1
|
Halasz H, Malekos E, Covarrubias S, Yitiz S, Montano C, Sudek L, Katzman S, Liu SJ, Horlbeck MA, Namvar L, Weissman JS, Carpenter S. CRISPRi screens identify the lncRNA, LOUP, as a multifunctional locus regulating macrophage differentiation and inflammatory signaling. Proc Natl Acad Sci U S A 2024; 121:e2322524121. [PMID: 38781216 PMCID: PMC11145268 DOI: 10.1073/pnas.2322524121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) account for the largest portion of RNA from the transcriptome, yet most of their functions remain unknown. Here, we performed two independent high-throughput CRISPRi screens to understand the role of lncRNAs in monocyte function and differentiation. The first was a reporter-based screen to identify lncRNAs that regulate TLR4-NFkB signaling in human monocytes and the second screen identified lncRNAs involved in monocyte to macrophage differentiation. We successfully identified numerous noncoding and protein-coding genes that can positively or negatively regulate inflammation and differentiation. To understand the functional roles of lncRNAs in both processes, we chose to further study the lncRNA LOUP [lncRNA originating from upstream regulatory element of SPI1 (also known as PU.1)], as it emerged as a top hit in both screens. Not only does LOUP regulate its neighboring gene, the myeloid fate-determining factor SPI1, thereby affecting monocyte to macrophage differentiation, but knockdown of LOUP leads to a broad upregulation of NFkB-targeted genes at baseline and upon TLR4-NFkB activation. LOUP also harbors three small open reading frames capable of being translated and are responsible for LOUP's ability to negatively regulate TLR4/NFkB signaling. This work emphasizes the value of high-throughput screening to rapidly identify functional lncRNAs in the innate immune system.
Collapse
Affiliation(s)
- Haley Halasz
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, CA95064
| | - Eric Malekos
- Department of Biomolecular Engineering, University of California Santa Cruz, CA95064
| | - Sergio Covarrubias
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, CA95064
| | - Samira Yitiz
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, CA95064
| | - Christy Montano
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, CA95064
| | - Lisa Sudek
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, CA95064
| | - Sol Katzman
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, CA95064
| | - S. John Liu
- Department of Radiation Oncology, University of California, San Francisco, CA94158
- Department of Neurological Surgery, University of California, San Francisco, CA94158
| | - Max A. Horlbeck
- Department of Radiation Oncology, University of California, San Francisco, CA94158
- Department of Neurological Surgery, University of California, San Francisco, CA94158
- Department of Pediatrics, Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA02115
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
| | - Leila Namvar
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, CA95064
| | - Jonathan S. Weissman
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA02142
- HHMI, Chevy Chase, MD20815
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02142
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, CA95064
| |
Collapse
|
2
|
FLI1 regulates inflammation-associated genes to accelerate leukemogenesis. Cell Signal 2022; 92:110269. [DOI: 10.1016/j.cellsig.2022.110269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 01/03/2023]
|
3
|
Xiang N, Fang X, Sun XG, Zhou YB, Ma Y, Zhu C, Li XP, Wang GS, Tao JH, Li XM. Expression profile of PU.1 in CD4 +T cells from patients with systemic lupus erythematosus. Clin Exp Med 2021; 21:621-632. [PMID: 33966135 DOI: 10.1007/s10238-021-00717-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease with complex genetic predisposing factors involved. PU.1 is an important member of the ETS transcription factors family which has diverse functions such as regulating the proliferation, differentiation of immune cells and multiple inflammatory cytokines. Previous studies preliminary explored the relation between PU.1 and SLE. To further explain the potential role of PU.1 in the pathogenesis of SLE, 40 SLE patients and 20 age-sex matched healthy controls (HC) were recruited in this study. Flow cytometry was used to test the percentages of CD4+PU.1+T cells in peripheral blood mononuclear cells (PBMCs) from patients with SLE and HC. Expression levels of PU.1 mRNA in CD4+T cells from SLE patients and HC were analyzed by real-time transcription-polymerase chain reaction. Expression levels of plasma IL-1β, IL-9, IL-18, IL-6, IFN-α, TNF-α, IL-10 and TGF-β1 were measured by enzyme-linked immunosorbent assay. The percentage of CD4+PU.1+T cells in PBMCs from patients with SLE was significantly higher than that from HC (P < 0.001). In addition, the PU.1 mRNA expression in CD4+T cells from SLE patients was increased than that from HC (P = 0.002). In SLE patients, no significant correlation was found between the percentage of CD4+PU.1+T cells and the expression of PU.1 mRNA in CD4+T cells (P > 0.05). Associations of PU.1 mRNA expression in CD4+T cells with major clinical and laboratory parameters of SLE patients were also analyzed, but no significant correlations were found. Consistent with previous studies, SLE patients had increased IL-1β, IL-18, IL-6, IFN-α, TNF-α and IL-10 plasma concentrations than HC (P < 0.01). The expression level of plasma TGF-β1 was significantly decreased in SLE patients than in HC (P < 0.001). In SLE patients, the expression level of IL-1β was positive correlated with PU.1 mRNA expression in CD4+T cells (P = 0.001). Our study first time evaluated the expression profile of PU.1 in CD4+T cells from SLE patients confirming that PU.1 may participate in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Nan Xiang
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Xuan Fang
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Hefei, 230001, Anhui, China
| | - Xiao-Ge Sun
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Hefei, 230001, Anhui, China
| | - Ying-Bo Zhou
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Hefei, 230001, Anhui, China
| | - Yan Ma
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Hefei, 230001, Anhui, China
| | - Chen Zhu
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Hefei, 230001, Anhui, China
| | - Xiang-Pei Li
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Hefei, 230001, Anhui, China
| | - Guo-Sheng Wang
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Hefei, 230001, Anhui, China
| | - Jin-Hui Tao
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Hefei, 230001, Anhui, China
| | - Xiao-Mei Li
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Hefei, 230001, Anhui, China.
