1
|
Maritan E, Quagliariello A, Frago E, Patarnello T, Martino ME. The role of animal hosts in shaping gut microbiome variation. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230071. [PMID: 38497257 PMCID: PMC10945410 DOI: 10.1098/rstb.2023.0071] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 03/19/2024] Open
Abstract
Millions of years of co-evolution between animals and their associated microbial communities have shaped and diversified the nature of their relationship. Studies continue to reveal new layers of complexity in host-microbe interactions, the fate of which depends on a variety of different factors, ranging from neutral processes and environmental factors to local dynamics. Research is increasingly integrating ecosystem-based approaches, metagenomics and mathematical modelling to disentangle the individual contribution of ecological factors to microbiome evolution. Within this framework, host factors are known to be among the dominant drivers of microbiome composition in different animal species. However, the extent to which they shape microbiome assembly and evolution remains unclear. In this review, we summarize our understanding of how host factors drive microbial communities and how these dynamics are conserved and vary across taxa. We conclude by outlining key avenues for research and highlight the need for implementation of and key modifications to existing theory to fully capture the dynamics of host-associated microbiomes. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Elisa Maritan
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| | - Andrea Quagliariello
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| | - Enric Frago
- CIRAD, UMR CBGP, INRAE, Institut Agro, IRD, Université Montpellier, 34398 Montpellier, France
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| | - Maria Elena Martino
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| |
Collapse
|
2
|
Li Q, Zhang M, Qin S, Wen J, Shen X, Du Z. Dual oxidase 2 (duox 2) participates in the intestinal antibacterial innate immune responses of Procambarus clarkii by regulating ROS levels. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 153:105116. [PMID: 38101716 DOI: 10.1016/j.dci.2023.105116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/09/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
Dual oxidase (Duox) a member of the nicotinamide adenine dinucleotide phosphate oxidase (NOX) family can induce the production of reactive oxygen species (ROS). In vertebrates, the duox gene was indicated to be associated with the mucosal immunity. The roles of the duox gene in invertebrates were mainly studied in insects for the function of maintaining intestinal flora balance. In recent years, some studies have reported that Duox is involved in regulating the production of ROS and plays an important role in defending against the intestinal pathogen infection. However, the molecular mechanism has not been fully illuminated. In this study, a duox 2 involved in the production of H2O2 was identified for the first time in P. clarkii. Mature Pc-Duox 2 is a 7-transmembrane protein molecule that includes PHD, FAD, and NAD domains. Pc-duox 2 was mainly expressed in hemocytes and intestinal tissue. Its expression levels were obviously upregulated after intramuscular or oral infection with V. harveyi. In the RNAi assay, the upregulated trends of H2O2 and total ROS levels in crayfish intestine were significantly suppressed when Pc-duox 2 was knocked down. Compared with the slightly affected SOD activity, the upregulated CAT activity was suppressed more obviously in the crayfish intestine. Furthermore, Pc-duox 2 had an important effect on the maintenance of the structural stability of crayfish the intestine. Further research revealed that the knockdown of Pc-duox 2 could cause an obvious suppression in the upregulated levels of Toll signalling pathway-related genes, including Pc-toll 1, Pc-toll 3, Pc-dorsal, Pc-ALF 5, Pc-crustin 1, and Pc-lysozyme. Ultimately, these changes triggered the accelerated death of crayfish. Overall, we speculated that Pc-duox 2 played an important role in antibacterial innate immunity in the crayfish intestine by regulating the total ROS level.
Collapse
Affiliation(s)
- Qianqian Li
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, 014010, China
| | - Mingda Zhang
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, 014010, China
| | - Shiyu Qin
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, 014010, China
| | - Jing Wen
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, 014010, China
| | - Xiuli Shen
- Library, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, 014010, China
| | - Zhiqiang Du
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, 014010, China.
| |
Collapse
|
3
|
Yue Z, Fan Z, Zhang H, Feng B, Wu C, Chen S, Ouyang J, Fan H, Weng P, Feng H, Chen S, Dong M, Xu A, Huang S. Differential roles of the fish chitinous membrane in gut barrier immunity and digestive compartments. EMBO Rep 2023; 24:e56645. [PMID: 36852962 PMCID: PMC10074124 DOI: 10.15252/embr.202256645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 03/01/2023] Open
Abstract
The chitin-based peritrophic matrix (PM) is a structure critical for both gut immunity and digestion in invertebrates. PM was traditionally considered lost in all vertebrates, but a PM-like chitinous membrane (CM) has recently been discovered in fishes, which may increase the knowledge on vertebrate gut physiology and structural evolution. Here, we show that in zebrafish, the CM affects ingestion behavior, microbial homeostasis, epithelial renewal, digestion, growth, and longevity. Young mutant fish without CM appear healthy and are able to complete their life cycle normally, but with increasing age they develop gut inflammation, resulting in gut atrophy. Unlike mammals, zebrafish have no visible gel-forming mucin layers to protect their gut epithelia, but at least in young fish, the CM is not a prerequisite for the antibacterial gut immunity. These findings provide new insights into the role of the CM in fish prosperity and its eventual loss in tetrapods. These findings may also help to improve fish health and conservation, as well as to advance the understanding of vertebrate gut physiology and human intestinal diseases.
