1
|
Hua T, Li S, Han B. Nanomedicines for intranasal delivery: understanding the nano-bio interactions at the nasal mucus-mucosal barrier. Expert Opin Drug Deliv 2024; 21:553-572. [PMID: 38720439 DOI: 10.1080/17425247.2024.2339335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/02/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Intranasal administration is an effective drug delivery routes in modern pharmaceutics. However, unlike other in vivo biological barriers, the nasal mucosal barrier is characterized by high turnover and selective permeability, hindering the diffusion of both particulate drug delivery systems and drug molecules. The in vivo fate of administrated nanomedicines is often significantly affected by nano-biointeractions. AREAS COVERED The biological barriers that nanomedicines encounter when administered intranasally are introduced, with a discussion on the factors influencing the interaction between nanomedicines and the mucus layer/mucosal barriers. General design strategies for nanomedicines administered via the nasal route are further proposed. Furthermore, the most common methods to investigate the characteristics and the interactions of nanomedicines when in presence of the mucus layer/mucosal barrier are briefly summarized. EXPERT OPINION Detailed investigation of nanomedicine-mucus/mucosal interactions and exploration of their mechanisms provide solutions for designing better intranasal nanomedicines. Designing and applying nanomedicines with mucus interaction properties or non-mucosal interactions should be customized according to the therapeutic need, considering the target of the drug, i.e. brain, lung or nose. Then how to improve the precise targeting efficiency of nanomedicines becomes a difficult task for further research.
Collapse
Affiliation(s)
- Tangsiyuan Hua
- School of Pharmacy, Changzhou Univesity, Changzhou, PR China
| | - Shuling Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, PR China
| | - Bing Han
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, PR China
| |
Collapse
|
2
|
Aspalathus linearis (Rooibos) and Agmatine May Act Synergistically to Beneficially Modulate Intestinal Tight Junction Integrity and Inflammatory Profile. Pharmaceuticals (Basel) 2022; 15:ph15091097. [PMID: 36145318 PMCID: PMC9501288 DOI: 10.3390/ph15091097] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/17/2022] [Accepted: 08/28/2022] [Indexed: 11/25/2022] Open
Abstract
In order to promote gastrointestinal health, significant increases in the prevalence of gastrointestinal disorders should be paralleled by similar surges in therapeutics research. Nutraceutical interventions may play a significant role in patient management. The current study aimed to determine the potential of Aspalathus linearis (rooibos) to prevent gastrointestinal dysregulation resulting from high-dose trace-amine (TA) exposure. Considering the substantial female bias in functional gastrointestinal disorders, and the suggested phytoestrogenicity of rooibos, the study design allowed for a comparison between the effects of an ethanol extract of green rooibos and 17β-estradiol (E2). High levels of ρ-tyramine (TYR) and agmatine (AGM), but not β-phenethylamine (PEA) or tryptamine (TRP), resulted in prostaglandin E2 (PGE2) hypersecretion, increased tight-junction protein (TJP; occludin and ZO-1) secretion and (dissimilarly) disrupted the TJP cellular distribution profile. Modulating benefits of rooibos and E2 were TA-specific. Rooibos pre-treatment generally reduced IL-8 secretion across all TA conditions and prevented PGE2 hypersecretion after exposure to both TYR and AGM, but was only able to normalise TJP levels and the distribution profile in AGM-exposed cells. In contrast, E2 pre-treatment prevented only TYR-associated PGE2 hypersecretion and TJP dysregulation. Together, the data suggest that the antioxidant and anti-inflammatory effects of rooibos, rather than phytoestrogenicity, affect benefits illustrated for rooibos.
Collapse
|
3
|
Ivashenka A, Wunder C, Chambon V, Dransart E, Johannes L, Shafaq-Zadah M. Transcytosis of Galectin-3 in Mouse Intestine. Methods Mol Biol 2022; 2442:367-390. [PMID: 35320536 DOI: 10.1007/978-1-0716-2055-7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The GlycoLipid-Lectin (GL-Lect) hypothesis provides a conceptual framework to explain how endocytic pits are built in processes of clathrin-independent endocytosis. According to this hypothesis, oligomeric cellular or pathogenic lectins interact with glycosylated plasma membrane lipids in a way such as to drive the formation of tubular endocytic pits that then detach to generate clathrin-independent endocytic carriers for the cellular uptake of cellular or pathogenic products. This process operates in a complementary manner to the conventional clathrin pathway for biological function linked to cell polarity. Up to date, the premises of the GL-Lect hypothesis have been based on model membrane and cell culture experiments. It has therefore become urgent to extend its exploration to complex organisms. In the current protocol, we describe methods to study the endocytosis and transcytosis of a key driver of the GL-Lect mechanism, the cellular galectin-3, and of one of its cargoes, lactotransferrin, in enterocytes of the intact jejunum of mice. In a step-by-step manner, we present the generation of fluorescent endocytic ligands, tissue preparation for cellular uptake measurements, binding and internalization assays, tissue fixation and preparation for sectioning, light and electron microscopical observations, and quantification of data by image processing. Pitfalls are discussed to optimize the chances of success with the described methods.
Collapse
Affiliation(s)
- Alena Ivashenka
- Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team, U1143 INSERM, UMR3666 CNRS, Institut Curie, PSL Research University, Paris Cedex, France
| | - Christian Wunder
- Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team, U1143 INSERM, UMR3666 CNRS, Institut Curie, PSL Research University, Paris Cedex, France
| | - Valerie Chambon
- Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team, U1143 INSERM, UMR3666 CNRS, Institut Curie, PSL Research University, Paris Cedex, France
| | - Estelle Dransart
- Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team, U1143 INSERM, UMR3666 CNRS, Institut Curie, PSL Research University, Paris Cedex, France
| | - Ludger Johannes
- Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team, U1143 INSERM, UMR3666 CNRS, Institut Curie, PSL Research University, Paris Cedex, France.
| | - Massiullah Shafaq-Zadah
- Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team, U1143 INSERM, UMR3666 CNRS, Institut Curie, PSL Research University, Paris Cedex, France.