| |
Collapse
|
4
|
Yashiro T, Yamamoto M, Araumi S, Hara M, Yogo K, Uchida K, Kasakura K, Nishiyama C. PU.1 and IRF8 Modulate Activation of NLRP3 Inflammasome via Regulating Its Expression in Human Macrophages. Front Immunol 2021; 12:649572. [PMID: 33897697 PMCID: PMC8058198 DOI: 10.3389/fimmu.2021.649572] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/18/2021] [Indexed: 11/26/2022] Open
Abstract
NLRP3 inflammasomes play crucial roles in the initiation of host defense by converting pro-Caspase-1 to mature Caspase-1, which in turn processes immature IL-1β and IL-18 into their biologically active forms. Although NLRP3 expression is restricted to monocytic lineages such as monocytes, macrophages, and dendritic cells, the mechanisms determining the lineage-specific expression of NLRP3 remain largely unknown. In this study, we investigated the transcription factors involved in cell-type-specific transcription of NLRP3. We found that a distal, rather than a proximal, promoter of human NLRP3 was predominantly used in the human monocytic cell lines and macrophages. Reporter analysis showed that an Ets/IRF composite element (EICE) at -309/-300 and an Ets motif at +5/+8 were critical for transcriptional activity of the distal promoter. Electrophoretic mobility shift assays and chromatin immunoprecipitation assays demonstrated that two transcription factors, PU.1 and IRF8, both of which play essential roles in development and gene expression of the monocytic lineage, were bound to the EICE site, whereas PU.1 alone was bound to the Ets site. Knockdown of PU.1 and/or IRF8 mediated by small interfering RNA downregulated expression of NLRP3 and related molecules and markedly diminished the LPS-induced release of IL-1β in THP-1, suggesting that activity of the NLRP3 inflammasome was suppressed by knockdown of PU.1 and IRF8. Taken together, these results indicate that PU.1 and IRF8 are involved in the monocytic lineage-specific expression of NLRP3 by binding to regulatory elements within its promoter and that PU.1 and IRF8 are potential targets for regulating the activity of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Takuya Yashiro
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-Ku, Japan
| | - Machiko Yamamoto
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-Ku, Japan
| | - Sanae Araumi
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-Ku, Japan
| | - Mutsuko Hara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Kyoko Yogo
- Juntendo University Advanced Research Institute for Health Science, Bunkyo-ku, Japan
| | - Koichiro Uchida
- Juntendo University Advanced Research Institute for Health Science, Bunkyo-ku, Japan
| | - Kazumi Kasakura
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-Ku, Japan
| | - Chiharu Nishiyama
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-Ku, Japan
| |
Collapse
|
5
|
Yashiro T, Yura S, Tobita A, Toyoda Y, Kasakura K, Nishiyama C. Pterostilbene reduces colonic inflammation by suppressing dendritic cell activation and promoting regulatory T cell development. FASEB J 2020; 34:14810-14819. [PMID: 32964554 DOI: 10.1096/fj.202001502r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/31/2022]
Abstract
Dendritic cells (DCs) and T cells play important roles in immune regulation, and modulating their function is an approach for developing preventive or therapeutic strategies against immune disorders. Herein, the effect of pterostilbene (PSB) (3',5'-dimethoxy-resveratrol)-a resveratrol-related polyphenol found in blueberries-on immune regulation was evaluated. Using an in vitro co-culture system, PSB was found to exert the strongest inhibitory effect among all tested resveratrol derivatives on DC-mediated T cell proliferation; moreover, PSB treatment decreased the Th1 and Th17 populations and increased the regulatory T cell (Treg) population. Upon co-stimulation with anti-CD3 and anti-CD28 antibodies, PSB inhibited CD4+ T cell proliferation and differentiation into Th1 cells. Additionally, PSB acted on DCs to suppress the lipopolysaccharide-induced transactivation of genes encoding antigen presentation-related molecules and inflammatory cytokines by attenuating the DNA-binding ability of the transcription factor PU.1. Furthermore, PSB promoted DC-mediated Foxp3+ Treg differentiation, and PU.1 knockdown increased DC-induced Treg activity. Oral administration of PSB alleviated the symptoms of dextran sulfate sodium-induced colitis and decreased tumor necrosis factor-α expression in mice. Thus, PSB treatment ameliorates colonic inflammation.
