1
|
Gong Z, Guo J, Liu B, Guo Y, Cheng C, Jiang Y, Liang N, Hu M, Song T, Yang L, Li H, Zhang H, Zong X, Che Q, Shi N. Mechanisms of immune response and cell death in ischemic stroke and their regulation by natural compounds. Front Immunol 2024; 14:1287857. [PMID: 38274789 PMCID: PMC10808662 DOI: 10.3389/fimmu.2023.1287857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Ischemic stroke (IS), which is the third foremost cause of disability and death worldwide, has inflammation and cell death as its main pathological features. IS can lead to neuronal cell death and release factors such as damage-related molecular patterns, stimulating the immune system to release inflammatory mediators, thereby resulting in inflammation and exacerbating brain damage. Currently, there are a limited number of treatment methods for IS, which is a fact necessitating the discovery of new treatment targets. For this review, current research on inflammation and cell death in ischemic stroke was summarized. The complex roles and pathways of the principal immune cells (microglia, astrocyte, neutrophils, T lymphocytes, and monocytes/macrophage) in the immune system after IS in inflammation are discussed. The mechanisms of immune cell interactions and the cytokines involved in these interactions are summarized. Moreover, the cell death mechanisms (pyroptosis, apoptosis, necroptosis, PANoptosis, and ferroptosis) and pathways after IS are explored. Finally, a summary is provided of the mechanism of action of natural pharmacological active ingredients in the treatment of IS. Despite significant recent progress in research on IS, there remain many challenges that need to be overcome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Qianzi Che
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nannan Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Extracellular Ca2+ aggravates IgE-induced allergic reaction in mast cells through GPRC6A, a novel family C G-protein-coupled receptor. Life Sci 2022; 311:121013. [DOI: 10.1016/j.lfs.2022.121013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/17/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
|
3
|
Jiang SJ. Roles of transient receptor potential channel 6 in glucose-induced cardiomyocyte injury. World J Diabetes 2022; 13:338-357. [PMID: 35582666 PMCID: PMC9052005 DOI: 10.4239/wjd.v13.i4.338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/18/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a serious complication of end-stage diabetes that presents symptoms such as cardiac hypertrophy and heart failure. The transient receptor potential channel 6 (TRPC6) protein is a very important selective calcium channel that is closely related to the development of various cardiomyopathies.
AIM To explore whether TRPC6 affects cardiomyocyte apoptosis and proliferation inhibition in DCM.
METHODS We compared cardiac function and myocardial pathological changes in wild-type mice and mice injected with streptozotocin (STZ), in addition to comparing the expression of TRPC6 and P-calmodulin-dependent protein kinase II (P-CaMKII) in them. At the same time, we treated H9C2 cardiomyocytes with high glucose and then evaluated the effects of addition of SAR, a TRPC6 inhibitor, and KN-93, a CaMKII inhibitor, to such H9C2 cells in a high-glucose environment.
RESULTS We found that STZ-treated mice had DCM, decreased cardiac function, necrotic cardiomyocytes, and limited proliferation. Western blot and immunofluorescence were used to detect the expression levels of various appropriate proteins in the myocardial tissue of mice and H9C2 cells. Compared to those in the control group, the expression levels of the apoptosis-related proteins cleaved caspase 3 and Bax were significantly higher in the experimental group, while the expression of the proliferation-related proteins proliferating cell nuclear antigen (PCNA) and CyclinD1 was significantly lower. In vivo and in vitro, the expression of TRPC6 and P-CaMKII increased in a high-glucose environment. However, addition of inhibitors to H9C2 cells in a high-glucose environment resulted in alleviation of both apoptosis and proliferation inhibition.
CONCLUSION The inhibition of apoptosis and proliferation of cardiomyocytes in a high-glucose environment may be closely related to activation of the TRPC6/P-CaMKII pathway.
Collapse
Affiliation(s)
- Shi-Jun Jiang
- School of Basic Medicine, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
4
|
Sheth M, Esfandiari L. Bioelectric Dysregulation in Cancer Initiation, Promotion, and Progression. Front Oncol 2022; 12:846917. [PMID: 35359398 PMCID: PMC8964134 DOI: 10.3389/fonc.2022.846917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is primarily a disease of dysregulation – both at the genetic level and at the tissue organization level. One way that tissue organization is dysregulated is by changes in the bioelectric regulation of cell signaling pathways. At the basis of bioelectricity lies the cellular membrane potential or Vmem, an intrinsic property associated with any cell. The bioelectric state of cancer cells is different from that of healthy cells, causing a disruption in the cellular signaling pathways. This disruption or dysregulation affects all three processes of carcinogenesis – initiation, promotion, and progression. Another mechanism that facilitates the homeostasis of cell signaling pathways is the production of extracellular vesicles (EVs) by cells. EVs also play a role in carcinogenesis by mediating cellular communication within the tumor microenvironment (TME). Furthermore, the production and release of EVs is altered in cancer. To this end, the change in cell electrical state and in EV production are responsible for the bioelectric dysregulation which occurs during cancer. This paper reviews the bioelectric dysregulation associated with carcinogenesis, including the TME and metastasis. We also look at the major ion channels associated with cancer and current technologies and tools used to detect and manipulate bioelectric properties of cells.
Collapse
Affiliation(s)
- Maulee Sheth
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States
| | - Leyla Esfandiari
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Leyla Esfandiari,
| |
Collapse
|
5
|
Brouns I, Verckist L, Pintelon I, Timmermans JP, Adriaensen D. Pulmonary Sensory Receptors. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2021; 233:1-65. [PMID: 33950466 DOI: 10.1007/978-3-030-65817-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Inge Brouns
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium.
| | - Line Verckist
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| |
Collapse
|
6
|
Functional Exploration of the Pulmonary NEB ME. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2021; 233:31-67. [PMID: 33950469 DOI: 10.1007/978-3-030-65817-5_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Ganesan M, Mathews S, Makarov E, Petrosyan A, Kharbanda KK, Kidambi S, Poluektova LY, Casey CA, Osna NA. Acetaldehyde suppresses HBV-MHC class I complex presentation on hepatocytes via induction of ER stress and Golgi fragmentation. Am J Physiol Gastrointest Liver Physiol 2020; 319:G432-G442. [PMID: 32755306 PMCID: PMC7654643 DOI: 10.1152/ajpgi.00109.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alcohol consumption worsens hepatitis B virus (HBV) infection pathogenesis. We have recently reported that acetaldehyde suppressed HBV peptide-major histocompatibility complex I (MHC class I) complex display on hepatocytes, limiting recognition and subsequent removal of the infected hepatocytes by HBV-specific cytotoxic T lymphocytes (CTLs). This suppression was attributed to impaired processing of antigenic peptides by the proteasome. However, in addition to proteasome dysfunction, alcohol may induce endoplasmic reticulum (ER) stress and Golgi fragmentation in HBV-infected liver cells to reduce uploading of viral peptides to MHC class I and/or trafficking of this complex to the hepatocyte surface. Hence, the aim of this study was to elucidate whether alcohol-induced ER stress and Golgi fragmentation affect HBV peptide-MHC class I complex presentation on HBV+ hepatocytes. Here, we demonstrate that, while both acetaldehyde and HBV independently cause ER stress and Golgi fragmentation, the combined exposure provided an additive effect. Thus we observed an activation of the inositol-requiring enzyme 1α-X-box binding protein 1 and activation transcription factor (ATF)6α, but not the phospho PKR-like ER kinase-phospho eukaryotic initiation factor 2α-ATF4-C/EBP homologous protein arms of ER stress in HBV-transfected cells treated with acetaldehyde-generating system (AGS). In addition, Golgi proteins trans-Golgi network 46, GM130, and Giantin revealed punctate distribution, indicating Golgi fragmentation upon AGS exposure. Furthermore, the effects of acetaldehyde were reproduced by treatment with ER stress inducers, thapsigargin and tunicamycin, which also decreased the display of this complex and MHC class I turnover in HepG2.2.15 cells and HBV-infected primary human hepatocytes. Taken together, alcohol-induced ER stress and Golgi fragmentation contribute to the suppression of HBV peptide-MHC class I complex presentation on HBV+ hepatocytes, which may diminish their recognition by CTLs and promote persistence of HBV infection in hepatocytes.NEW & NOTEWORTHY Our current findings show that acetaldehyde accelerates endoplasmic reticulum (ER) stress by activating the unfolded protein response arms inositol-requiring enzyme 1α-X-box binding protein 1 and activation transcription factor (ATF)6α but not phospho PKR-like ER kinase-p eukaryotic initiation factor 2α-ATF4-C/EBP homologous protein in hepatitis B virus (HBV)-transfected HepG2.2.15 cells. It also potentiates Golgi fragmentation, as evident by punctate distribution of Golgi proteins, GM130, trans-Golgi network 46, and Giantin. While concomitantly increasing HBV DNA and HBV surface antigen titers, acetaldehyde-induced ER stress suppresses the presentation of HBV peptide-major histocompatibility complex I complexes on hepatocyte surfaces, thereby promoting the persistence of HBV infection in the liver.