| |
Collapse
|
4
|
Sousa de Almeida M, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev 2021; 50:5397-5434. [PMID: 33666625 PMCID: PMC8111542 DOI: 10.1039/d0cs01127d] [Citation(s) in RCA: 400] [Impact Index Per Article: 133.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Indexed: 12/19/2022]
Abstract
Nanoparticles (NPs) have attracted considerable attention in various fields, such as cosmetics, the food industry, material design, and nanomedicine. In particular, the fast-moving field of nanomedicine takes advantage of features of NPs for the detection and treatment of different types of cancer, fibrosis, inflammation, arthritis as well as neurodegenerative and gastrointestinal diseases. To this end, a detailed understanding of the NP uptake mechanisms by cells and intracellular localization is essential for safe and efficient therapeutic applications. In the first part of this review, we describe the several endocytic pathways involved in the internalization of NPs and we discuss the impact of the physicochemical properties of NPs on this process. In addition, the potential challenges of using various inhibitors, endocytic markers and genetic approaches to study endocytosis are addressed along with the principal (semi) quantification methods of NP uptake. The second part focuses on synthetic and bio-inspired substances, which can stimulate or decrease the cellular uptake of NPs. This approach could be interesting in nanomedicine where a high accumulation of drugs in the target cells is desirable and clearance by immune cells is to be avoided. This review contributes to an improved understanding of NP endocytic pathways and reveals potential substances, which can be used in nanomedicine to improve NP delivery.
Collapse
Affiliation(s)
- Mauro Sousa de Almeida
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | - Eva Susnik
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | - Barbara Drasler
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | | | - Alke Petri-Fink
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
- Department of Chemistry, University of FribourgChemin du Musée 91700 FribourgSwitzerland
| | | |
Collapse
|
5
|
The Application of Mucoadhesive Chitosan Nanoparticles in Nasal Drug Delivery. Mar Drugs 2020; 18:md18120605. [PMID: 33260406 PMCID: PMC7759871 DOI: 10.3390/md18120605] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 12/15/2022] Open
Abstract
Mucosal delivery of antigens can induce both humoral and cellular immune responses. Particularly, the nasal cavity is a strongly inductive site for mucosal immunity among several administration routes, as it is generally the first point of contact for inhaled antigens. However, the delivery of antigens to the nasal cavity has some disadvantages such as rapid clearance and disposition of inhaled materials. For these reasons, remarkable efforts have been made to develop antigen delivery systems which suit the nasal route. The use of nanoparticles as delivery vehicles enables protection of the antigen from degradation and sustains the release of the loaded antigen, eventually resulting in improved vaccine and/or drug efficacy. Chitosan, which exhibits low toxicity, biodegradability, good cost performance, and strong mucoadhesive properties, is a useful material for nanoparticles. The present review provides an overview of the mucosal immune response induced by nanoparticles, recent advances in the use of nanoparticles, and nasal delivery systems with chitosan nanoparticles.
Collapse
|
6
|
Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature 2020; 585:574-578. [PMID: 32939089 DOI: 10.1038/s41586-020-2724-8] [Citation(s) in RCA: 389] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 06/24/2020] [Indexed: 12/12/2022]
Abstract
Epithelial organoids, such as those derived from stem cells of the intestine, have great potential for modelling tissue and disease biology1-4. However, the approaches that are used at present to derive these organoids in three-dimensional matrices5,6 result in stochastically developing tissues with a closed, cystic architecture that restricts lifespan and size, limits experimental manipulation and prohibits homeostasis. Here, by using tissue engineering and the intrinsic self-organization properties of cells, we induce intestinal stem cells to form tube-shaped epithelia with an accessible lumen and a similar spatial arrangement of crypt- and villus-like domains to that in vivo. When connected to an external pumping system, the mini-gut tubes are perfusable; this allows the continuous removal of dead cells to prolong tissue lifespan by several weeks, and also enables the tubes to be colonized with microorganisms for modelling host-microorganism interactions. The mini-intestines include rare, specialized cell types that are seldom found in conventional organoids. They retain key physiological hallmarks of the intestine and have a notable capacity to regenerate. Our concept for extrinsically guiding the self-organization of stem cells into functional organoids-on-a-chip is broadly applicable and will enable the attainment of more physiologically relevant organoid shapes, sizes and functions.
Collapse
|
7
|
Overcoming the intestinal barrier: A look into targeting approaches for improved oral drug delivery systems. J Control Release 2020; 322:486-508. [DOI: 10.1016/j.jconrel.2020.04.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022]
|
8
|
Dillon A, Lo DD. M Cells: Intelligent Engineering of Mucosal Immune Surveillance. Front Immunol 2019; 10:1499. [PMID: 31312204 PMCID: PMC6614372 DOI: 10.3389/fimmu.2019.01499] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/14/2019] [Indexed: 12/25/2022] Open
Abstract
M cells are specialized intestinal epithelial cells that provide the main machinery for sampling luminal microbes for mucosal immune surveillance. M cells are usually found in the epithelium overlying organized mucosal lymphoid tissues, but studies have identified multiple distinct lineages of M cells that are produced under different conditions, including intestinal inflammation. Among these lineages there is a common morphology that helps explain the efficiency of M cells in capturing luminal bacteria and viruses; in addition, M cells recruit novel cellular mechanisms to transport the particles across the mucosal barrier into the lamina propria, a process known as transcytosis. These specializations used by M cells point to a novel engineering of cellular machinery to selectively capture and transport microbial particles of interest. Because of the ability of M cells to effectively violate the mucosal barrier, the circumstances of M cell induction have important consequences. Normal immune surveillance insures that transcytosed bacteria are captured by underlying myeloid/dendritic cells; in contrast, inflammation can induce development of new M cells not accompanied by organized lymphoid tissues, resulting in bacterial transcytosis with the potential to amplify inflammatory disease. In this review, we will discuss our own perspectives on the life history of M cells and also raise a few questions regarding unique aspects of their biology among epithelia.