Collapse
Affiliation(s)
- Takuya Yashiro
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Shiori Yura
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Akari Tobita
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Yuki Toyoda
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Kazumi Kasakura
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Chiharu Nishiyama
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
6
|
Yashiro T, Nakano S, Nomura K, Uchida Y, Kasakura K, Nishiyama C. A transcription factor PU.1 is critical for Ccl22 gene expression in dendritic cells and macrophages. Sci Rep 2019; 9:1161. [PMID: 30718772 PMCID: PMC6361964 DOI: 10.1038/s41598-018-37894-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 12/07/2018] [Indexed: 11/16/2022] Open
Abstract
The chemokine CCL22 is predominantly produced by dendritic cells (DCs) and macrophages. CCL22 acts on CCR4-expressing cells including Th2 and Treg. Although a correlation between the CCL22-CCR4 axis and allergic diseases has been established, the mechanism of monocyte lineage-specific Ccl22 gene expression is largely unknown. In the current study, we investigated transcriptional regulation of the Ccl22 gene in DCs and macrophages. Using reporter assays, we identified the critical cis-enhancing elements at 21/−18 and −10/−4 in the Ccl22 promoter. Electrophoretic mobility shift assays proved that transcription factor PU.1 directly binds to the cis-elements. Knockdown of PU.1 markedly decreased Ccl22 expression in bone marrow-derived DCs (BMDCs) and BM macrophages (BMDMs). Chromatin immunoprecipitation assays revealed that PU.1 bound to the Ccl22 promoter in not only BMDCs and BMDMs, but also splenic DCs and peritoneal macrophages. LPS stimulation increased the amount of PU.1 recruited to the promoter, accompanied by upregulation of the Ccl22 mRNA level, which was diminished by Spi1 knockdown. We identified similar cis-elements on the human CCL22 promoter, which were bound with PU.1 in human monocytes. Taken together, these findings indicate that PU.1 transactivates the Ccl22 gene in DCs and macrophages by directly binding to the two elements in the promoter.
Collapse
Affiliation(s)
- Takuya Yashiro
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Shiori Nakano
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Kurumi Nomura
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Yuna Uchida
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Kazumi Kasakura
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Chiharu Nishiyama
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan.
| |
Collapse
|
7
|
Nagaoka M, Yashiro T, Uchida Y, Ando T, Hara M, Arai H, Ogawa H, Okumura K, Kasakura K, Nishiyama C. The Orphan Nuclear Receptor NR4A3 Is Involved in the Function of Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2017; 199:2958-2967. [PMID: 28893954 DOI: 10.4049/jimmunol.1601911] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 08/12/2017] [Indexed: 01/27/2023]
Abstract
NR4A3/NOR1 belongs to the NR4A subfamily of the nuclear hormone receptor superfamily, which is activated in a ligand-independent manner. To examine the role of NR4A3 in gene expression of dendritic cells (DCs), we introduced NR4A3 small interfering RNA (siRNA) into bone marrow-derived DCs and determined the expression levels of mRNA and proteins of cytokines, cell surface molecules, NF-κB signaling-related proteins, and transcription factors. The expression level of NR4A3 was markedly upregulated by TLR-mediated stimulation in DCs. NR4A3 knockdown significantly suppressed LPS, CpG, or poly(I:C)-mediated upregulation of CD80, CD86, IL-10, IL-6, and IL-12. Proliferation and IL-2 production levels of T cells cocultured with NR4A3 knocked-down DCs were significantly lower than that of T cells cocultured with control DCs. Furthermore, the expression of IKKβ, IRF4, and IRF8 was significantly decreased in NR4A3 siRNA-introduced bone marrow-derived DCs. The knockdown experiments using siRNAs for IKKβ, IRF4, and/or IRF8 indicated that LPS-induced upregulation of IL-10 and IL-6 was reduced in IKKβ knocked-down cells, and that the upregulation of IL-12 was suppressed by the knockdown of IRF4 and IRF8. Taken together, these results indicate that NR4A3 is involved in TLR-mediated activation and gene expression of DCs.
