1
|
Rais M, Abdelaal H, Reese VA, Ferede D, Larsen SE, Pecor T, Erasmus JH, Archer J, Khandhar AP, Cooper SK, Podell BK, Reed SG, Coler RN, Baldwin SL. Immunogenicity and protection against Mycobacterium avium with a heterologous RNA prime and protein boost vaccine regimen. Tuberculosis (Edinb) 2023; 138:102302. [PMID: 36586154 PMCID: PMC10361416 DOI: 10.1016/j.tube.2022.102302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Prophylactic efficacy of two different delivery platforms for vaccination against Mycobacterium avium (M. avium) were tested in this study; a subunit and an RNA-based vaccine. The vaccine antigen, ID91, includes four mycobacterial antigens: Rv3619, Rv2389, Rv3478, and Rv1886. We have shown that ID91+GLA-SE is effective against a clinical NTM isolate, M. avium 2-151 smt. Here, we extend these results and show that a heterologous prime/boost strategy with a repRNA-ID91 (replicon RNA) followed by protein ID91+GLA-SE boost is superior to the subunit protein vaccine given as a homologous prime/boost regimen. The repRNA-ID91/ID91+GLA-SE heterologous regimen elicited a higher polyfunctional CD4+ TH1 immune response when compared to the homologous protein prime/boost regimen. More significantly, among all the vaccine regimens tested only repRNA-ID91/ID91+GLA-SE induced IFN-γ and TNF-secreting CD8+ T cells. Furthermore, the repRNA-ID91/ID91+GLA-SE vaccine strategy elicited high systemic proinflammatory cytokine responses and induced strong ID91 and an Ag85B-specific humoral antibody response a pre- and post-challenge with M. avium 2-151 smt. Finally, while all prophylactic prime/boost vaccine regimens elicited a degree of protection in beige mice, the heterologous repRNA-ID91/ID91+GLA-SE vaccine regimen provided greater pulmonary protection than the homologous protein prime/boost regimen. These data indicate that a prophylactic heterologous repRNA-ID91/ID91+GLA-SE vaccine regimen augments immunogenicity and confers protection against M. avium.
Collapse
Affiliation(s)
- Maham Rais
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Hazem Abdelaal
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Valerie A Reese
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Debora Ferede
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Sasha E Larsen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Tiffany Pecor
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | | | | | | | - Sarah K Cooper
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | - Brendan K Podell
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA
| | | | - Rhea N Coler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, 98195, USA; Department of Global Health, University of Washington, Seattle, WA, 98195, USA
| | - Susan L Baldwin
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98145, USA.
| |
Collapse
|
2
|
Shahraki AH, Tian R, Zhang C, Fregien NL, Bejarano P, Mirsaeidi M. Anti-inflammatory Properties of the Alpha-Melanocyte-Stimulating Hormone in Models of Granulomatous Inflammation. Lung 2022; 200:463-472. [PMID: 35717488 PMCID: PMC9360058 DOI: 10.1007/s00408-022-00546-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/29/2022] [Indexed: 11/08/2022]
Abstract
Purpose Alpha-melanocyte stimulating hormone (α-MSH) is known to have anti-inflammatory effects. However, the anti-inflammatory properties of α-MSH on normal bronchial epithelial cells are largely unknown, especially in the context of in vitro sarcoidosis models. Methods We evaluated the anti-inflammatory effects of α-MSH on two different in vitro sarcoidosis models (lung-on-membrane model; LOMM and three-dimensional biochip pulmonary sarcoidosis model; 3D-BSGM) generated from NBECs and an in vivo sarcoidosis mouse model. Results Treatment with α-MSH decreased inflammatory cytokine levels and downregulated type I interferon pathway genes and related proteins in LOMM and 3D-BSGM models. Treatment with α-MSH also significantly decreased macrophages and cytotoxic T-cells counts in a sarcoidosis mice model. Conclusion Our results confirm the direct role of type I IFNs in the pathogenesis of sarcoid lung granulomas and highlight α-MSH as a potential novel therapeutic agent for treating pulmonary sarcoidosis. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00408-022-00546-x.
Collapse
Affiliation(s)
- Abdolrazagh Hashemi Shahraki
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Jacksonville, University of Florida, 655 West 11th Street, Jacksonville, FL, 32209, USA
| | - Runxia Tian
- Department of Cell Biology, University of Miami, Miami, FL, USA
| | - Chongxu Zhang
- Department of Cell Biology, University of Miami, Miami, FL, USA
| | - Nevis L Fregien
- Department of Cell Biology, University of Miami, Miami, FL, USA
| | - Pablo Bejarano
- Department of Pathology, Cleveland Clinic, Weston, FL, USA
| | - Mehdi Mirsaeidi
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Jacksonville, University of Florida, 655 West 11th Street, Jacksonville, FL, 32209, USA.
| |
Collapse
|
3
|
Wadee R, Wadee AA. The Pathology of Lymphocytes, Histiocytes, and Immune Mechanisms in Mycobacterium tuberculosis Granulomas. Am J Trop Med Hyg 2021; 104:1796-1802. [PMID: 33720848 PMCID: PMC8103466 DOI: 10.4269/ajtmh.20-1372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/24/2021] [Indexed: 12/20/2022] Open
Abstract
Granuloma formation is the pathologic hallmark of tuberculosis (TB). Few studies have detailed the exact production of cytokines in human granulomatous inflammation and little is known about accessory molecule expressions in tuberculous granulomas. We aimed to identify some of the components of the immune response in granulomas in HIV-positive and -negative lymph nodes. We investigated the immunohistochemical profiles of CD4+, CD8+, CD68+, Th-17, Forkhead box P3 (FOXP3) cells, accessory molecule expression (human leukocyte antigen [HLA] classes I and II), and selected cytokines (interleukins 2, 4, and 6 and interferon-γ) of various cells, in granulomas within lymph nodes from 10 HIV-negative (-) and 10 HIV-positive (+) cases. CD4+ lymphocyte numbers were retained in HIV- granulomas, whereas CD4+:CD8 + cell were reversed in HIV+ TB granulomas. CD68 stained all histiocytes. Granulomas from the HIV+ group demonstrated a significant increase in FOXP3 cells. Interleukin-2 cytoplasmic expression was similar in both groups. Interferon-gamma (IFN-γ) expression was moderately increased, IL-6 was statistically increased and IL-4 expression was marginally lower in cells from HIV- than HIV+ TB granulomas. Greater numbers of cells expressed IFN-γ and IL-6 than IL-2 and IL-4 in HIV- TB granulomas. This study highlights the varied cytokine production in HIV-positive and -negative TB granulomas and indicates the need to identify localized tissue factors that play a role in mounting an adequate immune response required to halt infection. Although TB mono-infection causes variation in cell marker expression and cytokines in granulomas, alterations in TB and HIV coinfection are greater, pointing toward evolution of microorganism synergism.