Collapse
Affiliation(s)
- Andrea Dillon
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - David D Lo
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
9
|
Huang T, Huang X, Shi B, Wang F, Feng W, Yao M. Regulators of Salmonella-host interaction identified by peripheral blood transcriptome profiling: roles of TGFB1 and TRP53 in intracellular Salmonella replication in pigs. Vet Res 2018; 49:121. [PMID: 30541630 PMCID: PMC6292071 DOI: 10.1186/s13567-018-0616-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Abstract
Peripheral blood transcriptome is an important intermediate data source for investigating the mechanism of Salmonella invasion, proliferation, and transmission. We challenged 4-week old piglets with Salmonella enterica serovar Typhimurium LT2 and investigated the peripheral blood gene expression profile before treatment (d0) and at 2 and 7 days post-inoculation (dpi) using deep sequencing. Regulator pathways were first predicted in silico and validated by wet-lab experiments. In total, 1255, 765, and 853 genes were differentially expressed between 2 dpi/d0, 7 dpi/d0, and 7 dpi/2 dpi, respectively. Additionally, 1333 genes showed a time effect during the investigated Salmonella infection period. Clustering analysis showed that the differentially expressed genes fell into six distinct expression clusters. Pathway annotation of these gene clusters showed that the innate immune system was first significantly upregulated at 2 dpi and then attenuated at 7 dpi. Toll-like receptor cascades, MyD88 cascade, phagosome pathway, cytokine signaling pathway, and lysosome pathway showed a similar expression pattern. Interestingly, we found that the ribosome pathway was significantly inhibited at 2 and 7 dpi. Gene expression regulation network enrichment analysis identified several candidate factors controlling the expression clusters. Further in vitro study showed that TGFB1 can inhibit Salmonella replication whereas TRP53 can promote Salmonella replication in porcine peripheral blood mononuclear cells and murine macrophages. These results provide new insights into the molecular mechanism of Salmonella-host interactions and clues for the genetic improvement of Salmonella infection resistance in pigs.
Collapse
Affiliation(s)
- Tinghua Huang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xiali Huang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Bomei Shi
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Fangfang Wang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Wenzhao Feng
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Min Yao
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
10
|
Allert S, Förster TM, Svensson CM, Richardson JP, Pawlik T, Hebecker B, Rudolphi S, Juraschitz M, Schaller M, Blagojevic M, Morschhäuser J, Figge MT, Jacobsen ID, Naglik JR, Kasper L, Mogavero S, Hube B. Candida albicans-Induced Epithelial Damage Mediates Translocation through Intestinal Barriers. mBio 2018; 9:e00915-18. [PMID: 29871918 PMCID: PMC5989070 DOI: 10.1128/mbio.00915-18] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 01/31/2023] Open
Abstract
Life-threatening systemic infections often occur due to the translocation of pathogens across the gut barrier and into the bloodstream. While the microbial and host mechanisms permitting bacterial gut translocation are well characterized, these mechanisms are still unclear for fungal pathogens such as Candida albicans, a leading cause of nosocomial fungal bloodstream infections. In this study, we dissected the cellular mechanisms of translocation of C. albicans across intestinal epithelia in vitro and identified fungal genes associated with this process. We show that fungal translocation is a dynamic process initiated by invasion and followed by cellular damage and loss of epithelial integrity. A screen of >2,000 C. albicans deletion mutants identified genes required for cellular damage of and translocation across enterocytes. Correlation analysis suggests that hypha formation, barrier damage above a minimum threshold level, and a decreased epithelial integrity are required for efficient fungal translocation. Translocation occurs predominantly via a transcellular route, which is associated with fungus-induced necrotic epithelial damage, but not apoptotic cell death. The cytolytic peptide toxin of C. albicans, candidalysin, was found to be essential for damage of enterocytes and was a key factor in subsequent fungal translocation, suggesting that transcellular translocation of C. albicans through intestinal layers is mediated by candidalysin. However, fungal invasion and low-level translocation can also occur via non-transcellular routes in a candidalysin-independent manner. This is the first study showing translocation of a human-pathogenic fungus across the intestinal barrier being mediated by a peptide toxin.IMPORTANCECandida albicans, usually a harmless fungus colonizing human mucosae, can cause lethal bloodstream infections when it manages to translocate across the intestinal epithelium. This can result from antibiotic treatment, immune dysfunction, or intestinal damage (e.g., during surgery). However, fungal processes may also contribute. In this study, we investigated the translocation process of C. albicans using in vitro cell culture models. Translocation occurs as a stepwise process starting with invasion, followed by epithelial damage and loss of epithelial integrity. The ability to secrete candidalysin, a peptide toxin deriving from the hyphal protein Ece1, is key: C. albicans hyphae, secreting candidalysin, take advantage of a necrotic weakened epithelium to translocate through the intestinal layer.
Collapse
Affiliation(s)
- Stefanie Allert
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Toni M Förster
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | | | - Jonathan P Richardson
- Mucosal & Salivary Biology Division, Dental Institute, King's College London, London, United Kingdom
| | - Tony Pawlik
- Research Group Microbial Immunology, Hans-Knöll-Institute, Jena, Germany
| | - Betty Hebecker
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
- Research Group Microbial Immunology, Hans-Knöll-Institute, Jena, Germany
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Aberdeen, United Kingdom
| | - Sven Rudolphi
- Research Group Microbial Immunology, Hans-Knöll-Institute, Jena, Germany
| | - Marc Juraschitz
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Martin Schaller
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Mariana Blagojevic
- Mucosal & Salivary Biology Division, Dental Institute, King's College London, London, United Kingdom
| | - Joachim Morschhäuser
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Marc Thilo Figge
- Research Group Applied Systems Biology, Hans-Knöll-Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Hans-Knöll-Institute, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Julian R Naglik
- Mucosal & Salivary Biology Division, Dental Institute, King's College London, London, United Kingdom
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
11
|
de Almeida CJG. Caveolin-1 and Caveolin-2 Can Be Antagonistic Partners in Inflammation and Beyond. Front Immunol 2017; 8:1530. [PMID: 29250058 PMCID: PMC5715436 DOI: 10.3389/fimmu.2017.01530] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/27/2017] [Indexed: 12/26/2022] Open
Abstract
Caveolins, encoded by the CAV gene family, are the main protein components of caveolae. In most tissues, caveolin-1 (Cav-1) and caveolin-2 (Cav-2) are co-expressed, and Cav-2 targeting to caveolae depends on the formation of heterooligomers with Cav-1. Notwithstanding, Cav-2 has unpredictable activities, opposing Cav-1 in the regulation of some cellular processes. While the major roles of Cav-1 as a modulator of cell signaling in inflammatory processes and in immune responses have been extensively discussed elsewhere, the aim of this review is to focus on data revealing the distinct activity of Cav-1 and Cav-2, which suggest that these proteins act antagonistically to fine-tune a variety of cellular processes relevant to inflammation.