Collapse
Affiliation(s)
- Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Saumi Mathews
- Department of Pharmacology and Experimental Neuroscience, Omaha, Nebraska
| | - Edward Makarov
- Department of Pharmacology and Experimental Neuroscience, Omaha, Nebraska
| | - Armen Petrosyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Srivatsan Kidambi
- Department of Chemical and Biomolecular Engineering, University of Nebraska at Lincoln, Nebraska
| | | | - Carol A Casey
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
8
|
|
9
|
Ganesan M, Eikenberry A, Poluektova LY, Kharbanda KK, Osna NA. Role of alcohol in pathogenesis of hepatitis B virus infection. World J Gastroenterol 2020; 26:883-903. [PMID: 32206001 PMCID: PMC7081008 DOI: 10.3748/wjg.v26.i9.883] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/09/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) and alcohol abuse often contribute to the development of end-stage liver disease. Alcohol abuse not only causes rapid progression of liver disease in HBV infected patients but also allows HBV to persist chronically. Importantly, the mechanism by which alcohol promotes the progression of HBV-associated liver disease are not completely understood. Potential mechanisms include a suppressed immune response, oxidative stress, endoplasmic reticulum and Golgi apparatus stresses, and increased HBV replication. Certainly, more research is necessary to gain a better understanding of these mechanisms such that treatment(s) to prevent rapid liver disease progression in alcohol-abusing HBV patients could be developed. In this review, we discuss the aforementioned factors for the higher risk of liver diseases in alcohol-induced HBV pathogenies and suggest the areas for future studies in this field.
Collapse
Affiliation(s)
- Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, United States
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, NE 68105, United States
| | - Allison Eikenberry
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, United States
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, NE 68105, United States
| | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, United States
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, NE 68105, United States
| | - Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, United States
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, NE 68105, United States
| |
Collapse
|
10
|
Agmatine modulates calcium handling in cardiomyocytes of hibernating ground squirrels through calcium-sensing receptor signaling. Cell Signal 2018; 51:1-12. [PMID: 30030121 DOI: 10.1016/j.cellsig.2018.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 11/20/2022]
Abstract
True hibernators are remarkable group of mammals whose hearts are resistant to such stressors as deep hypothermia, ischemia, arrhythmia. Capability of cardiac cells from hibernating species to effectively rule Ca2+ homeostasis during torpor is poorly studied. Better understanding of these mechanisms could allow to introduce new strategies for improvement the cardiac performance and may be useful for cardiovascular medicine. Here for the first time we have shown that the regulation of Ca2+ handling and thereby cardiomyocyte contractility by endogenous neurotransmitter agmatine occurs through the modulation of calcium-sensing receptor (CaSR). In isolated cardiocytes of hibernating ground squirrels generating stationary Ca2+ transients in the absence of actual myocellular excitation, low doses of this polyamine (up to 500 μM) induce the Gβγ-dependent activation of PI3-kinase with subsequent stimulation of Akt-kinase and nitric oxide (NO) production by endothelial NO-synthase (eNOS). NO production abolishes Ca2+ oscillations in virtue of the enhancement of Ca2+ reuptake by sarco(endo)plasmic Ca2+ ATPase (SERCA). Simultaneously, the activation of phospholipase A2 (PLA2) and arachidonic-acid dependent Ca2+ entry occur providing replenishment of Ca2+ store. High concentrations of agmatine (> 2 mM) induce other CaSR-mediated pathways involving phospholipase C (PLC) pathway, the formation of inositoltriphosphate (IP3) and diacylglicerol (DAG) followed by induction of their targets: IP3 receptors and protein kinase C isoforms (PKC), respectively. Furthermore, it is also responsible for the stimulation of PLA2 and elevation of intracellular calcium caused by arachidonic acid-regulated Ca2+-permeable (ARC) channels. Additionally, there is a potent store-operated Ca2+ entry (SOC) in cardiomyocyte. Negative (NPS 2143) and positive (R 568) allosteric modulators of CaSR recapitulate effects of low and high agmatine doses on Ca2+ handling and NO synthesis. These facts and the alteration of agmatine influence in response to an increase of extracellular Ca2+, which is the direct agonist of CaSR, may confirm the participation of CaSR in regulation of Ca2+ handling and excitability of cardiomyocytes by agmatine.
Collapse
|
11
|
Gerbino A, Colella M. The Different Facets of Extracellular Calcium Sensors: Old and New Concepts in Calcium-Sensing Receptor Signalling and Pharmacology. Int J Mol Sci 2018; 19:E999. [PMID: 29584660 PMCID: PMC5979557 DOI: 10.3390/ijms19040999] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 12/14/2022] Open
Abstract
The current interest of the scientific community for research in the field of calcium sensing in general and on the calcium-sensing Receptor (CaR) in particular is demonstrated by the still increasing number of papers published on this topic. The extracellular calcium-sensing receptor is the best-known G-protein-coupled receptor (GPCR) able to sense external Ca2+ changes. Widely recognized as a fundamental player in systemic Ca2+ homeostasis, the CaR is ubiquitously expressed in the human body where it activates multiple signalling pathways. In this review, old and new notions regarding the mechanisms by which extracellular Ca2+ microdomains are created and the tools available to measure them are analyzed. After a survey of the main signalling pathways triggered by the CaR, a special attention is reserved for the emerging concepts regarding CaR function in the heart, CaR trafficking and pharmacology. Finally, an overview on other Ca2+ sensors is provided.
Collapse
Affiliation(s)
- Andrea Gerbino
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70121 Bari, Italy.
| | - Matilde Colella
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70121 Bari, Italy.
| |
Collapse
|
12
|
Howarth FC, Qureshi MA, Jayaprakash P, Parekh K, Oz M, Dobrzynski H, Adrian TE. The Pattern of mRNA Expression Is Changed in Sinoatrial Node from Goto-Kakizaki Type 2 Diabetic Rat Heart. J Diabetes Res 2018; 2018:8454078. [PMID: 30246030 PMCID: PMC6139199 DOI: 10.1155/2018/8454078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/16/2018] [Accepted: 08/12/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND In vivo experiments in Goto-Kakizaki (GK) type 2 diabetic rats have demonstrated reductions in heart rate from a young age. The expression of genes encoding more than 70 proteins that are associated with the generation and conduction of electrical activity in the GK sinoatrial node (SAN) have been evaluated to further clarify the molecular basis of the low heart rate. MATERIALS AND METHODS Heart rate and expression of genes were evaluated with an extracellular electrode and real-time RT-PCR, respectively. Rats aged 12-13 months were employed in these experiments. RESULTS Isolated spontaneous heart rate was reduced in GK heart (161 ± 12 bpm) compared to controls (229 ± 11 bpm). There were many differences in expression of mRNA, and some of these differences were of particular interest. Compared to control SAN, expression of some genes were downregulated in GK-SAN: gap junction, Gja1 (Cx43), Gja5 (Cx40), Gjc1 (Cx45), and Gjd3 (Cx31.9); cell membrane transport, Trpc1 (TRPC1) and Trpc6 (TRPC6); hyperpolarization-activated cyclic nucleotide-gated channels, Hcn1 (HCN1) and Hcn4 (HCN4); calcium channels, Cacna1d (Cav1.3), Cacna1g (Cav3.1), Cacna1h (Cav3.2), Cacna2d1 (Cavα2δ1), Cacna2d3 (Cavα2δ3), and Cacng4 (Cav γ 4); and potassium channels, Kcna2 (Kv1.2), Kcna4 (Kv1.4), Kcna5 (Kv1.5), Kcnb1 (Kv2.1), Kcnd3 (Kv4.3), Kcnj2 (Kir2.1), Kcnk1 (TWIK1), Kcnk5 (K2P5.1), Kcnk6 (TWIK2), and Kcnn2 (SK2) whilst others were upregulated in GK-SAN: Ryr2 (RYR2) and Nppb (BNP). CONCLUSIONS This study provides new insight into the changing expression of genes in the sinoatrial node of diabetic heart.
