup, and critical to outcomes from I-R. As will be outlined in this review, these crucial sarcolemmal dependencies may underlie not only the negative effects of age and common co-morbidities on myocardial ischaemic tolerance but also the on-going challenge of implementing efficacious cardioprotection in patients suffering accidental or surgically induced I-R. We review evidence for the involvement of sarcolemmal makeup changes in the impairment of stress-resistance and cardioprotection observed with ageing and highly prevalent co-morbid conditions including diabetes and hypercholesterolaemia. A greater understanding of membrane changes with age/disease, and the inter-dependences of ischaemic tolerance and cardioprotection on sarcolemmal makeup, can facilitate the development of strategies to preserve membrane integrity and cell viability, and advance the challenging goal of implementing efficacious 'cardioprotection' in clinically relevant patient cohorts. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.
Collapse
Affiliation(s)
- Louise E See Hoe
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Chermside, Queensland, Australia
| | - Lauren T May
- Monash Institute of Pharmaceutical Sciences, Monash University, Clayton, VIC, Australia
| | - John P Headrick
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Jason N Peart
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.
| |
Collapse
|
9
|
Murfitt L, Whiteley G, Iqbal MM, Kitmitto A. Targeting caveolin-3 for the treatment of diabetic cardiomyopathy. Pharmacol Ther 2015; 151:50-71. [PMID: 25779609 DOI: 10.1016/j.pharmthera.2015.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 12/21/2022]
Abstract
Diabetes is a global health problem with more than 550 million people predicted to be diabetic by 2030. A major complication of diabetes is cardiovascular disease, which accounts for over two-thirds of mortality and morbidity in diabetic patients. This increased risk has led to the definition of a diabetic cardiomyopathy phenotype characterised by early left ventricular dysfunction with normal ejection fraction. Here we review the aetiology of diabetic cardiomyopathy and explore the involvement of the protein caveolin-3 (Cav3). Cav3 forms part of a complex mechanism regulating insulin signalling and glucose uptake, processes that are impaired in diabetes. Further, Cav3 is key for stabilisation and trafficking of cardiac ion channels to the plasma membrane and so contributes to the cardiac action potential shape and duration. In addition, Cav3 has direct and indirect interactions with proteins involved in excitation-contraction coupling and so has the potential to influence cardiac contractility. Significantly, both impaired contractility and rhythm disturbances are hallmarks of diabetic cardiomyopathy. We review here how changes to Cav3 expression levels and altered relationships with interacting partners may be contributory factors to several of the pathological features identified in diabetic cardiomyopathy. Finally, the review concludes by considering ways in which levels of Cav3 may be manipulated in order to develop novel therapeutic approaches for treating diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Lucy Murfitt
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, M13 9NT, UK
| | - Gareth Whiteley
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, M13 9NT, UK
| | - Mohammad M Iqbal
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, M13 9NT, UK
| | - Ashraf Kitmitto
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, M13 9NT, UK.
| |
Collapse
|
10
|
Han H, Rosenhouse-Dantsker A, Gnanasambandam R, Epshtein Y, Chen Z, Sachs F, Minshall RD, Levitan I. Silencing of Kir2 channels by caveolin-1: cross-talk with cholesterol. J Physiol 2014; 592:4025-38. [PMID: 25038242 PMCID: PMC4198012 DOI: 10.1113/jphysiol.2014.273177] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 06/22/2014] [Indexed: 02/06/2023] Open
Abstract
A growing number of studies show that different types of ion channels localize in caveolae and are regulated by the level of membrane cholesterol. Furthermore, it has been proposed that cholesterol-induced regulation of ion channels might be attributed to partitioning into caveolae and association with caveolin-1 (Cav-1). We tested, therefore, whether Cav-1 regulates the function of inwardly rectifying potassium channels Kir2.1 that play major roles in the regulation of membrane potentials of numerous mammalian cells. Our earlier studies demonstrated that Kir2.1 channels are cholesterol sensitive. In this study, we show that Kir2.1 channels co-immunoprecipitate with Cav-1 and that co-expression of Kir2.1 channels with Cav-1 in HEK293 cells results in suppression of Kir2 current indicating that Cav-1 is a negative regulator of Kir2 function. These observations are confirmed by comparing Kir currents in bone marrow-derived macrophages isolated from Cav-1(-/-) and wild-type animals. We also show, however, that Kir2 channels maintain their sensitivity to cholesterol in HEK293 cells that have very low levels of endogenous Cav-1 and in bone marrow-derived macrophages isolated from Cav-1(-/-) knockout mice. Thus, these studies indicate that Cav-1 and/or intact caveolae are not required for cholesterol sensitivity of Kir channels. Moreover, a single point mutation of Kir2.1, L222I that abrogates the sensitivity of the channels to cholesterol also abolishes their sensitivity to Cav-1 suggesting that the two modulators regulate Kir2 channels via a common mechanism.