Collapse
|
12
|
Wang M, Gao Z, Zhang Z, Pan L, Zhang Y. Roles of M cells in infection and mucosal vaccines. Hum Vaccin Immunother 2015; 10:3544-51. [PMID: 25483705 DOI: 10.4161/hv.36174] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The mucosal immune system plays a crucial part in the control of infection. Exposure of humans and animals to potential pathogens generally occurs through mucosal surfaces, thus, strategies that target the mucosa seem rational and efficient vaccination measures. Vaccination through the mucosal immune system can induce effective systemic immune responses simultaneously with mucosal immunity compared with parenteral vaccination. M cells are capable of transporting luminal antigens to the underlying lymphoid tissues and can be exploited by pathogens as an entry portal to invade the host. Therefore, targeting M-cell-specific molecules might enhance antigen entry, initiate the immune response, and induce protection against mucosal pathogens. Here, we outline our understanding of the distribution and function of M cells, and summarize the advances in mucosal vaccine strategies that target M cells.
Collapse
Key Words
- ANX, Annexin; BALT, bronchus-associated lymphoid tissue
- C5aR, C5a receptor
- DCs, dendritic cells
- DENV, dengue virus
- EDIII, envelope domain III
- FAE, follicle-associated epithelium
- GALT, gut-associated lymphoid tissue
- GENALT, genital-associated lymphoid tissue
- GP2, Glycoprotein 2
- Hsp60, heat shock protein 60
- LPS, lipopolysaccharide
- M cells
- M cells, microfold cells
- MALT, mucosa-associated lymphoid tissue
- NALT, nasopharynx- or nose-associated lymphoid tissue
- OVA, ovalbumin
- OmpH, outer membrane protein H
- PP, Peyer's patches
- PRRs, pathogen recognition receptors
- PrPC, cellular prion protein
- SELEX, Systematic Evolution of Ligands by EXponential enrichment
- SIgA secretory IgA
- TLR-4, Toll-like receptor-4
- UEA-1,Ulex europaeus agglutinin-1
- antigen
- infection
- mucosal immunity
- pσ1, reovirus surface protein σ1
- vaccine
Collapse
Affiliation(s)
- Miao Wang
- a State Key Laboratory of Veterinary Etiological Biology; National Foot-and-Mouse Disease Reference Laboratory; Lanzhou Veterinary Research Institute; CAAS ; Lanzhou , Gansu , China
| | | | | | | | | |
Collapse
|
13
|
Lim JS, Nguyen KCT, Nguyen CT, Jang I, Han JM, Fabian C, Lee SE, Rhee JH, Cho KA. Flagellin-dependent TLR5/caveolin-1 as a promising immune activator in immunosenescence. Aging Cell 2015. [PMID: 26223660 PMCID: PMC4568978 DOI: 10.1111/acel.12383] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The age-associated decline of immune responses causes high susceptibility to infections and reduced vaccine efficacy in the elderly. However, the mechanisms underlying age-related deficits are unclear. Here, we found that the expression and signaling of flagellin (FlaB)-dependent Toll-like receptor 5 (TLR5), unlike the other TLRs, were well maintained in old macrophages, similar to young macrophages. The expression and activation of TLR5/MyD88, but not TLR4, were sensitively regulated by the upregulation of caveolin-1 in old macrophages through direct interaction. This interaction was also confirmed using macrophages from caveolin-1 or MyD88 knockout mice. Because TLR5 and caveolin-1 were well expressed in major old tissues including lung, skin, intestine, and spleen, we analyzed in vivo immune responses via a vaccine platform with FlaB as a mucosal adjuvant for the pneumococcal surface protein A (PspA) against Streptococcus pneumoniae infection in young and aged mice. The FlaB-PspA fusion protein induced a significantly higher level of PspA-specific IgG and IgA responses and demonstrated a high protective efficacy against a lethal challenge with live S. pneumoniae in aged mice. These results suggest that caveolin-1/TLR5 signaling plays a key role in age-associated innate immune responses and that FlaB-PspA stimulation of TLR5 may be a new strategy for a mucosal vaccine adjuvant against pneumococcal infection in the elderly.
Collapse
Affiliation(s)
- Jae Sung Lim
- Department of Biochemistry Chonnam National University Medical School Gwangju 501‐746 South Korea
| | - Kim Cuc Thi Nguyen
- Department of Biochemistry Chonnam National University Medical School Gwangju 501‐746 South Korea
- Center for Creative Biomedical Scientists Chonnam National University Medical School Gwangju 501‐746 South Korea
| | - Chung Truong Nguyen
- Clinical Vaccine R&D Center Chonnam National University Hwasun Hospital 160 Ilsim‐Ri Hwasun‐gun Jeonnam 519‐809 South Korea
| | - Ik‐Soon Jang
- Division of Life Science Korea Basic Science Institute Daejeon 305‐333 South Korea
| | - Jung Min Han
- Department of Integrated OMICS for Biomedical Science Yonsei University Seoul 120‐749 South Korea
- College of Pharmacy Yonsei University Incheon 406‐840 South Korea
| | - Claire Fabian
- Department of Immunology Fraunhofer Institute for Cell Therapy and Immunology (IZI) University of Leipzig 04103 Leipzig Germany
- Translational Center for Regenerative Medicine (TRM) University of Leipzig 04103 Leipzig Germany
| | - Shee Eun Lee
- Clinical Vaccine R&D Center Chonnam National University Hwasun Hospital 160 Ilsim‐Ri Hwasun‐gun Jeonnam 519‐809 South Korea
- Dental Science Research Institute School of Dentistry Chonnam National University Gwangju 500‐757 South Korea
| | - Joon Haeng Rhee
- Clinical Vaccine R&D Center Chonnam National University Hwasun Hospital 160 Ilsim‐Ri Hwasun‐gun Jeonnam 519‐809 South Korea
- Department of Microbiology Chonnam National University Medical School Gwangju 501‐746 South Korea
| | - Kyung A Cho
- Department of Biochemistry Chonnam National University Medical School Gwangju 501‐746 South Korea
- Center for Creative Biomedical Scientists Chonnam National University Medical School Gwangju 501‐746 South Korea
- Clinical Vaccine R&D Center Chonnam National University Hwasun Hospital 160 Ilsim‐Ri Hwasun‐gun Jeonnam 519‐809 South Korea
- Research Institute of Medical Sciences Chonnam National University Medical School Gwangju 501‐746 South Korea
| |
Collapse