Collapse
Affiliation(s)
- Masanori Nagaoka
- Laboratory of Molecular Biology and Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan; and
| | - Takuya Yashiro
- Laboratory of Molecular Biology and Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan; and
| | - Yuna Uchida
- Laboratory of Molecular Biology and Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan; and
| | - Tomoaki Ando
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Mutsuko Hara
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Hajime Arai
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Kazumi Kasakura
- Laboratory of Molecular Biology and Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan; and
| | - Chiharu Nishiyama
- Laboratory of Molecular Biology and Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan; and .,Atopy (Allergy) Research Center, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
8
|
Aboelenein HR, Hamza MT, Marzouk H, Youness RA, Rahmoon M, Salah S, Abdelaziz AI. Reduction of CD19 autoimmunity marker on B cells of paediatric SLE patients through repressing PU.1/TNF-α/BAFF axis pathway by miR-155. Growth Factors 2017; 35:49-60. [PMID: 28683581 DOI: 10.1080/08977194.2017.1345900] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
microRNA-155 (miR-155) is implicated in regulating B-cell activation and survival that is important in systemic lupus erythematosus (SLE) pathogenesis. PU.1, a target for miR-155, is a crucial regulator of B-cell development and enhances Tumour-Necrosis-factor-alpha (TNF-α) expression. TNF-α induces the expression of B-cell-activating-factor (BAFF). BAFF is reported to increase the expression of the autoimmunity marker; CD19. This study aimed to investigate the regulation of expression of PU.1 in pediatric-systemic-lupus-erythematosus (pSLE) patients by miR-155, and hence evaluate its impact on TNF-α/BAFF/CD19 signalling pathway. Screening revealed that PU.1 is upregulated in PBMCs and B-cells of pSLE patients. PU.1 expression directly correlated with systemic-lupus-erythematosus disease-activity-index-2 K SLEDAI-2K. Ectopic expression of miR-155 and knockdown of PU.1 suppressed PU.1, TNF-α and BAFF. Finally, miR-155 decreased the proportion of BAFF-expressing-B-cells and CD19 protein expression. These findings suggest that miR-155 suppresses autoimmunity through transcriptional repression of PU.1 and TNF-α, which in turn suppresses BAFF and CD19 protein expression.
Collapse
Affiliation(s)
- H R Aboelenein
- a Department of Pharmacology and Toxicology, The Molecular Pathology Research Group , German University in Cairo , Cairo , Egypt
| | - M T Hamza
- b Department of Clinical Pathology, Faculty of Medicine , Ain Shams University , Cairo , Egypt
| | - H Marzouk
- c Department of Pediatrics, Faculty of Medicine , Cairo University , Cairo , Egypt
| | - R A Youness
- d Department of Pharmaceutical Biology , German University in Cairo , Cairo , Egypt
| | - M Rahmoon
- d Department of Pharmaceutical Biology , German University in Cairo , Cairo , Egypt
| | - S Salah
- c Department of Pediatrics, Faculty of Medicine , Cairo University , Cairo , Egypt
| | - A I Abdelaziz
- e School of Medicine , NewGiza University (NGU) , Giza , Egypt
| |
Collapse
|
9
|
Umazume A, Kezuka T, Matsuda R, Usui Y, Takahashi H, Yamakawa N, Yashiro T, Nishiyama C, Goto H. Role of PU.1 Expression as an Inflammatory Marker in Experimental Autoimmune Uveoretinitis. Ocul Immunol Inflamm 2017; 26:951-963. [PMID: 28448751 DOI: 10.1080/09273948.2017.1299867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE PU.1 is an Ets family transcription factor, which is essential for the development of immune system through generation of myeloid and lymphoid lineages. In this study, we investigated PU.1 expression in the retina of mice with experimental autoimmune uveoretinitis (EAU) and the association between PU.1 expression level and inflammation in EAU. METHODS IRBP 1-20 peptide-immunized mice were used. Quantitative PCR, ELISA analysis, cytometric bead array (CBA), assay and immunostaining were conducted using ocular tissues and lymph nodes. RESULTS Quantitative PCR showed significant increases in mRNA levels of PU.1 in the retina at the peak of inflammation. Immunostaining of retina flat mounts revealed that most PU.1-positive cells were co-stained with anti-CD11c and anti-F4/80 antibodies. PU.1 knockdown in lymph node cells significantly suppressed IRBP-stimulated IFN-γ production measured by ELISA and IL-2 production measured by CBA. CONCLUSION PU.1 may play crucial roles in the development and progression of inflammation in EAU.