Collapse
Affiliation(s)
- Huazhi Han
- Section of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Avia Rosenhouse-Dantsker
- Section of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | | | - Yulia Epshtein
- Section of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Zhenlong Chen
- Departments of Anesthesiology and Pharmacology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Frederick Sachs
- Department of Physiology and Biophysics, University at Buffalo, SUNY, Buffalo, NY, 14214, USA
| | - Richard D Minshall
- Departments of Anesthesiology and Pharmacology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Irena Levitan
- Section of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| |
Collapse
|
11
|
Cheng J, Valdivia CR, Vaidyanathan R, Balijepalli RC, Ackerman MJ, Makielski JC. Caveolin-3 suppresses late sodium current by inhibiting nNOS-dependent S-nitrosylation of SCN5A. J Mol Cell Cardiol 2013; 61:102-10. [PMID: 23541953 PMCID: PMC3720711 DOI: 10.1016/j.yjmcc.2013.03.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 10/27/2022]
Abstract
AIMS Mutations in CAV3-encoding caveolin-3 (Cav3) have been implicated in type 9 long QT syndrome (LQT9) and sudden infant death syndrome (SIDS). When co-expressed with SCN5A-encoded cardiac sodium channels these mutations increased late sodium current (INa) but the mechanism was unclear. The present study was designed to address the mechanism by which the LQT9-causing mutant Cav3-F97C affects the function of caveolar SCN5A. METHODS AND RESULTS HEK-293 cells expressing SCN5A and LQT9 mutation Cav3-F97C resulted in a 2-fold increase in late INa compared to Cav3-WT. This increase was reversed by the neural nitric oxide synthase (nNOS) inhibitor L-NMMA. Based on these findings, we hypothesized that an nNOS complex mediated the effect of Cav3 on SCN5A. A SCN5A macromolecular complex was established in HEK-293 cells by transiently expressing SCN5A, α1-syntrophin (SNTA1), nNOS, and Cav3. Compared with Cav3-WT, Cav3-F97C produced significantly larger peak INa amplitudes, and showed 3.3-fold increase in the late INa associated with increased S-nitrosylation of SCN5A. L-NMMA reversed both the Cav3-F97C induced increase in late and peak INa and decreased S-nitrosylation of SCN5A. Overexpression of Cav3-F97C in adult rat cardiomyocytes caused a significant increase in late INa compared to Cav3-WT, and prolonged the action potential duration (APD90) in a nNOS-dependent manner. CONCLUSIONS Cav3 is identified as an important negative regulator for cardiac late INa via nNOS dependent direct S-nitrosylation of SCN5A. This provides a molecular mechanism for how Cav3 mutations increase late INa to cause LQT9. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".
Collapse
Affiliation(s)
- Jianding Cheng
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison, WI 53792, USA
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Carmen R. Valdivia
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison, WI 53792, USA
| | - Ravi Vaidyanathan
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison, WI 53792, USA
| | - Ravi C. Balijepalli
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison, WI 53792, USA
| | - Michael J. Ackerman
- Divisions of Cardiovascular Diseases and Pediatric Cardiology, Departments of Medicine, Pediatrics, and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jonathan C. Makielski
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison, WI 53792, USA
| |
Collapse
|
12
|
Pfleger C, Ebeling G, Bläsche R, Patton M, Patel HH, Kasper M, Barth K. Detection of caveolin-3/caveolin-1/P2X7R complexes in mice atrial cardiomyocytes in vivo and in vitro. Histochem Cell Biol 2012; 138:231-41. [PMID: 22585038 DOI: 10.1007/s00418-012-0961-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2012] [Indexed: 12/21/2022]
Abstract
Caveolae and caveolins, structural components of caveolae, are associated with specific ion channels in cardiac myocytes. We have previously shown that P2X purinoceptor 7 (P2X7R), a ligand-gated ion channel, is increased in atrial cardiomyocytes of caveolin-1 knockout mice; however, the specific biochemical relationship of P2X7R with caveolins in the heart is not clear. The aim of this work was to study the presence of the P2X7R in atrial cardiomyocytes and its biochemical relationship to caveolin-1 and caveolin-3. Caveolin isoforms and P2X7R were predominantly localized in buoyant membrane fractions (lipid rafts/caveolae) prepared from hearts using detergent-free sucrose gradient centrifugation. Caveolin-1 knockout mice showed normal distribution of caveolin-3 and P2X7R to buoyant membranes indicating the importance of caveolin-3 to formation of caveolae. Using clear native-PAGE, we showed that caveolin-1, -3 and P2X7R contribute to the same protein complex in the membranes of murine cardiomyocytes and in the immortal cardiomyocyte cell line HL-1. Western blot analysis revealed increased caveolin-1 and -3 proteins in tissue homogenates of P2X7R knockout mice. Finally, tissue homogenates of atrial tissues from caveolin-3 knockout mice showed elevated mRNA for P2X7R in atria. The colocalization of caveolins with P2X7R in a biochemical complex and compensated upregulation of P2X7R or caveolins in the absence of any component of the complex suggests P2X7R and caveolins may serve an important regulatory control point for disease pathology in the heart.
