1
|
Tapescu I, Cherry S. DDX RNA helicases: key players in cellular homeostasis and innate antiviral immunity. J Virol 2024; 98:e0004024. [PMID: 39212449 PMCID: PMC11494928 DOI: 10.1128/jvi.00040-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
RNA helicases are integral in RNA metabolism, performing important roles in cellular homeostasis and stress responses. In particular, the DExD/H-box (DDX) helicase family possesses a conserved catalytic core that binds structural features rather than specific sequences in RNA targets. DDXs have critical roles in all aspects of RNA metabolism including ribosome biogenesis, translation, RNA export, and RNA stability. Importantly, functional specialization within this family arises from divergent N and C termini and is driven at least in part by gene duplications with 18 of the 42 human helicases having paralogs. In addition to their key roles in the homeostatic control of cellular RNA, these factors have critical roles in RNA virus infection. The canonical RIG-I-like receptors (RLRs) play pivotal roles in cytoplasmic sensing of viral RNA structures, inducing antiviral gene expression. Additional RNA helicases function as viral sensors or regulators, further diversifying the innate immune defense arsenal. Moreover, some of these helicases have been coopted by viruses to facilitate their replication. Altogether, DDX helicases exhibit functional specificity, playing intricate roles in RNA metabolism and host defense. This review will discuss the mechanisms by which these RNA helicases recognize diverse RNA structures in cellular and viral RNAs, and how this impacts RNA processing and innate immune responses.
Collapse
Affiliation(s)
- Iulia Tapescu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biochemistry and Biophysics Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Hirth A, Fatti E, Netz E, Acebron SP, Papageorgiou D, Švorinić A, Cruciat CM, Karaulanov E, Gopanenko A, Zhu T, Sinning I, Krijgsveld J, Kohlbacher O, Niehrs C. DEAD box RNA helicases are pervasive protein kinase interactors and activators. Genome Res 2024; 34:952-966. [PMID: 38986579 PMCID: PMC11293542 DOI: 10.1101/gr.278264.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
DEAD box (DDX) RNA helicases are a large family of ATPases, many of which have unknown functions. There is emerging evidence that besides their role in RNA biology, DDX proteins may stimulate protein kinases. To investigate if protein kinase-DDX interaction is a more widespread phenomenon, we conducted three orthogonal large-scale screens, including proteomics analysis with 32 RNA helicases, protein array profiling, and kinome-wide in vitro kinase assays. We retrieved Ser/Thr protein kinases as prominent interactors of RNA helicases and report hundreds of binary interactions. We identified members of ten protein kinase families, which bind to, and are stimulated by, DDX proteins, including CDK, CK1, CK2, DYRK, MARK, NEK, PRKC, SRPK, STE7/MAP2K, and STE20/PAK family members. We identified MARK1 in all screens and validated that DDX proteins accelerate the MARK1 catalytic rate. These findings indicate pervasive interactions between protein kinases and DEAD box RNA helicases, and provide a rich resource to explore their regulatory relationships.
Collapse
Affiliation(s)
- Alexander Hirth
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biosciences, Ruprecht-Karls University of Heidelberg, 69120 Heidelberg, Germany
| | - Edoardo Fatti
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biosciences, Ruprecht-Karls University of Heidelberg, 69120 Heidelberg, Germany
| | - Eugen Netz
- Applied Bioinformatics, Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Germany
| | - Sergio P Acebron
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Dimitris Papageorgiou
- Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Andrea Švorinić
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biosciences, Ruprecht-Karls University of Heidelberg, 69120 Heidelberg, Germany
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany
| | - Cristina-Maria Cruciat
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | | | | | - Tianheng Zhu
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biosciences, Ruprecht-Karls University of Heidelberg, 69120 Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany
| | - Jeroen Krijgsveld
- Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Oliver Kohlbacher
- Applied Bioinformatics, Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Germany
- Translational Bioinformatics, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany;
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| |
Collapse
|
3
|
Park SW, Park IB, Kang SJ, Bae J, Chun T. Interaction between host cell proteins and open reading frames of porcine circovirus type 2. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:698-719. [PMID: 37970506 PMCID: PMC10640953 DOI: 10.5187/jast.2023.e67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/28/2023] [Accepted: 07/09/2023] [Indexed: 11/17/2023]
Abstract
Postweaning multisystemic wasting syndrome (PMWS) is caused by a systemic inflammation after porcine circovirus type 2 (PCV2) infection. It was one of the most economically important pathogens affecting pig production worldwide before PCV2 vaccine was first introduced in 2006. After the development of a vaccine against PCV2a type, pig farms gradually restored enormous economic losses from PMWS. However, vaccine against PCV2a type could not be fully effective against several different PCV2 genotypes (PCV2b - PCV2h). In addition, PCV2a vaccine itself could generate antigenic drift of PCV2 capsid. Therefore, PCV2 infection still threats pig industry worldwide. PCV2 infection was initially found in local tissues including reproductive, respiratory, and digestive tracks. However, PCV2 infection often leads to a systemic inflammation which can cause severe immunosuppression by depleting peripheral lymphocytes in secondary lymphoid tissues. Subsequently, a secondary infection with other microorganisms can cause PMWS. Eleven putative open reading frames (ORFs) have been predicted to encode PCV2 genome. Among them, gene products of six ORFs from ORF1 to ORF6 have been identified and characterized to estimate its functional role during PCV2 infection. Acquiring knowledge about the specific interaction between each PCV2 ORF protein and host protein might be a key to develop preventive or therapeutic tools to control PCV2 infection. In this article, we reviewed current understanding of how each ORF of PCV2 manipulates host cell signaling related to immune suppression caused by PCV2.
Collapse
Affiliation(s)
- Si-Won Park
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| | - In-Byung Park
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| | - Seok-Jin Kang
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| | - Joonbeom Bae
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| | - Taehoon Chun
- Department of Biotechnology, School of
Life Sciences and Biotechnology, Korea University, Seoul
02841, Korea
| |
Collapse
|
4
|
Zhong H, Lou C, Ren B, Pi J, Dai T, Qin W, Zhou Y. Hepatic transcriptome analysis provides new insights into ghrelin regulation of the liver in Nile tilapia ( Oreochromis niloticus). Front Vet Sci 2023; 10:1192195. [PMID: 37388466 PMCID: PMC10301726 DOI: 10.3389/fvets.2023.1192195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/22/2023] [Indexed: 07/01/2023] Open
Abstract
Ghrelin is a growth-promoting hormone produced by the gastrointestinal tract that plays a crucial role through the ghrelin-growth hormone secretagogue receptor (GHS-R) and growth hormone/insulin-like growth factor-1 (GH/IGF-1) axes. To explore the effect of ghrelin on the transcriptomic profile of tilapia liver, the hepatic transcriptome of tilapia was sequenced for two groups, including saline-injected control (CL) and ghrelin-injected (GL; 2 μg/g body weight) tilapia. The transcriptome of livers from the two groups was sequenced using an Illumina HiSeqTM 2000 platform and yielded approximately 310.53 million raw reads. Subsequently, approximately 308.51 million clean reads were obtained from the total raw reads using in-house Perl scripts. Approximately 92.36% clean reads were mapped to the Nile tilapia genome using RSEM. Using the DESeq package, 250 differentially expressed genes (DEGs) were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed enrichment of two pathways related to RNA transcription (ribosome biogenesis in eukaryotes pathway and RNA transport pathway), with a total of 14 functional DEGs. ATP-binding and muscle contraction terms were identified as enriched using Gene Ontology (GO), yielding a total of 28 DEGs. Finally, real-time quantitative PCR (RT-qPCR) was used to confirm the accuracy of the transcriptomic results. The results of RT-qPCR were highly consistent with the RNA-seq, indicating that results of RNA-seq were valid. The differences in gene expression between the groups indicated that ghrelin-injection altered energy metabolism and RNA transcription in the tilapia liver, which provides new information to help promote the growth of tilapia.
Collapse
|
5
|
Liu Z, Dai W, Wang S, Yao Y, Zhang H. Deep learning identified genetic variants for COVID-19-related mortality among 28,097 affected cases in UK Biobank. Genet Epidemiol 2023; 47:215-230. [PMID: 36691909 PMCID: PMC10006374 DOI: 10.1002/gepi.22515] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/19/2022] [Accepted: 01/11/2023] [Indexed: 01/25/2023]
Abstract
Analysis of host genetic components provides insights into the susceptibility and response to viral infection such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19). To reveal genetic determinants of susceptibility to COVID-19 related mortality, we train a deep learning model to identify groups of genetic variants and their interactions that contribute to the COVID-19 related mortality risk using the UK Biobank data (28,097 affected cases and 1656 deaths). We refer to such groups of variants as super variants. We identify 15 super variants with various levels of significance as susceptibility loci for COVID-19 mortality. Specifically, we identify a super variant (odds ratio [OR] = 1.594, p = 5.47 × 10-9 ) on Chromosome 7 that consists of the minor allele of rs76398985, rs6943608, rs2052130, 7:150989011_CT_C, rs118033050, and rs12540488. We also discover a super variant (OR = 1.353, p = 2.87 × 10-8 ) on Chromosome 5 that contains rs12517344, rs72733036, rs190052994, rs34723029, rs72734818, 5:9305797_GTA_G, and rs180899355.
Collapse
Affiliation(s)
- Zihuan Liu
- Department of Biostatistics, Yale University, 300 George Street, Ste 523, New Haven, CT, 06511
| | - Wei Dai
- Department of Biostatistics, Yale University, 300 George Street, Ste 523, New Haven, CT, 06511
| | - Shiying Wang
- Department of Biostatistics, Yale University, 300 George Street, Ste 523, New Haven, CT, 06511
| | - Yisha Yao
- Department of Biostatistics, Yale University, 300 George Street, Ste 523, New Haven, CT, 06511
| | - Heping Zhang
- Department of Biostatistics, Yale University, 300 George Street, Ste 523, New Haven, CT, 06511
| |
Collapse
|
6
|
Noyes C, Kitajima S, Li F, Suita Y, Miriyala S, Isaac S, Ahsan N, Knelson E, Vajdi A, Tani T, Thai TC, Xu D, Murai J, Tapinos N, Takahashi C, Barbie DA, Yajima M. The germline factor DDX4 contributes to the chemoresistance of small cell lung cancer cells. Commun Biol 2023; 6:65. [PMID: 36653474 PMCID: PMC9849207 DOI: 10.1038/s42003-023-04444-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Human cancers often re-express germline factors, yet their mechanistic role in oncogenesis and cancer progression remains unknown. Here we demonstrate that DEAD-box helicase 4 (DDX4), a germline factor and RNA helicase conserved in all multicellular organisms, contributes to increased cell motility and cisplatin-mediated drug resistance in small cell lung cancer (SCLC) cells. Proteomic analysis suggests that DDX4 expression upregulates proteins related to DNA repair and immune/inflammatory response. Consistent with these trends in cell lines, DDX4 depletion compromised in vivo tumor development while its overexpression enhanced tumor growth even after cisplatin treatment in nude mice. Further, the relatively higher DDX4 expression in SCLC patients correlates with decreased survival and shows increased expression of immune/inflammatory response markers. Taken together, we propose that DDX4 increases SCLC cell survival, by increasing the DNA damage and immune response pathways, especially under challenging conditions such as cisplatin treatment.