Collapse
Affiliation(s)
- Reubina Wadee
- Department of Anatomical Pathology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, and National Health Laboratory Service (NHLS), Johannesburg, South Africa;,Address correspondence to Reubina Wadee, University of the Witwatersrand/National Health Laboratory Service (NHLS), Rm. 3L30, University of the Witwatersrand, School of Pathology, 7 York Rd., Parktown, Johannesburg 2193, Republic of South Africa. E-mail:
| | | |
Collapse
|
4
|
Mirzaei R, Babakhani S, Ajorloo P, Ahmadi RH, Hosseini-Fard SR, Keyvani H, Ahmadyousefi Y, Teimoori A, Zamani F, Karampoor S, Yousefimashouf R. The emerging role of exosomal miRNAs as a diagnostic and therapeutic biomarker in Mycobacterium tuberculosis infection. Mol Med 2021; 27:34. [PMID: 33794771 PMCID: PMC8017856 DOI: 10.1186/s10020-021-00296-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), has been the world's driving fatal bacterial contagious disease globally. It continues a public health emergency, and around one-third of the global community has been affected by latent TB infection (LTBI). This is mostly due to the difficulty in diagnosing and treating patients with TB and LTBI. Exosomes are nanovesicles (40-100 nm) released from different cell types, containing proteins, lipids, mRNA, and miRNA, and they allow the transfer of one's cargo to other cells. The functional and diagnostic potential of exosomal miRNAs has been demonstrated in bacterial infections, including TB. Besides, it has been recognized that cells infected by intracellular pathogens such as Mtb can be secreting an exosome, which is implicated in the infection's fate. Exosomes, therefore, open a unique viewpoint on the investigative process of TB pathogenicity. This study explores the possible function of exosomal miRNAs as a diagnostic biomarker. Moreover, we include the latest data on the pathogenic and therapeutic role of exosomal miRNAs in TB.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran. .,Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Sajad Babakhani
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Parisa Ajorloo
- Department of Biology, Sciences and Research Branch, Islamic Azad University, Tehran, Iran
| | - Razieh Heidari Ahmadi
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Keyvani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.,Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Teimoori
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran. .,Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran. .,Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
5
|
Kim SH, Jo KW, Shim TS. QuantiFERON-TB Gold PLUS versus QuantiFERON- TB Gold In-Tube test for diagnosing tuberculosis infection. Korean J Intern Med 2020; 35:383-391. [PMID: 31875668 PMCID: PMC7061006 DOI: 10.3904/kjim.2019.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/11/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND/AIMS QuantiFERON-TB Gold PLUS (QFT-PLUS) was developed as a new version of the interferon-γ (IFN-γ) release assay that contains an extra antigen tube to elicit a CD8+ T-cell response in addition to a CD4+ T-cell response. This study aimed to evaluate the performances of QFT-PLUS versus QuantiFERON-TB Gold In-Tube (QFT-GIT) for detecting tuberculosis (TB) infection. METHODS Between October, 2016 and May, 2018, 137 participants were prospectively recruited and subjected to QFT-GIT and QFT-PLUS testing. The concordance between tests and performance based on different immune states and/or TB infection risk were evaluated. RESULTS The 137 participants were classified as follows: active TB (n = 14), TB contact (n = 14), screening before biologic therapy (n = 85) and other disease (n = 24). The positive results for either test were 100% (n = 14/14), 42.9% (n = 6/14), 15.3% (n = 13/85), and 62.5% (n = 15/24) in each four groups, respectively. The QFT-GIT and QFT-PLUS test results showed good concordance with 91.2% agreement and a Cohen's κ of 0.807. The good concordance between two tests was also observed in 64 immunocompromised subjects (agreement of 90.6% and a Cohen's κ of 0.711). The intra-class correlation coefficient for each antigen tube of the QFT-PLUS showed a good correlation with the IFN-γ release of the QFT-GIT (TB1 = 0.912, p < 0.001; TB2 = 0.918, p < 0.001). CONCLUSION QFT-PLUS showed highly comparable results to those of QFT-GIT for diagnosing TB infection in South Korea as well as in immunocompromised subjects.
Collapse
Affiliation(s)
- Soo Han Kim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyung-Wook Jo
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Tae Sun Shim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Correspondence to Tae Sun Shim, M.D. Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea Tel: +82-2-3010-3892 Fax: +82-2-3010-6968 E-mail:
| |
Collapse
|
6
|
Host-Directed Therapy as a Novel Treatment Strategy to Overcome Tuberculosis: Targeting Immune Modulation. Antibiotics (Basel) 2020; 9:antibiotics9010021. [PMID: 31936156 PMCID: PMC7168302 DOI: 10.3390/antibiotics9010021] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/25/2019] [Accepted: 01/04/2020] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) is one of the leading causes of mortality and morbidity, particularly in developing countries, presenting a major threat to the public health. The currently recommended long term treatment regimen with multiple antibiotics is associated with poor patient compliance, which in turn, may contribute to the emergence of multi-drug resistant TB (MDR-TB). The low global treatment efficacy of MDR-TB has highlighted the necessity to develop novel treatment options. Host-directed therapy (HDT) together with current standard anti-TB treatments, has gained considerable interest, as HDT targets novel host immune mechanisms. These immune mechanisms would otherwise bypass the antibiotic bactericidal targets to kill Mycobacterium tuberculosis (Mtb), which may be mutated to cause antibiotic resistance. Additionally, host-directed therapies against TB have been shown to be associated with reduced lung pathology and improved disease outcome, most likely via the modulation of host immune responses. This review will provide an update of host-directed therapies and their mechanism(s) of action against Mycobacterium tuberculosis.