Collapse
Affiliation(s)
- Zirui Yue
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangdongChina#
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Zhaoyu Fan
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangdongChina#
| | - Hao Zhang
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangdongChina#
| | - Buhan Feng
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangdongChina#
| | - Chengyi Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life SciencesXiamen UniversityXiamenChina
| | - Shenghui Chen
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangdongChina#
| | - Jihua Ouyang
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangdongChina#
| | - Huiping Fan
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangdongChina#
| | - Panwei Weng
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangdongChina#
| | - Huixiong Feng
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangdongChina#
| | - Shangwu Chen
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangdongChina#
| | - Meiling Dong
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangdongChina#
| | - Anlong Xu
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangdongChina#
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Shengfeng Huang
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangdongChina#
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| |
Collapse
|
4
|
Xu M, Liu P, Huang Q, Xu S, Dumont HJ, Han BP. High-quality genome of Diaphanosoma dubium provides insights into molecular basis of its broad ecological adaptation. iScience 2023; 26:106006. [PMID: 36798432 PMCID: PMC9926121 DOI: 10.1016/j.isci.2023.106006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/20/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Diaphanosoma dubium Manuilova, 1964, is a widespread planktonic water flea in Asian freshwater. Although sharing similar ecological roles with species of Daphnia, studies on D. dubium and its congeners are still few and lacking a genome for the further studies. Here, we assembled a high quality and chromosome level genome of D. dubium by combining long reads sequencing and Hi-C technologies. The total length of assembled genome was 101.8 Mb, with 98.92 Mb (97.2%) anchored into 22 chromosomes. Through comparative genomic analysis, we found the genes, involved in anti-ROS, detoxification, protein digestion, germ cells regulation and protection, underwent expansion in D. dubium. These genes and their expansion helpfully explain its widespread geographical distribution and dominance in eutrophic waters. This study provides insight into the adaptive evolution of D. dubium at genomic perspectives, and the present high quality genomic resource will be a footstone for future omics studies of the species and its congeners.
Collapse
Affiliation(s)
- Meng Xu
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Ping Liu
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China,College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Qi Huang
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Shaolin Xu
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Henri J. Dumont
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China,Ghent University, Department of Biology, Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Bo-Ping Han
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China,Corresponding author
| |
Collapse
|
5
|
Cadiz Diaz A, Schmidt NA, Yamazaki M, Hsieh CJ, Lisse TS, Rieger S. Coordinated NADPH oxidase/hydrogen peroxide functions regulate cutaneous sensory axon de- and regeneration. Proc Natl Acad Sci U S A 2022; 119:e2115009119. [PMID: 35858442 PMCID: PMC9340058 DOI: 10.1073/pnas.2115009119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/30/2022] [Indexed: 01/21/2023] Open
Abstract
Tissue wounding induces cutaneous sensory axon regeneration via hydrogen peroxide (H2O2) that is produced by the epithelial NADPH oxidase, Duox1. Sciatic nerve injury instead induces axon regeneration through neuronal uptake of the NADPH oxidase, Nox2, from macrophages. We therefore reasoned that the tissue environment in which axons are damaged stimulates distinct regenerative mechanisms. Here, we show that cutaneous axon regeneration induced by tissue wounding depends on both neuronal and keratinocyte-specific mechanisms involving H2O2 signaling. Genetic depletion of H2O2 in sensory neurons abolishes axon regeneration, whereas keratinocyte-specific H2O2 depletion promotes axonal repulsion, a phenotype mirrored in duox1 mutants. Intriguingly, cyba mutants, deficient in the essential Nox subunit, p22Phox, retain limited axon regenerative capacity but display delayed Wallerian degeneration and axonal fusion, observed so far only in invertebrates. We further show that keratinocyte-specific oxidation of the epidermal growth factor receptor (EGFR) at a conserved cysteine thiol (C797) serves as an attractive cue for regenerating axons, leading to EGFR-dependent localized epidermal matrix remodeling via the matrix-metalloproteinase, MMP-13. Therefore, wound-induced cutaneous axon de- and regeneration depend on the coordinated functions of NADPH oxidases mediating distinct processes following injury.