Collapse
Affiliation(s)
- Christopher Noyes
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI, 02912, USA
| | - Shunsuke Kitajima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Fengkai Li
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Yusuke Suita
- Laboratory of Cancer Epigenetics and Plasticity, Department of Neurosurgery, Brown University, Providence, RI, 02903, USA
| | - Saradha Miriyala
- Laboratory of Cancer Epigenetics and Plasticity, Department of Neurosurgery, Brown University, Providence, RI, 02903, USA
| | - Shakson Isaac
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI, 02912, USA
| | - Nagib Ahsan
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, OK, 73019, USA
- Mass Spectrometry, Proteomics and Metabolomics Core Facility, Stephenson Life Sciences Research Center, The University of Oklahoma, Norman, OK, 73019, USA
| | - Erik Knelson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Amir Vajdi
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Tetsuo Tani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Tran C Thai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Derek Xu
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI, 02912, USA
| | - Junko Murai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan
| | - Nikos Tapinos
- Laboratory of Cancer Epigenetics and Plasticity, Department of Neurosurgery, Brown University, Providence, RI, 02903, USA
| | - Chiaki Takahashi
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Mamiko Yajima
- Department of Molecular Biology Cell Biology Biochemistry, Brown University, 185 Meeting Street, BOX-GL277, Providence, RI, 02912, USA.
| |
Collapse
|
7
|
Kaposi's sarcoma-associated herpesvirus (KSHV) utilizes the NDP52/CALCOCO2 selective autophagy receptor to disassemble processing bodies. PLoS Pathog 2023; 19:e1011080. [PMID: 36634147 PMCID: PMC9876383 DOI: 10.1371/journal.ppat.1011080] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 01/25/2023] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) causes the inflammatory and angiogenic endothelial cell neoplasm, Kaposi's sarcoma (KS). We previously demonstrated that the KSHV Kaposin B (KapB) protein promotes inflammation via the disassembly of cytoplasmic ribonucleoprotein granules called processing bodies (PBs). PBs modify gene expression by silencing or degrading labile messenger RNAs (mRNAs), including many transcripts that encode inflammatory or angiogenic proteins associated with KS disease. Although our work implicated PB disassembly as one of the causes of inflammation during KSHV infection, the precise mechanism used by KapB to elicit PB disassembly was unclear. Here we reveal a new connection between the degradative process of autophagy and PB disassembly. We show that both latent KSHV infection and KapB expression enhanced autophagic flux via phosphorylation of the autophagy regulatory protein, Beclin. KapB was necessary for this effect, as infection with a recombinant virus that does not express the KapB protein did not induce Beclin phosphorylation or autophagic flux. Moreover, we showed that PB disassembly mediated by KSHV or KapB, depended on autophagy genes and the selective autophagy receptor NDP52/CALCOCO2 and that the PB scaffolding protein, Pat1b, co-immunoprecipitated with NDP52. These studies reveal a new role for autophagy and the selective autophagy receptor NDP52 in promoting PB turnover and the concomitant synthesis of inflammatory molecules during KSHV infection.
Collapse
|
8
|
The Role of RNA-Binding Proteins in Hematological Malignancies. Int J Mol Sci 2022; 23:ijms23179552. [PMID: 36076951 PMCID: PMC9455611 DOI: 10.3390/ijms23179552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022] Open
Abstract
Hematological malignancies comprise a plethora of different neoplasms, such as leukemia, lymphoma, and myeloma, plus a myriad of dysplasia, such as myelodysplastic syndromes or anemias. Despite all the advances in patient care and the development of new therapies, some of these malignancies remain incurable, mainly due to resistance and refractoriness to treatment. Therefore, there is an unmet clinical need to identify new biomarkers and potential therapeutic targets that play a role in treatment resistance and contribute to the poor outcomes of these tumors. RNA-binding proteins (RBPs) are a diverse class of proteins that interact with transcripts and noncoding RNAs and are involved in every step of the post-transcriptional processing of transcripts. Dysregulation of RBPs has been associated with the development of hematological malignancies, making them potential valuable biomarkers and potential therapeutic targets. Although a number of dysregulated RBPs have been identified in hematological malignancies, there is a critical need to understand the biology underlying their contribution to pathology, such as the spatiotemporal context and molecular mechanisms involved. In this review, we emphasize the importance of deciphering the regulatory mechanisms of RBPs to pinpoint novel therapeutic targets that could drive or contribute to hematological malignancy biology.
Collapse
|
9
|
Venus S, Jankowsky E. Measuring the impact of cofactors on RNA helicase activities. Methods 2022; 204:376-385. [PMID: 35429628 PMCID: PMC9306305 DOI: 10.1016/j.ymeth.2022.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/03/2022] [Accepted: 04/12/2022] [Indexed: 12/25/2022] Open
Abstract
RNA helicases are the largest class of enzymes in eukaryotic RNA metabolism. In cells, protein cofactors regulate RNA helicase functions and impact biochemical helicase activities. Understanding how cofactors affect enzymatic activities of RNA helicases is thus critical for delineating physical roles and regulation of RNA helicases in cells. Here, we discuss approaches and conceptual considerations for the design of experiments to interrogate cofactor effects on RNA helicase activities in vitro. We outline the mechanistic frame for helicase reactions, discuss optimization of experimental setup and reaction parameters for measuring cofactor effects on RNA helicase activities, and provide basic guides to data analysis and interpretation. The described approaches are also instructive for determining the impact of small molecule inhibitors of RNA helicases.
Collapse
|
10
|
Milani L, Cinelli F, Iannello M, Lazzari M, Franceschini V, Maurizii MG. Immunolocalization of Vasa, PIWI, and TDRKH proteins in male germ cells during spermatogenesis of the teleost fish Poecilia reticulata. Acta Histochem 2022; 124:151870. [PMID: 35218995 DOI: 10.1016/j.acthis.2022.151870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 11/17/2022]
Abstract
Vasa, PIWI and TDRKH are conserved components of germ granules that in metazoans are involved in germline specification and differentiation, as documented by mutational experiments in some model animals. So far, investigations on PIWI during spermatogenesis of fish has been limited to a few species, and no information is available for TDRKH, another protein involved in the piRNA pathway. In this study, the immunolocalization of these three germline determinants was analyzed in male gonads of the teleost fish Poecilia reticulata to document their localization pattern in the different stages of germ cell differentiation. To analyze their distribution pattern during the different stages of spermatogenesis we performed immunohistochemistry (IHC) and immunofluorescence (IF) assays using primary polyclonal antibodies after testing their specificity with Western Blot. Moreover, sections of testis stained with haematoxylin and eosin clarified the structural organization of P. reticulata testis, while the use of the confocal microscope and the nuclear staining clarified the different stages of germ cell differentiation during spermatogenesis. The results showed that Vasa, PIWI and TDRKH were specifically immunolocalized in the germ cells of P. reticulata, with no specific signal detected in Sertoli cells and in other somatic cells of the gonad. These markers were detected in all stages of differentiation from early spermatogonia to advanced spermatids. Vasa staining was the strongest in spermatogonia, and then decreases throughout differentiation. Instead, both PIWI and TDRKH staining increases during differentiation, and their distribution pattern, similar to what observed in the mouse, suggests their concerted participation in the piRNA pathway also in this fish.
Collapse
Affiliation(s)
- L Milani
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy.
| | - F Cinelli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - M Iannello
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - M Lazzari
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - V Franceschini
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - M G Maurizii
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
11
|
Pérez-García A, Torrecilla-Parra M, Fernández-de Frutos M, Martín-Martín Y, Pardo-Marqués V, Ramírez CM. Posttranscriptional Regulation of Insulin Resistance: Implications for Metabolic Diseases. Biomolecules 2022; 12:biom12020208. [PMID: 35204710 PMCID: PMC8961590 DOI: 10.3390/biom12020208] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
Insulin resistance defines an impairment in the biologic response to insulin action in target tissues, primarily the liver, muscle, adipose tissue, and brain. Insulin resistance affects physiology in many ways, causing hyperglycemia, hypertension, dyslipidemia, visceral adiposity, hyperinsulinemia, elevated inflammatory markers, and endothelial dysfunction, and its persistence leads to the development metabolic disease, including diabetes, obesity, cardiovascular disease, or nonalcoholic fatty liver disease (NAFLD), as well as neurological disorders such as Alzheimer’s disease. In addition to classical transcriptional factors, posttranscriptional control of gene expression exerted by microRNAs and RNA-binding proteins constitutes a new level of regulation with important implications in metabolic homeostasis. In this review, we describe miRNAs and RBPs that control key genes involved in the insulin signaling pathway and related regulatory networks, and their impact on human metabolic diseases at the molecular level, as well as their potential use for diagnosis and future therapeutics.
Collapse
|
12
|
Gherardini L, Inzalaco G, Imperatore F, D’Aurizio R, Franci L, Miragliotta V, Boccuto A, Calandro P, Andreini M, Tarditi A, Chiariello M. The FHP01 DDX3X Helicase Inhibitor Exerts Potent Anti-Tumor Activity In Vivo in Breast Cancer Pre-Clinical Models. Cancers (Basel) 2021; 13:cancers13194830. [PMID: 34638314 PMCID: PMC8507746 DOI: 10.3390/cancers13194830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/25/2022] Open
Abstract
Inhibition of DDX3X expression or activity reduces proliferation in cells from various tumor tissues, in particular in breast cancer, and its expression often correlates to tumor aggressiveness. This makes DDX3X a prominent candidate for the design of drugs for novel personalized therapeutic strategies. Starting from an in silico drug discovery approach, a group of molecules has been selected by molecular docking at the RNA binding site of DDX3X. Here, the most promising among them, FHP01, was evaluated in breast cancer preclinical models. Specifically, FHP01 exhibited very effective antiproliferative and killing activity against different breast cancer cell types, among which those from triple-negative breast cancer (TNBC). Interestingly, FHP01 also inhibited WNT signaling, a key tumorigenic pathway already correlated to DDX3X functions in breast cancer model cell lines. Ultimately, FHP01 also caused a significant reduction, in vivo, in the growth of MDA MB 231-derived TNBC xenograft models. Importantly, FHP01 showed good bioavailability and no toxicity on normal peripheral blood mononuclear cells in vitro and on several mouse tissues in vivo. Overall, our data suggest that the use of FHP01 and its related compounds may represent a novel therapeutic approach with high potential against breast cancer, including the triple-negative subtype usually correlated to the most unfavorable outcomes because of the lack of available targeted therapies.
Collapse
Affiliation(s)
- Lisa Gherardini
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale delle Ricerche (CNR), 53100 Siena, Italy; (L.G.); (G.I.); (F.I.); (L.F.)
| | - Giovanni Inzalaco
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale delle Ricerche (CNR), 53100 Siena, Italy; (L.G.); (G.I.); (F.I.); (L.F.)
- Core Research Laboratory (CRL), Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), 53100 Siena, Italy;
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
| | - Francesco Imperatore
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale delle Ricerche (CNR), 53100 Siena, Italy; (L.G.); (G.I.); (F.I.); (L.F.)
| | - Romina D’Aurizio
- Istituto di Informatica e Telematica (IIT), Consiglio Nazionale delle Ricerche (CNR), 56124 Pisa, Italy;
| | - Lorenzo Franci
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale delle Ricerche (CNR), 53100 Siena, Italy; (L.G.); (G.I.); (F.I.); (L.F.)
- Core Research Laboratory (CRL), Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), 53100 Siena, Italy;
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
| | | | - Adele Boccuto
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
| | - Pierpaolo Calandro
- Core Research Laboratory (CRL), Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), 53100 Siena, Italy;
| | - Matteo Andreini
- First Health Pharmaceutical B.V., 1098 XH Amsterdam, The Netherlands; (M.A.); (A.T.)
| | - Alessia Tarditi
- First Health Pharmaceutical B.V., 1098 XH Amsterdam, The Netherlands; (M.A.); (A.T.)
| | - Mario Chiariello
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale delle Ricerche (CNR), 53100 Siena, Italy; (L.G.); (G.I.); (F.I.); (L.F.)