Collapse
|
7
|
Interleukin-6, Interleukin-17 and Transforming Growth Factor-Beta are Overexpressed in Newly Diagnosed Tuberculosis Patients; Potent Biomarkers of Mycobacterial Infection. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2019. [DOI: 10.5812/archcid.68417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Kisuya J, Chemtai A, Raballah E, Keter A, Ouma C. The diagnostic accuracy of Th1 (IFN-γ, TNF-α, and IL-2) and Th2 (IL-4, IL-6 and IL-10) cytokines response in AFB microscopy smear negative PTB- HIV co-infected patients. Sci Rep 2019; 9:2966. [PMID: 30814543 PMCID: PMC6393479 DOI: 10.1038/s41598-019-39048-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 01/15/2019] [Indexed: 12/27/2022] Open
Abstract
Acid Fast Bacilli (AFB) microscopy smear remains the most widely used laboratory diagnostic technique for Pulmonary Tuberculosis (PTB) in low-and-middle income countries. Although it is highly specific, the sensitivity varies between 20-80% in immune-competent people, with only 50% case detection among HIV/TB co-infected patients, hence the need to determine the diagnostic accuracy of Th1 and Th2 cytokine response in AFB microscopy smear negative PTB-HIV co-infected patients. A total of 86 participants were recruited; 70 (81.4%) AFB microscopy smear negative and 16 (18.6%) AFB microscopy smear positive. The AFB microscopy smear negative samples were then cultured using Lowenstein Jensen Medium with 46 being culture-negative and 24 being culture-positive. Blood samples were also collected, cultured using QFT-GIT and the supernatant (plasma) harvested to evaluate cytokine profiles using Enzyme-Linked Immunosorbent Assay. IFN-γ (P < 0.001), TNF-α (P = 0.004), IL-2 (P = 0.004) and IL-4 (P = 0.009) median levels were elevated in PTB culture-positive (AFB microscopy smear negative) as compared to PTB culture-negative (AFB microscopy smear negative) participants. Finally, when Th1 cytokines (IFN-γ, TNF-α and IL-2), Th2 cytokines (IL-6 and IL-10) and T cells were included in the logistic regression fit for PTB outcome, the predictive power of discriminating between those who were AFB smear negative in the diagnosis of PTB was good with cross validated area under the curve (AUC) being 0.87 (95% CI: 0.78, 0.96). This study provides evidence for the ability of Th1 and Th2 cytokines to determine PTB status in AFB microscopy smear negative patients co-infected with HIV.
Collapse
Affiliation(s)
- Job Kisuya
- Department of Biomedical Science and Technology, Maseno University, Private Bag, Maseno, Kenya. .,Academic Model for Providing Access to Healthcare (AMPATH), P.O Box 4606-30100, Eldoret, Kenya.
| | - Alex Chemtai
- Department of Immunology, Moi University, P.O. Box 4606-30100, Eldoret, Kenya
| | - Evans Raballah
- Department of Medical Laboratory Sciences, Masinde Muliro University of Science and Technology, P.O. Box 190-50100, Kakamega, Kenya.,Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Alfred Keter
- Academic Model for Providing Access to Healthcare (AMPATH), P.O Box 4606-30100, Eldoret, Kenya
| | - Collins Ouma
- Department of Biomedical Science and Technology, Maseno University, Private Bag, Maseno, Kenya.,Centre for Global Health Research/Kenya Medical Research Institute, P.O. Box 1578-40100, Kisumu, Kenya.,Ideal Research Centre, P.O. Box 7244-40123, Kisumu, Kenya
| |
Collapse
|
9
|
Wang Y, Wu Q, Zhang W, Zhang N. Tuberculosis and HIV Coinfection–the Challenge in the Prevention, Detection and Treatment of Tuberculosis. Curr Bioinform 2019. [DOI: 10.2174/1574893613666180621153734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Tuberculosis (TB) is still a major public health concern world-wide. The
increasing global burden of TB is linked to HIV infection. HIV-TB coinfection has also
conditioned clinical aspects of the TB. Since the HIV is beginning in the 1980s, the HIV infection
poses a significant challenge in global TB control.
Objective:
In this review we focused on the challenges of epidemiological and clinical feature of
tuberculosis presented by the HIV coinfection.
Method:
The article consists of a summary of the most important effects presented by the HIV
coinfection on epidemiological and clinical feature of tuberculosis. The article analyzes and
summary the causes for these challenges.
Results:
The major challenges to strategy of TB control and clinical feature of TB-HIV coinfection
are presented in this paper.
Conclusion:
HIV/TB co-infection is synergic, interactive and reciprocal with significant impact.
The infection of HIV and Mtb affect each other and the breakdown the immune function in
TB/HIV coinfected individual. HIV infection has changed the strategy of TB control, however
HIV increases global burden of TB, the reduction in the TB incidence rate is far from sufficient.
Atypically clinical manifestations in TB/HIV co-infected patients and increased MDR-TB and
XDR-TB contribute to the challenges in the diagnosis and treatment. Increased complexity of
managing patients requires expertise in the clinical m knowledge. The focused efforts to control
HIV-related TB are of great urgency. These findings will provide insight into the prevention,
detection and treatment of tuberculosis and will guide advances towards tuberculosis control.
Collapse
Affiliation(s)
- Yiyi Wang
- TCM Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, China
| | - Qi Wu
- TCM Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, China
| | - Wei Zhang
- Clinical and Research Center of Infectious Diseases Beijing Ditan Hospital, Capital Medical University, 100015, Peiking, China
| | - Ning Zhang
- Department of Biomedical Engineering, Tianjin Key Lab of Biomedical Engineering Measurement, Tianjin University, Tianjin, China
| |
Collapse
|
10
|
Rao M, Zhenjiang L, Meng Q, Sinclair G, Dodoo E, Maeurer M. Mutant Epitopes in Cancer. Oncoimmunology 2017. [DOI: 10.1007/978-3-319-62431-0_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
11
|
Parasa VR, Forsslund H, Enger T, Lorenz D, Kullberg S, Eklund A, Sköld M, Wahlström J, Grunewald J, Brighenti S. Enhanced CD8 + cytolytic T cell responses in the peripheral circulation of patients with sarcoidosis and non-Löfgren's disease. Respir Med 2017; 138S:S38-S44. [PMID: 29055517 DOI: 10.1016/j.rmed.2017.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND The role of CD4+ T cells in the immunopathogenesis of pulmonary sarcoidosis is well-established, while less is known about the phenotype and function of CD8+ cytolytic T cells (CTLs). METHODS CD8+ CTLs were explored in peripheral blood and bronchoalveolar lavage (BAL) samples obtained from up to 25 patients with sarcoidosis and 25 healthy controls. The proportion of CTLs was assessed by the expression of cytolytic effector molecules perforin, granzyme B and granulysin in CD8+ T cells, using flow cytometry. Cytolytic function in blood lymphocytes was assessed using a standard 51Cr-release assay. Patients with Löfgren´s syndrome (LS) and an acute disease onset, were compared to non-LS patients with an insidious onset. RESULTS Higher proportions of peripheral CD8+ CTLs expressing perforin and granzyme B were observed in sarcoidosis compared to healthy controls. Blood CTLs from non-LS patients had significantly higher expression of perforin, granzyme B and granulysin compared to matched BAL, while LS patients maintained lower levels of effector molecules in both compartments. Mitogen-stimulated peripheral lymphocytes from sarcoidosis patients, particularly from the non-LS group, showed a higher target cell lysis compared to controls. CONCLUSION These results demonstrated enhanced peripheral CD8+ CTL responses in sarcoidosis, especially in non-LS patients who have an increased risk of chronic disease. Further comprehensive clinical studies are warranted to increase our understanding of CD8+ CTL responses in sarcoidosis.