Collapse
Affiliation(s)
- Akihiko Umazume
- a Department of Ophthalmology , Tokyo Medical University , Shinjuku-ku , Tokyo , Japan.,b Department of Biological Science and Technology , Faculty of Industrial Science and Technology, Tokyo University of Science , Katsushika-ku , Tokyo , Japan
| | - Takeshi Kezuka
- a Department of Ophthalmology , Tokyo Medical University , Shinjuku-ku , Tokyo , Japan
| | - Ryusaku Matsuda
- a Department of Ophthalmology , Tokyo Medical University , Shinjuku-ku , Tokyo , Japan
| | - Yoshihiko Usui
- a Department of Ophthalmology , Tokyo Medical University , Shinjuku-ku , Tokyo , Japan
| | - Hiroki Takahashi
- a Department of Ophthalmology , Tokyo Medical University , Shinjuku-ku , Tokyo , Japan
| | - Naoyuki Yamakawa
- a Department of Ophthalmology , Tokyo Medical University , Shinjuku-ku , Tokyo , Japan
| | - Takuya Yashiro
- b Department of Biological Science and Technology , Faculty of Industrial Science and Technology, Tokyo University of Science , Katsushika-ku , Tokyo , Japan
| | - Chiharu Nishiyama
- b Department of Biological Science and Technology , Faculty of Industrial Science and Technology, Tokyo University of Science , Katsushika-ku , Tokyo , Japan
| | - Hiroshi Goto
- a Department of Ophthalmology , Tokyo Medical University , Shinjuku-ku , Tokyo , Japan
| |
Collapse
|
10
|
Critical Role of Transcription Factor PU.1 in the Function of the OX40L/TNFSF4 Promoter in Dendritic Cells. Sci Rep 2016; 6:34825. [PMID: 27708417 PMCID: PMC5052589 DOI: 10.1038/srep34825] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 09/19/2016] [Indexed: 11/15/2022] Open
Abstract
PU.1 is a hematopoietic lineage-specific transcription factor belonging to the Ets family. We investigated the role of PU.1 in the expression of OX40L in dendritic cells (DCs), because the regulatory mechanism of cell type-specific expression of OX40L, which is mainly restricted to antigen-presenting cells, is largely unknown despite the critical involvement in Th2 and Tfh development. PU.1 knockdown decreased the expression of OX40L in mouse DCs. Chromatin immunoprecipitation (ChIP) assays demonstrated that PU.1 constitutively bound to the proximal region of the OX40L promoter. Reporter assays and electrophoretic mobility shift assays revealed that PU.1 transactivated the OX40L promoter through direct binding to the most-proximal Ets motif. We found that this Ets motif is conserved between mouse and human, and that PU.1 bound to the human OX40L promoter in ChIP assay using human monocyte-derived DCs. ChIP assays based on ChIP-seq datasets revealed that PU.1 binds to several sites distant from the transcription start site on the OX40L gene in addition to the most-proximal site in mouse DCs. In the present study, the structure of the OX40L promoter regulated by PU.1 is determined. It is also suggested that PU.1 is involved in mouse OX40L expression via multiple binding sites on the gene.
Collapse
|
11
|
Miura R, Kasakura K, Nakano N, Hara M, Maeda K, Okumura K, Ogawa H, Yashiro T, Nishiyama C. Role of PU.1 in MHC Class II Expression via CIITA Transcription in Plasmacytoid Dendritic Cells. PLoS One 2016; 11:e0154094. [PMID: 27105023 PMCID: PMC4841550 DOI: 10.1371/journal.pone.0154094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/08/2016] [Indexed: 11/18/2022] Open
Abstract
The cofactor CIITA is a master regulator of MHC class II expression and several transcription factors regulating the cell type-specific expression of CIITA have been identified. Although the MHC class II expression in plasmacytoid dendritic cells (pDCs) is also mediated by CIITA, the transcription factors involved in the CIITA expression in pDCs are largely unknown. In the present study, we analyzed the role of a hematopoietic lineage-specific transcription factor, PU.1, in CIITA transcription in pDCs. The introduction of PU.1 siRNA into mouse pDCs and a human pDC cell line, CAL-1, reduced the mRNA levels of MHC class II and CIITA. When the binding of PU.1 to the 3rd promoter of CIITA (pIII) in CAL-1 and mouse pDCs was analyzed by a chromatin immunoprecipitation assay, a significant amount of PU.1 binding to the pIII was detected, which was definitely decreased in PU.1 siRNA-transfected cells. Reporter assays showed that PU.1 knockdown reduced the pIII promoter activity and that three Ets-motifs in the human pIII promoter were candidates of cis-enhancing elements. By electrophoretic mobility shift assays, it was confirmed that two Ets-motifs, GGAA (-181/-178) and AGAA (-114/-111), among three candidates, were directly bound with PU.1. When mouse pDCs and CAL-1 cells were stimulated by GM-CSF, mRNA levels of PU.1, pIII-driven CIITA, total CIITA, MHC class II, and the amount of PU.1 binding to pIII were significantly increased. The GM-CSF-mediated up-regulation of these mRNAs was canceled in PU.1 siRNA-introduced cells. Taking these results together, we conclude that PU.1 transactivates the pIII through direct binding to Ets-motifs in the promoter in pDCs.