- Core Research Laboratory (CRL), Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), 53100 Siena, Italy;
- Correspondence: ; Tel.: +39-057-723-1274
| |
Collapse
|
13
|
Loh D, Reiter RJ. Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders. Antioxidants (Basel) 2021; 10:1483. [PMID: 34573116 PMCID: PMC8465482 DOI: 10.3390/antiox10091483] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Biomolecular condensates are membraneless organelles (MLOs) that form dynamic, chemically distinct subcellular compartments organizing macromolecules such as proteins, RNA, and DNA in unicellular prokaryotic bacteria and complex eukaryotic cells. Separated from surrounding environments, MLOs in the nucleoplasm, cytoplasm, and mitochondria assemble by liquid-liquid phase separation (LLPS) into transient, non-static, liquid-like droplets that regulate essential molecular functions. LLPS is primarily controlled by post-translational modifications (PTMs) that fine-tune the balance between attractive and repulsive charge states and/or binding motifs of proteins. Aberrant phase separation due to dysregulated membrane lipid rafts and/or PTMs, as well as the absence of adequate hydrotropic small molecules such as ATP, or the presence of specific RNA proteins can cause pathological protein aggregation in neurodegenerative disorders. Melatonin may exert a dominant influence over phase separation in biomolecular condensates by optimizing membrane and MLO interdependent reactions through stabilizing lipid raft domains, reducing line tension, and maintaining negative membrane curvature and fluidity. As a potent antioxidant, melatonin protects cardiolipin and other membrane lipids from peroxidation cascades, supporting protein trafficking, signaling, ion channel activities, and ATPase functionality during condensate coacervation or dissolution. Melatonin may even control condensate LLPS through PTM and balance mRNA- and RNA-binding protein composition by regulating N6-methyladenosine (m6A) modifications. There is currently a lack of pharmaceuticals targeting neurodegenerative disorders via the regulation of phase separation. The potential of melatonin in the modulation of biomolecular condensate in the attenuation of aberrant condensate aggregation in neurodegenerative disorders is discussed in this review.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
14
|
Reunov A, Alexandrova Y, Komkova A, Reunova Y, Pimenova E, Vekhova E, Milani L. VASA-induced cytoplasmic localization of CYTB-positive mitochondrial substance occurs by destructive and nondestructive mitochondrial effusion, respectively, in early and late spermatogenic cells of the Manila clam. PROTOPLASMA 2021; 258:817-825. [PMID: 33580838 DOI: 10.1007/s00709-020-01601-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
To analyze the release of mitochondrial material, a process that is believed to be (i) induced by the VASA protein derived from germplasm granules, and (ii) which appears to play an important role during meiotic differentiation, the localization of the CYTB protein was studied in the process of spermatogenesis of the bivalve mollusk Ruditapes philippinarum (Manila clam). It was found that in early spermatogenic cells, such as spermatogonia and spermatocytes, the CYTB protein shows dispersion in the cytoplasm following the total disaggregation of VASA-invaded mitochondria, what is called here as "destructive mitochondrial effusion (DME)." It was found that the mitochondria of the maturing sperm cells also uptake VASA. It is accompanied by extramitochondrial transmembrane localization of CYTB assuming mitochondrial content release without mitochondrion demolishing. This phenomenon is called here as "nondestructive mitochondrial effusion (NDME)." Thus, in the spermatogenesis of the Manila clam, two patterns of mitochondrial release, DME and NDME, were found, which function, respectively, in early spermatogenic cells and in maturing spermatozoa. Despite the morphological difference, it is assumed that both DME and NDME have a similar functional nature. In both cases, the intramitochondrial localization of VASA coincides with the extramitochondrial localization of the mitochondrial matrix.
Collapse
Affiliation(s)
- Arkadiy Reunov
- Department of Biology, St. Francis Xavier University, Antigonish, NS, B2G 2W5, Canada.
- Far Eastern Branch of Russian Academy of Sciences, National Scientific Centre of Marine Biology, Vladivostok, 690041, Russia.
| | - Yana Alexandrova
- Far Eastern Branch of Russian Academy of Sciences, National Scientific Centre of Marine Biology, Vladivostok, 690041, Russia
| | - Alina Komkova
- Far Eastern Branch of Russian Academy of Sciences, National Scientific Centre of Marine Biology, Vladivostok, 690041, Russia
| | - Yulia Reunova
- Far Eastern Branch of Russian Academy of Sciences, National Scientific Centre of Marine Biology, Vladivostok, 690041, Russia
| | - Evgenia Pimenova
- Far Eastern Branch of Russian Academy of Sciences, National Scientific Centre of Marine Biology, Vladivostok, 690041, Russia
| | - Evgenia Vekhova
- Far Eastern Branch of Russian Academy of Sciences, National Scientific Centre of Marine Biology, Vladivostok, 690041, Russia
| | - Liliana Milani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi, 3, 40126, Bologna, Italy
| |
Collapse
|
15
|
Zhang J, Fu M, Zhang M, Zhang J, Du Z, Zhang H, Hua W, Mao Y. DDX60 Is Associated With Glioma Malignancy and Serves as a Potential Immunotherapy Biomarker. Front Oncol 2021; 11:665360. [PMID: 34178649 PMCID: PMC8222729 DOI: 10.3389/fonc.2021.665360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/24/2021] [Indexed: 01/04/2023] Open
Abstract
DDX60, an interferon (IFN)-inducible gene, plays a promotional role in many tumors. However, its function in glioma remains unknown. In this study, bioinformatic analysis (TCGA, CGGA, Rembrandt) illustrated the upregulation and prognostic value of DDX60 in gliomas. Immunohistochemical staining of clinical samples (n = 49) validated the DDX60 expression is higher in gliomas than in normal tissue (n = 20, P < 0.0001). It also could be included in nomogram as a parameter to predict the 3- and 5-year survival risk (C-index = 0.86). The biological process of DDX60 in glioma was mainly enriched in the inflammatory and immune response by GSEA and GO analysis. DDX60 expression had a positive association with most inflammatory-related functions, such as hematopoietic cell kinase (HCK) (R = 0.31), interferon (R = 0.72), STAT1 (R = 54), and a negative correlation with IgG (R = −0.24). Furthermore, DDX60 expression tends to be positively related to multiple infiltrating immune cells, while negatively related to CD56 dim nature killer cell in glioma. Some important immune checkpoints, like CTLA-4, PD-L1, EGF, CD96, and CD226, were all positively related with DDX60 (all Pearson correlation R > 0.26). The expression and correlation between DDX60, EGF, and PD-L1 were confirmed by western blot in clinical samples (n = 14, P < 0.0001) and GBM cells. These results indicated that DDX60 might have important clinical significance in glioma and could serve as a potential immune therapeutic target.
Collapse
Affiliation(s)
- Jingwen Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.,Department of Ultrasound, Hebei General Hospital, Shijiazhuang, China
| | - Minjie Fu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Mengli Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinsen Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zunguo Du
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongyi Zhang
- Department of Neurosurgery, Tangshan General Hospital, Tangshan, China.,Department of Neurosurgery, Tangshan Workers' Hospital, Tangshan, China
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| |
Collapse
|
16
|
Pisani F, Simone L, Mola MG, De Bellis M, Frigeri A, Nicchia GP, Svelto M. Regulation of aquaporin-4 expression in the central nervous system investigated using M23-AQP4 null mouse. Glia 2021; 69:2235-2251. [PMID: 34038017 PMCID: PMC8361696 DOI: 10.1002/glia.24032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 04/15/2021] [Accepted: 05/17/2021] [Indexed: 12/22/2022]
Abstract
In astrocytes, unknown mechanisms regulate the expression of M1 and M23 isoforms of water channel aquaporin-4 (M1-AQP4 and M23-AQP4). The ratio between these two isoforms controls the AQP4 assembly state in the plasma membrane known as orthogonal arrays of particles (OAPs). To give new insights into these mechanisms, here, we explore the regulation of AQP4 expression in the spinal cord of a CRISPR/Cas9 M23-null mouse model (M23-null). In the M23-null spinal cord OAP assembly, the perivascular localization of AQP4 and M1-AQP4 protein were drastically reduced. In heterozygous, M1-AQP4 was proportionally reduced with M23-AQP4, maintaining the isoform ratio unaffected. We hypothesize a role of the M23-AQP4 in the regulation of M1-AQP4 expression. M1-AQP4 transcription, splicing and M1-AQP4 protein degradation were found to be unaffected in M23-null spinal cord and in M23-null astrocyte primary culture. The translational control was investigated by mRNA-protein pull down and quantitative mass spectrometry, to isolate and quantify AQP4 mRNA binding proteins (AQP4-RBPs). Compared to WT, in M23-null spinal cord, the interaction between AQP4 mRNA and polypyrimidine tract binding protein 1, a positive regulator of AQP4 translation, was higher, while interaction with the RNA helicase DDX17 was lower. In astrocyte primary cultures, DDX17 knockdown upregulated AQP4 protein expression and increased cell swelling, leaving AQP4 mRNA levels unchanged. Here, we identify AQP4-RBPs and provide evidence that in mouse spinal cord M23-AQP4 deletion changes the interaction between AQP4 mRNA and some RBPs involved in AQP4 translation. We describe for the first time the RNA helicase DDX17 as a regulator of AQP4 expression in astrocytes.
Collapse
Affiliation(s)
- Francesco Pisani
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Laura Simone
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, San Giovanni Rotondo (FG), Italy
| | - Maria Grazia Mola
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Manuela De Bellis
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Frigeri
- School of Medicine, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy.,Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy.,National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| |
Collapse
|
17
|
Ali MAM. DEAD-box RNA helicases: The driving forces behind RNA metabolism at the crossroad of viral replication and antiviral innate immunity. Virus Res 2021; 296:198352. [PMID: 33640359 DOI: 10.1016/j.virusres.2021.198352] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Abstract
DEAD-box RNA helicases, the largest family of superfamily 2 helicases, are a profoundly conserved family of RNA-binding proteins, containing a distinctive Asp-Glu-Ala-Asp (D-E-A-D) sequence motif, which is the origin of their name. Aside from the ATP-dependent unwinding of RNA duplexes, which set up these proteins as RNA helicases, DEAD-box proteins have been found to additionally stimulate RNA duplex fashioning and to uproot proteins from RNA, aiding the reformation of RNA and RNA-protein complexes. There is accumulating evidence that DEAD-box helicases play functions in the recognition of foreign nucleic acids and the modification of viral infection. As intracellular parasites, viruses must avoid identification by innate immune sensing mechanisms and disintegration by cellular machinery, whilst additionally exploiting host cell activities to assist replication. The capability of DEAD-box helicases to sense RNA in a sequence-independent way, as well as the broadness of cellular roles performed by members of this family, drive them to affect innate sensing and viral infections in numerous manners. Undoubtedly, DEAD-box helicases have been demonstrated to contribute to intracellular immune recognition, function as antiviral effectors, and even to be exploited by viruses to support their replication. Relying on the virus or the viral cycle phase, a DEAD-box helicase can function either in a proviral manner or as an antiviral factor. This review gives a comprehensive perspective on the various biochemical characteristics of DEAD-box helicases and their links to structural data. It additionally outlines the multiple functions that members of the DEAD-box helicase family play during viral infections.
Collapse
Affiliation(s)
- Mohamed A M Ali
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| |
Collapse
|
18
|
Stage-specific protein regulation during somatic embryo development of Carica papaya L. 'Golden'. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140561. [PMID: 33161157 DOI: 10.1016/j.bbapap.2020.140561] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/13/2020] [Accepted: 10/27/2020] [Indexed: 11/20/2022]
Abstract
Somatic embryogenesis is an important biotechnological technique for large-scale propagation of elite genotypes. Identifying stage-specific compounds associated with somatic embryo development can help elucidate the ontogenesis of Carica papaya L. somatic embryos and improve tissue culture protocols. To identify the stage-specific proteins that are present during the differentiation of C. papaya somatic embryos, proteomic analyses of embryos at the globular, heart, torpedo and cotyledonary developmental stages were performed. Mass spectrometry data have been deposited in the ProteomeXchange with the dataset identifier PXD021107. Comparative proteomic analyses revealed a total of 801 proteins, with 392 classified as differentially accumulated proteins in at least one of the developmental stages. The globular-staged presented a higher number of unique proteins (16), and 7 were isoforms of 60S ribosomal proteins, suggesting high translational activity at the beginning of somatic embryogenesis. Proteins related to mitochondrial metabolism accumulated to a high degree at the early developmental stages and then decreased with increasing development, and they contributed to cell homeostasis in early somatic embryos. A progressive increase in the accumulation of vicilin, late embryogenesis abundant proteins and chloroplastic proteins that lead to somatic embryo maturation was also observed. The differential accumulation of acetylornithine deacetylase and S-adenosylmethionine synthase 2 proteins was correlated with increases in putrescine and spermidine contents, which suggests that both polyamines should be tested to determine whether they increase the conversion rates of globular- to cotyledonary-staged somatic embryos. Taken together, the results showed that somatic embryo development in C. papaya is regulated by the differential accumulation of proteins, with ribosomal and mitochondrial proteins more abundant during the early somatic embryo stages and seed maturation proteins more abundant during the late stages.