Collapse
Affiliation(s)
| | | | - Mamiko Yamazaki
- Department of Regenerative Biology and Medicine, MDI Biological Laboratory, Bar Harbor, ME 04672
| | - Chia-Jung Hsieh
- Department of Biology, University of Miami, Coral Gables, FL 33146
| | - Thomas S. Lisse
- Department of Biology, University of Miami, Coral Gables, FL 33146
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, Miami, FL 33136
| | - Sandra Rieger
- Department of Biology, University of Miami, Coral Gables, FL 33146
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
6
|
Venardou B, O'Doherty JV, Maher S, Ryan MT, Gath V, Ravindran R, Kiely C, Rajauria G, Garcia-Vaquero M, Sweeney T. Potential of a fucoidan-rich Ascophyllum nodosum extract to reduce Salmonella shedding and improve gastrointestinal health in weaned pigs naturally infected with Salmonella. J Anim Sci Biotechnol 2022; 13:39. [PMID: 35369884 PMCID: PMC8978420 DOI: 10.1186/s40104-022-00685-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dietary supplementation with a fucoidan-rich Ascophyllum nodosum extract (ANE), possessing an in vitro anti-Salmonella Typhimurium activity could be a promising on-farm strategy to control Salmonella infection in pigs. The objectives of this study were to: 1) evaluate the anti-S. Typhimurium activity of ANE (containing 46.6% fucoidan, 18.6% laminarin, 10.7% mannitol, 4.6% alginate) in vitro, and; 2) compare the effects of dietary supplementation with ANE and Zinc oxide (ZnO) on growth performance, Salmonella shedding and selected gut parameters in naturally infected pigs. This was established post-weaning (newly weaned pig experiment) and following regrouping of post-weaned pigs and experimental re-infection with S. Typhimurium (challenge experiment). RESULTS In the in vitro assay, increasing ANE concentrations led to a linear reduction in S. Typhimurium counts (P < 0.05). In the newly weaned pig experiment (12 replicates/treatment), high ANE supplementation increased gain to feed ratio, similar to ZnO supplementation, and reduced faecal Salmonella counts on d 21 compared to the low ANE and control groups (P < 0.05). The challenge experiment included thirty-six pigs from the previous experiment that remained on their original dietary treatments (control and high ANE groups with the latter being renamed to ANE group) apart from the ZnO group which transitioned onto a control diet on d 21 (ZnO-residual group). These dietary treatments had no effect on performance, faecal scores, Salmonella shedding or colonic and caecal Salmonella counts (P > 0.05). ANE supplementation decreased the Enterobacteriaceae counts compared to the control. Enterobacteriaceae counts were also reduced in the ZnO-residual group compared to the control (P < 0.05). ANE supplementation decreased the expression of interleukin 22 and transforming growth factor beta 1 in the ileum compared to the control (P < 0.05). CONCLUSIONS ANE supplementation was associated with some beneficial changes in the composition of the colonic microbiota, Salmonella shedding, and the expression of inflammatory genes associated with persistent Salmonella infection.
Collapse
Affiliation(s)
- Brigkita Venardou
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - John V O'Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Shane Maher
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Marion T Ryan
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Vivian Gath
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Rajeev Ravindran
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Claire Kiely
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gaurav Rajauria
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
7
|
Novel biallelic mutations in the DUOX2 gene underlying very early-onset inflammatory bowel disease: A case report. Clin Immunol 2022; 238:109015. [DOI: 10.1016/j.clim.2022.109015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022]
|
8
|
A cell atlas of microbe-responsive processes in the zebrafish intestine. Cell Rep 2022; 38:110311. [PMID: 35108531 DOI: 10.1016/j.celrep.2022.110311] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 10/28/2021] [Accepted: 01/07/2022] [Indexed: 02/08/2023] Open
Abstract
Gut microbial products direct growth, differentiation, and development in animal hosts. However, we lack system-wide understanding of cell-specific responses to the microbiome. We profiled cell transcriptomes from the intestine, and associated tissue, of zebrafish larvae raised in the presence or absence of a microbiome. We uncovered extensive cellular heterogeneity in the conventional zebrafish intestinal epithelium, including previously undescribed cell types with known mammalian homologs. By comparing conventional to germ-free profiles, we mapped microbial impacts on transcriptional activity in each cell population. We revealed intricate degrees of cellular specificity in host responses to the microbiome that included regulatory effects on patterning and on metabolic and immune activity. For example, we showed that the absence of microbes hindered pro-angiogenic signals in the developing vasculature, causing impaired intestinal vascularization. Our work provides a high-resolution atlas of intestinal cellular composition in the developing fish gut and details the effects of the microbiome on each cell type.
Collapse
|
9
|
Taylor JP, Tse HM. The role of NADPH oxidases in infectious and inflammatory diseases. Redox Biol 2021; 48:102159. [PMID: 34627721 PMCID: PMC8487856 DOI: 10.1016/j.redox.2021.102159] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) are enzymes that generate superoxide or hydrogen peroxide from molecular oxygen utilizing NADPH as an electron donor. There are seven enzymes in the NOX family: NOX1-5 and dual oxidase (DUOX) 1-2. NOX enzymes in humans play important roles in diverse biological functions and vary in expression from tissue to tissue. Importantly, NOX2 is involved in regulating many aspects of innate and adaptive immunity, including regulation of type I interferons, the inflammasome, phagocytosis, antigen processing and presentation, and cell signaling. DUOX1 and DUOX2 play important roles in innate immune defenses at epithelial barriers. This review discusses the role of NOX enzymes in normal physiological processes as well as in disease. NOX enzymes are important in autoimmune diseases like type 1 diabetes and have also been implicated in acute lung injury caused by infection with SARS-CoV-2. Targeting NOX enzymes directly or through scavenging free radicals may be useful therapies for autoimmunity and acute lung injury where oxidative stress contributes to pathology.