|
14
|
Albac S, Schmitz A, Lopez-Alayon C, d'Enfert C, Sautour M, Ducreux A, Labruère-Chazal C, Laue M, Holland G, Bonnin A, Dalle F. Candida albicansis able to use M cells as a portal of entry across the intestinal barrierin vitro. Cell Microbiol 2015; 18:195-210. [DOI: 10.1111/cmi.12495] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 07/21/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Sandrine Albac
- UMR 1347, Université de Bourgogne Franche-Comté; 17 Rue Sully, BP 86 510 F-21065 Dijon Cedex France
| | - Antonin Schmitz
- UMR 1347, Université de Bourgogne Franche-Comté; 17 Rue Sully, BP 86 510 F-21065 Dijon Cedex France
| | - Carolina Lopez-Alayon
- UMR 1347, Université de Bourgogne Franche-Comté; 17 Rue Sully, BP 86 510 F-21065 Dijon Cedex France
| | - Christophe d'Enfert
- Institut Pasteur; Unité Biologie et Pathogénicité Fongiques, Département Mycologie; Paris France
- INRA; USC 2019; Paris France
| | - Marc Sautour
- UMR 1347, Université de Bourgogne Franche-Comté; 17 Rue Sully, BP 86 510 F-21065 Dijon Cedex France
- Centre Hospitalier Universitaire; Service de Parasitologie Mycologie; 2 Rue Angélique Ducoudray F-21070 Dijon Cedex France
| | - Amandine Ducreux
- UMR 1347, Université de Bourgogne Franche-Comté; 17 Rue Sully, BP 86 510 F-21065 Dijon Cedex France
| | - Catherine Labruère-Chazal
- Université de Bourgogne Franche-Comté; Institut de Mathématiques de Bourgogne, UFR Sciences et Techniques; Dijon France
| | - Michael Laue
- Robert Koch-Institute; Centre for Biological Threats and Special Pathogens, Advanced Light and Electron Microscopy; Nordufer 20 13353 Berlin Germany
| | - Gudrun Holland
- Robert Koch-Institute; Centre for Biological Threats and Special Pathogens, Advanced Light and Electron Microscopy; Nordufer 20 13353 Berlin Germany
| | - Alain Bonnin
- UMR 1347, Université de Bourgogne Franche-Comté; 17 Rue Sully, BP 86 510 F-21065 Dijon Cedex France
- Centre Hospitalier Universitaire; Service de Parasitologie Mycologie; 2 Rue Angélique Ducoudray F-21070 Dijon Cedex France
| | - Frederic Dalle
- UMR 1347, Université de Bourgogne Franche-Comté; 17 Rue Sully, BP 86 510 F-21065 Dijon Cedex France
- Centre Hospitalier Universitaire; Service de Parasitologie Mycologie; 2 Rue Angélique Ducoudray F-21070 Dijon Cedex France
| |
Collapse
|
15
|
Pathogenesis of human enterovirulent bacteria: lessons from cultured, fully differentiated human colon cancer cell lines. Microbiol Mol Biol Rev 2014; 77:380-439. [PMID: 24006470 DOI: 10.1128/mmbr.00064-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hosts are protected from attack by potentially harmful enteric microorganisms, viruses, and parasites by the polarized fully differentiated epithelial cells that make up the epithelium, providing a physical and functional barrier. Enterovirulent bacteria interact with the epithelial polarized cells lining the intestinal barrier, and some invade the cells. A better understanding of the cross talk between enterovirulent bacteria and the polarized intestinal cells has resulted in the identification of essential enterovirulent bacterial structures and virulence gene products playing pivotal roles in pathogenesis. Cultured animal cell lines and cultured human nonintestinal, undifferentiated epithelial cells have been extensively used for understanding the mechanisms by which some human enterovirulent bacteria induce intestinal disorders. Human colon carcinoma cell lines which are able to express in culture the functional and structural characteristics of mature enterocytes and goblet cells have been established, mimicking structurally and functionally an intestinal epithelial barrier. Moreover, Caco-2-derived M-like cells have been established, mimicking the bacterial capture property of M cells of Peyer's patches. This review intends to analyze the cellular and molecular mechanisms of pathogenesis of human enterovirulent bacteria observed in infected cultured human colon carcinoma enterocyte-like HT-29 subpopulations, enterocyte-like Caco-2 and clone cells, the colonic T84 cell line, HT-29 mucus-secreting cell subpopulations, and Caco-2-derived M-like cells, including cell association, cell entry, intracellular lifestyle, structural lesions at the brush border, functional lesions in enterocytes and goblet cells, functional and structural lesions at the junctional domain, and host cellular defense responses.
Collapse
|
16
|
Lim JS, Shin M, Kim HJ, Kim KS, Choy HE, Cho KA. Caveolin-1 mediates Salmonella invasion via the regulation of SopE-dependent Rac1 activation and actin reorganization. J Infect Dis 2014; 210:793-802. [PMID: 24625804 DOI: 10.1093/infdis/jiu152] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Caveolar endocytosis has an important function in the cellular uptake of some bacterial toxins, viruses, and circulating proteins. However, the molecular machinery involved in caveolae-dependent bacterial endocytosis is poorly defined. In the present study, we identify a new molecular mechanism for the caveolin-1-dependent entry of Salmonella into host cells via the direct regulation of actin reorganization. In contrast to the interaction of caveolae with other pathogens, the caveolae did not form Salmonella-containing vesicles or endosomes in the host cells. Instead, the caveolae rapidly moved to the apical plasma membrane upon actin condensation during early invasion. Interestingly, the injected bacterial protein SopE interacted with Rac1 to regulate actin reorganization, and both proteins colocalized and directly interacted with caveolin-1 in caveolae during early invasion. After the complete internalization of Salmonella, SopE levels decreased both in the caveolae and in the host cytoplasm; Rac1 activity was also decreased. Downregulation of caveolin-1 by siRNA treatment led to reduction of Salmonella invasion compared with control siRNA-treated cells. These results suggest a new model in which caveolin-1 might be involved in Salmonella entry via its interaction with SopE and Rac1, leading to enhanced membrane ruffling for phagocytosis into host cells.