Collapse
|
19
|
Xenograft-derived mRNA/miR and protein interaction networks of systemic dissemination in human prostate cancer. Eur J Cancer 2020; 137:93-107. [PMID: 32750503 DOI: 10.1016/j.ejca.2020.06.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/12/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Distant metastasis formation is the major clinical problem in prostate cancer (PCa) and the underlying mechanisms remain poorly understood. Our aim was to identify novel molecules that functionally contribute to human PCa systemic dissemination based on unbiased approaches. METHODS We compared mRNA, microRNA (miR) and protein expression levels in established human PCa xenograft tumours with high (PC-3), moderate (VCaP) or weak (DU-145) spontaneous micrometastatic potential. By focussing on those mRNAs, miRs and proteins that were differentially regulated among the xenograft groups and known to interact with each other we constructed dissemination-related mRNA/miR and protein/miR networks. Next, we clinically and functionally validated our findings. RESULTS Besides known determinants of PCa progression and/or metastasis, our interaction networks include several novel candidates. We observed a clear role of epithelial-to-mesenchymal transition (EMT) pathways for PCa dissemination, which was additionally confirmed by an independent human PCa model (ARCAP-E/-M). Two converging nodes, CD46 (decreasing with metastatic potential) and DDX21 (increasing with metastatic potential), were used to test the clinical relevance of the networks. Intriguingly, both network nodes consistently added prognostic information for patients with PCa whereas CD46 loss predicted poor outcome independent of established parameters. Accordingly, depletion of CD46 in weakly metastatic PCa cells induced EMT-like properties in vitro and spontaneous micrometastasis formation in vivo. CONCLUSIONS The clinical and functional relevance of the dissemination-related interaction networks shown here could be successfully validated by proof-of-principle experiments. Therefore, we suggest a direct pro-metastatic, clinically relevant role for the multiple novel candidates included in this study; these should be further exploited by future studies.
Collapse
|
20
|
Ho CJ, Samarasekera G, Rothe K, Xu J, Yang KC, Leung E, Chan M, Jiang X, Gorski SM. Puncta intended: connecting the dots between autophagy and cell stress networks. Autophagy 2020; 17:1028-1033. [PMID: 32507070 DOI: 10.1080/15548627.2020.1775394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Proteome profiling and global protein-interaction approaches have significantly improved our knowledge of the protein interactomes of autophagy and other cellular stress-response pathways. New discoveries regarding protein complexes, interaction partners, interaction domains, and biological roles of players that are part of these pathways are emerging. The fourth Vancouver Autophagy Symposium showcased research that expands our understanding of the protein interaction networks and molecular mechanisms underlying autophagy and other cellular stress responses in the context of distinct stressors. In the keynote presentation, Dr. Wade Harper described his team's recent discovery of a novel reticulophagy receptor for selective autophagic degradation of the endoplasmic reticulum, and discussed molecular mechanisms involved in ribophagy and non-autophagic ribosomal turnover. In other presentations, both omic and targeted approaches were used to reveal molecular players of other cellular stress responses including amyloid body and stress granule formation, anastasis, and extracellular vesicle biogenesis. Additional topics included the roles of autophagy in disease pathogenesis, autophagy regulatory mechanisms, and crosstalk between autophagy and cellular metabolism in anti-tumor immunity. The relationship between autophagy and other cell stress responses remains a relatively unexplored area in the field, with future investigations required to understand how the various processes are coordinated and connected in cells and tissues.Abbreviations: A-bodies: amyloid bodies; ACM: amyloid-converting motif; AMFR/gp78: autocrine motility factor receptor; ATG: autophagy-related; ATG4B: autophagy related 4B cysteine peptidase; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CAR T: chimeric antigen receptor T; CASP3: caspase 3; CCPG1: cell cycle progression 1; CAR: chimeric antigen receptor; CML: chronic myeloid leukemia; CCOCs: clear cell ovarian cancers; CVB3: coxsackievirus B3; CRISPR-Cas9: clustered regularly interspaced short palindromic repeats-CRISPR associated protein 9; DDXs: DEAD-box helicases; EIF2S1/EIF-2alpha: eukaryotic translation initiation factor 2 subunit alpha; EIF2AK3: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; EV: extracellular vesicle; FAO: fatty acid oxidation; GABARAP: GABA type A receptor-associated protein; ILK: integrin linked kinase; ISR: integrated stress response; MTOR: mechanistic target of rapamycin kinase; MPECs: memory precursory effector T cells; MAVS: mitochondrial antiviral signaling protein; NBR1: NBR1 autophagy cargo receptor; PI4KB/PI4KIIIβ: phosphatidylinositol 4-kinase beta; PLEKHM1: pleckstrin homology and RUN domain containing M1; RB1CC1: RB1 inducible coiled-coil 1; RTN3: reticulon 3; rIGSRNAs: ribosomal intergenic noncoding RNAs; RPL29: ribosomal protein L29; RPS3: ribosomal protein S3; S. cerevisiae: Saccharomyces cerevisiae; sEV: small extracellular vesicles; S. pombe: Schizosaccharomyces pombe; SQSTM1: sequestosome 1; SF3B1: splicing factor 3b subunit 1; SILAC-MS: stable isotope labeling with amino acids in cell culture-mass spectrometry; SNAP29: synaptosome associated protein 29; TEX264: testis expressed 264, ER-phagy receptor; TNBC: triple-negative breast cancer; ULK1: unc-51 like autophagy activating kinase 1; VAS: Vancouver Autophagy Symposium.
Collapse
Affiliation(s)
- Cally J Ho
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Gayathri Samarasekera
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Katharina Rothe
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada
| | - Jing Xu
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Kevin C Yang
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Emily Leung
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Michelle Chan
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Xiaoyan Jiang
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada
| | - Sharon M Gorski
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
Gao C, Guo X, Xue A, Ruan Y, Wang H, Gao X. High intratumoral expression of eIF4A1 promotes epithelial-to-mesenchymal transition and predicts unfavorable prognosis in gastric cancer. Acta Biochim Biophys Sin (Shanghai) 2020; 52:310-319. [PMID: 32147684 DOI: 10.1093/abbs/gmz168] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/19/2019] [Accepted: 10/18/2019] [Indexed: 12/23/2022] Open
Abstract
Gastric cancer is an important health problem, being the fifth most common cancer and the third leading cause of cancer-related death worldwide. Aberrant protein translation contributes to the oncogenesis and development of cancers, and upregulation of translation initiation factor eIF4A1 has been observed in several kinds of malignancies. However, the role of eIF4A1 in gastric cancer progression remains unclear. In this study, we found that the expression of eIF4A1, a component of translation initiation complex, was increased in gastric cancer. High expression of eIF4A1 was positively associated with poor tumor differentiation, late T stage, lymph node metastasis, advanced TNM stage, and poor prognosis in patients with gastric cancer. Overexpression of eIF4A1 promoted the migration and invasion of gastric cancer cells in vitro and enhanced tumor metastasis in nude mice model. Mechanism studies revealed that eIF4A1 induced epithelial-to-mesenchymal transition (EMT) of gastric cancer cells through driving the translation of SNAI1 mRNA. Together, these findings indicate that eIF4A1 promotes EMT and metastasis of gastric cancer and suggest that eIF4A1 is a potential target for the adjuvant therapy for gastric cancer patients.
Collapse
Affiliation(s)
- Chanchan Gao
- Department of Oncology, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Xinyin Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Anwei Xue
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuanyuan Ruan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hongshan Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaodong Gao
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
22
|
Ngo TD, Partin AC, Nam Y. RNA Specificity and Autoregulation of DDX17, a Modulator of MicroRNA Biogenesis. Cell Rep 2019; 29:4024-4035.e5. [PMID: 31851931 PMCID: PMC6953907 DOI: 10.1016/j.celrep.2019.11.059] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/03/2019] [Accepted: 11/14/2019] [Indexed: 11/23/2022] Open
Abstract
DDX17, a DEAD-box ATPase, is a multifunctional helicase important for various RNA functions, including microRNA maturation. Key questions for DDX17 include how it recognizes target RNAs and influences their structures, as well as how its ATPase activity may be regulated. Through crystal structures and biochemical assays, we show the ability of the core catalytic domains of DDX17 to recognize specific sequences in target RNAs. The RNA sequence preference of the catalytic core is critical for DDX17 to directly bind and remodel a specific region of primary microRNAs 3' to the mature sequence, and consequently enhance processing by Drosha. Furthermore, we identify an intramolecular interaction between the N-terminal tail and the DEAD domain of DDX17 to have an autoregulatory role in controlling the ATPase activity. Thus, we provide the molecular basis for how cognate RNA recognition and functional outcomes are linked for DDX17.
Collapse
Affiliation(s)
- Tri D Ngo
- Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alexander C Partin
- Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yunsun Nam
- Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
23
|
Katsogiannou M, Boyer JB, Valdeolivas A, Remy E, Calzone L, Audebert S, Rocchi P, Camoin L, Baudot A. Integrative proteomic and phosphoproteomic profiling of prostate cell lines. PLoS One 2019; 14:e0224148. [PMID: 31675377 PMCID: PMC6824562 DOI: 10.1371/journal.pone.0224148] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/06/2019] [Indexed: 12/15/2022] Open
Abstract
Background Prostate cancer is a major public health issue, mainly because patients relapse after androgen deprivation therapy. Proteomic strategies, aiming to reflect the functional activity of cells, are nowadays among the leading approaches to tackle the challenges not only of better diagnosis, but also of unraveling mechanistic details related to disease etiology and progression. Methods We conducted here a large SILAC-based Mass Spectrometry experiment to map the proteomes and phosphoproteomes of four widely used prostate cell lines, namely PNT1A, LNCaP, DU145 and PC3, representative of different cancerous and hormonal status. Results We identified more than 3000 proteins and phosphosites, from which we quantified more than 1000 proteins and 500 phosphosites after stringent filtering. Extensive exploration of this proteomics and phosphoproteomics dataset allowed characterizing housekeeping as well as cell-line specific proteins, phosphosites and functional features of each cell line. In addition, by comparing the sensitive and resistant cell lines, we identified protein and phosphosites differentially expressed in the resistance context. Further data integration in a molecular network highlighted the differentially expressed pathways, in particular migration and invasion, RNA splicing, DNA damage repair response and transcription regulation. Conclusions Overall, this study proposes a valuable resource toward the characterization of proteome and phosphoproteome of four widely used prostate cell lines and reveals candidates to be involved in prostate cancer progression for further experimental validation.