Collapse
Affiliation(s)
- Venkata Ramanarao Parasa
- Karolinska Institutet, Center for Infectious Medicine, Department of Medicine Huddinge, Stockholm, Sweden
| | - Helena Forsslund
- Karolinska Institutet, Respiratory Medicine Unit, Department of Medicine Solna, Stockholm, Sweden
| | - Tobias Enger
- Karolinska Institutet, Respiratory Medicine Unit, Department of Medicine Solna, Stockholm, Sweden
| | - Daniel Lorenz
- Karolinska Institutet, Respiratory Medicine Unit, Department of Medicine Solna, Stockholm, Sweden
| | - Susanna Kullberg
- Karolinska Institutet, Respiratory Medicine Unit, Department of Medicine Solna, Stockholm, Sweden
| | - Anders Eklund
- Karolinska Institutet, Respiratory Medicine Unit, Department of Medicine Solna, Stockholm, Sweden
| | - Magnus Sköld
- Karolinska Institutet, Respiratory Medicine Unit, Department of Medicine Solna, Stockholm, Sweden
| | - Jan Wahlström
- Karolinska Institutet, Respiratory Medicine Unit, Department of Medicine Solna, Stockholm, Sweden
| | - Johan Grunewald
- Karolinska Institutet, Respiratory Medicine Unit, Department of Medicine Solna, Stockholm, Sweden
| | - Susanna Brighenti
- Karolinska Institutet, Center for Infectious Medicine, Department of Medicine Huddinge, Stockholm, Sweden.
| |
Collapse
|
12
|
Amelio P, Portevin D, Reither K, Mhimbira F, Mpina M, Tumbo A, Nickel B, Marti H, Knopp S, Ding S, Penn-Nicholson A, Darboe F, Ohmiti K, Scriba TJ, Pantaleo G, Daubenberger C, Perreau M. Mixed Th1 and Th2 Mycobacterium tuberculosis-specific CD4 T cell responses in patients with active pulmonary tuberculosis from Tanzania. PLoS Negl Trop Dis 2017; 11:e0005817. [PMID: 28759590 PMCID: PMC5552332 DOI: 10.1371/journal.pntd.0005817] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/10/2017] [Accepted: 07/19/2017] [Indexed: 12/22/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) and helminth infections elicit antagonistic immune effector functions and are co-endemic in several regions of the world. We therefore hypothesized that helminth infection may influence Mtb-specific T-cell immune responses. We evaluated the cytokine profile of Mtb-specific T cells in 72 individuals with pulmonary TB disease recruited from two Sub-Saharan regions with high and moderate helminth burden i.e. 55 from Tanzania (TZ) and 17 from South Africa (SA), respectively. We showed that Mtb-specific CD4 T-cell functional profile of TB patients from Tanzania are primarily composed of polyfunctional Th1 and Th2 cells, associated with increased expression of Gata-3 and reduced expression of T-bet in memory CD4 T cells. In contrast, the cytokine profile of Mtb-specific CD4 T cells of TB patients from SA was dominated by single IFN-γ and dual IFN-γ/TNF-α and associated with TB-induced systemic inflammation and elevated serum levels of type I IFNs. Of note, the proportion of patients with Mtb-specific CD8 T cells was significantly reduced in Mtb/helminth co-infected patients from TZ. It is likely that the underlying helminth infection and possibly genetic and other unknown environmental factors may have caused the induction of mixed Th1/Th2 Mtb-specific CD4 T cell responses in patients from TZ. Taken together, these results indicate that the generation of Mtb-specific CD4 and CD8 T cell responses may be substantially influenced by environmental factors in vivo. These observations may have major impact in the identification of immune biomarkers of disease status and correlates of protection. Mycobacterium tuberculosis (Mtb) and helminth infections are co-endemic in several regions of the world and their immune responses may be mutually antagonistic. We therefore hypothesized that helminth infection would impact and potentially shape Mtb-specific T-cell responses and systemic inflammation in patients suffering from active pulmonary tuberculosis (TB) enrolled from two helminth endemic regions i.e. Tanzania (TZ) and South Africa (SA). In this study, we demonstrate for the first time that TB patients from SA and TZ harbor distinct immune responses to Mtb antigens. Indeed, we showed that Mtb-specific CD4 T-cell responses of TB patients from TZ were composed by a mixed T helper type 1 (Th1) and Th2 responses. In contrast, the cytokine profile of Mtb-specific CD4 T cells of TB patients from SA was dominated by Th1 cells and associated with TB-induced systemic inflammation and elevated serum levels of type I IFN. Taken together, these data indicate that Mtb-specific T-cell responses are diverse in human populations and can be strongly influenced by host and pathogen genetic background, co-infections and yet unknown environmental factors. Identification of correlates of risk and protection from TB disease will help in the rational development of protective T-cell based vaccines against TB, early monitoring TB treatment outcomes and focused follow up of high risk populations.
Collapse
Affiliation(s)
- Patrizia Amelio
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Damien Portevin
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Klaus Reither
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | | | | | - Beatrice Nickel
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Hanspeter Marti
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Stefanie Knopp
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Song Ding
- EuroVacc Foundation, Lausanne, Switzerland
| | - Adam Penn-Nicholson
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, South Africa
| | - Fatoumatta Darboe
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, South Africa
| | - Khalid Ohmiti
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, South Africa
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- SVRI, Lausanne, Switzerland
| | - Claudia Daubenberger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Matthieu Perreau
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
13
|
Norrby M, Vesikari T, Lindqvist L, Maeurer M, Ahmed R, Mahdavifar S, Bennett S, McClain JB, Shepherd BM, Li D, Hokey DA, Kromann I, Hoff ST, Andersen P, de Visser AW, Joosten SA, Ottenhoff THM, Andersson J, Brighenti S. Safety and immunogenicity of the novel H4:IC31 tuberculosis vaccine candidate in BCG-vaccinated adults: Two phase I dose escalation trials. Vaccine 2017; 35:1652-1661. [PMID: 28216183 DOI: 10.1016/j.vaccine.2017.01.055] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 12/28/2016] [Accepted: 01/20/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Novel vaccine strategies are required to provide protective immunity in tuberculosis (TB) and prevent development of active disease. We investigated the safety and immunogenicity of a novel TB vaccine candidate, H4:IC31 (AERAS-404) that is composed of a fusion protein of M. tuberculosis antigens Ag85B and TB10.4 combined with an IC31® adjuvant. METHODS BCG-vaccinated healthy subjects were immunized with various antigen (5, 15, 50, 150μg) and adjuvant (0, 100, 500nmol) doses of the H4:IC31 vaccine (n=106) or placebo (n=18) in two randomized, double-blind, placebo-controlled phase I studies conducted in a low TB endemic setting in Sweden and Finland. The subjects were followed for adverse events and CD4+ T cell responses. RESULTS H4:IC31 vaccination was well tolerated with a safety profile consisting of mostly mild to moderate self-limited injection site pain, myalgia, arthralgia, fever and post-vaccination inflammatory reaction at the screening tuberculin skin test injection site. The H4:IC31 vaccine elicited antigen-specific CD4+ T cell proliferation and cytokine production that persisted 18weeks after the last vaccination. CD4+ T cell expansion, IFN-γ production and multifunctional CD4+ Th1 responses were most prominent after two doses of H4:IC31 containing 5, 15, or 50μg of H4 in combination with the 500nmol IC31 adjuvant dose. CONCLUSIONS The novel TB vaccine candidate, H4:IC31, demonstrated an acceptable safety profile and was immunogenic, capable of triggering multifunctional CD4+ T cell responses in previously BCG-vaccinated healthy individuals. These dose-escalation trials provided evidence that the optimal antigen-adjuvant dose combinations are 5, 15, or 50μg of H4 and 500nmol of IC31. TRIAL REGISTRATION ClinicalTrials.gov, NCT02066428 and NCT02074956.