Collapse
MESH Headings
- Action Potentials
- Animals
- Arrhythmias, Cardiac/etiology
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/physiopathology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetic Cardiomyopathies/etiology
- Diabetic Cardiomyopathies/genetics
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/physiopathology
- Disease Models, Animal
- Gene Expression Regulation
- Heart Rate/genetics
- Isolated Heart Preparation
- Male
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Wistar
- Sinoatrial Node/metabolism
- Sinoatrial Node/physiopathology
Collapse
Affiliation(s)
- F. C. Howarth
- Department of Physiology, College of Medicine & Health Sciences, UAE University, Al Ain, UAE
| | - M. A. Qureshi
- Department of Physiology, College of Medicine & Health Sciences, UAE University, Al Ain, UAE
| | - P. Jayaprakash
- Department of Pharmacology, College of Medicine & Health Sciences, UAE University, Al Ain, UAE
| | - K. Parekh
- Department of Physiology, College of Medicine & Health Sciences, UAE University, Al Ain, UAE
| | - M. Oz
- Department of Pharmacology, College of Medicine & Health Sciences, UAE University, Al Ain, UAE
| | - H. Dobrzynski
- Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - T. E. Adrian
- Department of Basic Medical Sciences, Mohammed Bin Rashid University of Medicine & Health Sciences, Dubai, UAE
| |
Collapse
|
13
|
Adding dimension to cellular mechanotransduction: Advances in biomedical engineering of multiaxial cell-stretch systems and their application to cardiovascular biomechanics and mechano-signaling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017. [DOI: 10.1016/j.pbiomolbio.2017.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Qu YY, Wang LM, Zhong H, Liu YM, Tang N, Zhu LP, He F, Hu QH. TRPC1 stimulates calcium‑sensing receptor‑induced store‑operated Ca2+ entry and nitric oxide production in endothelial cells. Mol Med Rep 2017; 16:4613-4619. [PMID: 28791397 PMCID: PMC5647016 DOI: 10.3892/mmr.2017.7164] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 11/29/2016] [Indexed: 11/13/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) via store-operated Ca2+ channels (SOCC), encoded by transient receptor potential canonical (TRPC) channel proteins, is an important underlying mechanism regulating intracellular Ca2+ concentration ([Ca2+]i) and various intracellular functions in endothelial cells (ECs). TRPC1, the probable candidate for SOCC, is expressed in ECs. Ca2+-sensing receptor (CaSR) is functionally expressed in vascular endothelium and is important in Ca2+ mobilization and cardiovascular functions. To date, there have been no reports demonstrating an association between CaSR and TRPC1 in ECs. The present study investigated the effects of TRPC1 on CaSR-induced Ca2+ influx and nitric oxide (NO) production in human umbilical vein ECs (HUVECs). TRPC1 and CaSR proteins in HUVECs were measured by immunostaining and western blot analysis. [Ca2+]i levels were measured using the Fura-2-acetoxymethyl ester method. The indicator 3-amino, 4-aminomethyl-2, 7-difluorescein diacetate was used to measure NO production in HUVECs. The expression of TRPC1 protein in HUVECs was silenced by transfecting HUVECs with small interfering RNA (siRNA) against TRPC1. Although changes in extracellular Ca2+ failed to alter [Ca2+]i in HUVECs, the CaSR agonist spermine increased [Ca2+]i and NO production in HUVECs. NO production in HUVECs was diminished in Ca2+-free medium or following treatment with a CaSR negative allosteric modulator (Calhex231), SOCC inhibitor (MRS1845) or TRPC inhibitor (SKF96365). The spermine-induced increases in [Ca2+]i and NO production were reduced in HUVECs transfected with TRPC1 siRNA. These results suggested that TRPC1 is a primary candidate in forming SOCC that stimulates CaSR-induced SOCE and NO production in HUVECs and is a potential therapeutic target for vascular diseases.
Collapse
Affiliation(s)
- Yuan-Yuan Qu
- Department of Pathophysiology and Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - La-Mei Wang
- Department of Pathophysiology and Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Hua Zhong
- Department of Pathophysiology and Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Yong-Min Liu
- Department of Pathophysiology and Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Na Tang
- Department of Pathophysiology and Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Li-Ping Zhu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology and Key Laboratory for Respiratory Diseases, Health Ministry of China, Wuhan, Hubei 430030, P.R. China
| | - Fang He
- Department of Pathophysiology and Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Qing-Hua Hu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology and Key Laboratory for Respiratory Diseases, Health Ministry of China, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
15
|
Wang MM, Li H, Zhang FF, Ma KT, Cao WW, Gu Q. [Role of calcium-sensing receptor in neonatal mice with persistent pulmonary hypertension]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:208-214. [PMID: 28202122 PMCID: PMC7389458 DOI: 10.7499/j.issn.1008-8830.2017.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 12/21/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVE To study the effect of calcium-sensing receptor (CaSR) agonists and antagonists on the expression of CaSR in neonatal mice with persistent pulmonary hypertension (PPHN), and to clarify the role of CaSR in neonatal mice with PPHN. METHODS Forty-nine neonatal mice were randomly divided into four groups: control (n=10), hypoxia (PPHN; n=11), agonist (n=13), and antagonist (n=15). The mice in the PPHN, agonist, and antagonist groups were exposed to an oxygen concentration of 12%, and those in the control group were exposed to the air. The mice in the agonist and antagonist groups were intraperitoneally injected with gadolinium chloride (16 mg/kg) and NPS2390 (1 mg/kg) respectively once daily. Those in the PPHN and the control groups were given normal saline daily. All the mice were treated for 14 consecutive days. Hematoxylin and eosin staining and immunohistochemistry were used to observe the changes in pulmonary vessels. Laser confocal microscopy was used to observe the site of CaSR expression and measure its content in lung tissues. qRT-PCR and Western blot were used to measure the mRNA and protein expression of CaSR in lung tissues. RESULTS Compared with the control group, the PPHN group had significant increases in the pulmonary small artery wall thickness and the ratio of right to left ventricular wall thickness (P<0.05), which suggested that the model was successfully prepared. Compared with the control group, the PPHN group had a significant increase in the mRNA and protein expression of CaSR (P<0.05), and the agonist group had a significantly greater increase (P<0.05); the antagonist group had a significant reduction in the mRNA and protein expression of CaSR (P<0.05). CONCLUSIONS CaSR may play an important role in the development of PPHN induced by hypoxia in neonatal mice.
Collapse
Affiliation(s)
- Meng-Meng Wang
- Department of Pediatrics, First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang 832000, China.
| | | | | | | | | | | |
Collapse
|
16
|
Ferdous Z, Qureshi MA, Jayaprakash P, Parekh K, John A, Oz M, Raza H, Dobrzynski H, Adrian TE, Howarth FC. Different Profile of mRNA Expression in Sinoatrial Node from Streptozotocin-Induced Diabetic Rat. PLoS One 2016; 11:e0153934. [PMID: 27096430 PMCID: PMC4838258 DOI: 10.1371/journal.pone.0153934] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 04/06/2016] [Indexed: 11/30/2022] Open
Abstract
Background Experiments in isolated perfused heart have shown that heart rate is lower and sinoatrial node (SAN) action potential duration is longer in streptozotocin (STZ)–induced diabetic rat compared to controls. In sino-atrial preparations the pacemaker cycle length and sino-atrial conduction time are prolonged in STZ heart. To further clarify the molecular basis of electrical disturbances in the diabetic heart the profile of mRNA encoding a wide variety of proteins associated with the generation and transmission of electrical activity has been evaluated in the SAN of STZ-induced diabetic rat heart. Methodology/Principal Findings Heart rate was measured in isolated perfused heart with an extracellular suction electrode. Expression of mRNA encoding a variety of intercellular proteins, intracellular Ca2+-transport and regulatory proteins, cell membrane transport proteins and calcium, sodium and potassium channel proteins were measured in SAN and right atrial (RA) biopsies using real-time reverse transcription polymerase chain reaction techniques. Heart rate was lower in STZ (203±7 bpm) compared to control (239±11 bpm) rat. Among many differences in the profile of mRNA there are some worthy of particular emphasis. Expression of genes encoding some proteins were significantly downregulated in STZ-SAN: calcium channel, Cacng4 (7-fold); potassium channel, Kcnd2 whilst genes encoding some other proteins were significantly upregulated in STZ-SAN: gap junction, Gjc1; cell membrane transport, Slc8a1, Trpc1, Trpc6 (4-fold); intracellular Ca2+-transport, Ryr3; calcium channel Cacna1g, Cacna1h, Cacnb3; potassium channels, Kcnj5, Kcnk3 and natriuretic peptides, Nppa (5-fold) and Nppb (7-fold). Conclusions/Significance Collectively, this study has demonstrated differences in the profile of mRNA encoding a variety of proteins that are associated with the generation, conduction and regulation of electrical signals in the SAN of STZ-induced diabetic rat heart. Data from this study will provide a basis for a substantial range of future studies to investigate whether these changes in mRNA translate into changes in electrophysiological function.