Collapse
Affiliation(s)
- Maria Katsogiannou
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
- Obstetrics and Gynecology department, Hôpital Saint Joseph, Marseille, France
| | - Jean-Baptiste Boyer
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Alberto Valdeolivas
- Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France
- Aix Marseille Univ, INSERM, MMG, Marseille, France
- ProGeLife, Marseille, France
| | - Elisabeth Remy
- Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France
| | - Laurence Calzone
- Mines Paris Tech, Institut Curie, PSL Research University, Paris, France
| | - Stéphane Audebert
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Palma Rocchi
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
- * E-mail: (PR); (LC); (AB)
| | - Luc Camoin
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
- * E-mail: (PR); (LC); (AB)
| | - Anaïs Baudot
- Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France
- Aix Marseille Univ, INSERM, MMG, Marseille, France
- * E-mail: (PR); (LC); (AB)
| |
Collapse
|
24
|
Yamazaki T, Liu L, Manley JL. TCF3 mutually exclusive alternative splicing is controlled by long-range cooperative actions between hnRNPH1 and PTBP1. RNA (NEW YORK, N.Y.) 2019; 25:1497-1508. [PMID: 31391218 PMCID: PMC6795145 DOI: 10.1261/rna.072298.119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/31/2019] [Indexed: 05/22/2023]
Abstract
TCF3, also known as E2A, is a well-studied transcription factor that plays an important role in stem cell maintenance and hematopoietic development. The TCF3 gene encodes two related proteins, E12 and E47, which arise from mutually exclusive alternative splicing (MEAS). Since these two proteins have different DNA binding and dimerization domains, this AS event must be strictly regulated to ensure proper isoform ratios. Previously, we found that heterogeneous nuclear ribonucleoprotein (hnRNP) H1/F regulates TCF3 AS by binding to exonic splicing silencers (ESSs) in exon 18b. Here, we identify conserved intronic splicing silencers (ISSs) located between, and far from, the two mutually exclusive exons, and show that they are essential for MEAS. Further, we demonstrate that the hnRNP PTBP1 binds the ISS and is a regulator of TCF3 AS. We also demonstrate that hnRNP H1 and PTBP1 regulate TCF3 AS reciprocally, and that position-dependent interactions between these factors are essential for proper TCF3 MEAS. Our study provides a new model in which MEAS is regulated by cooperative actions of distinct hnRNPs bound to ISSs and ESSs.
Collapse
Affiliation(s)
- Takashi Yamazaki
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Lizhi Liu
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
25
|
Germ plasm-related structures in marine medaka gametogenesis; novel sites of Vasa localization and the unique mechanism of germ plasm granule arising. ZYGOTE 2019; 28:9-23. [PMID: 31590697 DOI: 10.1017/s0967199419000546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Germ plasm, a cytoplasmic factor of germline cell differentiation, is suggested to be a perspective tool for in vitro meiotic differentiation. To discriminate between the: (1) germ plasm-related structures (GPRS) involved in meiosis triggering; and (2) GPRS involved in the germ plasm storage phase, we investigated gametogenesis in the marine medaka Oryzias melastigma. The GPRS of the mitosis-to-meiosis period are similar in males and females. In both sexes, five events typically occur: (1) turning of the primary Vasa-positive germ plasm granules into the Vasa-positive intermitochondrial cement (IMC); (2) aggregation of some mitochondria by IMC followed by arising of mitochondrial clusters; (3) intramitochondrial localization of IMC-originated Vasa; followed by (4) mitochondrial cluster degradation; and (5) intranuclear localization of Vasa followed by this protein entering the nuclei (gonial cells) and synaptonemal complexes (zygotene-pachytene meiotic cells). In post-zygotene/pachytene gametogenesis, the GPRS are sex specific; the Vasa-positive chromatoid bodies are found during spermatogenesis, but oogenesis is characterized by secondary arising of Vasa-positive germ plasm granules followed by secondary formation and degradation of mitochondrial clusters. A complex type of germ plasm generation, 'the follicle cell assigned germ plasm formation', was found in late oogenesis. The mechanisms discovered are recommended to be taken into account for possible reconstruction of those under in vitro conditions.
Collapse
|
26
|
Reunov A, Yakovlev K, Hu J, Reunova Y, Komkova A, Alexandrova Y, Pimenova E, Tiefenbach J, Krause H. Close association between vasa-positive germ plasm granules and mitochondria correlates with cytoplasmic localization of 12S and 16S mtrRNAs during zebrafish spermatogenesis. Differentiation 2019; 109:34-41. [PMID: 31494397 DOI: 10.1016/j.diff.2019.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 11/16/2022]
Abstract
The phenomenon of the cytoplasmic localisation of mitochondrial ribosomal subunits (12 S mitochondrial rRNA and 16 S mitochondrial rRNA) has been discovered by scientific teams working with spermatogenic cells of mice. Previous reports showed that the release of mitochondrial substance occurs during interaction of mitochondria with the germ plasm granules (GG). To determine if the interplay between the vasa-positive GG and the mitochondria is associated with cytoplasmic localisation of mtrRNAs, we studied the spermatogenic cells of zebrafish, Danio rerio. It was revealed that in type A undifferentiated spermatogonia the GG did not contact mitochondria, and the extra-mitochondrial localisation of the mtrRNAs was not found. In type A differentiated spermatogonia, the amount of GG in contact with mitochondria increased, but the extra-mitochondrial localisation of the mtrRNAs was not found either. In type B late spermatogonia, which are pre-meiotic cells, the GG/mitochondrion complexes were typically found in contact with the nucleus. This stage was associated with the intra-mitochondrial localisation of GG-originated vasa and extra-mitochondrial localisation of 12 S mtrRNA and 16 S mtrRNA. Until the onset of meiosis, which was determined by the observation of synaptonemal complexes in zygotene-pachytene spermatocytes I, the GG/mitochondrion complexes disappeared, but both types of mtrRNAs persisted in the cytoplasm of spermatids and spermatozoa.
Collapse
Affiliation(s)
- Arkadiy Reunov
- National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690041, Russia; St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada.
| | - Konstantin Yakovlev
- National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Jack Hu
- Donnelly Ctr., 160 College St., University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Yulia Reunova
- National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Alina Komkova
- National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Yana Alexandrova
- National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Evgenia Pimenova
- National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Jens Tiefenbach
- Donnelly Ctr., 160 College St., University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Henry Krause
- Donnelly Ctr., 160 College St., University of Toronto, Toronto, ON M5S 3E1, Canada
| |
Collapse
|
27
|
Cinar H, Fetahaj Z, Cinar S, Vernon RM, Chan HS, Winter RHA. Temperature, Hydrostatic Pressure, and Osmolyte Effects on Liquid-Liquid Phase Separation in Protein Condensates: Physical Chemistry and Biological Implications. Chemistry 2019; 25:13049-13069. [PMID: 31237369 DOI: 10.1002/chem.201902210] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/23/2019] [Indexed: 01/04/2023]
Abstract
Liquid-liquid phase separation (LLPS) of proteins and other biomolecules play a critical role in the organization of extracellular materials and membrane-less compartmentalization of intra-organismal spaces through the formation of condensates. Structural properties of such mesoscopic droplet-like states were studied by spectroscopy, microscopy, and other biophysical techniques. The temperature dependence of biomolecular LLPS has been studied extensively, indicating that phase-separated condensed states of proteins can be stabilized or destabilized by increasing temperature. In contrast, the physical and biological significance of hydrostatic pressure on LLPS is less appreciated. Summarized here are recent investigations of protein LLPS under pressures up to the kbar-regime. Strikingly, for the cases studied thus far, LLPSs of both globular proteins and intrinsically disordered proteins/regions are typically more sensitive to pressure than the folding of proteins, suggesting that organisms inhabiting the deep sea and sub-seafloor sediments, under pressures up to 1 kbar and beyond, have to mitigate this pressure-sensitivity to avoid unwanted destabilization of their functional biomolecular condensates. Interestingly, we found that trimethylamine-N-oxide (TMAO), an osmolyte upregulated in deep-sea fish, can significantly stabilize protein droplets under pressure, pointing to another adaptive advantage for increased TMAO concentrations in deep-sea organisms besides the osmolyte's stabilizing effect against protein unfolding. As life on Earth might have originated in the deep sea, pressure-dependent LLPS is pertinent to questions regarding prebiotic proto-cells. Herein, we offer a conceptual framework for rationalizing the recent experimental findings and present an outline of the basic thermodynamics of temperature-, pressure-, and osmolyte-dependent LLPS as well as a molecular-level statistical mechanics picture in terms of solvent-mediated interactions and void volumes.
Collapse
Affiliation(s)
- Hasan Cinar
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, 44227, Dortmund, Germany
| | - Zamira Fetahaj
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, 44227, Dortmund, Germany
| | - Süleyman Cinar
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, 44227, Dortmund, Germany
| | - Robert M Vernon
- Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Hue Sun Chan
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Ontario, M5S 1A8, Canada.,Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Ontario, M5S 1A8, Canada
| | - Roland H A Winter
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, 44227, Dortmund, Germany
| |
Collapse
|
28
|
Raju M, Hassan SA, Kavarthapu R, Anbazhagan R, Dufau ML. Characterization of the Phosphorylation Site of GRTH/DDX25 and Protein Kinase A Binding Interface Provides Structural Basis for the Design of a Non-Hormonal Male Contraceptive. Sci Rep 2019; 9:6705. [PMID: 31040297 PMCID: PMC6491591 DOI: 10.1038/s41598-019-42857-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 04/10/2019] [Indexed: 02/08/2023] Open
Abstract
Gonadotropin Regulated Testicular Helicase (GRTH/DDX25), expressed in the male gonad, is essential for the completion of spermatogenesis. Our early studies revealed a missense mutation (R242H) of GRTH in 5.8% of Japanese patient population with azoospermia. Transfection of the mutant GRTH construct in COS-1 cells leads to loss of the 61 kDa cytoplasmic phospho-species. Mice with knock-in of the human GRTH mutation are sterile and lack sperm with normal androgen and mating behavior. These findings provide an avenue for the development of a non-hormonal male contraceptive. Using site directed mutagenesis and a site-specific phospho-antibody, we have identified T239, structurally adjacent to the patient’s mutant site as the GRTH phospho-site. Molecular modelling provided structural basis for the role of R242 and other critical solvent-exposed residues at the GRTH/PKA interface (E165/K240/D237), on the control of GRTH phosphorylation at T239. Single or double mutations of these residues caused marked reduction or abolition of the phospho-form. These effects can be ascribed to critical disruptions of intramolecular H-bonds at the GRTH/PKA interface, which leads to modest but consequential structural changes that can affect PKA catalytic efficiency. Inhibition of phosphorylation may be achieved by small, drug-like molecules that bind to GRTH and reconfigure the GRTH/PKA interface.