Collapse
Affiliation(s)
- Maria Norrby
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Timo Vesikari
- Vaccine Research Center, University of Tampere, Tampere, Finland
| | - Lars Lindqvist
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Markus Maeurer
- TIM, Department of Laboratory Medicine and CAST, Karolinska Institutet, Stockholm, Sweden
| | - Raija Ahmed
- TIM, Department of Laboratory Medicine and CAST, Karolinska Institutet, Stockholm, Sweden
| | - Shahnaz Mahdavifar
- TIM, Department of Laboratory Medicine and CAST, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | - Adriëtte W de Visser
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Andersson
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Center for Infectious Medicine (CIM), Karolinska Institutet, Stockholm, Sweden
| | - Susanna Brighenti
- Center for Infectious Medicine (CIM), Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
14
|
Javan MR, Jalali nezhad AA, Shahraki S, Safa A, Aali H, Kiani Z. Cross-talk between the Immune System and Tuberculosis Pathogenesis; a Review with Emphasis on the Immune Based Treatment. INTERNATIONAL JOURNAL OF BASIC SCIENCE IN MEDICINE 2016. [DOI: 10.15171/ijbsm.2016.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
15
|
Khan N, Vidyarthi A, Amir M, Mushtaq K, Agrewala JN. T-cell exhaustion in tuberculosis: pitfalls and prospects. Crit Rev Microbiol 2016; 43:133-141. [DOI: 10.1080/1040841x.2016.1185603] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Nargis Khan
- Immunology Laboratory, Institute of Microbial Technology, Chandigarh, India
| | - Aurobind Vidyarthi
- Immunology Laboratory, Institute of Microbial Technology, Chandigarh, India
| | - Mohammed Amir
- Immunology Laboratory, Institute of Microbial Technology, Chandigarh, India
| | - Khurram Mushtaq
- Immunology Laboratory, Institute of Microbial Technology, Chandigarh, India
| | | |
Collapse
|
16
|
Abstract
Tuberculosis (TB) is still a major global health problem. A third of the world’s population is infected with Mycobacterium tuberculosis. Only ~10% of infected individuals develop TB but there are 9 million TB cases with 1.5 million deaths annually. The standard prophylactic treatment regimens for latent TB infection take 3–9 months, and new cases of TB require at least 6 months of treatment with multiple drugs. The management of latent TB infection and TB has become more challenging because of the spread of multidrug-resistant and extremely drug-resistant TB. Intensified efforts to find new TB drugs and immunotherapies are needed. Immunotherapies could modulate the immune system in patients with latent TB infection or active disease, enabling better control of M. tuberculosis replication. This review describes several types of potential immunotherapies with a focus on those which have been tested in humans.
Collapse
Affiliation(s)
- Getahun Abate
- Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology
| | - Daniel F Hoft
- Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology; Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO, USA
| |
Collapse
|
17
|
Ronacher K, Joosten SA, van Crevel R, Dockrell HM, Walzl G, Ottenhoff THM. Acquired immunodeficiencies and tuberculosis: focus on HIV/AIDS and diabetes mellitus. Immunol Rev 2015; 264:121-37. [PMID: 25703556 DOI: 10.1111/imr.12257] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The spread of human immunodeficiency virus (HIV) infection within Africa led to marked increases in numbers of cases of tuberculosis (TB), and although the epidemic peaked in 2006, there were still 1.8 million new cases in 2013, with 29.2 million prevalent cases. Half of all TB cases in Africa are in those with HIV co-infection. A brief review of the well-documented main immunological mechanisms of HIV-associated increased susceptibility to TB is presented. However, a new threat is facing TB control, which presents itself in the form of a rapid increase in the number of people living with type II diabetes mellitus (T2DM), particularly in areas that are already hardest hit by the TB epidemic. T2DM increases susceptibility to TB threefold, and the TB burden attributable to T2DM is 15%. This review addresses the much smaller body of research information available on T2DM-TB, compared to HIV-TB comorbidity. We discuss the altered clinical presentation of TB in the context of T2DM comorbidity, changes in innate and adaptive immune responses, including lymphocyte subsets and T-cell phenotypes, the effect of treatment of the different comorbidities, changes in biomarker expression and genetic predisposition to the respective morbidities, and other factors affecting the comorbidity. Although significant gains have been made in improving our understanding of the underlying mechanisms of T2DM-associated increased susceptibility, knowledge gaps still exist that require urgent attention.
Collapse
Affiliation(s)
- Katharina Ronacher
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research and MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | | | | | | | | |
Collapse
|
18
|
Lee FH, Shen PC, Jou IM, Li CY, Hsieh JL. A Population-Based 16-Year Study on the Risk Factors of Surgical Site Infection in Patients after Bone Grafting: A Cross-Sectional Study in Taiwan. Medicine (Baltimore) 2015; 94:e2034. [PMID: 26632703 PMCID: PMC5058972 DOI: 10.1097/md.0000000000002034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bone grafting is a commonly used orthopedic surgical procedure that will provide bone formation in bone defects or regions of defective bone healing. A major complication following bone grafting is a postoperative recipient graft site infection that is associated with substantial mortality and increased use of medical resources. The purpose of the study was to identify the risk factors associated with infection after bone-grafting surgery.Data from 1,303,347 patients listed in the Taiwan National Health Insurance Research Database (NHIRD) and admitted to hospitals from 1997 through 2012 who underwent primary bone grafting (mean age: 46.57 years old; mean length of hospital stay: 8.04 days) were analyzed. The incidence of infection by age, hospital stay, gender, income, chronic disease (tuberculosis [TB]; diabetes mellitus [DM]; acquired immunodeficiency syndrome [AIDS]), fracture complications (nonunion; delayed union fracture), types of graft and hospital was evaluated.Three percent of the patients developed a postoperative recipient graft site infection. Multivariable analysis revealed that patients were more likely to develop a post bone-grafting surgery infection if they were older, had a longer hospital stay, were male, had a lower income, or had comorbid TB, DM, or AIDS. Patients were more likely to develop an infection if they had a nonunion, an alloplast graft, or treated in a local clinic.Our findings should provide a clinically relevant reference for surgeons who perform bone grafting. Patients should be informed of the potential risks.