Collapse
Affiliation(s)
| | | | | | - Kyu Suk Kim
- Department of Biochemistry Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju, Korea
| | | | - Kyung A Cho
- Department of Biochemistry Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
17
|
Parsons BN, Wigley P, Simpson HL, Williams JM, Humphrey S, Salisbury AM, Watson AJM, Fry SC, O'Brien D, Roberts CL, O'Kennedy N, Keita ÅV, Söderholm JD, Rhodes JM, Campbell BJ. Dietary supplementation with soluble plantain non-starch polysaccharides inhibits intestinal invasion of Salmonella Typhimurium in the chicken. PLoS One 2014; 9:e87658. [PMID: 24498347 PMCID: PMC3911995 DOI: 10.1371/journal.pone.0087658] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/28/2013] [Indexed: 01/25/2023] Open
Abstract
Soluble fibres (non-starch polysaccharides, NSP) from edible plants but particularly plantain banana (Musa spp.), have been shown in vitro and ex vivo to prevent various enteric pathogens from adhering to, or translocating across, the human intestinal epithelium, a property that we have termed contrabiotic. Here we report that dietary plantain fibre prevents invasion of the chicken intestinal mucosa by Salmonella. In vivo experiments were performed with chicks fed from hatch on a pellet diet containing soluble plantain NSP (0 to 200 mg/d) and orally infected with S.Typhimurium 4/74 at 8 d of age. Birds were sacrificed 3, 6 and 10 d post-infection. Bacteria were enumerated from liver, spleen and caecal contents. In vitro studies were performed using chicken caecal crypts and porcine intestinal epithelial cells infected with Salmonella enterica serovars following pre-treatment separately with soluble plantain NSP and acidic or neutral polysaccharide fractions of plantain NSP, each compared with saline vehicle. Bacterial adherence and invasion were assessed by gentamicin protection assay. In vivo dietary supplementation with plantain NSP 50 mg/d reduced invasion by S.Typhimurium, as reflected by viable bacterial counts from splenic tissue, by 98.9% (95% CI, 98.1-99.7; P<0.0001). In vitro studies confirmed that plantain NSP (5-10 mg/ml) inhibited adhesion of S.Typhimurium 4/74 to a porcine epithelial cell-line (73% mean inhibition (95% CI, 64-81); P<0.001) and to primary chick caecal crypts (82% mean inhibition (95% CI, 75-90); P<0.001). Adherence inhibition was shown to be mediated via an effect on the epithelial cells and Ussing chamber experiments with ex-vivo human ileal mucosa showed that this effect was associated with increased short circuit current but no change in electrical resistance. The inhibitory activity of plantain NSP lay mainly within the acidic/pectic (homogalacturonan-rich) component. Supplementation of chick feed with plantain NSP was well tolerated and shows promise as a simple approach for reducing invasive salmonellosis.
Collapse
Affiliation(s)
- Bryony N. Parsons
- Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Paul Wigley
- Infection Biology, Institute of Infection and Global Health, University of Liverpool, Leahurst, United Kingdom
| | - Hannah L. Simpson
- Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Jonathan M. Williams
- Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Suzie Humphrey
- Infection Biology, Institute of Infection and Global Health, University of Liverpool, Leahurst, United Kingdom
| | - Anne-Marie Salisbury
- Infection Biology, Institute of Infection and Global Health, University of Liverpool, Leahurst, United Kingdom
| | - Alastair J. M. Watson
- Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Stephen C. Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - David O'Brien
- Provexis plc, c/o Rowett Institute of Nutrition and Health, Aberdeen, United Kingdom
| | - Carol L. Roberts
- Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
- Provexis plc, c/o Rowett Institute of Nutrition and Health, Aberdeen, United Kingdom
| | - Niamh O'Kennedy
- Provexis plc, c/o Rowett Institute of Nutrition and Health, Aberdeen, United Kingdom
| | - Åsa V. Keita
- Clinical and Experimental Medicine, Division of Surgery, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Johan D. Söderholm
- Clinical and Experimental Medicine, Division of Surgery, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Jonathan M. Rhodes
- Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Barry J. Campbell
- Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
18
|
Casteleyn C, Van den Broeck W, Gebert A, Tambuyzer BR, Van Cruchten S, Van Ginneken C. M cell specific markers in man and domestic animals: Valuable tools in vaccine development. Comp Immunol Microbiol Infect Dis 2013; 36:353-64. [DOI: 10.1016/j.cimid.2013.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 03/01/2013] [Accepted: 03/21/2013] [Indexed: 12/13/2022]
|
19
|
Intestinal Salmonella typhimurium infection leads to miR-29a induced caveolin 2 regulation. PLoS One 2013; 8:e67300. [PMID: 23826261 PMCID: PMC3691122 DOI: 10.1371/journal.pone.0067300] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/17/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Salmonella are able to modulate host cell functions facilitating both uptake and resistance to cellular host defence mechanisms. While interactions between bacterial modulators and cellular proteins have been the main focus of Salmonella research, relatively little is known about mammalian gene regulation in response to Salmonella infection. A major class of mammalian gene modulators consists of microRNAs. For our study we examined interactions of microRNAs and regulated mRNAs in mammalian intestinal Salmonella infections using a piglet model. METHODOLOGY/PRINCIPAL FINDINGS After performing microRNA as well as mRNA specific microarray analysis of ileal samples from Salmonella infected as well as control piglets, we integrated expression analysis with target prediction identifying microRNAs that mainly regulate focal adhesion as well as actin cytoskeleton pathways. Particular attention was given to miR-29a, which was involved in most interactions including Caveolin 2. RT-qPCR experiments verified up-regulation of miR-29a after infection while its predicted target Caveolin 2 was significantly down-regulated as examined by transcript and protein detection. Reporter gene assays as well as RNAi experiments confirmed Caveolin 2 to be a miR-29a target. Knock-down of Caveolin 2 in intestinal epithelial cells resulted in retarded proliferation as well as increased bacterial uptake. In addition, our experiments showed that Caveolin 2 regulates the activation of the small Rho GTPase CDC42 but apparently not RAC1 in human intestinal cells. CONCLUSIONS/SIGNIFICANCE Our study outlines for the first time important regulation pathways in intestinal Salmonella infection pointing out that focal adhesion and organisation of actin cytoskeleton are regulated by microRNAs. Functional relevance is shown by miR-29a mediated Caveolin 2 regulation, modulating the activation state of CDC42. Further analysis of examined interactions may support the discovery of novel strategies impairing the uptake of intracellular pathogens.