Collapse
Affiliation(s)
- Jared P Taylor
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hubert M Tse
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
10
|
Pfeilmeier S, Petti GC, Bortfeld-Miller M, Daniel B, Field CM, Sunagawa S, Vorholt JA. The plant NADPH oxidase RBOHD is required for microbiota homeostasis in leaves. Nat Microbiol 2021; 6:852-864. [PMID: 34194036 PMCID: PMC7612668 DOI: 10.1038/s41564-021-00929-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
The plant microbiota consists of a multitude of microorganisms that can affect plant health and fitness. However, it is currently unclear how the plant shapes its leaf microbiota and what role the plant immune system plays in this process. Here, we evaluated Arabidopsis thaliana mutants with defects in different parts of the immune system for an altered bacterial community assembly using a gnotobiotic system. While higher-order mutants in receptors that recognize microbial features and in defence hormone signalling showed substantial microbial community alterations, the absence of the plant NADPH oxidase RBOHD caused the most pronounced change in the composition of the leaf microbiota. The rbohD knockout resulted in an enrichment of specific bacteria. Among these, we identified Xanthomonas strains as opportunistic pathogens that colonized wild-type plants asymptomatically but caused disease in rbohD knockout plants. Strain dropout experiments revealed that the lack of RBOHD unlocks the pathogenicity of individual microbiota members driving dysbiosis in rbohD knockout plants. For full protection, healthy plants require both a functional immune system and a microbial community. Our results show that the NADPH oxidase RBOHD is essential for microbiota homeostasis and emphasizes the importance of the plant immune system in controlling the leaf microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Julia A. Vorholt
- Corresponding author: Correspondence should be addressed to J.A.V. ()
| |
Collapse
|
11
|
Valenzuela L, Pacheco S, Rincón G, Pavez L, Lam N, Hernández AJ, Dantagnan P, González F, Jilberto F, Ravanal MC, Ramos C, Garcia H, Araneda C, Ulloa PE. Intestinal Transcriptome Analysis Reveals Enrichment of Genes Associated with Immune and Lipid Mechanisms, Favoring Soybean Meal Tolerance in High-Growth Zebrafish ( Danio Rerio). Genes (Basel) 2021; 12:genes12050700. [PMID: 34066767 PMCID: PMC8151431 DOI: 10.3390/genes12050700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 01/10/2023] Open
Abstract
The molecular mechanisms underlying fish tolerance to soybean meal (SBM) remain unclear. Identifying these mechanisms would be beneficial, as this trait favors growth. Two fish replicates from 19 experimental families were fed fishmeal-(100FM) or SBM-based diets supplemented with saponin (50SBM + 2SPN) from juvenile to adult stages. Individuals were selected from families with a genotype-by-environment interaction higher (HG-50SBM + 2SPN, 170 ± 18 mg) or lower (LG-50SBM + 2SPN, 76 ± 10 mg) weight gain on 50SBM + 2SPN for intestinal transcriptomic analysis. A histological evaluation confirmed middle intestinal inflammation in the LG- vs. HG-50SBM + 2SPN group. Enrichment analysis of 665 differentially expressed genes (DEGs) identified pathways associated with immunity and lipid metabolism. Genes linked to intestinal immunity were downregulated in HG fish (mpx, cxcr3.2, cftr, irg1l, itln2, sgk1, nup61l, il22), likely dampening inflammatory responses. Conversely, genes involved in retinol signaling were upregulated (rbp4, stra6, nr2f5), potentially favoring growth by suppressing insulin responses. Genes associated with lipid metabolism were upregulated, including key components of the SREBP (mbtps1, elov5l, elov6l) and cholesterol catabolism (cyp46a1), as well as the downregulation of cyp7a1. These results strongly suggest that transcriptomic changes in lipid metabolism mediate SBM tolerance. Genotypic variations in DEGs may become biomarkers for improving early selection of fish tolerant to SMB or others plant-based diets.