Collapse
Affiliation(s)
- Murugananthkumar Raju
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, OIR/CIT, National Institutes of Health, Bethesda, MD, 20892-4510, USA
| | - Sergio A Hassan
- Center for Molecular Modeling, OIR/CIT, National Institutes of Health, Bethesda, MD, 20892-4510, USA
| | - Raghuveer Kavarthapu
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, OIR/CIT, National Institutes of Health, Bethesda, MD, 20892-4510, USA
| | - Rajakumar Anbazhagan
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, OIR/CIT, National Institutes of Health, Bethesda, MD, 20892-4510, USA
| | - Maria L Dufau
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, OIR/CIT, National Institutes of Health, Bethesda, MD, 20892-4510, USA.
| |
Collapse
|
29
|
Koenig AB, Barajas JM, Guerrero MJ, Ghoshal K. A Comprehensive Analysis of Argonaute-CLIP Data Identifies Novel, Conserved and Species-Specific Targets of miR-21 in Human Liver and Hepatocellular Carcinoma. Int J Mol Sci 2018; 19:E851. [PMID: 29538313 PMCID: PMC5877712 DOI: 10.3390/ijms19030851] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs are ~22 nucleotide RNAs that regulate gene expression at the post-transcriptional level by binding messenger RNA transcripts. miR-21 is described as an oncomiR whose steady-state levels are commonly increased in many malignancies, including hepatocellular carcinoma (HCC). Methods known as cross-linking and immunoprecipitation of RNA followed by sequencing (CLIP-seq) have enabled transcriptome-wide identification of miRNA interactomes. In our study, we use a publicly available Argonaute-CLIP dataset (GSE97061), which contains nine HCC cases with matched benign livers, to characterize the miR-21 interactome in HCC. Argonaute-CLIP identified 580 miR-21 bound target sites on coding transcripts, of which 332 were located in the coding sequences, 214 in the 3'-untranslated region, and 34 in the 5'-untranslated region, introns, or downstream sequences. We compared the expression of miR-21 targets in 377 patients with liver cancer from the data generated by The Cancer Genome Atlas (TCGA) and found that mRNA levels of 402 miR-21 targets are altered in HCC. Expression of three novel predicted miR-21 targets (CAMSAP1, DDX1 and MARCKSL1) correlated with HCC patient survival. Analysis of RNA-seq data from SK-Hep1 cells treated with a miR-21 antisense oligonucleotide (GSE65892) identified RMND5A, an E3 ubiquitin ligase, as a strong miR-21 candidate target. Collectively, our analysis identified novel miR-21 targets that are likely to play a causal role in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Aaron Balasingam Koenig
- Department of Pathology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
- Medical Student Research Program, The Ohio State University College of Medicine, Columbus, OH 43210, USA.
| | - Juan Martín Barajas
- Department of Pathology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | - María Jose Guerrero
- Department of Pathology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Kalpana Ghoshal
- Department of Pathology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
30
|
Fu TY, Wu CN, Sie HC, Cheng JT, Lin YS, Liou HH, Tseng YK, Shu CW, Tsai KW, Yen LM, Tseng HW, Tseng CJ, Ger LP, Liu PF. Subsite-specific association of DEAD box RNA helicase DDX60 with the development and prognosis of oral squamous cell carcinoma. Oncotarget 2018; 7:85097-85108. [PMID: 27835882 PMCID: PMC5356722 DOI: 10.18632/oncotarget.13197] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 10/28/2016] [Indexed: 01/05/2023] Open
Abstract
The clinical significance and biological function of DEXD/H box helicase 60 (DDX60) in oral cancer remains unknown. Herein, we evaluated the association of DDX60 expression with tumorigenesis and the prognosis of oral squamous cell carcinoma (OSCC). DDX60 expression was examined by immunohistochemistry on tissue microarray slides of 494 OSCC patients, including 180 buccal mucosal SCC (BMSCC), 241 tongue SCC (TSCC), and 73 lip SCC (LSCC) patients. DDX60 expression was significantly increased in all three subsites of OSCC compared to its expression in tumor adjacent normal tissues. However, its association with tumorigenesis was specific to the oral cavity subsite after the stratification of betel quid chewing, smoking, and drinking. Among OSCC patients, higher levels of DDX60 expression were associated with the male gender, a well-differentiated tumor, advanced stage of disease, and a large tumor size with subsite specific features. LSCC patients with high DDX60 expression levels showed shorter disease-specific survival, particularly those with moderately or poorly differentiated tumors. Additionally, TSCC or OSCC patients with high DDX60 expression showed a poor disease-free survival (DFS), particularly those with moderately or poorly differentiated tumors. Therefore, DDX60 is a novel and unfavorable biomarker for tumorigenesis and prognosis of OSCC in a subsite-specific manner.
Collapse
Affiliation(s)
- Ting-Ying Fu
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Optometry, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Chao-Nan Wu
- Department of Stomatology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Dental Technology, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Huei-Cin Sie
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Jiin-Tsuey Cheng
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yaoh-Shiang Lin
- Department of Otorhinolaryngology-Head & Neck Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Huei-Han Liou
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yu-Kai Tseng
- Department of Orthopedics, Show Chwan Memorial Hospital, Changhua, Taiwan.,Department of Orthopedics, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Chih-Wen Shu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Kuo-Wang Tsai
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Chemical Biology, National Pingtung University of Education, Pingtung, Taiwan
| | - Leing-Ming Yen
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Hui-Wen Tseng
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Nursing, Meiho University, Pingtung, Taiwan
| | - Ching-Jiunn Tseng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Luo-Ping Ger
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Pei-Feng Liu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Biotechnology, Fooyin University, Kaohsiung, Taiwan
| |
Collapse
|
31
|
Sloan KE, Bohnsack MT. Unravelling the Mechanisms of RNA Helicase Regulation. Trends Biochem Sci 2018; 43:237-250. [PMID: 29486979 DOI: 10.1016/j.tibs.2018.02.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/28/2018] [Accepted: 02/01/2018] [Indexed: 12/22/2022]
Abstract
RNA helicases are critical regulators at the nexus of multiple pathways of RNA metabolism, and in the complex cellular environment, tight spatial and temporal regulation of their activity is essential. Dedicated protein cofactors play key roles in recruiting helicases to specific substrates and modulating their catalytic activity. Alongside individual RNA helicase cofactors, networks of cofactors containing evolutionarily conserved domains such as the G-patch and MIF4G domains highlight the potential for cross-regulation of different aspects of gene expression. Structural analyses of RNA helicase-cofactor complexes now provide insight into the diverse mechanisms by which cofactors can elicit specific and coordinated regulation of RNA helicase action. Furthermore, post-translational modifications (PTMs) and long non-coding RNA (lncRNA) regulators have recently emerged as novel modes of RNA helicase regulation.
Collapse
Affiliation(s)
- Katherine E Sloan
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany; Göttingen Center for Molecular Biosciences, University of Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| |
Collapse
|
32
|
Tao S, Jiao Z, Wen G, Zhang L, Wang G. Cloning and expression analysis of the DEAD-box/RNA helicase Oslaf-1 in Ovomermis sinensis. PLoS One 2018; 13:e0192101. [PMID: 29408876 PMCID: PMC5800602 DOI: 10.1371/journal.pone.0192101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/18/2018] [Indexed: 11/28/2022] Open
Abstract
Ovomermis sinensis is a potentially-valuable nematode for controlling insect pests. The parasitic stage of the nematode absorbs nutrients in its host’s hemolymph to maintain its growth development and then kills the host when it emerges. At present, little known about its reproductive development, particularly the responsible molecular mechanism. More detailed research on the genes of reproductive development will not only help us understand the mechanisms underlying sex differentiation in the nematode, but would also be valuable for successfully cultivating them in vitro and using them for biocontrol. In this study, we used the homology cloning method to clone the full-length cDNA of a DEAD-box family gene (Oslaf-1) from O. sinensis. Then, using qRT-PCR technology to detect the expression pattern of the Oslaf-1 gene at different development stages and tissues, the gene was found to be highly expressed in the post-parasitic stage (P < 0.01) and ovarian (P < 0.05) of O. sinensis. Western blot analysis showed the same result that the gene is associated with gonadal development and function, but is not gonad-specific. In situ hybridization further demonstrated that the gene is widely expressed in early embryos and is mainly distributed in the gonadal area. However, the signal was mainly concentrated in the reproductive primordia in pre-parasitic juveniles. RNA interference (RNAi) studies revealed that the sex ratio of O. sinensis soaked in dsRNA of Oslaf-1 was not statistically different than the gfp dsRNA treated groups. Our results suggest that Oslaf-1 may play a vital role in the reproductive systems of the nematode. In addition, we speculate that the Oslaf-1 gene plays an important role during embryonic development and that it occurs and develops in the gonads of pre-parasitic juveniles of O. sinensis.
Collapse
Affiliation(s)
- Siying Tao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Zhenlong Jiao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Guigui Wen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Lihong Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Guoxiu Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
33
|
Moon BS, Bai J, Cai M, Liu C, Shi J, Lu W. Kruppel-like factor 4-dependent Staufen1-mediated mRNA decay regulates cortical neurogenesis. Nat Commun 2018; 9:401. [PMID: 29374155 PMCID: PMC5785957 DOI: 10.1038/s41467-017-02720-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 12/18/2017] [Indexed: 11/10/2022] Open
Abstract
Kruppel-like factor 4 (Klf4) is a zinc-finger-containing protein that plays a critical role in diverse cellular physiology. While most of these functions attribute to its role as a transcription factor, it is postulated that Klf4 may play a role other than transcriptional regulation. Here we demonstrate that Klf4 loss in neural progenitor cells (NPCs) leads to increased neurogenesis and reduced self-renewal in mice. In addition, Klf4 interacts with RNA-binding protein Staufen1 (Stau1) and RNA helicase Ddx5/17. They function together as a complex to maintain NPC self-renewal. We report that Klf4 promotes Stau1 recruitment to the 3'-untranslated region of neurogenesis-associated mRNAs, increasing Stau1-mediated mRNA decay (SMD) of these transcripts. Stau1 depletion abrogated SMD of target mRNAs and rescued neurogenesis defects in Klf4-overexpressing NPCs. Furthermore, Ddx5/17 knockdown significantly blocked Klf4-mediated mRNA degradation. Our results highlight a novel molecular mechanism underlying stability of neurogenesis-associated mRNAs controlled by the Klf4/Ddx5/17/Stau1 axis during mammalian corticogenesis.
Collapse
Affiliation(s)
- Byoung-San Moon
- Department of Stem Cell Biology and Regenerative Medicine, Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.,State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Jinlun Bai
- Department of Stem Cell Biology and Regenerative Medicine, Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Mingyang Cai
- Department of Stem Cell Biology and Regenerative Medicine, Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Chunming Liu
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Jiandang Shi
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Wange Lu
- Department of Stem Cell Biology and Regenerative Medicine, Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
34
|
Schudrowitz N, Takagi S, Wessel GM, Yajima M. Germline factor DDX4 functions in blood-derived cancer cell phenotypes. Cancer Sci 2017; 108:1612-1619. [PMID: 28612512 PMCID: PMC5543511 DOI: 10.1111/cas.13299] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/31/2017] [Accepted: 06/06/2017] [Indexed: 12/22/2022] Open
Abstract
DDX4 (the human ortholog of Drosophila Vasa) is an RNA helicase and is present in the germ lines of all metazoans tested. It was historically thought to be expressed specifically in germline, but with additional organisms studied, it is now clear that in some animals DDX4/Vasa functions outside of the germline, in a variety of somatic cells in the embryo and in the adult. In this report, we document that DDX4 is widely expressed in soma-derived cancer cell lines, including myeloma (IM-9) and leukemia (THP-1) cells. In these cells, the DDX4 protein localized to the mitotic spindle, consistent with findings in other somatic cell functions, and its knockout in IM-9 cells compromised cell proliferation and migration activities, and downregulated several cell cycle/oncogene factors such as CyclinB and the transcription factor E2F1. These results suggest that DDX4 positively regulates cell cycle progression of diverse somatic-derived blood cancer cells, implying its broad contributions to the cancer cell phenotype and serves as a potential new target for chemotherapy.
Collapse
Affiliation(s)
- Natalie Schudrowitz
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Satoshi Takagi
- Department of Medical Oncology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Gary M Wessel
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Mamiko Yajima
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, Rhode Island
| |
Collapse
|
35
|
Yoneyama-Hirozane M, Kondo M, Matsumoto SI, Morikawa-Oki A, Morishita D, Nakanishi A, Kawamoto T, Nakayama M. High-Throughput Screening to Identify Inhibitors of DEAD Box Helicase DDX41. SLAS DISCOVERY 2017; 22:1084-1092. [PMID: 28426938 DOI: 10.1177/2472555217705952] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The human DEAD (Asp-Glu-Ala-Asp) box protein DDX41, a member of the DEXDc helicase family, has nucleic acid-dependent ATPase and RNA and DNA translocase and unwinding activities. DDX41 is affected by somatic mutations in sporadic cases of myeloid neoplasms as well as in a biallelic fashion in 50% of patients with germline DDX41 mutations. The R525H mutation in DDX41 is thought to play important roles in the development of hereditary myelodysplastic syndrome and acute myelocytic leukemia. In this study, human DDX41 and its R525H mutant (R525H) were expressed in Escherichia coli and purified. The ATPase activities of the recombinant DDX41 and R525H proteins were dependent on both ATP and double-stranded DNA (dsDNA), such as poly(dG-dC) and poly(dA-dT). High-throughput screening was performed with a dsDNA-dependent ATPase assay using the human R525H proteins. After hit confirmation and counterscreening, several small-molecule inhibitors were successfully identified. These compounds show DDX41-selective inhibitory activities.