Collapse
Affiliation(s)
- Zannatul Ferdous
- Department of Physiology, College of Medicine & Health Sciences, UAE University, Al Ain, UAE
| | - Muhammad Anwar Qureshi
- Department of Physiology, College of Medicine & Health Sciences, UAE University, Al Ain, UAE
| | - Petrilla Jayaprakash
- Department of Physiology, College of Medicine & Health Sciences, UAE University, Al Ain, UAE
| | - Khatija Parekh
- Department of Physiology, College of Medicine & Health Sciences, UAE University, Al Ain, UAE
| | - Annie John
- Department of Biochemistry, College of Medicine & Health Sciences, UAE University, Al Ain, UAE
| | - Murat Oz
- Department of Pharmacology, College of Medicine & Health Sciences, UAE University, Al AIn, UAE
| | - Haider Raza
- Department of Biochemistry, College of Medicine & Health Sciences, UAE University, Al Ain, UAE
| | - Halina Dobrzynski
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Thomas Edward Adrian
- Department of Physiology, College of Medicine & Health Sciences, UAE University, Al Ain, UAE
| | | |
Collapse
|
17
|
Bouron A, Chauvet S, Dryer S, Rosado JA. Second Messenger-Operated Calcium Entry Through TRPC6. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:201-49. [PMID: 27161231 DOI: 10.1007/978-3-319-26974-0_10] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Canonical transient receptor potential 6 (TRPC6) proteins assemble into heteromultimeric structures forming non-selective cation channels. In addition, many TRPC6-interacting proteins have been identified like some enzymes, channels, pumps, cytoskeleton-associated proteins, immunophilins, or cholesterol-binding proteins, indicating that TRPC6 are engaged into macromolecular complexes. Depending on the cell type and the experimental conditions used, TRPC6 activity has been reported to be controlled by diverse modalities. For instance, the second messenger diacylglycerol, store-depletion, the plant extract hyperforin or H2O2 have all been shown to trigger the opening of TRPC6 channels. A well-characterized consequence of TRPC6 activation is the elevation of the cytosolic concentration of Ca(2+). This latter response can reflect the entry of Ca(2+) through open TRPC6 channels but it can also be due to the Na(+)/Ca(2+) exchanger (operating in its reverse mode) or voltage-gated Ca(2+) channels (recruited in response to a TRPC6-mediated depolarization). Although TRPC6 controls a diverse array of biological functions in many tissues and cell types, its pathophysiological functions are far from being fully understood. This chapter covers some key features of TRPC6, with a special emphasis on their biological significance in kidney and blood cells.
Collapse
Affiliation(s)
- Alexandre Bouron
- Université Grenoble Alpes, 38000, Grenoble, France. .,CNRS, iRTSV-LCBM, 38000, Grenoble, France.
| | - Sylvain Chauvet
- Université Grenoble Alpes, 38000, Grenoble, France.,CNRS, iRTSV-LCBM, 38000, Grenoble, France
| | - Stuart Dryer
- University of Houston, Houston, TX, USA.,Baylor College of Medicine, Houston, TX, USA
| | - Juan A Rosado
- Departamento de Fisiología, University of Extremadura, Cáceres, Spain
| |
Collapse
|
18
|
Yang F, Luo J. Endoplasmic Reticulum Stress and Ethanol Neurotoxicity. Biomolecules 2015; 5:2538-53. [PMID: 26473940 PMCID: PMC4693246 DOI: 10.3390/biom5042538] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/02/2015] [Accepted: 09/21/2015] [Indexed: 12/21/2022] Open
Abstract
Ethanol abuse affects virtually all organ systems and the central nervous system (CNS) is particularly vulnerable to excessive ethanol exposure. Ethanol exposure causes profound damages to both the adult and developing brain. Prenatal ethanol exposure induces fetal alcohol spectrum disorders (FASD) which is associated with mental retardation and other behavioral deficits. A number of potential mechanisms have been proposed for ethanol-induced brain damage; these include the promotion of neuroinflammation, interference with signaling by neurotrophic factors, induction of oxidative stress, modulation of retinoid acid signaling, and thiamine deficiency. The endoplasmic reticulum (ER) regulates posttranslational protein processing and transport. The accumulation of unfolded or misfolded proteins in the ER lumen triggers ER stress and induces unfolded protein response (UPR) which are mediated by three transmembrane ER signaling proteins: pancreatic endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1), and activating transcription factor 6 (ATF6). UPR is initiated to protect cells from overwhelming ER protein loading. However, sustained ER stress may result in cell death. ER stress has been implied in various CNS injuries, including brain ischemia, traumatic brain injury, and aging-associated neurodegeneration, such as Alzheimer's disease (AD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD). However, effects of ethanol on ER stress in the CNS receive less attention. In this review, we discuss recent progress in the study of ER stress in ethanol-induced neurotoxicity. We also examine the potential mechanisms underlying ethanol-mediated ER stress and the interaction among ER stress, oxidative stress and autophagy in the context of ethanol neurotoxicity.
Collapse
Affiliation(s)
- Fanmuyi Yang
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, 132 Health Sciences Research Building, 1095 Veterans Drive, Lexington, KY 40536, USA.
| | - Jia Luo
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, 132 Health Sciences Research Building, 1095 Veterans Drive, Lexington, KY 40536, USA.
| |
Collapse
|
19
|
Yamamura A, Ohara N, Tsukamoto K. Inhibition of Excessive Cell Proliferation by Calcilytics in Idiopathic Pulmonary Arterial Hypertension. PLoS One 2015; 10:e0138384. [PMID: 26375676 PMCID: PMC4574199 DOI: 10.1371/journal.pone.0138384] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/28/2015] [Indexed: 11/19/2022] Open
Abstract
Idiopathic pulmonary arterial hypertension (IPAH) is a rare and progressive disease of unknown pathogenesis. Vascular remodeling due to excessive proliferation of pulmonary arterial smooth muscle cells (PASMCs) is a critical pathogenic event that leads to early morbidity and mortality. The excessive cell proliferation is closely linked to the augmented Ca2+ signaling in PASMCs. More recently, we have shown by an siRNA knockdown method that the Ca2+-sensing receptor (CaSR) is upregulated in PASMCs from IPAH patients, involved in the enhanced Ca2+ response and subsequent excessive cell proliferation. In this study, we examined whether pharmacological blockade of CaSR attenuated the excessive proliferation of PASMCs from IPAH patients by MTT assay. The proliferation rate of PASMCs from IPAH patients was much higher (~1.5-fold) than that of PASMCs from normal subjects and patients with chronic thromboembolic pulmonary hypertension (CTEPH). Treatment with NPS2143, an antagonist of CaSR or calcilytic, clearly suppressed the cell proliferation in a concentration-dependent manner (IC50 = 2.64 μM) in IPAH-PASMCs, but not in normal and CTEPH PASMCs. Another calcilytic, Calhex 231, which is structurally unrelated to NPS2143, also concentration-dependently inhibited the excessive proliferation of IPAH-PASMCs (IC50 = 1.89 μM). In contrast, R568, an activator of CaSR or calcimimetic, significantly facilitated the proliferation of IPAH-PASMCs (EC50 = 0.33 μM). Similar results were obtained by BrdU incorporation assay. These results reveal that the excessive PASMC proliferation was modulated by pharmacological tools of CaSR, showing us that calcilytics are useful for a novel therapeutic approach for pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Aya Yamamura
- Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
- * E-mail:
| | - Naoki Ohara
- Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
| | - Kikuo Tsukamoto
- Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
| |
Collapse
|
20
|
Wu QY, Sun MR, Wu CL, Li Y, Du JJ, Zeng JY, Bi HL, Sun YH. Activation of calcium-sensing receptor increases TRPC3/6 expression in T lymphocyte in sepsis. Mol Immunol 2014; 64:18-25. [PMID: 25467798 DOI: 10.1016/j.molimm.2014.10.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/23/2014] [Indexed: 01/17/2023]
Abstract
Sepsis is a systemic inflammatory response syndrome induced by infection. T Lymphocytes play an important role in this disease. Transient receptor potential (TRP) channels and calcium-sensing receptors (CaSR) are expressed in lymphocytes to promote intracellular Ca(2+) release. However, data about the link between CaSR and TRP channels in septic T lymphocytes are few. In this study, by Ca(2+) imaging and Western blotting, we found that in septic rat peripheral blood T lymphocytes expressions of TRPC3 and TRPC6 proteins are higher. The SR/ER Ca(2+) ATPase inhibitor thapsigargin (TG) and CaSR agonist NPS R-568 also increased expressions of TRPC3 and TRPC6 proteins, which were reversed by PLC-IP3 channel blocker U73122 and TRPC channels inhibitor SKF96365. By Ca(2+) imaging, we found that the depletion of ER Ca(2+) stores by TG elicited a transient rise in cytoplasmic Ca(2+), followed by sustained increase depending on extracellular Ca(2+). But, SKF96365, not Verapamil (L-type channels inhibitor) and NiCl2 (Na(+)/Ca(2+) exchanger inhibitor), inhibited the relatively high [Ca(2+)]i. NPS R-568 also resulted in the same effect, and the duration of [Ca(2+)]i increase was eliminated completely by U73122 and was reduced in the absence of [Ca(2+)]o. NPS R-568 and TG increased the apoptotic ratio of septic T lymphocytes, which can be suppressed by SKF96365 and U73122. These results suggested that CaSR activation promoted the expression of TRPC3 and TRPC6 and enhanced T lymphocytes apoptosis through PLC-IP3 signaling pathway in sepsis.