Collapse
Affiliation(s)
- Luis Valenzuela
- Omics Lab, Villavicencio 378, Oficina 32, Santiago 8320164, Chile;
| | - Sebastian Pacheco
- Programa de Doctorado en Inmunología y Microbiología, Universidad San Sebastian, Lota 2465, Santiago 7510157, Chile;
| | - Gonzalo Rincón
- Zoetis, VMRD Genetics R&D, 333 Portage Street, Kalamazoo, MI 49007, USA;
| | - Leonardo Pavez
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Universidad de Las Américas, Avenida Manuel Montt 948, Santiago 7500975, Chile; (L.P.); (F.G.); (C.R.)
| | - Natalia Lam
- Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santa Rosa 11315, Santiago 8820808, Chile; (N.L.); (F.J.); (C.A.)
| | - Adrián J. Hernández
- Laboratorio de Nutrición y Fisiología de Peces, Núcleo de Investigación en Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile; (A.J.H.); (P.D.)
| | - Patricio Dantagnan
- Laboratorio de Nutrición y Fisiología de Peces, Núcleo de Investigación en Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile; (A.J.H.); (P.D.)
| | - Felipe González
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Universidad de Las Américas, Avenida Manuel Montt 948, Santiago 7500975, Chile; (L.P.); (F.G.); (C.R.)
| | - Felipe Jilberto
- Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santa Rosa 11315, Santiago 8820808, Chile; (N.L.); (F.J.); (C.A.)
| | - M. Cristina Ravanal
- Instituto de Ciencia y Tecnología de los Alimentos (ICYTAL), Facultad de Ciencias Agrarias y Alimentarias, Universidad Austral de Chile, Avda. Julio Sarrazín s/n, Isla Teja, Valdivia 5090000, Chile;
| | - Cecilia Ramos
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Universidad de Las Américas, Avenida Manuel Montt 948, Santiago 7500975, Chile; (L.P.); (F.G.); (C.R.)
| | - Héctor Garcia
- Laboratorios Diagnofruit Ltd.a., Depto. Fitopatología Molecular, Santiago 7770273, Chile;
| | - Cristian Araneda
- Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santa Rosa 11315, Santiago 8820808, Chile; (N.L.); (F.J.); (C.A.)
| | - Pilar E. Ulloa
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Universidad de Las Américas, Avenida Manuel Montt 948, Santiago 7500975, Chile; (L.P.); (F.G.); (C.R.)
- Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santa Rosa 11315, Santiago 8820808, Chile; (N.L.); (F.J.); (C.A.)
- Correspondence: ; Tel.: +56-222-531-129
| |
Collapse
|
12
|
Yang HT, Huang YH, Yang GW. Mini review: immunologic functions of dual oxidases in mucosal systems of vertebrates. BRAZ J BIOL 2020; 80:948-956. [DOI: 10.1590/1519-6984.208749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 05/08/2019] [Indexed: 12/30/2022] Open
Abstract
Abstract Mucosal epithelial cells act as the first immunologic barrier of organisms, and contact directly with pathogens. Therefore, hosts must have differential strategies to combat pathogens efficiently. Reactive oxygen species (ROS), as a kind of oxidizing agents, participates in the early stage of killing pathogens quickly. Recent reports have revealed that dual oxidase (DUOX) plays a key role in mucosal immunity. And the DUOX is a transmembrane protein which produces ROS as their primary enzymatic products. This process is an important pattern for eliminating pathogens. In this review, we highlight the DUOX immunologic functions in the respiratory and digestive tract of vertebrates.
Collapse
|
13
|
Yang LQ, Chen M, Ren DL, Hu B. Dual Oxidase Mutant Retards Mauthner-Cell Axon Regeneration at an Early Stage via Modulating Mitochondrial Dynamics in Zebrafish. Neurosci Bull 2020; 36:1500-1512. [PMID: 33123984 DOI: 10.1007/s12264-020-00600-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/25/2020] [Indexed: 12/17/2022] Open
Abstract
Dual oxidase (duox)-derived reactive oxygen species (ROS) have been correlated with neuronal polarity, cerebellar development, and neuroplasticity. However, there have not been many comprehensive studies of the effect of individual duox isoforms on central-axon regeneration in vivo. Here, we explored this question in zebrafish, an excellent model organism for central-axon regeneration studies. In our research, mutation of the duox gene with CRISPR/Cas9 significantly retarded the single-axon regeneration of the zebrafish Mauthner cell in vivo. Using deep transcriptome sequencing, we found that the expression levels of related functional enzymes in mitochondria were down-regulated in duox mutant fish. In vivo imaging showed that duox mutants had significantly disrupted mitochondrial transport and redox state in single Mauthner-cell axon. Our research data provide insights into how duox is involved in central-axon regeneration by changing mitochondrial transport.
Collapse
Affiliation(s)
- Lei-Qing Yang
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Biomedical Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Min Chen
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Biomedical Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Da-Long Ren
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Biomedical Sciences, University of Science and Technology of China, Hefei, 230026, China.