Collapse
Affiliation(s)
- Claudia Pfleger
- Department of Anatomy, Medical Faculty, Institute of Anatomy, University of Technology Dresden, TU Dresden, Fetscherstr. 76, 01307 Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Davies LM, Purves GI, Barrett-Jolley R, Dart C. Interaction with caveolin-1 modulates vascular ATP-sensitive potassium (KATP) channel activity. J Physiol 2010; 588:3255-66. [PMID: 20624795 DOI: 10.1113/jphysiol.2010.194779] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
ATP-sensitive potassium channels (K(ATP) channels) of arterial smooth muscle are important regulators of arterial tone, and hence blood flow, in response to vasoactive transmitters. Recent biochemical and electron microscopic evidence suggests that these channels localise to small vesicular invaginations of the plasma membrane, known as caveolae, and interact with the caveolae-associated protein, caveolin. Here we report that interaction with caveolin functionally regulates the activity of the vascular subtype of K(ATP) channel, Kir6.1/SUR2B. Pinacidil-evoked recombinant whole-cell Kir6.1/SUR2B currents recorded in HEK293 cells stably expressing caveolin-1 (69.6 +/- 8.3 pA pF(1), n = 8) were found to be significantly smaller than currents recorded in caveolin-null cells (179.7 +/- 35.9 pA pF(1), n = 6; P < 0.05) indicating that interaction with caveolin may inhibit channel activity. Inclusion in the pipette-filling solution of a peptide corresponding to the scaffolding domain of caveolin-1 had a similar inhibitory effect on whole-cell Kir6.1/SUR2B currents as co-expression with full-length caveolin-1, while a scrambled version of the same peptide had no effect. Interestingly, intracellular dialysis of vascular smooth muscle cells with the caveolin-1 scaffolding domain peptide (SDP) also caused inhibition of pinacidil-evoked native whole-cell K(ATP) currents, indicating that a significant proportion of vascular K(ATP) channels are susceptible to block by exogenously applied SDP. In cell-attached recordings of Kir6.1/SUR2B single channel activity, the presence of caveolin-1 significantly reduced channel open probability (from 0.05 +/- 0.01 to 0.005 +/- 0.001; P < 0.05) and the amount of time spent in a relatively long-lived open state. These changes in kinetic behaviour can be explained by a caveolin-induced shift in the channel's sensitivity to its physiological regulator MgADP. Our findings thus suggest that interaction with caveolin-1 suppresses vascular-type K(ATP) channel activity. Since caveolin expression is regulated by cellular free cholesterol and plasma levels of low-density lipoprotein (LDL), this interaction may have implications in both the physiological and pathophysiological control of vascular function.
Collapse
Affiliation(s)
- Lowri M Davies
- Biosciences Building, School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | | | | | | |
Collapse
|
14
|
Abstract
Many types of ion channel localize to cholesterol and sphingolipid-enriched regions of the plasma membrane known as lipid microdomains or 'rafts'. The precise physiological role of these unique lipid microenvironments remains elusive due largely to difficulties associated with studying these potentially extremely small and dynamic domains. Nevertheless, increasing evidence suggests that membrane rafts regulate channel function in a number of different ways. Raft-enriched lipids such as cholesterol and sphingolipids exert effects on channel activity either through direct protein-lipid interactions or by influencing the physical properties of the bilayer. Rafts also appear to selectively recruit interacting signalling molecules to generate subcellular compartments that may be important for efficient and selective signal transduction. Direct interaction with raft-associated scaffold proteins such as caveolin can also influence channel function by altering gating kinetics or by affecting trafficking and surface expression. Selective association of ion channels with specific lipid microenvironments within the membrane is thus likely to be an important and fundamental regulatory aspect of channel physiology. This brief review highlights some of the existing evidence for raft modulation of channel function.
Collapse
Affiliation(s)
- Caroline Dart
- Biosciences Building, School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| |
Collapse
|