Collapse
Affiliation(s)
- Qiu-yue Wu
- Department of Clinical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Ming-rui Sun
- Department of Pharmacology, Qiqihaer Medical College, Qiqihaer 160001, China
| | - Chun-li Wu
- Department of Clinical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yang Li
- Department of Rheumatology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jing-jing Du
- Department of Clinical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jing-ya Zeng
- Department of Clinical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Hai-liang Bi
- Department of Clinical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yi-hua Sun
- Department of Clinical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
21
|
Li H, Sun Y, Zheng H, Li L, Yu Q, Yao X. Parathyroid hormone-related protein overexpression protects goat mammary gland epithelial cells from calcium-sensing receptor activation-induced apoptosis. Mol Biol Rep 2014; 42:233-43. [DOI: 10.1007/s11033-014-3763-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/20/2014] [Indexed: 12/12/2022]
|
22
|
Wu CL, Wu QY, Du JJ, Zeng JY, Li TT, Xu CQ, Sun YH. Calcium-sensing receptor in the T lymphocyte enhanced the apoptosis and cytokine secretion in sepsis. Mol Immunol 2014; 63:337-42. [PMID: 25256599 DOI: 10.1016/j.molimm.2014.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 12/29/2022]
Abstract
Calcium-sensing receptor (CaSR) is a member of the G protein-coupled receptor superfamily that existed in lymphocytes and promoted cytokine secretion. Lymphocytes are also involved in sepsis. However, the role of CaSR in lymphocytes in sepsis is unclear. In this study, we want to examine whether the CaSR in lymphocytes in sepsis is involved in the cytokine secretions and apoptosis and make clear the relationship between NF-κB and MAPK signal transduction pathways. We investigated the issues mentioned earlier using Western blotting, ELISA, and Flow Cytometry. The sepsis was remodeled by cecal ligation and puncture (CLP). We found that CaSR protein expression increased in the peripheral blood T lymphocytes in CLP rats. The calcimimetic R568 (NPS R568) promoted, whereas the calcilytic NPS 2143 attenuated, signaling pathways proteins P65 (subunit of NF-κB), ERK1/2, and JNK (one subgroup of MAPKs) phosphorylation. However, P-P38 and P-JAKs exhibit no significant changes. Furthermore, the production TNF-α and IL-4 was greater in CLP rats than in normal rats, and NPS R568 promoted secretion of these cytokines. Simultaneously, the apoptotic ratio of T cells in CLP increased, and NPS R 568 exacerbated the apoptosis degree. However, these effects could also be inhibited by U0126 or SP600125 (MAPKs pathway inhibitor) or Bay-11-7082 or (NF-κB pathway inhibitor). From these results, we can conclude that, in the sepsis, CaSR activation promoted T-cell apoptosis and the secretion of pro-inflammatory cytokine TNF-α and anti-inflammatory cytokines IL-4 probably through NF-κB and partial MAPK signal transduction pathways.
Collapse
Affiliation(s)
- Chun-li Wu
- Department of Clinical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Qiu-yue Wu
- Department of Clinical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jing-jing Du
- Department of Clinical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jing-ya Zeng
- Department of Clinical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Ting-ting Li
- Department of Clinical Laboratory, Daqing Affiliated School of Harbin Medical University, Daqing 150000, China
| | - Chang-qing Xu
- Department of Pathophysiology, Harbin Medical University, Harbin 150086, China
| | - Yi-hua Sun
- Department of Clinical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
23
|
Permeation, regulation and control of expression of TRP channels by trace metal ions. Pflugers Arch 2014; 467:1143-64. [PMID: 25106481 PMCID: PMC4435931 DOI: 10.1007/s00424-014-1590-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/10/2014] [Accepted: 07/13/2014] [Indexed: 01/26/2023]
Abstract
Transient receptor potential (TRP) channels form a diverse family of cation channels comprising 28 members in mammals. Although some TRP proteins can only be found on intracellular membranes, most of the TRP protein isoforms reach the plasma membrane where they form ion channels and control a wide number of biological processes. There, their involvement in the transport of cations such as calcium and sodium has been well documented. However, a growing number of studies have started to expand our understanding of these proteins by showing that they also transport other biologically relevant metal ions like zinc, magnesium, manganese and cobalt. In addition to this newly recognized property, the activity and expression of TRP channels can be regulated by metal ions like magnesium, gadolinium, lanthanum or cisplatin. The aim of this review is to highlight the complex relationship between metal ions and TRP channels.
Collapse
|
24
|
Meng K, Xu J, Zhang C, Zhang R, Yang H, Liao C, Jiao J. Calcium sensing receptor modulates extracellular calcium entry and proliferation via TRPC3/6 channels in cultured human mesangial cells. PLoS One 2014; 9:e98777. [PMID: 24905090 PMCID: PMC4048219 DOI: 10.1371/journal.pone.0098777] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/07/2014] [Indexed: 12/31/2022] Open
Abstract
Calcium-sensing receptor (CaSR) has been demonstrated to be present in several tissues and cells unrelated to systemic calcium homeostasis, where it regulates a series of diverse cellular functions. A previous study indicated that CaSR is expressed in mouse glomerular mesangial cells (MCs), and stimulation of CaSR induces cell proliferation. However, the signaling cascades initiated by CaSR activation in MCs are currently unknown. In this study, our data demonstrate that CaSR mRNA and protein are expressed in a human mesangial cell line. Activating CaSR with high extracellular Ca2+ concentration ([Ca2+]o) or spermine induces a phospholipase C (PLC)-dependent increase in intracellular Ca2+ concentration ([Ca2+]i). Interestingly, the CaSR activation-induced increase in [Ca2+]i results not only from intracellular Ca2+ release from internal stores but also from canonical transient receptor potential (TRPC)-dependent Ca2+ influx. This increase in Ca2+ was attenuated by treatment with a nonselective TRPC channel blocker but not by treatment with a voltage-gated calcium blocker or Na+/Ca2+ exchanger inhibitor. Furthermore, stimulation of CaSR by high [Ca2+]o enhanced the expression of TRPC3 and TRPC6 but not TRPC1 and TRPC4, and siRNA targeting TRPC3 and TRPC6 attenuated the CaSR activation-induced [Ca2+]i increase. Further experiments indicate that 1-oleoyl-2-acetyl-sn-glycerol (OAG), a known activator of receptor-operated calcium channels, significantly enhances the CaSR activation-induced [Ca2+]i increase. Moreover, under conditions in which intracellular stores were already depleted with thapsigargin (TG), CaSR agonists also induced an increase in [Ca2+]i, suggesting that calcium influx stimulated by CaSR agonists does not require the release of calcium stores. Finally, our data indicate that pharmacological inhibition and knock down of TRPC3 and TRPC6 attenuates the CaSR activation-induced cell proliferation in human MCs. With these data, we conclude that CaSR activation mediates Ca2+ influx and cell proliferation via TRPC3 and TRPC6 in human MCs.