Collapse
Affiliation(s)
- Fang-Hsin Lee
- From the Department of Nursing, Chung Hwa University of Medical Technology (F-HL, J-LH); Department of Orthopedics, Tainan Hospital, Ministry of Health and Welfare (P-CS); Department of Orthopedics, National Cheng Kung University Medical College (I-MJ); Department of Public Health, National Cheng Kung University Medical College, Tainan (C-YL); and Department of Public Health (C-YL), College of Public Health, China Medical University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
19
|
Host-directed therapy: tuberculosis vaccine development. THE LANCET RESPIRATORY MEDICINE 2015; 3:172-3. [PMID: 25726086 DOI: 10.1016/s2213-2600(15)00055-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 11/22/2022]
|
20
|
Rahman S, Rehn A, Rahman J, Andersson J, Svensson M, Brighenti S. Pulmonary tuberculosis patients with a vitamin D deficiency demonstrate low local expression of the antimicrobial peptide LL-37 but enhanced FoxP3+ regulatory T cells and IgG-secreting cells. Clin Immunol 2015; 156:85-97. [DOI: 10.1016/j.clim.2014.12.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 12/16/2022]
|
21
|
Prezzemolo T, Guggino G, La Manna MP, Di Liberto D, Dieli F, Caccamo N. Functional Signatures of Human CD4 and CD8 T Cell Responses to Mycobacterium tuberculosis. Front Immunol 2014; 5:180. [PMID: 24795723 PMCID: PMC4001014 DOI: 10.3389/fimmu.2014.00180] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/07/2014] [Indexed: 12/17/2022] Open
Abstract
With 1.4 million deaths and 8.7 million new cases in 2011, tuberculosis (TB) remains a global health care problem and together with HIV and Malaria represents one of the three infectious diseases world-wide. Control of the global TB epidemic has been impaired by the lack of an effective vaccine, by the emergence of drug-resistant forms of Mycobacterium tuberculosis (Mtb) and by the lack of sensitive and rapid diagnostics. It is estimated, by epidemiological reports, that one third of the world’s population is latently infected with Mtb, but the majority of infected individuals develop long-lived protective immunity, which controls and contains Mtb in a T cell-dependent manner. Development of TB disease results from interactions among the environment, the host, and the pathogen, and known risk factors include HIV co-infection, immunodeficiency, diabetes mellitus, overcrowding, malnutrition, and general poverty; therefore, an effective T cell response determines whether the infection resolves or develops into clinically evident disease. Consequently, there is great interest in determining which T cells subsets mediate anti-mycobacterial immunity, delineating their effector functions. On the other hand, many aspects remain unsolved in understanding why some individuals are protected from Mtb infection while others go on to develop disease. Several studies have demonstrated that CD4+ T cells are involved in protection against Mtb, as supported by the evidence that CD4+ T cell depletion is responsible for Mtb reactivation in HIV-infected individuals. There are many subsets of CD4+ T cells, such as T-helper 1 (Th1), Th2, Th17, and regulatory T cells (Tregs), and all these subsets co-operate or interfere with each other to control infection; the dominant subset may differ between active and latent Mtb infection cases. Mtb-specific-CD4+ Th1 cell response is considered to have a protective role for the ability to produce cytokines such as IFN-γ or TNF-α that contribute to the recruitment and activation of innate immune cells, like monocytes and granulocytes. Thus, while other antigen (Ag)-specific T cells such as CD8+ T cells, natural killer (NK) cells, γδ T cells, and CD1-restricted T cells can also produce IFN-γ during Mtb infection, they cannot compensate for the lack of CD4+ T cells. The detection of Ag-specific cytokine production by intracellular cytokine staining (ICS) and the use of flow cytometry techniques are a common routine that supports the studies aimed at focusing the role of the immune system in infectious diseases. Flow cytometry permits to evaluate simultaneously the presence of different cytokines that can delineate different subsets of cells as having “multifunctional/polyfunctional” profile. It has been proposed that polyfunctional T cells, are associated with protective immunity toward Mtb, in particular it has been highlighted that the number of Mtb-specific T cells producing a combination of IFN-γ, IL-2, and/or TNF-α may be correlated with the mycobacterial load, while other studies have associated the presence of this particular functional profile as marker of TB disease activity. Although the role of CD8 T cells in TB is less clear than CD4 T cells, they are generally considered to contribute to optimal immunity and protection. CD8 T cells possess a number of anti-microbial effector mechanisms that are less prominent or absent in CD4 Th1 and Th17 T cells. The interest in studying CD8 T cells that are either MHC-class Ia or MHC-class Ib-restricted, has gained more attention. These studies include the role of HLA-E-restricted cells, lung mucosal-associated invariant T-cells (MAIT), and CD1-restricted cells. Nevertheless, the knowledge about the role of CD8+ T cells in Mtb infection is relatively new and recent studies have delineated that CD8 T cells, which display a functional profile termed “multifunctional,” can be a better marker of protection in TB than CD4+ T cells. Their effector mechanisms could contribute to control Mtb infection, as upon activation, CD8 T cells release cytokines or cytotoxic molecules, which cause apoptosis of target cells. Taken together, the balance of the immune response in the control of infection and possibly bacterial eradication is important in understanding whether the host immune response will be appropriate in contrasting the infection or not, and, consequently, the inability of the immune response, will determine the dissemination and the transmission of bacilli to new subjects. In conclusion, the recent highlights on the role of different functional signatures of T cell subsets in the immune response toward Mtb infection will be discerned in this review, in order to summarize what is known about the immune response in human TB. In particular, we will discuss the role of CD4 and CD8 T cells in contrasting the advance of the intracellular pathogen in already infected people or the progression to active disease in subjects with latent infection. All the information will be aimed at increasing the knowledge of this complex disease in order to improve diagnosis, prognosis, drug treatment, and vaccination.