Collapse
|
20
|
Kou L, Sun J, Zhai Y, He Z. The endocytosis and intracellular fate of nanomedicines: Implication for rational design. Asian J Pharm Sci 2013. [DOI: 10.1016/j.ajps.2013.07.001] [Citation(s) in RCA: 379] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
21
|
Garai P, Gnanadhas DP, Chakravortty D. Salmonella enterica serovars Typhimurium and Typhi as model organisms: revealing paradigm of host-pathogen interactions. Virulence 2012; 3:377-88. [PMID: 22722237 PMCID: PMC3478240 DOI: 10.4161/viru.21087] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The lifestyle of intracellular pathogens has always questioned the skill of a microbiologist in the context of finding the permanent cure to the diseases caused by them. The best tool utilized by these pathogens is their ability to reside inside the host cell, which enables them to easily bypass the humoral immunity of the host, such as the complement system. They further escape from the intracellular immunity, such as lysosome and inflammasome, mostly by forming a protective vacuole-bound niche derived from the host itself. Some of the most dreadful diseases are caused by these vacuolar pathogens, for example, tuberculosis by Mycobacterium or typhoid fever by Salmonella. To deal with such successful pathogens therapeutically, the knowledge of a host-pathogen interaction system becomes primarily essential, which further depends on the use of a model system. A well characterized pathogen, namely Salmonella, suits the role of a model for this purpose, which can infect a wide array of hosts causing a variety of diseases. This review focuses on various such aspects of research on Salmonella which are useful for studying the pathogenesis of other intracellular pathogens.
Collapse
Affiliation(s)
- Preeti Garai
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research and Biosafety Laboratories, Indian Institute of Science, Bangalore, India
| | | | | |
Collapse
|
22
|
da Silva CV, Cruz L, Araújo NDS, Angeloni MB, Fonseca BB, Gomes ADO, Carvalho FDR, Gonçalves ALR, Barbosa BDF. A glance at Listeria and Salmonella cell invasion: different strategies to promote host actin polymerization. Int J Med Microbiol 2011; 302:19-32. [PMID: 21783413 DOI: 10.1016/j.ijmm.2011.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 05/12/2011] [Accepted: 05/16/2011] [Indexed: 12/18/2022] Open
Abstract
The facultative intracellular bacterial pathogens Listeria monocytogenes and Salmonella enterica have evolved multiple strategies to invade a large panel of mammalian cells. These pathogens use the host cell actin system for invasion and became a paradigm for the study of host-pathogen interactions and bacterial adaptation to mammalian hosts. The key signaling component that these pathogens use to orchestrate actin remodeling is the Arp2/3 complex, which is related to polymerization of actin filaments. These bacterial pathogens are able to trigger distinct invasion mechanisms. On the one hand, L. monocytogenes invade a host cell in a way dependent on the specific interactions between bacterial and host cell proteins, which in turn activate the host cell actin polymerizing machinery that culminates with bacterial internalization. Also, Listeria escapes from the newly formed parasitophorous vacuole and moves among adjacent cells by triggering actin polymerization. On the other hand, Salmonella invades a host cell by delivering into the cytoplasm virulence factors which directly interact with host regulators of actin polymerization which leads to bacterial uptake. Moreover, Salmonella avoids vacuole lyses and modulates the early and late endosomal markers presented in the vacuole membrane. This mini-review focuses on the different pathways that L. monocytogenes and S. enterica activate to modulate the actin cytoskeleton in order to invade, to form the parasitophorous vacuole, and to migrate inside host cells.
Collapse
Affiliation(s)
- Claudio Vieira da Silva
- Programa de Pós-Graduação em Imunologia e Parasitologia Aplicadas, Universidade Federal de Uberlândia, Minas Gerais, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mechanistic studies on the uptake and intracellular trafficking of novel cyclodextrin transfection complexes by intestinal epithelial cells. Int J Pharm 2011; 413:174-83. [DOI: 10.1016/j.ijpharm.2011.04.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 04/06/2011] [Accepted: 04/08/2011] [Indexed: 11/18/2022]
|
24
|
Radtke AL, Wilson JW, Sarker S, Nickerson CA. Analysis of interactions of Salmonella type three secretion mutants with 3-D intestinal epithelial cells. PLoS One 2010; 5:e15750. [PMID: 21206750 PMCID: PMC3012082 DOI: 10.1371/journal.pone.0015750] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 11/28/2010] [Indexed: 02/07/2023] Open
Abstract
The prevailing paradigm of Salmonella enteropathogenesis based on monolayers asserts that Salmonella pathogenicity island-1 Type Three Secretion System (SPI-1 T3SS) is required for bacterial invasion into intestinal epithelium. However, little is known about the role of SPI-1 in mediating gastrointestinal disease in humans. Recently, SPI-1 deficient nontyphoidal Salmonella strains were isolated from infected humans and animals, indicating that SPI-1 is not required to cause enteropathogenesis and demonstrating the need for more in vivo-like models. Here, we utilized a previously characterized 3-D organotypic model of human intestinal epithelium to elucidate the role of all characterized Salmonella enterica T3SSs. Similar to in vivo reports, the Salmonella SPI-1 T3SS was not required to invade 3-D intestinal cells. Additionally, Salmonella strains carrying single (SPI-1 or SPI-2), double (SPI-1/2) and complete T3SS knockout (SPI-1/SPI-2: flhDC) also invaded 3-D intestinal cells to wildtype levels. Invasion of wildtype and TTSS mutants was a Salmonella active process, whereas non-invasive bacterial strains, bacterial size beads, and heat-killed Salmonella did not invade 3-D cells. Wildtype and T3SS mutants did not preferentially target different cell types identified within the 3-D intestinal aggregates, including M-cells/M-like cells, enterocytes, or Paneth cells. Moreover, each T3SS was necessary for substantial intracellular bacterial replication within 3-D cells. Collectively, these results indicate that T3SSs are dispensable for Salmonella invasion into highly differentiated 3-D models of human intestinal epithelial cells, but are required for intracellular bacterial growth, paralleling in vivo infection observations and demonstrating the utility of these models in predicting in vivo-like pathogenic mechanisms.