Collapse
Affiliation(s)
- Kexin Meng
- Department of Nephrology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jia Xu
- Department of Nephrology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Chengwei Zhang
- Department of Nephrology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Rui Zhang
- Department of Nephrology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - He Yang
- Department of Nephrology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Chang Liao
- Department of Nephrology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jundong Jiao
- Department of Nephrology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Institute of Nephrology, Harbin Medical University, Harbin, China
- * E-mail:
| |
Collapse
|
25
|
Albarran L, Berna-Erro A, Dionisio N, Redondo PC, Lopez E, Lopez JJ, Salido GM, Brull Sabate JM, Rosado JA. TRPC6 participates in the regulation of cytosolic basal calcium concentration in murine resting platelets. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:789-96. [DOI: 10.1016/j.bbamcr.2014.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 01/12/2014] [Accepted: 01/13/2014] [Indexed: 10/25/2022]
|
26
|
Lang F, Stournaras C. Ion channels in cancer: future perspectives and clinical potential. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130108. [PMID: 24493756 DOI: 10.1098/rstb.2013.0108] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ion transport across the cell membrane mediated by channels and carriers participate in the regulation of tumour cell survival, death and motility. Moreover, the altered regulation of channels and carriers is part of neoplastic transformation. Experimental modification of channel and transporter activity impacts tumour cell survival, proliferation, malignant progression, invasive behaviour or therapy resistance of tumour cells. A wide variety of distinct Ca(2+) permeable channels, K(+) channels, Na(+) channels and anion channels have been implicated in tumour growth and metastasis. Further experimental information is, however, needed to define the specific role of individual channel isoforms critically important for malignancy. Compelling experimental evidence supports the assumption that the pharmacological inhibition of ion channels or their regulators may be attractive targets to counteract tumour growth, prevent metastasis and overcome therapy resistance of tumour cells. This short review discusses the role of Ca(2+) permeable channels, K(+) channels, Na(+) channels and anion channels in tumour growth and metastasis and the therapeutic potential of respective inhibitors.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, University of Tuebingen, , Gmelinstrasse 5, Tübingen 72076, Germany
| | | |
Collapse
|
27
|
Kim EC, Choi SK, Lim M, Yeon SI, Lee YH. Role of endogenous ENaC and TRP channels in the myogenic response of rat posterior cerebral arteries. PLoS One 2013; 8:e84194. [PMID: 24391909 PMCID: PMC3877230 DOI: 10.1371/journal.pone.0084194] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/12/2013] [Indexed: 02/02/2023] Open
Abstract
AIMS Mechanogated ion channels are predicted to mediate pressure-induced myogenic vasoconstriction in small resistance arteries. Recent findings have indicated that transient receptor potential (TRP) channels and epithelial sodium channels (ENaC) are involved in mechanotransduction. The purpose of this study was to investigate the role of TRP channels and ENaC in the myogenic response. Our previous study suggested that ENaC could be a component of the mechanosensitive ion channels in rat posterior cerebral arteries (PCA). However, the specific ion channel proteins mediating myogenic constriction are unknown. Here we found, for the first time, that ENaC interacted with TRPM4 but not with TRPC6 using immunoprecipitation and confocal microscopy. METHODS AND RESULTS Treatment with a specific βENaC inhibitor, amiloride, a specific TRPM4 inhibitor, 9-phenanthrol, and a TRPC6 inhibitor, SKF96365, resulted in inhibition of the pressure-induced myogenic response. Moreover, the myogenic response was inhibited in rat PCA transfected with small interfering RNA of βENaC, TRPM4, and TRPC6. Co-treatment with amiloride and 9-phenanthrol showed a similar inhibitory effect on myogenic contraction compared to single treatment with amiloride or 9-phenanthrol. The myogenic response was not affected by 9-phenanthrol or amiloride treatment in PCA transfected with βENaC or TRPM4 siRNA, respectively. However, pressure-induced myogenic response was fully inhibited by co-treatment with amiloride, 9-phenanthrol, and SKF96365, and by treatment with SKF96365 in PCA transfected with βENaC siRNA. CONCLUSION Our results suggest that ENaC, TRPM4, and TRPC6 play important roles in the pressure-induced myogenic response, and that ENaC and TRPM4 interact in rat PCA.
Collapse
Affiliation(s)
- Eok-Cheon Kim
- Department of Physiology, College of Medicine, Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Soo-Kyoung Choi
- Department of Physiology, College of Medicine, Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Mihwa Lim
- Department of Physiology, College of Medicine, Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Soo-In Yeon
- Department of Physiology, College of Medicine, Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Young-Ho Lee
- Department of Physiology, College of Medicine, Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
- * E-mail:
| |
Collapse
|
28
|
Abstract
Cell shrinkage is a hallmark and contributes to signaling of apoptosis. Apoptotic cell shrinkage requires ion transport across the cell membrane involving K(+) channels, Cl(-) or anion channels, Na(+)/H(+) exchange, Na(+),K(+),Cl(-) cotransport, and Na(+)/K(+)ATPase. Activation of K(+) channels fosters K(+) exit with decrease of cytosolic K(+) concentration, activation of anion channels triggers exit of Cl(-), organic osmolytes, and HCO3(-). Cellular loss of K(+) and organic osmolytes as well as cytosolic acidification favor apoptosis. Ca(2+) entry through Ca(2+)-permeable cation channels may result in apoptosis by affecting mitochondrial integrity, stimulating proteinases, inducing cell shrinkage due to activation of Ca(2+)-sensitive K(+) channels, and triggering cell-membrane scrambling. Signaling involved in the modification of cell-volume regulatory ion transport during apoptosis include mitogen-activated kinases p38, JNK, ERK1/2, MEKK1, MKK4, the small G proteins Cdc42, and/or Rac and the transcription factor p53. Osmosensing involves integrin receptors, focal adhesion kinases, and tyrosine kinase receptors. Hyperosmotic shock leads to vesicular acidification followed by activation of acid sphingomyelinase, ceramide formation, release of reactive oxygen species, activation of the tyrosine kinase Yes with subsequent stimulation of CD95 trafficking to the cell membrane. Apoptosis is counteracted by mechanisms involved in regulatory volume increase (RVI), by organic osmolytes, by focal adhesion kinase, and by heat-shock proteins. Clearly, our knowledge on the interplay between cell-volume regulatory mechanisms and suicidal cell death is still far from complete and substantial additional experimental effort is needed to elucidate the role of cell-volume regulatory mechanisms in suicidal cell death.
Collapse
Affiliation(s)
- Florian Lang
- Institute of Physiology, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
29
|
Lembrechts R, Brouns I, Schnorbusch K, Pintelon I, Kemp PJ, Timmermans JP, Riccardi D, Adriaensen D. Functional expression of the multimodal extracellular calcium-sensing receptor in pulmonary neuroendocrine cells. J Cell Sci 2013; 126:4490-501. [PMID: 23886943 DOI: 10.1242/jcs.131656] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Ca(2+)-sensing receptor (CaSR) is the master regulator of whole-body extracellular free ionized [Ca(2+)]o. In addition to sensing [Ca(2+)]o, CaSR integrates inputs from a variety of different physiological stimuli. The CaSR is also expressed in many regions outside the [Ca(2+)]o homeostatic system, including the fetal lung where it plays a crucial role in lung development. Here, we show that neuroepithelial bodies (NEBs) of the postnatal mouse lung express a functional CaSR. NEBs are densely innervated groups of neuroendocrine epithelial cells in the lung representing complex sensory receptors in the airways and exhibiting stem cell characteristics. qRT-PCR performed on laser microdissected samples from GAD67-GFP mouse lung cryosections revealed exclusive expression of the CaSR in the NEB microenvironment. CaSR immunoreactivity was present at NEB cells from postnatal day 14 onwards. Confocal imaging of lung slices revealed that NEB cells responded to an increase of [Ca(2+)]o with a rise in intracellular Ca(2+) ([Ca(2+)]i); an effect mimicked by several membrane-impermeant CaSR agonists (e.g. the calcimimetic R-568) and that was blocked by the calcilytic Calhex-231. Block of TRPC channels attenuated the CaSR-dependent increases in [Ca(2+)]i, suggesting that Ca(2+) influx through TRPC channels contributes to the total [Ca(2+)]i signal evoked by the CaSR in NEBs. CaSR also regulated baseline [Ca(2+)]i in NEBs and, through paracrine signaling from Clara-like cells, coordinated intercellular communication in the NEB microenvironment. These data suggest that the NEB CaSR integrates multiple signals converging on this complex chemosensory unit, and is a key regulator of this intrapulmonary airway stem cell niche.