Collapse
Affiliation(s)
- Ryosuke Miura
- Laboratory of Molecular Biology and Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125–8585, Japan
| | - Kazumi Kasakura
- Laboratory of Molecular Biology and Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125–8585, Japan
| | - Nobuhiro Nakano
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113–8421, Japan
| | - Mutsuko Hara
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113–8421, Japan
| | - Keiko Maeda
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113–8421, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113–8421, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113–8421, Japan
| | - Takuya Yashiro
- Laboratory of Molecular Biology and Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125–8585, Japan
| | - Chiharu Nishiyama
- Laboratory of Molecular Biology and Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125–8585, Japan
- * E-mail:
| |
Collapse
|
12
|
PU.1 Suppresses Th2 Cytokine Expression via Silencing of GATA3 Transcription in Dendritic Cells. PLoS One 2015; 10:e0137699. [PMID: 26361334 PMCID: PMC4567381 DOI: 10.1371/journal.pone.0137699] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 08/19/2015] [Indexed: 01/04/2023] Open
Abstract
The transcription factor PU.1 is predominantly expressed in dendritic cells (DCs) and is essential for DC differentiation. Although there are several reports that PU.1 positively regulates the expression of DC-specific genes, whether PU.1 also has a suppressive effect on DCs is largely unknown. Here we demonstrate that PU.1 suppresses the expression of Th2 cytokines including IL-13 and IL-5 in bone marrow-derived DCs (BMDCs), through repression of the expression of GATA3, which is a master regulator of Th2 differentiations. When PU.1 siRNA was introduced into BMDCs, LPS-induced expression of IL-13 and IL-5 was increased along with upregulation of the constitutive expression of GATA2 and GATA3. The additional introduction of GATA3 siRNA but not of GATA2 siRNA abrogated PU.1 siRNA-mediated upregulation of IL-13 and IL-5. A chromatin immunoprecipitation assay showed that PU.1 bound to Gata3 proximal promoter region, which is more dominant than the distal promoter in driving GATA3 transcription in DCs. The degree of histone acetylation at the Gata3 promoter was decreased in PU.1 siRNA-introduced DCs, suggesting the involvement of PU.1 in chromatin modification of the Gata3 promoter. Treatment with a histone deacetylase (HDAC) inhibitor, trichostatin A, increased the degree of histone H3 acetylation at the Gata3 promoter and induced the subsequent expression of GATA3. Experiments using HDAC inhibitors and siRNAs showed that HDAC3 suppressed GATA3 expression. The recruitment of HDAC3 to the Gata3 promoter was decreased by PU.1 knockdown. LPS-induced IL-13 expression was dramatically reduced in BMDCs generated from mice lacking the conserved GATA3 response element, termed CGRE, which is an essential site for the binding of GATA3 on the Il-13 promoter. The degree of H3K4me3 at CGRE was significantly increased in PU.1 siRNA-transfected stimulated DCs. Our results indicate that PU.1 plays pivotal roles in DC development and function, serving not only as a transcriptional activator but also as a repressor.
Collapse
|
13
|
Ishiyama K, Yashiro T, Nakano N, Kasakura K, Miura R, Hara M, Kawai F, Maeda K, Tamura N, Okumura K, Ogawa H, Takasaki Y, Nishiyama C. Involvement of PU.1 in NFATc1 promoter function in osteoclast development. Allergol Int 2015; 64:241-7. [PMID: 26117255 DOI: 10.1016/j.alit.2015.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 01/25/2015] [Accepted: 01/27/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The transcription factors NFATc1 and PU.1 play important roles in osteoclast development. NFATc1 and PU.1 transactivate osteoclast-specific gene expression and a deficiency in NFATc1 or PU.1 genes causes osteopetrosis due to an insufficient development of osteoclasts. However, the existence of cross-regulation between NFATc1 and PU.1 is largely unknown. In the present study, the role of PU.1 in NFATc1 expression was investigated. METHODS Osteoclasts were generated from mouse bone marrow cells. PU.1 knockdown was performed with siRNA introduction. The mRNA levels in siRNA-introduced cells were determined by quantitative RT-PCR. The involvement of PU.1 in the NFATc1 promoter was analyzed by using a chromatin immunoprecipitation (ChIP) assay and a reporter assay. Retrovirus vector was used for enforced expression of PU.1. RESULTS Introduction of PU.1 siRNA into bone marrow-derived osteoclasts resulted in a decrease in NFATc1 mRNA level. A ChIP assay showed that PU.1 bound to the NFATc1 promoter in osteoclasts. NFATc1 promoter activity was reduced in PU.1 knockdown cells as assessed by a reporter assay. PU.1 siRNA introduction also downregulated the expression of osteoclast-specific genes and tartrate resistant acid phosphatase (TRAP) activity. Enforced expression of PU.1 using a retrovirus vector increased NFATc1 expression and TRAP activity. When NFATc1 expression was knocked down by using siRNA, the induction of osteoclast-specific genes and TRAP-positive cells was suppressed without affecting the expression level of PU.1. CONCLUSIONS These results indicate that PU.1 is involved in osteoclast development by transactivating NFATc1 expression via direct binding to the NFATc1 promoter.
Collapse
Affiliation(s)
- Kentaro Ishiyama
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Tokyo, Japan; Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takuya Yashiro
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Tokyo, Japan; Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Nobuhiro Nakano
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazumi Kasakura
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Tokyo, Japan; Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Ryosuke Miura
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Mutsuko Hara
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Fumitaka Kawai
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Tokyo, Japan; Bay Bioscience Corporation, Hyogo, Japan
| | - Keiko Maeda
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Naoto Tamura
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshinari Takasaki
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Chiharu Nishiyama
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Tokyo, Japan; Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan.