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| | - Bing Hu
- Eye Center, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Biomedical Sciences, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
14
|
Dang PMC, Rolas L, El-Benna J. The Dual Role of Reactive Oxygen Species-Generating Nicotinamide Adenine Dinucleotide Phosphate Oxidases in Gastrointestinal Inflammation and Therapeutic Perspectives. Antioxid Redox Signal 2020; 33:354-373. [PMID: 31968991 DOI: 10.1089/ars.2020.8018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Despite their intrinsic cytotoxic properties, mounting evidence indicates that reactive oxygen species (ROS) physiologically produced by the nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) of epithelial cells (NOX1, dual oxidase [DUOX]2) and phagocytes (NOX2) are critical for innate immune response and homeostasis of the intestinal mucosa. However, dysregulated ROS production could be a driving factor in inflammatory bowel diseases (IBDs). Recent Advances: In addition to NOX2, recent studies have demonstrated that NOX1- and DUOX2-derived ROS can regulate intestinal innate immune defense and homeostasis by impacting many processes, including bacterial virulence, expression of bacteriostatic proteins, epithelial renewal and restitution, and microbiota composition. Moreover, the antibacterial role of DUOX2 is a function conserved in evolution as it has been described in invertebrates, and lower and higher vertebrates. In humans, variants of the NOX2, NOX1, and DUOX2 genes, which are associated with impaired ROS production, have been identified in very early onset IBD, but overexpression of NOX/DUOX, especially DUOX2, has also been described in IBD, suggesting that loss-of-function or excessive activity of the ROS-generating enzymes could contribute to disease progression. Critical Issues: Therapeutic perspectives aiming at targeting NOX/DUOX in IBD should take into account the two sides of NOX/DUOX-derived ROS in intestinal inflammation. Hence, NOX/DUOX inhibitors or ROS inducers should be considered as a function of the disease context. Future Directions: A thorough understanding of the physiological and pathological regulation of NOX/DUOX in the gastrointestinal tract is an absolute pre-requisite for the development of therapeutic strategies that can modulate ROS levels in space and time.
Collapse
Affiliation(s)
- Pham My-Chan Dang
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Faculté de Médecine, Laboratoire d'Excellence Inflamex, DHU FIRE, Université de Paris, Paris, France
| | - Loïc Rolas
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France
| | - Jamel El-Benna
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Faculté de Médecine, Laboratoire d'Excellence Inflamex, DHU FIRE, Université de Paris, Paris, France
| |
Collapse
|
15
|
Terzi A, Suter DM. The role of NADPH oxidases in neuronal development. Free Radic Biol Med 2020; 154:33-47. [PMID: 32370993 DOI: 10.1016/j.freeradbiomed.2020.04.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
Abstract
Reactive oxygen species (ROS) are critical for maintaining cellular homeostasis and function when produced in physiological ranges. Important sources of cellular ROS include NADPH oxidases (Nox), which are evolutionary conserved multi-subunit transmembrane proteins. Nox-mediated ROS regulate variety of biological processes including hormone synthesis, calcium signaling, cell migration, and immunity. ROS participate in intracellular signaling by introducing post-translational modifications to proteins and thereby altering their functions. The central nervous system (CNS) expresses different Nox isoforms during both development and adulthood. Here, we review the role of Nox-mediated ROS during CNS development. Specifically, we focus on how individual Nox isoforms contribute to signaling in neural stem cell maintenance and neuronal differentiation, as well as neurite outgrowth and guidance. We also discuss how ROS regulates the organization and dynamics of the actin cytoskeleton in the neuronal growth cone. Finally, we review recent evidence that Nox-derived ROS modulate axonal regeneration upon nervous system injury.
Collapse
Affiliation(s)
- Aslihan Terzi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Daniel M Suter
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA; Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
16
|
de Faria CC, Fortunato RS. The role of dual oxidases in physiology and cancer. Genet Mol Biol 2020; 43:e20190096. [PMID: 32453337 PMCID: PMC7265977 DOI: 10.1590/1678-4685/gmb-2019-0096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 01/24/2020] [Indexed: 01/17/2023] Open
Abstract
NOX/DUOX enzymes are transmembrane proteins that carry electrons through biological membranes generating reactive oxygen species. The NOX family is composed of seven members, which are NOX1 to NOX5 and DUOX1 and 2. DUOX enzymes were initially called thyroid oxidases, based on their high expression level in the thyroid tissue. However, DUOX expression has been documented in several extrathyroid tissues, mostly at the apical membrane of the salivary glands, the airways, and the intestinal tract, revealing additional cellular functions associated with DUOX-related H2O2 generation. In this review, we will briefly summarize the current knowledge regarding DUOX structure and physiological functions, as well as their possible role in cancer biology.