Collapse
Affiliation(s)
- Andrea L. Radtke
- School of Life Sciences, Center for Infectious Diseases and Vaccinology, The Biodesign Institute at Arizona State University, Tempe, Arizona, United States of America
| | - James W. Wilson
- School of Life Sciences, Center for Infectious Diseases and Vaccinology, The Biodesign Institute at Arizona State University, Tempe, Arizona, United States of America
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Shameema Sarker
- School of Life Sciences, Center for Infectious Diseases and Vaccinology, The Biodesign Institute at Arizona State University, Tempe, Arizona, United States of America
| | - Cheryl A. Nickerson
- School of Life Sciences, Center for Infectious Diseases and Vaccinology, The Biodesign Institute at Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
25
|
Azizi A, Kumar A, Diaz-Mitoma F, Mestecky J. Enhancing oral vaccine potency by targeting intestinal M cells. PLoS Pathog 2010; 6:e1001147. [PMID: 21085599 PMCID: PMC2978714 DOI: 10.1371/journal.ppat.1001147] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The immune system in the gastrointestinal tract plays a crucial role in the control of infection, as it constitutes the first line of defense against mucosal pathogens. The attractive features of oral immunization have led to the exploration of a variety of oral delivery systems. However, none of these oral delivery systems have been applied to existing commercial vaccines. To overcome this, a new generation of oral vaccine delivery systems that target antigens to gut-associated lymphoid tissue is required. One promising approach is to exploit the potential of microfold (M) cells by mimicking the entry of pathogens into these cells. Targeting specific receptors on the apical surface of M cells might enhance the entry of antigens, initiating the immune response and consequently leading to protection against mucosal pathogens. In this article, we briefly review the challenges associated with current oral vaccine delivery systems and discuss strategies that might potentially target mouse and human intestinal M cells.
Collapse
Affiliation(s)
- Ali Azizi
- Infectious Disease and Vaccine Research Center, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada.
| | | | | | | |
Collapse
|
26
|
Kim SH, Seo KW, Kim J, Lee KY, Jang YS. The M cell-targeting ligand promotes antigen delivery and induces antigen-specific immune responses in mucosal vaccination. THE JOURNAL OF IMMUNOLOGY 2010; 185:5787-95. [PMID: 20952686 DOI: 10.4049/jimmunol.0903184] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Oral mucosal immunization can induce protective immunity in both systemic compartments and the mucosa. Successful mucosal immunization depends on Ag delivery to the mucosal immune induction site. The high transcytotic activity of M cells within the mucosa makes these cells attractive targets for mucosal Ag delivery, although it remains unclear whether delivery of Ag to M cells only can guarantee the induction of effective immune responses. In this study, we evaluated the ability of an M cell-targeting ligand with adjuvant activity to induce immunity against ligand-fused Ag. We selected M cell-targeting ligands through biopanning of a phage display library against differentiated in vitro M-like cells and produced the recombinant Ags fused to the selected ligands using the model Ag. One of the selected peptide ligands, Co1, promoted the binding of ligand-fused Ag to mouse Peyer's patch M cells and human M-like cells that had been defined by binding with the M cell-specific and anti-GP2 Abs. In addition, Co1 ligand enhanced the uptake of fused Ag by immunogenic tissue in an ex vivo loop assay and in vivo oral administration experiments. After oral administration, the ligand-fused Ag enhanced immune responses against the fused Ag compared with those of the control Ag without ligand. In addition, this use of the ligand supported a skewed Th2-type immune response against the fused Ag. Collectively, these results suggest that the ligand selected through biopanning against cultured M-like cells could be used as an adjuvant for targeted Ag delivery into the mucosal immune system to enhance immune induction.
Collapse
Affiliation(s)
- Sae-Hae Kim
- Division of Biological Sciences, Chonbuk National University, Jeonju, South Korea
| | | | | | | | | |
Collapse
|
27
|
Lahiri A, Lahiri A, Iyer N, Das P, Chakravortty D. Visiting the cell biology of Salmonella infection. Microbes Infect 2010; 12:809-18. [PMID: 20538070 DOI: 10.1016/j.micinf.2010.05.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 05/27/2010] [Accepted: 05/27/2010] [Indexed: 10/19/2022]
Abstract
Salmonella, a Gram-negative facultative intracellular pathogen is capable of infecting vast array of hosts. The striking ability of Salmonella to overcome every hurdle encountered in the host proves that they are true survivors. In the host, Salmonella infects various cell types and needs to survive and replicate by countering the defense mechanism of the specific cell. In this review, we will summarize the recent insights into the cell biology of Salmonella infection. Here, we will focus on the findings that deal with the specific mechanism of various cell types to control Salmonella infection. Further, the survival strategies of the pathogen in response to the host immunity will also be discussed in detail. Better understanding of the mechanisms by which Salmonella evade the host defense system and establish pathogenesis will be critical in disease management.
Collapse
Affiliation(s)
- Amit Lahiri
- Center for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | |
Collapse
|
28
|
Martinez-Argudo I, Jepson MA. Identification of adhesin–receptor interactions driving bacterial translocation through M cells. Future Microbiol 2010; 5:549-53. [DOI: 10.2217/fmb.10.23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Evaluation of: Hase K, Kawano K, Nochi T et al.: Uptake through glycoprotein 2 of FimH+ bacteria by M cells initiates mucosal immune response. Nature 462, 226–230 (2009). M cells are specialized epithelial cells that transport antigens into lymphoid follicles. The mechanisms by which molecules, particles and microorganisms are transported by M cells remains poorly understood. Here, Hase and colleagues move a significant step forward by performing an extensive functional characterization of the GP2 interaction with FimH adhesin of bacterial type 1 pili. They show that GP2 is selectively expressed in M cells and functions as an endocytic receptor for type I-piliated bacteria. Comparison of Salmonella infection of wild-type and GP2-deficient mice confirmed the relevance of the GP2–FimH interaction in triggering an antigen-specific immune response in mice. Although this work supports the idea that the GP2-dependent pathway might constitute a new target for oral vaccine delivery it is necessary to be cautious as the reported enhancement of immune responses associated with GP2 and FimH expression were relatively modest. Since variation in FimH has been reported to have a major impact on glycoprotein binding, it might be possible to improve the efficacy of a putative vaccine using recombinant bacteria expressing high-affinity FimH variants. Alternative adhesin/receptor interactions are also likely to play a role in bacterial sampling by M cells and might also be exploited to enhance vaccine delivery.
Collapse
Affiliation(s)
- Isabel Martinez-Argudo
- Department of Cellular & Molecular Medicine, School of Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Mark A Jepson
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| |
Collapse
|