Collapse
Affiliation(s)
- Teresa Prezzemolo
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi and Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo , Palermo , Italy
| | - Giuliana Guggino
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi and Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo , Palermo , Italy
| | - Marco Pio La Manna
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi and Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo , Palermo , Italy
| | - Diana Di Liberto
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi and Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo , Palermo , Italy
| | - Francesco Dieli
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi and Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo , Palermo , Italy
| | - Nadia Caccamo
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi and Central Laboratory of Advanced Diagnosis and Biomedical Research, University of Palermo , Palermo , Italy
| |
Collapse
|
22
|
Ashenafi S, Aderaye G, Bekele A, Zewdie M, Aseffa G, Hoang ATN, Carow B, Habtamu M, Wijkander M, Rottenberg M, Aseffa A, Andersson J, Svensson M, Brighenti S. Progression of clinical tuberculosis is associated with a Th2 immune response signature in combination with elevated levels of SOCS3. Clin Immunol 2014; 151:84-99. [PMID: 24584041 DOI: 10.1016/j.clim.2014.01.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/08/2014] [Accepted: 01/30/2014] [Indexed: 02/06/2023]
Abstract
In this study, we explored the local cytokine/chemokine profiles in patients with active pulmonary or pleural tuberculosis (TB) using multiplex protein analysis of bronchoalveolar lavage and pleural fluid samples. Despite increased pro-inflammation compared to the uninfected controls; there was no up-regulation of IFN-γ or the T cell chemoattractant CCL5 in the lung of patients with pulmonary TB. Instead, elevated levels of IL-4 and CCL4 were associated with high mycobacteria-specific IgG titres as well as SOCS3 (suppressors of cytokine signaling) mRNA and progression of moderate-to-severe disease. Contrary, IL-4, CCL4 and SOCS3 remained low in patients with extrapulmonary pleural TB, while IFN-γ, CCL5 and SOCS1 were up-regulated. Both SOCS molecules were induced in human macrophages infected with Mycobacterium tuberculosis in vitro. The Th2 immune response signature found in patients with progressive pulmonary TB could result from inappropriate cytokine/chemokine responses and excessive SOCS3 expression that may represent potential targets for clinical TB management.
Collapse
Affiliation(s)
- Senait Ashenafi
- Karolinska Institutet, Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden; Black Lion University Hospital and Addis Ababa University, Department of Pathology, Faculty of Medicine, Addis Ababa, Ethiopia
| | - Getachew Aderaye
- Black Lion University Hospital and Addis Ababa University, Department of Internal Medicine, Faculty of Medicine, Addis Ababa, Ethiopia
| | - Amsalu Bekele
- Black Lion University Hospital and Addis Ababa University, Department of Internal Medicine, Faculty of Medicine, Addis Ababa, Ethiopia
| | - Martha Zewdie
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Getachew Aseffa
- Black Lion University Hospital and Addis Ababa University, Department of Radiology, Faculty of Medicine, Addis Ababa, Ethiopia
| | - Anh Thu Nguyen Hoang
- Karolinska Institutet, Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Berit Carow
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology (MTC), Stockholm, Sweden
| | - Meseret Habtamu
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Maria Wijkander
- Karolinska Institutet, Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Martin Rottenberg
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology (MTC), Stockholm, Sweden
| | - Abraham Aseffa
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Jan Andersson
- Karolinska Institutet, Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden; Karolinska University Hospital Huddinge, Department of Medicine, Division of Infectious Diseases, Stockholm, Sweden
| | - Mattias Svensson
- Karolinska Institutet, Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Susanna Brighenti
- Karolinska Institutet, Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
23
|
Rozot V, Vigano S, Mazza-Stalder J, Idrizi E, Day CL, Perreau M, Lazor-Blanchet C, Petruccioli E, Hanekom W, Goletti D, Bart PA, Nicod L, Pantaleo G, Harari A. Mycobacterium tuberculosis-specific CD8+ T cells are functionally and phenotypically different between latent infection and active disease. Eur J Immunol 2013; 43:1568-77. [PMID: 23456989 DOI: 10.1002/eji.201243262] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/29/2013] [Accepted: 02/26/2013] [Indexed: 12/23/2022]
Abstract
Protective immunity to Mycobacterium tuberculosis (Mtb) remains poorly understood and the role of Mtb-specific CD8(+) T cells is controversial. Here we performed a broad phenotypic and functional characterization of Mtb-specific CD8(+) T cells in 326 subjects with latent Mtb infection (LTBI) or active TB disease (TB). Mtb-specific CD8(+) T cells were detected in most (60%) TB patients and few (15%) LTBI subjects but were of similar magnitude. Mtb-specific CD8(+) T cells in LTBI subjects were mostly T EMRA cells (CD45RA(+) CCR7(-)), coexpressing 2B4 and CD160, and in TB patients were mostly TEM cells (CD45RA(-) CCR7(-)), expressing 2B4 but lacking PD-1 and CD160. The cytokine profile was not significantly different in both groups. Furthermore, Mtb-specific CD8(+) T cells expressed low levels of perforin and granulysin but contained granzymes A and B. However, in vitro-expanded Mtb-specific CD8(+) T cells expressed perforin and granulysin. Finally, Mtb-specific CD8(+) T-cell responses were less frequently detected in extrapulmonary TB compared with pulmonary TB patients. Mtb-specific CD8(+) T-cell proliferation was also greater in patients with extrapulmonary compared with pulmonary TB. Thus, the activity of Mtb infection and clinical presentation are associated with distinct profiles of Mtb-specific CD8(+) T-cell responses. These results provide new insights in the interaction between Mtb and the host immune response.
Collapse
Affiliation(s)
- Virginie Rozot
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hao PP, Zhang XB, Luo W, Zhou CY, Wen Q, Yang Z, Liu SD, Jiang ZM, Zhou MQ, Jin Q, Ma L. Development of CD8 +
T cells expressing two distinct receptors specific for MTB and HIV-1 peptides. J Cell Mol Med 2013. [PMCID: PMC3823179 DOI: 10.1111/jcmm.12053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The immune response in individuals co-infected with Mycobacterium tuberculosis (MTB) and the human immunodeficiency virus (MTB/HIV) gradually deteriorates, particularly in the cellular compartment. Adoptive transfer of functional effector T cells can confer protective immunity to immunodeficient MTB/HIV co-infected recipients. However, few such effector T cells exist in vivo, and their isolation and amplification to sufficient numbers is difficult. Therefore, enhancing immune responses against both pathogens is critical for treating MTB/HIV co-infected patients. One approach is adoptive transfer of T cell receptor (TCR) gene-modified T cells for the treatment of MTB/HIV co-infections because lymphocyte numbers and their functional avidity is significantly increased by TCR gene transfer. To generate bispecific CD8+ T cells, MTB Ag85B199–207 peptide-specific TCRs (MTB/TCR) and HIV-1 Env120–128 peptide-specific TCRs (HIV/TCR) were isolated and introduced into CD8+ T cells simultaneously using a retroviral vector. To avoid mispairing among exogenous and endogenous TCRs, and to improve the function and stability of the introduced TCRs, several strategies were employed, including introducing mutations in the MTB/TCR constant (C) regions, substituting part of the HIV/TCR C regions with CD3ζ, and linking gene segments with three different 2A peptides. Results presented in this report suggest that the engineered T cells possessed peptide-specific specificity resulting in cytokine production and cytotoxic activity. This is the first report describing the generation of engineered T cells specific for two different pathogens and provides new insights into TCR gene therapy for the treatment of immunocompromised MTB/HIV co-infected patients.