Collapse
Affiliation(s)
- Robrecht Lembrechts
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, BE-2020 Antwerp, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Yamamura A, Yamamura H, Guo Q, Zimnicka AM, Wan J, Ko EA, Smith KA, Pohl NM, Song S, Zeifman A, Makino A, Yuan JXJ. Dihydropyridine Ca(2+) channel blockers increase cytosolic [Ca(2+)] by activating Ca(2+)-sensing receptors in pulmonary arterial smooth muscle cells. Circ Res 2013; 112:640-50. [PMID: 23300272 DOI: 10.1161/circresaha.113.300897] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE An increase in cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) in pulmonary arterial smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction and an important stimulus for PASMC proliferation and pulmonary vascular remodeling. The dihydropyridine Ca(2+) channel blockers, such as nifedipine, have been used for treatment of idiopathic pulmonary arterial hypertension (IPAH). OBJECTIVE Our previous study demonstrated that the Ca(2+)-sensing receptor (CaSR) was upregulated and the extracellular Ca(2+)-induced increase in [Ca(2+)](cyt) was enhanced in PASMC from patients with IPAH and animals with experimental pulmonary hypertension. Here, we report that the dihydropyridines (eg, nifedipine) increase [Ca(2+)](cyt) by activating CaSR in PASMC from IPAH patients (in which CaSR is upregulated), but not in normal PASMC. METHODS AND RESULTS The nifedipine-mediated increase in [Ca(2+)](cyt) in IPAH-PASMC was concentration dependent with a half maximal effective concentration of 0.20 µmol/L. Knockdown of CaSR with siRNA in IPAH-PASMC significantly inhibited the nifedipine-induced increase in [Ca(2+)](cyt), whereas overexpression of CaSR in normal PASMC conferred the nifedipine-induced rise in [Ca(2+)](cyt). Other dihydropyridines, nicardipine and Bay K8644, had similar augmenting effects on the CaSR-mediated increase in [Ca(2+)](cyt) in IPAH-PASMC; however, the nondihydropyridine blockers, such as diltiazem and verapamil, had no effect on the CaSR-mediated rise in [Ca(2+)](cyt). CONCLUSIONS The dihydropyridine derivatives increase [Ca(2+)](cyt) by potentiating the activity of CaSR in PASMC independently of their blocking (or activating) effect on Ca(2+) channels; therefore, it is possible that the use of dihydropyridine Ca(2+) channel blockers (eg, nifedipine) to treat IPAH patients with upregulated CaSR in PASMC may exacerbate pulmonary hypertension.
Collapse
Affiliation(s)
- Aya Yamamura
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep, and Allergy Medicine and Department of Pharmacology, Institute for Personalized Respiratory Medicine, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Li T, Sun M, Yin X, Wu C, Wu Q, Feng S, Li H, Luan Y, Wen J, Yan L, Zhao B, Xu C, Sun Y. Expression of the calcium sensing receptor in human peripheral blood T lymphocyte and its contribution to cytokine secretion through MAPKs or NF-κB pathways. Mol Immunol 2012; 53:414-20. [PMID: 23103379 DOI: 10.1016/j.molimm.2012.09.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/13/2012] [Accepted: 09/24/2012] [Indexed: 11/18/2022]
Abstract
The calcium-sensing receptor (CaSR) has been reported to play an important role in many tissues and organs. However, studies about the expression and function of CaSR in T lymphocytes are still not very lucid. In this study, we investigated the above-mentioned issues using RT-PCR, immunofluorescence staining, Western blotting, and the ELISA techniques. We found that the CaSR protein was expressed, and mainly located in the membrane in the normal human peripheral blood T lymphocytes. GdCl(3) (an agonist of CaSR) increased the dose-dependency of the CaSR expression, which was abolished by NPS2390 (an inhibitor of CaSR). GdCl(3) and Ca(2+) increased the phosphorylation of extracellular signal-regulated kinase (ERK)1/2 (one subgroup of MAPKs) and P65 (subunit of NF-κB),but, they had no significant effects on the JNK and P38 subgroups of MAPKs. Meantime, GdCl(3) and Ca(2+) stimulated both the IL-6 and TNF-β releases and their mRNA expressions. However, these effects of GdCl(3) and Ca(2+) were inhibited by NPS2390, U0126 (MAPKs pathway inhibitor) or Bay-11-7082 (NF-κB pathway inhibitor). These results suggested that CaSR was functionally expressed in the T cells, and the activated CaSR contributed to the cytokine secretion through the partial MAPK and NF-κB pathways.
Collapse
Affiliation(s)
- Tingting Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Chu W, Wan L, Zhao D, Qu X, Cai F, Huo R, Wang N, Zhu J, Zhang C, Zheng F, Cai R, Dong D, Lu Y, Yang B. Mild hypoxia-induced cardiomyocyte hypertrophy via up-regulation of HIF-1α-mediated TRPC signalling. J Cell Mol Med 2012; 16:2022-34. [PMID: 22129453 PMCID: PMC3822973 DOI: 10.1111/j.1582-4934.2011.01497.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 11/23/2011] [Indexed: 11/30/2022] Open
Abstract
Hypoxia-inducible factor-1 alpha (HIF-1α) is a central transcriptional regulator of hypoxic response. The present study was designed to investigate the role of HIF-1α in mild hypoxia-induced cardiomyocytes hypertrophy and its underlying mechanism. Mild hypoxia (MH, 10% O(2)) caused hypertrophy in cultured neonatal rat cardiac myocytes, which was accompanied with increase of HIF-1α mRNA and accumulation of HIF-1α protein in nuclei. Transient receptor potential canonical (TRPC) channels including TRPC3 and TRPC6, except for TRPC1, were increased, and Ca(2+)-calcineurin signals were also enhanced in a time-dependent manner under MH condition. MH-induced cardiomyocytes hypertrophy, TRPC up-regulation and enhanced Ca(2+)-calcineurin signals were inhibited by an HIF-1α specific blocker, SC205346 (30 μM), whereas promoted by HIF-1α overexpression. Electrophysiological voltage-clamp demonstrated that DAG analogue, OAG (30 μM), induced TRPC current by as much as 170% in neonatal rat cardiomyocytes overexpressing HIF-1α compared to negative control. These results implicate that HIF-1α plays a key role in development of cardiac hypertrophy in responses to hypoxic stress. Its mechanism is associated with up-regulating TRPC3, TRPC6 expression, activating TRPC current and subsequently leading to enhanced Ca(2+)-calcineurin signals.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Calcineurin/genetics
- Calcineurin/metabolism
- Cardiomegaly/genetics
- Cardiomegaly/pathology
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Cells, Cultured
- Cloning, Molecular
- Fluorescent Antibody Technique
- Humans
- Hypertrophy
- Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Rats
- Rats, Wistar
- Sequence Analysis, DNA
- Signal Transduction/genetics
- TRPC Cation Channels/genetics
- TRPC Cation Channels/metabolism
- Transfection
- Up-Regulation
Collapse
Affiliation(s)
- Wenfeng Chu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical UniversityHarbin, Heilongjiang, China
| | - Lin Wan
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical UniversityHarbin, Heilongjiang, China
| | - Dan Zhao
- Department of Pharmacy, the 2nd Affiliated Hospital, Harbin Medical UniversityHarbin, Heilongjiang, China
| | - Xuefeng Qu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical UniversityHarbin, Heilongjiang, China
| | - Fulai Cai
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical UniversityHarbin, Heilongjiang, China
| | - Rong Huo
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical UniversityHarbin, Heilongjiang, China
| | - Ning Wang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical UniversityHarbin, Heilongjiang, China
| | - Jiuxin Zhu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical UniversityHarbin, Heilongjiang, China
| | - Chun Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical UniversityHarbin, Heilongjiang, China
| | - Fangfang Zheng
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical UniversityHarbin, Heilongjiang, China
| | - Ruijun Cai
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical UniversityHarbin, Heilongjiang, China
| | - Deli Dong
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical UniversityHarbin, Heilongjiang, China
| | - Yanjie Lu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical UniversityHarbin, Heilongjiang, China
| | - Baofeng Yang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical UniversityHarbin, Heilongjiang, China
| |
Collapse
|
33
|
Signaling through the extracellular calcium-sensing receptor (CaSR). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:103-42. [PMID: 22453940 DOI: 10.1007/978-94-007-2888-2_5] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The extracellular calcium ([Formula: see text])-sensing receptor (CaSR) was the first GPCR identified whose principal physiological ligand is an ion, namely extracellular Ca(2+). It maintains the near constancy of [Formula: see text] that complex organisms require to ensure normal cellular function. A wealth of information has accumulated over the past two decades about the CaSR's structure and function, its role in diseases and CaSR-based therapeutics. This review briefly describes the CaSR and key features of its structure and function, then discusses the extracellular signals modulating its activity, provides an overview of the intracellular signaling pathways that it controls, and, finally, briefly describes CaSR signaling both in tissues participating in [Formula: see text] homeostasis as well as those that do not. Factors controlling CaSR signaling include various factors affecting the expression of the CaSR gene as well as modulation of its trafficking to and from the cell surface. The dimeric cell surface CaSR, in turn, links to various heterotrimeric and small molecular weight G proteins to regulate intracellular second messengers, lipid kinases, various protein kinases, and transcription factors that are part of the machinery enabling the receptor to modulate the functions of the wide variety of cells in which it is expressed. CaSR signaling is impacted by its interactions with several binding partners in addition to signaling elements per se (i.e., G proteins), including filamin-A and caveolin-1. These latter two proteins act as scaffolds that bind signaling components and other key cellular elements (e.g., the cytoskeleton). Thus CaSR signaling likely does not take place randomly throughout the cell, but is compartmentalized and organized so as to facilitate the interaction of the receptor with its various signaling pathways.