Collapse
Affiliation(s)
- Caroline Coelho de Faria
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas
Filho, Rio de Janeiro, RJ, Brazil
| | - Rodrigo Soares Fortunato
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas
Filho, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
17
|
Sajjadian SM, Kim Y. Dual Oxidase-Derived Reactive Oxygen Species Against Bacillus thuringiensis and Its Suppression by Eicosanoid Biosynthesis Inhibitors. Front Microbiol 2020; 11:528. [PMID: 32292400 PMCID: PMC7120046 DOI: 10.3389/fmicb.2020.00528] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/11/2020] [Indexed: 12/26/2022] Open
Abstract
Two entomopathogenic bacteria, Xenorhabdus and Photorhabdus, are known to be able to synthesize and secrete eicosanoid biosynthesis inhibitors (EIBs) that can enhance pathogenicity of Bacillus thuringiensis (Bt) against different target insects. Such enhancements can be explained by the suppression of immune responses in the hemocoel by EIBs. However, little is known about the role of EIBs in the defense against Bt pathogenicity in the gut. This study was focused on the role of insect gut immunity in the defense against Bt pathogenicity, in which the cooperative effect of bacterial metabolites was assessed. Screening 14 different bacterial strains, bacterial culture broth of Photorhabdus temperata subsp. temperata ANU101 (Ptt) gave the highest cooperative effect on Bt virulence along with significant inhibitory activity against phospholipase A2 (PLA2) of Plutella xylostella. In gut lumen, Ptt culture broth suppressed the generation of reactive oxygen species (ROS) induced by Bt treatment and facilitated bacterial growth, similar to vitamin E, an antioxidant. To analyze the ROS source, dual oxidase (Px-Duox) and NADPH-dependent oxidase (Px-Nox) genes were predicted from P. xylostella genome and their expressions were confirmed in larval gut. RNA interference (RNAi) of Px-Duox expression reduced ROS levels in both gut epithelium and lumen while RNAi of Px-Nox expression reduced ROS levels only in gut epithelium. Ptt extract significantly suppressed gene expression levels of Px-Duox and Px-Nox, leading to lower ROS concentrations in the gut lumen. Three commercial PLA2 inhibitors significantly increased the insecticidal activity of Bt by suppressing ROS levels in the gut lumen. These results indicate that Ptt extract containing EBIs can prevent up-regulation of ROS level in the midgut in response to Bt infection and enhance the virulence of Bt against P. xylostella.
Collapse
Affiliation(s)
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong, South Korea
| |
Collapse
|
18
|
Giusti N, Gillotay P, Trubiroha A, Opitz R, Dumont JE, Costagliola S, De Deken X. Inhibition of the thyroid hormonogenic H 2O 2 production by Duox/DuoxA in zebrafish reveals VAS2870 as a new goitrogenic compound. Mol Cell Endocrinol 2020; 500:110635. [PMID: 31678421 DOI: 10.1016/j.mce.2019.110635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/30/2019] [Accepted: 10/26/2019] [Indexed: 02/07/2023]
Abstract
Thyroid hormone (TH) synthesis requires extracellular hydrogen peroxide generated by the NADPH oxidases, DUOX1 and DUOX2, with maturation factors, DUOXA1 and DUOXA2. In zebrafish, only one duox and one duoxa gene are present. Using a thyroid-specific reporter line, we investigated the role of Duox and Duoxa for TH biosynthesis in zebrafish larvae. Analysis of several zebrafish duox and duoxa mutant models consistently recovered hypothyroid phenotypes with hyperplastic goiter caused by impaired TH synthesis. Mutant larvae developed enlarged thyroids and showed increased expression of the EGFP reporter and thyroid functional markers including wild-type and mutated duox and duoxa transcripts. Treatment of zebrafish larvae with the NADPH oxidase inhibitor VAS2870 phenocopied the thyroid effects observed in duox or duoxa mutants. Additional functional in vitro assays corroborated the pharmacological inhibition of Duox activity by VAS2870. These data support the utility of this new experimental model to characterize endocrine disruptors of the thyroid function.
Collapse
Affiliation(s)
- Nicoletta Giusti
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - Pierre Gillotay
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - Achim Trubiroha
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium; Present Address: German Federal Institute for Risk Assessment (BfR), Department Chemicals and Product Safety, Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany.
| | - Robert Opitz
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium; Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Jacques-Emile Dumont
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - Sabine Costagliola
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - Xavier De Deken
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
19
|
Dual oxidase 1 and NADPH oxidase 2 exert favorable effects in cervical cancer patients by activating immune response. BMC Cancer 2019; 19:1078. [PMID: 31706280 PMCID: PMC6842485 DOI: 10.1186/s12885-019-6202-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 09/24/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived reactive oxygen species (ROS) not only can promote cancer progression, but also they have recently emerged as mediators of the mucosal immune system. However, the roles and clinical relevance of the collective or individual NADPH oxidase (NOX) family genes in cervical cancer have not been studied. METHODS We investigated the clinical significance of the NOX family genes using data from 307 patients with cervical cancer obtained from The Cancer Genome Atlas. Bioinformatics and experimental analyses were performed to examine NOX family genes in cervical cancer patients. RESULTS Dual Oxidase1 (DUOX1) and Dual Oxidase 2 (DUOX2) mRNA levels were upregulated 57.9- and 67.5-fold, respectively, in cervical cancer patients. The protein expression of DUOX1, DUOX2, and NOX2 also identified in cervical squamous cell carcinoma tissues. Especially, DUOX1 and DUOX2 mRNA levels were significantly increased in patients infected with human papillomavirus (HPV) 16. Moreover, high DUOX1 mRNA levels were significantly associated with both favorable overall survival and disease-free survival in cervical cancer patients. High NOX2 mRNA levels was significantly associated with favorable overall survival. Gene set enrichment analyses revealed that high DUOX1 and NOX2 expression was significantly correlated with the enrichment of immune pathways related to interferon (IFN)-alpha, IFN-gamma, and natural killer (NK) cell signaling. Cell-type identification by estimating relative subsets of known RNA transcript analyses indicated that the fraction of innate immune cells, including NK cells, monocytes, dendritic cells, and mast cells, was elevated in patients with high DUOX1 expression. CONCLUSIONS DUOX1 and NOX2 expression are associated with mucosal immunity activated in cervical squamous cell carcinoma and predicts a favorable prognosis in cervical cancer patients.