Collapse
Affiliation(s)
- Pei-Pei Hao
- Institute of Molecular Immunology; School of Biotechnology; Southern Medical University; Guangzhou China
| | - Xiao-Bing Zhang
- Institute of Pathogen Biology; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing China
| | - Wei Luo
- Institute of Molecular Immunology; School of Biotechnology; Southern Medical University; Guangzhou China
| | - Chao-Ying Zhou
- Institute of Molecular Immunology; School of Biotechnology; Southern Medical University; Guangzhou China
| | - Qian Wen
- Institute of Molecular Immunology; School of Biotechnology; Southern Medical University; Guangzhou China
| | - Zhi Yang
- Institute of Molecular Immunology; School of Biotechnology; Southern Medical University; Guangzhou China
| | - Su-Dong Liu
- Institute of Molecular Immunology; School of Biotechnology; Southern Medical University; Guangzhou China
| | - Zhen-Min Jiang
- Institute of Molecular Immunology; School of Biotechnology; Southern Medical University; Guangzhou China
| | - Ming-Qian Zhou
- Institute of Molecular Immunology; School of Biotechnology; Southern Medical University; Guangzhou China
| | - Qi Jin
- Institute of Pathogen Biology; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing China
| | - Li Ma
- Institute of Molecular Immunology; School of Biotechnology; Southern Medical University; Guangzhou China
| |
Collapse
|
25
|
Mortaz E, Varahram M, Farnia P, Bahadori M, Masjedi MR. New Aspects in Immunopathology of Mycobacterium tuberculosis. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/963879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Our understanding of tuberculosis (TB) pathology and immunology has become extensively deeper and more refined since the identification of Mycobacterium tuberculosis (MTB) as the etiologic agent of disease by Dr. Robert Koch in 1882. A great challenge in chronic disease is to understand the complexities, mechanisms, and consequences of host interactions with pathogens. TB, caused by MTB, is a major health problem in world, with 10 million new cases diagnosed each year. Innate immunity is shown playing an important role in the host defense against the MTB, and the first step in this process is recognition of MTB by cells of the innate immune system. Several classes of pattern recognition receptors (PPRs) are involved in the recognition of MTB, including toll-like receptors (TLRs), C-type lectin receptors (CLRs), and nod-like receptors (NLRs). Among the TLR family, TLR1, TLR2, TLR4, and TLR9 and their down streams, proteins play the most prominent roles in the initiation of the immune response against MTB. Beside of TLRs signaling, recently the activation of inflammasome pathway in the pathogenesis of TB much appreciated. Knowledge about these signaling pathways is crucial for understanding the pathophysiology of TB, on one hand, and for the development of novel strategies of vaccination and treatment such as immunotherapy on the other. Given the critical role of TLRs/inflammasome signaling in innate immunity and initiation of the appropriate adaptive response, the regulation of these pathways is likely to be an important determinant of the clinical outcome of MTB infection. In this review paper we focused on the immune response, which is the recognition of MTB by inflammatory innate immune cells following infection.
Collapse
Affiliation(s)
- E. Mortaz
- Chronic Respiratory Disease Research Center, National Research Institute of Tuberculosis and Lung Disease (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Division of Pharmacology and Pathophysiology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Sciences, Utrecht University, Utrecht, The Netherlands
| | - M. Varahram
- Mycobacteriology Research Centre, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University, Tehran, Iran
| | - P. Farnia
- Mycobacteriology Research Centre, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University, Tehran, Iran
| | - M. Bahadori
- Chronic Respiratory Disease Research Center, National Research Institute of Tuberculosis and Lung Disease (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - MR Masjedi
- Chronic Respiratory Disease Research Center, National Research Institute of Tuberculosis and Lung Disease (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Brighenti S, Andersson J. Local immune responses in human tuberculosis: learning from the site of infection. J Infect Dis 2012; 205 Suppl 2:S316-24. [PMID: 22448014 DOI: 10.1093/infdis/jis043] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Host-pathogen interactions in tuberculosis should be studied at the disease site because Mycobacterium tuberculosis is predominately contained in local tissue lesions. Although M. tuberculosis infection involves different clinical forms of tuberculosis, such as pulmonary tuberculosis, pleural tuberculosis, and lymph node tuberculosis, most studies of human tuberculosis are performed using cells from the peripheral blood, which may not provide a proper reflection of the M. tuberculosis-specific immune responses induced at the local site of infection. A very low proportion of M. tuberculosis-specific effector T cells are found in the blood compared with the infected tissue, and thus there may be considerable differences in the cellular immune response and regulatory mechanisms induced in these diverse compartments. In this review, we discuss differences in the immune response at the local site of infection compared with the peripheral circulation. The cell types and immune reactions involved in granuloma formation and maintenance as well as the in situ technologies used to assess local tuberculosis pathogenesis are also described. We need to strengthen and improve the exploratory strategies used to dissect immunopathogenesis in human tuberculosis with the aim to accelerate the implementation of relevant research findings in clinical practice.
Collapse
Affiliation(s)
- Susanna Brighenti
- Department of Medicine, Center for Infectious Medicine (CIM), Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden.
| | | |
Collapse
|
27
|
Acuña-Soto R, Castañeda-Davila L, Chowell G. A perspective on the 2009 A/H1N1 influenza pandemic in Mexico. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2011; 8:223-238. [PMID: 21361409 DOI: 10.3934/mbe.2011.8.223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this article, we provide a chronological description of the 2009 H1N1 influenza pandemic in Mexico from the detection of severe respiratory disease among young adults in central Mexico and the identification of the novel swine-origin influenza virus to the response of Mexican public health authorities with the swift implementation of the National Preparedness and Response Plan for Pandemic Influenza. Furthermore, we review some features of the 2009 H1N1 influenza pandemic in Mexico in relation to the devastating 1918-1920 influenza pandemic and discuss opportunities for the application of mathematical modeling in the transmission dynamics of pandemic influenza. The value of historical data in increasing our understanding of past pandemic events is highlighted.
Collapse
Affiliation(s)
- Rodolfo Acuña-Soto
- Departamento de Microbiologia y Parasitologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Delegacion Coyoacan, Mexico D.F. 04510, Mexico.
| | | | | |
Collapse
|
28
|
Curtiss R. The impact of vaccines and vaccinations: Challenges and opportunities for modelers. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2011; 8:77-93. [PMID: 21361401 DOI: 10.3934/mbe.2011.8.77] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This review focuses on how infectious diseases and their prevention and control by development of vaccines and widespread vaccination has shaped evolution of human civilization and of the animals and plants that humans depend on for food, labor and companionship. After describing major infectious diseases and the current status for control by vaccination, the barriers to infection and the attributes of innate and acquired immunity contributing to control are discussed. The evolution in types of vaccines is presented in the context of developing technologies and in improving adjuvants to engender enhanced vaccine efficacy. The special concerns and needs in vaccine design and development are discussed in dealing with epidemics/pandemics with special emphasis on influenza and current global problems in vaccine delivery.
Collapse
Affiliation(s)
- Roy Curtiss
- Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85281, USA.
| |
Collapse
|