Collapse
|
34
|
Mechanisms of alcohol-induced endoplasmic reticulum stress and organ injuries. Biochem Res Int 2011; 2012:216450. [PMID: 22110961 PMCID: PMC3205771 DOI: 10.1155/2012/216450] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 08/31/2011] [Indexed: 12/19/2022] Open
Abstract
Alcohol is readily distributed throughout the body in the blood stream and crosses biological membranes, which affect virtually all biological processes inside the cell. Excessive alcohol consumption induces numerous pathological stress responses, part of which is endoplasmic reticulum (ER) stress response. ER stress, a condition under which unfolded/misfolded protein accumulates in the ER, contributes to alcoholic disorders of major organs such as liver, pancreas, heart, and brain. Potential mechanisms that trigger the alcoholic ER stress response are directly or indirectly related to alcohol metabolism, which includes toxic acetaldehyde and homocysteine, oxidative stress, perturbations of calcium or iron homeostasis, alterations of S-adenosylmethionine to S-adenosylhomocysteine ratio, and abnormal epigenetic modifications. Interruption of the ER stress triggers is anticipated to have therapeutic benefits for alcoholic disorders.
Collapse
|
35
|
Hirschler-Laszkiewicz I, Tong Q, Waybill K, Conrad K, Keefer K, Zhang W, Chen SJ, Cheung JY, Miller BA. The transient receptor potential (TRP) channel TRPC3 TRP domain and AMP-activated protein kinase binding site are required for TRPC3 activation by erythropoietin. J Biol Chem 2011; 286:30636-30646. [PMID: 21757714 DOI: 10.1074/jbc.m111.238360] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Modulation of intracellular calcium ([Ca(2+)](i)) by erythropoietin (Epo) is an important signaling pathway controlling erythroid proliferation and differentiation. Transient receptor potential (TRP) channels TRPC3 and homologous TRPC6 are expressed on normal human erythroid precursors, but Epo stimulates an increase in [Ca(2+)](i) through TRPC3 but not TRPC6. Here, the role of specific domains in the different responsiveness of TRPC3 and TRPC6 to erythropoietin was explored. TRPC3 and TRPC6 TRP domains differ in seven amino acids. Substitution of five amino acids (DDKPS) in the TRPC3 TRP domain with those of TRPC6 (EERVN) abolished the Epo-stimulated increase in [Ca(2+)](i). Substitution of EERVN in TRPC6 TRP domain with DDKPS in TRPC3 did not confer Epo responsiveness. However, substitution of TRPC6 TRP with DDKPS from TRPC3 TRP, as well as swapping the TRPC6 distal C terminus (C2) with that of TRPC3, resulted in a chimeric TRPC6 channel with Epo responsiveness similar to TRPC3. Substitution of TRPC6 with TRPC3 TRP and the putative TRPC3 C-terminal AMP-activated protein kinase (AMPK) binding site straddling TRPC3 C1/C2 also resulted in TRPC6 activation. In contrast, substitution of the TRPC3 C-terminal leucine zipper motif or TRPC3 phosphorylation sites Ser-681, Ser-708, or Ser-764 with TRPC6 sequence did not affect TRPC3 Epo responsiveness. TRPC3, but not TRPC6, and TRPC6 chimeras expressing TRPC3 C2 showed significantly increased plasma membrane insertion following Epo stimulation and substantial cytoskeletal association. The TRPC3 TRP domain, distal C terminus (C2), and AMPK binding site are critical elements that confer Epo responsiveness. In particular, the TRPC3 C2 and AMPK site are essential for association of TRPC3 with the cytoskeleton and increased channel translocation to the cell surface in response to Epo stimulation.
Collapse
Affiliation(s)
| | - Qin Tong
- Departments of Pediatrics, Hershey, Pennsylvania 17033
| | | | | | - Kerry Keefer
- Departments of Pediatrics, Hershey, Pennsylvania 17033
| | - Wenyi Zhang
- Departments of Pediatrics, Hershey, Pennsylvania 17033
| | - Shu-Jen Chen
- Departments of Pediatrics, Hershey, Pennsylvania 17033
| | - Joseph Y Cheung
- Department of Medicine, Jefferson Medical College, Philadelphia, Pennsylvania 19107
| | - Barbara A Miller
- Departments of Pediatrics, Hershey, Pennsylvania 17033; Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033.
| |
Collapse
|
36
|
Activation of calcium-sensing receptor increases TRPC3 expression in rat cardiomyocytes. Biochem Biophys Res Commun 2011; 406:278-84. [PMID: 21316341 DOI: 10.1016/j.bbrc.2011.02.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 02/06/2011] [Indexed: 02/02/2023]
Abstract
Transient receptor potential (TRP) channels are expressed in cardiomyocytes, which gate a type of influx of extracellular calcium, the capacitative calcium entry. TRP channels play a role in mediating Ca(2+) overload in the heart. Calcium-sensing receptors (CaR) are also expressed in rat cardiac tissue and promote the apoptosis of cardiomyocytes by Ca(2+) overload. However, data about the link between CaR and TRP channels in rat heart are few. In this study, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were used to examine the expression of the TRP canonical proteins TRPC1 and TRPC3 in adult and neonatal rat cardiomyocytes. Laser scan confocal microscopy was used to detect intracellular [Ca(2+)](i) levels in isolated adult rat ventricular myocytes. The results showed that, in adult rat cardiomyocytes, the depletion of Ca(2+) stores in the endoplasmic/sarcoplasmic reticulum (ER/SR) by thapsigargin induced a transient increase in [Ca(2+)](i) in the absence of [Ca(2+)](o) and the subsequent restoration of [Ca(2+)](o) sustained the increased [Ca(2+)](i) for a few minutes, whereas, the persisting elevation of [Ca(2+)](i) was reduced in the presence of the TRPC inhibitor SKF96365. The stimulation of CaR by its activator gadolinium chloride (GdCl(3)) or spermine also resulted in the same effect and the duration of [Ca(2+)](i) increase was also shortened in the absence of [Ca(2+)](o). In adult and neonatal rat cardiomyocytes, GdCl(3) increased the expression of TRPC3 mRNA and protein, which were reversed by SKF96365 but not by inhibitors of the L-type channels and the Na(+)/Ca(2+) exchangers. However, GdCl(3) had no obvious effect on the expression of TRPC1 protein. These results suggested that CaR stimulation induced activation of TRP channels and promoted the expression of TRPC3, but not TRPC1, that sustained the increased [Ca(2+)](i).
Collapse
|