Collapse
Affiliation(s)
- Mariko Yoneyama-Hirozane
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Mitsuyo Kondo
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Shin-Ichi Matsumoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Akiko Morikawa-Oki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Daisuke Morishita
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Atsushi Nakanishi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Tomohiro Kawamoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Masaharu Nakayama
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| |
Collapse
|
36
|
Valdés A, García-Cañas V, Pérez-Sánchez A, Barrajón-Catalán E, Ruiz-Torres V, Artemenko KA, Micol V, Bergquist J, Cifuentes A. Shotgun proteomic analysis to study the decrease of xenograft tumor growth after rosemary extract treatment. J Chromatogr A 2017; 1499:90-100. [PMID: 28389096 DOI: 10.1016/j.chroma.2017.03.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/23/2017] [Accepted: 03/25/2017] [Indexed: 12/18/2022]
Abstract
The antiproliferative activity of Rosemary (Rosmarinus officinalis) has been widely studied in different in vitro and in vivo models, which demonstrate that rosemary extracts inhibit the cellular proliferation due to its ability to interact with a wide spectrum of molecular targets. However, a comprehensive proteomics study in vivo has not been carried out yet. In the present work, the effects of rosemary extract on xenograft tumor growth has been studied and, for the first time, a shotgun proteomic analysis based on nano-LC-MS/MS together with stable isotope dimethyl labeling (DML) has been applied to investigate the global protein changes in vivo. Our results show that the daily administration of a polyphenol-enriched rosemary extract reduces the progression of colorectal cancer in vivo with the subsequent deregulation of 74 proteins. The bioinformatic analysis of these proteins indicates that the rosemary extract mainly alters the RNA Post-Transcriptional Modification, the Protein Synthesis and the Amino Acid Metabolism functions and suggests the inactivation of the oncogene MYC. These results demonstrate the high utility of the proposed analytical methodology to determine, simultaneously, the expression levels of a large number of protein biomarkers and to generate new hypothesis about the molecular mechanisms of this extract in vivo.
Collapse
Affiliation(s)
- Alberto Valdés
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC), Nicolas Cabrera 9, 28049, Madrid, Spain
| | - Virginia García-Cañas
- Molecular Nutrition and Metabolism, Institute of Food Science Research (CIAL, CSIC), Nicolas Cabrera 9, 28049 Madrid, Spain
| | - Almudena Pérez-Sánchez
- Institute of Molecular and Cellular Biology, Miguel Hernández University, Avda. Universidad s/n, Elche 03202, Spain
| | - Enrique Barrajón-Catalán
- Institute of Molecular and Cellular Biology, Miguel Hernández University, Avda. Universidad s/n, Elche 03202, Spain
| | - Verónica Ruiz-Torres
- Institute of Molecular and Cellular Biology, Miguel Hernández University, Avda. Universidad s/n, Elche 03202, Spain
| | - Konstantin A Artemenko
- Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, Husargatan 3, 75124 Uppsala, Sweden
| | - Vicente Micol
- Institute of Molecular and Cellular Biology, Miguel Hernández University, Avda. Universidad s/n, Elche 03202, Spain; CIBER, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (CB12/03/30038), Spain
| | - Jonas Bergquist
- Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, Husargatan 3, 75124 Uppsala, Sweden
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC), Nicolas Cabrera 9, 28049, Madrid, Spain.
| |
Collapse
|
37
|
Poon J, Wessel GM, Yajima M. An unregulated regulator: Vasa expression in the development of somatic cells and in tumorigenesis. Dev Biol 2016; 415:24-32. [PMID: 27179696 PMCID: PMC4902722 DOI: 10.1016/j.ydbio.2016.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 02/08/2023]
Abstract
Growing evidence in diverse organisms shows that genes originally thought to function uniquely in the germ line may also function in somatic cells, and in some cases even contribute to tumorigenesis. Here we review the somatic functions of Vasa, one of the most conserved "germ line" factors among metazoans. Vasa expression in somatic cells is tightly regulated and often transient during normal development, and appears to play essential roles in regulation of embryonic cells and regenerative tissues. Its dysregulation, however, is believed to be an important element of tumorigenic cell regulation. In this perspectives paper, we propose how some conserved functions of Vasa may be selected for somatic cell regulation, including its potential impact on efficient and localized translational activities and in some cases on cellular malfunctioning and tumorigenesis.
Collapse
Affiliation(s)
- Jessica Poon
- MCB Department, Brown University, 185 Meeting Street, BOX-GL173, Providence, RI 02912, USA
| | - Gary M Wessel
- MCB Department, Brown University, 185 Meeting Street, BOX-GL173, Providence, RI 02912, USA
| | - Mamiko Yajima
- MCB Department, Brown University, 185 Meeting Street, BOX-GL173, Providence, RI 02912, USA.
| |
Collapse
|
38
|
Riquelme Medina I, Lubovac-Pilav Z. Gene Co-Expression Network Analysis for Identifying Modules and Functionally Enriched Pathways in Type 1 Diabetes. PLoS One 2016; 11:e0156006. [PMID: 27257970 PMCID: PMC4892488 DOI: 10.1371/journal.pone.0156006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/06/2016] [Indexed: 12/16/2022] Open
Abstract
Type 1 diabetes (T1D) is a complex disease, caused by the autoimmune destruction of the insulin producing pancreatic beta cells, resulting in the body’s inability to produce insulin. While great efforts have been put into understanding the genetic and environmental factors that contribute to the etiology of the disease, the exact molecular mechanisms are still largely unknown. T1D is a heterogeneous disease, and previous research in this field is mainly focused on the analysis of single genes, or using traditional gene expression profiling, which generally does not reveal the functional context of a gene associated with a complex disorder. However, network-based analysis does take into account the interactions between the diabetes specific genes or proteins and contributes to new knowledge about disease modules, which in turn can be used for identification of potential new biomarkers for T1D. In this study, we analyzed public microarray data of T1D patients and healthy controls by applying a systems biology approach that combines network-based Weighted Gene Co-Expression Network Analysis (WGCNA) with functional enrichment analysis. Novel co-expression gene network modules associated with T1D were elucidated, which in turn provided a basis for the identification of potential pathways and biomarker genes that may be involved in development of T1D.
Collapse
Affiliation(s)
| | - Zelmina Lubovac-Pilav
- Bioinformatics research group, School of Biosciences, University of Skövde, Skövde, Sweden
- * E-mail:
| |
Collapse
|
39
|
van Aubel G, Cambier P, Dieu M, Van Cutsem P. Plant immunity induced by COS-OGA elicitor is a cumulative process that involves salicylic acid. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 247:60-70. [PMID: 27095400 DOI: 10.1016/j.plantsci.2016.03.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/11/2016] [Accepted: 03/11/2016] [Indexed: 05/23/2023]
Abstract
Plant innate immunity offers considerable opportunities for plant protection but beside flagellin and chitin, not many molecules and their receptors have been extensively characterized and very few have successfully reached the field. COS-OGA, an elicitor that combines cationic chitosan oligomers (COS) with anionic pectin oligomers (OGA), efficiently protected tomato (Solanum lycopersicum) grown in greenhouse against powdery mildew (Leveillula taurica). Leaf proteomic analysis of plants sprayed with COS-OGA showed accumulation of Pathogenesis-Related proteins (PR), especially subtilisin-like proteases. qRT-PCR confirmed upregulation of PR-proteins and salicylic acid (SA)-related genes while expression of jasmonic acid/ethylene-associated genes was not modified. SA concentration and class III peroxidase activity were increased in leaves and appeared to be a cumulative process dependent on the number of sprayings with the elicitor. These results suggest a systemic acquired resistance (SAR) mechanism of action of the COS-OGA elicitor and highlight the importance of repeated applications to ensure efficient protection against disease.
Collapse
Affiliation(s)
- Géraldine van Aubel
- Research Unit in Plant Cellular and Molecular Biology, University of Namur, Belgium
| | - Pierre Cambier
- Research Unit in Plant Cellular and Molecular Biology, University of Namur, Belgium
| | - Marc Dieu
- Laboratory of Cellular Biochemistry and Biology, University of Namur, Belgium
| | - Pierre Van Cutsem
- Research Unit in Plant Cellular and Molecular Biology, University of Namur, Rue de Bruxelles, 61, B-5000 Namur, Belgium.
| |
Collapse
|
40
|
Chen CY, Chan CH, Chen CM, Tsai YS, Tsai TY, Wu Lee YH, You LR. Targeted inactivation of murine Ddx3x: essential roles of Ddx3x in placentation and embryogenesis. Hum Mol Genet 2016; 25:2905-2922. [PMID: 27179789 DOI: 10.1093/hmg/ddw143] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/30/2016] [Accepted: 05/09/2016] [Indexed: 12/17/2022] Open
Abstract
The X-linked DEAD-box RNA helicase DDX3 (DDX3X) is a multifunctional protein that has been implicated in gene regulation, cell cycle control, apoptosis, and tumorigenesis. However, the precise physiological function of Ddx3x during development remains unknown. Here, we show that loss of Ddx3x results in an early post-implantation lethality in male mice. The size of the epiblast marked by Oct3/4 is dramatically reduced in embryonic day 6.5 (E6.5) Ddx3x-/Y embryos. Preferential paternal X chromosome inactivation (XCI) in extraembryonic tissues of Ddx3x heterozygous (Ddx3x-/+) female mice with a maternally inherited null allele leads to placental abnormalities and embryonic lethality during development. In the embryonic tissues, Ddx3x exhibits developmental- and tissue-specific differences in escape from XCI. Targeted Ddx3x ablation in the epiblast leads to widespread apoptosis and abnormal growth, which causes embryonic lethality in the Sox2-cre/+;Ddx3xflox/Y mutant around E11.5. The observation of significant increases in γH2AX and p-p53Ser15 indicates DNA damage, which suggests that loss of Ddx3x leads to higher levels of genome damage. Significant upregulation of p21WAF1/Cip1 and p15Ink4b results in cell cycle arrest and apoptosis in Ddx3x-deficient cells. These results have uncovered that mouse Ddx3x is essential for both embryo and extraembryonic development.
Collapse
Affiliation(s)
| | | | - Chun-Ming Chen
- Department of Life Sciences and Institute of Genome Sciences.,VYM Genome Research Center, National Yang-Ming University, Taipei 112, Taiwan
| | | | | | - Yan-Hwa Wu Lee
- Institute of Biochemistry and Molecular Biology .,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Li-Ru You
- Institute of Biochemistry and Molecular Biology .,VYM Genome Research Center, National Yang-Ming University, Taipei 112, Taiwan
| |
Collapse
|
41
|
Seo M, Park S, Nam HG, Lee SJV. RNA helicase SACY-1 is required for longevity caused by various genetic perturbations in Caenorhabditis elegans. Cell Cycle 2016; 15:1821-9. [PMID: 27153157 DOI: 10.1080/15384101.2016.1183845] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RNA helicases, which unwind RNAs, are essential for RNA metabolism and homeostasis. However, the roles of RNA helicases in specific physiological processes remain poorly understood. We recently reported that an RNA helicase, HEL-1, promotes long lifespan conferred by reduced insulin/insulin-like growth factor-1 (IGF-1) signaling (IIS) in Caenorhabditis elegans. We also showed that HEL-1 induces the expression of longevity genes by physically interacting with Forkhead box O (FOXO) transcription factor. Thus, the HEL-1 RNA helicase appears to regulate lifespan by specifically activating FOXO in IIS. In the current study, we report another longevity-promoting RNA helicase, Suppressor of ACY-4 sterility 1 (SACY-1). SACY-1 contributed to the longevity of daf-2/insulin/IGF-1 receptor mutants. Unlike HEL-1, SACY-1 was also required for the longevity due to mutations in genes involved in non-IIS pathways. Thus, SACY-1 appears to function as a general longevity factor for various signaling pathways, which is different from the specific function of HEL-1.