| |
Collapse
|
14
|
Smith AM, Gibbons HM, Oldfield RL, Bergin PM, Mee EW, Faull RLM, Dragunow M. The transcription factor PU.1 is critical for viability and function of human brain microglia. Glia 2013; 61:929-42. [PMID: 23483680 DOI: 10.1002/glia.22486] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 01/25/2013] [Indexed: 12/31/2022]
Abstract
Microglia are the predominant resident immune cells of the brain and can assume a range of phenotypes. They are critical for normal brain development and function but can also contribute to many disease processes. Although they are widely studied, the transcriptional control of microglial phenotype and activation requires further research. PU.1 is a key myeloid transcription factor expressed by peripheral macrophages and rodent microglia. In this article, we report the presence of PU.1 specifically in microglia of the adult human brain and we examine its functional role in primary human microglia. Using siRNA, we achieved substantial PU.1 protein knock-down in vitro. By assessing a range of characteristic microglial proteins we found decreased viability of adult human microglia with reduced PU.1 protein expression. This observation was confirmed with PU.1 antisense DNA oligonucleotides. An important function of microglia is to clear debris by phagocytosis. We assessed the impact of loss of PU.1 on microglial phagocytosis and show that PU.1 siRNA reduces the ability of adult human microglia to phagocytose amyloid-beta1-42 peptide. These results show that PU.1 controls human microglial viability and function and suggest PU.1 as a molecular target for manipulation of human microglial phenotype.
Collapse
Affiliation(s)
- Amy M Smith
- Department of Pharmacology and Clinical Pharmacology, the University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | |
Collapse
|
15
|
Lin L, Pang W, Chen K, Wang F, Gengler J, Sun Y, Tong Q. Adipocyte expression of PU.1 transcription factor causes insulin resistance through upregulation of inflammatory cytokine gene expression and ROS production. Am J Physiol Endocrinol Metab 2012; 302:E1550-9. [PMID: 22454293 PMCID: PMC3378156 DOI: 10.1152/ajpendo.00462.2011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We have reported previously that ETS family transcription factor PU.1 is expressed in mature adipocytes of white adipose tissue. PU.1 expression is increased greatly in mouse models of genetic or diet-induced obesity. Here, we show that PU.1 expression is increased only in visceral but not subcutaneous adipose tissues of obese mice, and the adipocytes are responsible for this increase in PU.1 expression. To further address PU.1's physiological function in mature adipocytes, PU.1 was knocked down in 3T3-L1 cells using retroviral-mediated expression of PU.1-targeting shRNA. Consistent with previous findings that PU.1 regulates its target genes, such as NADPH oxidase subunits and proinflammatory cytokines in myeloid cells, the mRNA levels of proinflammatory cytokines (TNFα, IL-1β, and IL-6) and cytosolic components of NADPH oxidase (p47phox and p40phox) were downregulated significantly in PU.1-silenced adipocytes. NADPH oxidase is a main source for reactive oxygen species (ROS) generation. Indeed, silencing PU.1 suppressed NADPH oxidase activity and attenuated ROS in basal or hydrogen peroxide-treated adipocytes. Silencing PU.1 in adipocytes suppressed JNK1 activation and IRS-1 phosphorylation at Ser(307). Consequently, PU.1 knockdown improved insulin signaling and increased glucose uptake in basal and insulin-stimulated conditions. Furthermore, knocking down PU.1 suppressed basal lipolysis but activated stimulated lipolysis. Collectively, these findings indicate that obesity induces PU.1 expression in adipocytes to upregulate the production of ROS and proinflammatory cytokines, both of which lead to JNK1 activation, insulin resistance, and dysregulation of lipolysis. Therefore, PU.1 might be a mediator for obesity-induced adipose inflammation and insulin resistance.
Collapse
Affiliation(s)
- Ligen Lin
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Houston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
The tumor suppressor p15Ink4b regulates the differentiation and maturation of conventional dendritic cells. Blood 2012; 119:5005-15. [PMID: 22461492 DOI: 10.1182/blood-2011-10-387613] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The tumor suppressor p15Ink4b is frequently inactivated by methylation in acute myeloid leukemia and premalignant myeloid disorders. Dendritic cells (DCs) as potent APCs play critical regulatory roles in antileukemic immune responses. In the present study, we investigated whether p15Ink4b can function as modulator of DC development. The expression of p15Ink4b is induced strongly during differentiation and activation of DCs, and its loss resulted in significant quantitative and qualitative impairments of conventional DC (cDC) development. Accordingly, ex vivo-generated BM-derived DCs from p15Ink4b-knockout mice express significantly decreased levels of the antigen-presenting (MHC II) and costimulatory (CD80 and CD86) molecules and have impaired immunostimulatory functions, such as antigen uptake and T-cell stimulation. Reexpression of p15Ink4b in progenitors restored these defects, and confirmed a positive role for p15Ink4b during cDC differentiation and maturation. Furthermore, we have shown herein that p15Ink4b expression increases phosphorylation of Erk1/Erk2 kinases, which leads to an elevated activity of the PU.1 transcription factor. In conclusion, our results establish p15Ink4b as an important modulator of cDC development and implicate a novel function for this tumor suppressor in the regulation of adaptive immune responses.
Collapse
|
17
|
The Transcription Factor PU.1 is a Critical Regulator of Cellular Communication in the Immune System. Arch Immunol Ther Exp (Warsz) 2011; 59:431-40. [DOI: 10.1007/s00005-011-0147-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 08/25/2011] [Indexed: 12/22/2022]
|
18
|
Hikima JI, Ohtani M, Kondo H, Hirono I, Jung TS, Aoki T. Characterization and gene expression of transcription factors, PU.1 and C/EBPα driving transcription from the tumor necrosis factor α promoter in Japanese flounder, Paralichthys olivaceus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:304-313. [PMID: 20951726 DOI: 10.1016/j.dci.2010.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Revised: 10/08/2010] [Accepted: 10/09/2010] [Indexed: 05/30/2023]
Abstract
Both PU.1 and C/EBPα transcription factors play important roles in myeloid development and inflammatory response. These transcripts were cloned from the Japanese flounder (Paralichthys olivaceus) and were highly conserved with those of other vertebrates. PU.1 mRNA was mainly expressed in lymphoid tissues while C/EBPα mRNA was widely expressed in all tissues examined. Higher levels of PU.1 mRNA were expressed in the IgM(+) cells of both PBL and KL, while C/EBPα expression was higher only in the IgM(-) cells of KL. The expression of C/EBPα mRNA was induced only in KL stimulated with LPS. Interestingly, PU.1 mRNA expression was induced by Edwardsiella tarda, whereas the expression of C/EBPα mRNA was induced by Streptococcus iniae infection. Both PU.1 and C/EBPα drove transcription from the LPS-responsive region of the Japanese flounder TNFα gene, suggesting that both PU.1 and C/EBPα induced by bacterial infection are involved in inflammation mediated through TNFα expression.
Collapse
Affiliation(s)
- Jun-ichi Hikima
- Aquatic Biotechnology Center, College of Veterinary Medicine, Gyeongsang National University, 900 Gajwa-Dong, Jinju, Gyeongnam 660-701, South Korea
| | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Nishida C, Nishiyama C, Satoh K, Hara M, Itoh Y, Ogawa H, Okumura K. Establishment of a simple detection system for blood group ABO-specific transferase activity in DNA-transfected cells. Leg Med (Tokyo) 2010; 12:172-6. [PMID: 20471900 DOI: 10.1016/j.legalmed.2010.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 03/16/2010] [Accepted: 03/21/2010] [Indexed: 11/27/2022]
Abstract
A/B-transferase is a glycosyltransferase that transfers a sugar substrate onto H-antigen resulting in the synthesis of glycoproteins and glycolipids termed A/B-antigens. The ABO blood group (ABO) gene encoding A/B-transferase possesses numerous polymorphisms affecting the specificity and/or activity of the enzyme. The relationship between genotype and phenotype is very complicated, except for those of some critical polymorphisms. In order to establish a system for evaluating the effect of each polymorphism on the transferase function, an A- or B-transferase cDNA expressing vector was introduced into HeLa cells, a cell line that do not possess endogenous A/B-transferase activity. We successfully detected substrate-specific transferase activity in the cells and in the culture medium. Furthermore, in three different assays, each corresponding A- or B-antigen was detected in the transfectants with high sensitivity. Accordingly, the present study demonstrates a possibility that A/B-transferase variants may be characterized by using this method.
Collapse
Affiliation(s)
- Chiyomi Nishida
- Department of Forensic Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Shimokawa N, Nishiyama C, Nakano N, Maeda K, Suzuki R, Hara M, Fukai T, Tokura T, Miyajima H, Nakao A, Ogawa H, Okumura K. Suppressive effects of transcription factor GATA-1 on cell type-specific gene expression in dendritic cells. Immunogenetics 2010; 62:421-9. [DOI: 10.1007/s00251-010-0444-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Accepted: 03/19/2010] [Indexed: 11/24/2022]
|
22
|
Wang QH, Nishiyama C, Nakano N, Kanada S, Hara M, Kitamura N, Shimokawa N, Lu CL, Ogawa H, Okumura K. Opposite effects of Trichostatin A on activation of mast cells by different stimulants. FEBS Lett 2010; 584:2315-20. [PMID: 20371366 DOI: 10.1016/j.febslet.2010.03.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 03/18/2010] [Accepted: 03/31/2010] [Indexed: 11/18/2022]
Abstract
Mast cells (MCs) are activated upon stimulation via TLRs or FcepsilonRI, contributing to immune protection and/or leading to allergic diseases. In the present study, the effects of Trichostatin A (TSA) on the activation of MCs were analyzed with bone marrow-derived (BM) MCs. TSA increased the transcription and protein secretion of IL-6 in case of LPS-stimulation, in contrast to the suppressive effect on IgE-mediated activation of BMMCs. Chromatin immunoprecipitation assay showed IgE-mediated signaling-specific suppression of transcription factors recruitment to the IL-6 promoter. TSA-treatment inhibited nuclear translocation of NF-kappaB following IgE-mediated, but not LPS-induced activation in MCs.
Collapse
Affiliation(s)
- Qing-hui Wang
- Atopy Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|