Collapse
Affiliation(s)
- Mihwa Seo
- a Department of Life Sciences , Pohang University of Science and Technology , Pohang , Korea
| | - Sangsoon Park
- a Department of Life Sciences , Pohang University of Science and Technology , Pohang , Korea
| | - Hong Gil Nam
- d Center for Plant Aging Research, Institute for Basic Science, DGIST , Daegu , Korea.,e Department of New Biology , DGIST , Daegu , Korea
| | - Seung-Jae V Lee
- a Department of Life Sciences , Pohang University of Science and Technology , Pohang , Korea.,b School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology , Pohang , Korea.,c Information Technology Convergence Engineering, Pohang University of Science and Technology , Pohang , Korea
| |
Collapse
|
42
|
Time-Course Analysis of Brain Regional Expression Network Responses to Chronic Intermittent Ethanol and Withdrawal: Implications for Mechanisms Underlying Excessive Ethanol Consumption. PLoS One 2016; 11:e0146257. [PMID: 26730594 PMCID: PMC4701666 DOI: 10.1371/journal.pone.0146257] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/15/2015] [Indexed: 01/17/2023] Open
Abstract
Long lasting abusive consumption, dependence, and withdrawal are characteristic features of alcohol use disorders (AUD). Mechanistically, persistent changes in gene expression are hypothesized to contribute to brain adaptations leading to ethanol toxicity and AUD. We employed repeated chronic intermittent ethanol (CIE) exposure by vapor chamber as a mouse model to simulate the cycles of ethanol exposure and withdrawal commonly seen with AUD. This model has been shown to induce progressive ethanol consumption in rodents. Brain CIE-responsive expression networks were identified by microarray analysis across five regions of the mesolimbic dopamine system and extended amygdala with tissue harvested from 0-hours to 7-days following CIE. Weighted Gene Correlated Network Analysis (WGCNA) was used to identify gene networks over-represented for CIE-induced temporal expression changes across brain regions. Differential gene expression analysis showed that long-lasting gene regulation occurred 7-days after the final cycle of ethanol exposure only in prefrontal cortex (PFC) and hippocampus. Across all brain regions, however, ethanol-responsive expression changes occurred mainly within the first 8-hours after removal from ethanol. Bioinformatics analysis showed that neuroinflammatory responses were seen across multiple brain regions at early time-points, whereas co-expression modules related to neuroplasticity, chromatin remodeling, and neurodevelopment were seen at later time-points and in specific brain regions (PFC or HPC). In PFC a module containing Bdnf was identified as highly CIE responsive in a biphasic manner, with peak changes at 0 hours and 5 days following CIE, suggesting a possible role in mechanisms underlying long-term molecular and behavioral response to CIE. Bioinformatics analysis of this network and several other modules identified Let-7 family microRNAs as potential regulators of gene expression changes induced by CIE. Our results suggest a complex temporal and regional pattern of widespread gene network responses involving neuroinflammatory and neuroplasticity related genes as contributing to physiological and behavioral responses to chronic ethanol.
Collapse
|
43
|
The expression of RNA helicase DDX5 is transcriptionally upregulated by calcitriol through a vitamin D response element in the proximal promoter in SiHa cervical cells. Mol Cell Biochem 2015; 410:65-73. [DOI: 10.1007/s11010-015-2538-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/18/2015] [Indexed: 12/22/2022]
|
44
|
Le Bihan MC, Barrio-Hernandez I, Mortensen TP, Henningsen J, Jensen SS, Bigot A, Blagoev B, Butler-Browne G, Kratchmarova I. Cellular Proteome Dynamics during Differentiation of Human Primary Myoblasts. J Proteome Res 2015; 14:3348-61. [DOI: 10.1021/acs.jproteome.5b00397] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Marie-Catherine Le Bihan
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Inigo Barrio-Hernandez
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Tenna Pavia Mortensen
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Jeanette Henningsen
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Søren Skov Jensen
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Anne Bigot
- Center
for Research in Myology, Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS975, CNRS FRE3617, 75013 Paris, France
| | - Blagoy Blagoev
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Gillian Butler-Browne
- Center
for Research in Myology, Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS975, CNRS FRE3617, 75013 Paris, France
| | - Irina Kratchmarova
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
45
|
Proteomic Analysis of Immature Fraxinus mandshurica Cotyledon Tissues during Somatic Embryogenesis: Effects of Explant Browning on Somatic Embryogenesis. Int J Mol Sci 2015; 16:13692-713. [PMID: 26084048 PMCID: PMC4490518 DOI: 10.3390/ijms160613692] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/10/2015] [Indexed: 11/30/2022] Open
Abstract
Manchurian ash (Fraxinus mandshurica Rupr.) is a valuable hardwood species in Northeast China. In cultures of F. mandshurica, somatic embryos were produced mainly on browned explants. Therefore, we studied the mechanism of explant browning and its relationship with somatic embryogenesis (SE). We used explants derived from F. mandshurica immature zygotic embryo cotyledons as materials. Proteins were extracted from browned embryogenic explants, browned non-embryogenic explants, and non-brown explants, and then separated by 2-dimensional electrophoresis. Differentially and specifically expressed proteins were analyzed by mass spectrometry to identify proteins involved in the browning of explants and SE. Some stress response and defense proteins such as chitinases, peroxidases, aspartic proteinases, and an osmotin-like protein played important roles during SE of F. mandshurica. Our results indicated that explant browning might not be caused by the accumulation and oxidation of polyphenols only, but also by some stress-related processes, which were involved in programmed cell death (PCD), and then induced SE.
Collapse
|
46
|
Yajima M, Wessel GM. Essential elements for translation: the germline factor Vasa functions broadly in somatic cells. Development 2015; 142:1960-70. [PMID: 25977366 PMCID: PMC4460737 DOI: 10.1242/dev.118448] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 03/30/2015] [Indexed: 01/23/2023]
Abstract
Vasa is a conserved RNA-helicase found in the germ lines of all metazoans tested. Whereas Vasa presence is often indicated as a metric for germline determination in animals, it is also expressed in stem cells of diverse origin. Recent research suggests, however, that Vasa has a much broader function, including a significant role in cell cycle regulation. Results herein indicate that Vasa is utilized widely, and often induced transiently, during development in diverse somatic cells and adult precursor tissues. We identified that Vasa in the sea urchin is essential for: (1) general mRNA translation during embryogenesis, (2) developmental re-programming upon manipulations to the embryo and (3) larval wound healing. We also learned that Vasa interacted with mRNAs in the perinuclear area and at the spindle in an Importin-dependent manner during cell cycle progression. These results suggest that, when present, Vasa functions are essential to contributing to developmental regulation.
Collapse
Affiliation(s)
- Mamiko Yajima
- MCB Department, Brown University, 185 Meeting Street, BOX-GL173, Providence, RI 02912, USA
| | - Gary M Wessel
- MCB Department, Brown University, 185 Meeting Street, BOX-GL173, Providence, RI 02912, USA
| |
Collapse
|
47
|
Shi D, Dai C, Qin J, Gu W. Negative regulation of the p300-p53 interplay by DDX24. Oncogene 2015; 35:528-36. [PMID: 25867071 PMCID: PMC4603993 DOI: 10.1038/onc.2015.77] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 02/09/2015] [Accepted: 02/16/2015] [Indexed: 12/15/2022]
Abstract
Numerous studies indicate that p300 acts as a key transcriptional cofactor in vivo, at least, in part, through modulating activities of p53 by acetylation. Nevertheless, the regulation of the p53-p300 interplay is not completely understood. Here, we have identified the DEAD box RNA helicase DDX24 as a novel regulator of the p300-p53 axis. We found that DDX24 interacts with p300, and this interaction leads to suppression of p300 mediated acetylation of p53. Notably, RNAi-mediated knockdown of endogenous DDX24 significantly increases the acetylation levels of endogenous p53 in human cancer cells and subsequently promotes p53-mediated activation of its transcriptional targets such as p21 and PUMA. In contrast, DDX24 expression inhibits the p300-p53 interaction and suppresses p300-mediated acetylation of p53. Moreover, DDX24 is overexpressed in human cancer cells and reduction of DDX24 protein levels by RNAi induces cell cycle arrest and senescence in a p53 dependent manner. These results reveal DDX24 as an important regulator of p300 and suggest that the modulation of the p53-p300 interplay by DDX24 is critical in controlling p53 activities in human cancer cells.
Collapse
Affiliation(s)
- D Shi
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - C Dai
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - J Qin
- Departments of Biochemistry and Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - W Gu
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
48
|
Lentiviral DDX46 knockdown inhibits growth and induces apoptosis in human colorectal cancer cells. Gene 2015; 560:237-44. [DOI: 10.1016/j.gene.2015.02.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/26/2015] [Accepted: 02/08/2015] [Indexed: 12/11/2022]
|
49
|
Abstract
In eukaryotic organisms, the orthologs of the DEAD-box RNA helicase Ded1p from yeast and DDX3 from human form a well-defined subfamily that is characterized by high sequence conservation in their helicase core and their N- and C- termini. Individual members of this Ded1/DDX3 subfamily perform multiple functions in RNA metabolism in both nucleus and cytoplasm. Ded1/DDX3 subfamily members have also been implicated in cellular signaling pathways and are targeted by diverse viruses. In this review, we discuss the considerable body of work on the biochemistry and biology of these proteins, including the recently discovered link of human DDX3 to tumorigenesis.
Collapse
Affiliation(s)
- Deepak Sharma
- Center for RNA Molecular Biology & Department of Biochemistry, School of Medicine, Case Western Reserve University , Cleveland, OH , USA
| | | |
Collapse
|
50
|
Wessel GM, Brayboy L, Fresques T, Gustafson EA, Oulhen N, Ramos I, Reich A, Swartz SZ, Yajima M, Zazueta V. The biology of the germ line in echinoderms. Mol Reprod Dev 2014; 81:679-711. [PMID: 23900765 PMCID: PMC4102677 DOI: 10.1002/mrd.22223] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 07/23/2013] [Indexed: 12/16/2022]
Abstract
The formation of the germ line in an embryo marks a fresh round of reproductive potential. The developmental stage and location within the embryo where the primordial germ cells (PGCs) form, however, differs markedly among species. In many animals, the germ line is formed by an inherited mechanism, in which molecules made and selectively partitioned within the oocyte drive the early development of cells that acquire this material to a germ-line fate. In contrast, the germ line of other animals is fated by an inductive mechanism that involves signaling between cells that directs this specialized fate. In this review, we explore the mechanisms of germ-line determination in echinoderms, an early-branching sister group to the chordates. One member of the phylum, sea urchins, appears to use an inherited mechanism of germ-line formation, whereas their relatives, the sea stars, appear to use an inductive mechanism. We first integrate the experimental results currently available for germ-line determination in the sea urchin, for which considerable new information is available, and then broaden the investigation to the lesser-known mechanisms in sea stars and other echinoderms. Even with this limited insight, it appears that sea stars, and perhaps the majority of the echinoderm taxon, rely on inductive mechanisms for germ-line fate determination. This enables a strongly contrasted picture for germ-line determination in this phylum, but one for which transitions between different modes of germ-line determination might now be experimentally addressed.
Collapse
Affiliation(s)
- Gary M. Wessel
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Lynae Brayboy
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Tara Fresques
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Eric A. Gustafson
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Nathalie Oulhen
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Isabela Ramos
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Adrian Reich
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - S. Zachary Swartz
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Mamiko Yajima
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Vanessa Zazueta
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| |
Collapse
|