Collapse
|
20
|
The commensal Escherichia coli CEC15 reinforces intestinal defences in gnotobiotic mice and is protective in a chronic colitis mouse model. Sci Rep 2019; 9:11431. [PMID: 31391483 PMCID: PMC6685975 DOI: 10.1038/s41598-019-47611-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023] Open
Abstract
Escherichia coli is a regular inhabitant of the gut microbiota throughout life. However, its role in gut health is controversial. Here, we investigated the relationship between the commensal E. coli strain CEC15 (CEC), which we previously isolated, and the intestine in homeostatic and disease-prone settings. The impact of CEC was compared to that of the probiotic E. coli Nissle 1917 (Nissle) strain. The expression of ileal and colonic genes that play a key role in intestinal homeostasis was higher in CEC- and Nissle-mono-associated wild-type mice than in germfree mice. This included genes involved in the turnover of reactive oxygen species, antimicrobial peptide synthesis, and immune responses. The impact of CEC and Nissle on such gene expression was stronger in a disease-prone setting, i.e. in gnotobiotic IL10-deficient mice. In a chronic colitis model, CEC more strongly decreased signs of colitis severity (myeloperoxidase activity and CD3+ immune-cell infiltration) than Nissle. Thus, our study shows that CEC and Nissle contribute to increased expression of genes involved in the maintenance of gut homeostasis in homeostatic and inflammatory settings. We show that these E. coli strains, in particular CEC, can have a beneficial effect in a chronic colitis mouse model.
Collapse
|
21
|
Park JS, Choi TI, Kim OH, Hong TI, Kim WK, Lee WJ, Kim CH. Targeted knockout of duox causes defects in zebrafish growth, thyroid development, and social interaction. J Genet Genomics 2019; 46:101-104. [PMID: 30867122 DOI: 10.1016/j.jgg.2019.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/02/2018] [Accepted: 01/31/2019] [Indexed: 10/27/2022]
Affiliation(s)
- Jong-Su Park
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea; Biosystem Research Group, Korea Institute of Toxicology, Daejeon, 34111, South Korea
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea
| | - Oc-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea
| | - Ted Inpyo Hong
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea
| | - Woo-Keun Kim
- Biosystem Research Group, Korea Institute of Toxicology, Daejeon, 34111, South Korea
| | - Won-Jae Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea.
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea.
| |
Collapse
|
22
|
Abstract
Inflammatory bowel diseases (IBD), categorized as ulcerative colitis (UC), Crohn's disease (CD), or IBD-undetermined (IBDU), are increasing in incidence. IBD is understood to result from environmental factors interacting with a pre-existing genetic susceptibility. Approximately 1% of all patients with inflammatory bowel disease (IBD) are diagnosed before the age of 6 years, designated as very-early-onset IBD (VEOIBD). This cohort of patients is distinguished from other age groups by differences in disease phenotype and by a higher burden of genetic mutations. Recent studies have linked mutations in NADPH oxidase function to VEOIBD and even pediatric IBD. Loss-of-function NOX2 variants expressed in phagocytes and NOX1/DUOX2 variants expressed in intestinal epithelial cells have been associated with VEOIBD and pediatric and adult IBD in patients. Cell and animal studies suggest a protective role for these reactive oxygen species (ROS)-producing enzymes in intestinal homeostasis-a paradigm that challenges the conventional concept that only increased ROS result in cell and tissue damage. Examining the role of NADPH oxidases in VEOIBD may improve our understanding of the pathophysiology of this disease and will uncover new therapeutic possibilities.
Collapse
Affiliation(s)
- Emily Stenke
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Billy Bourke
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland.,Department of Paediatric Gastroenterology, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Ulla G Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
23
|
Rampon C, Volovitch M, Joliot A, Vriz S. Hydrogen Peroxide and Redox Regulation of Developments. Antioxidants (Basel) 2018; 7:E159. [PMID: 30404180 PMCID: PMC6262372 DOI: 10.3390/antiox7110159] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 01/16/2023] Open
Abstract
Reactive oxygen species (ROS), which were originally classified as exclusively deleterious compounds, have gained increasing interest in the recent years given their action as bona fide signalling molecules. The main target of ROS action is the reversible oxidation of cysteines, leading to the formation of disulfide bonds, which modulate protein conformation and activity. ROS, endowed with signalling properties, are mainly produced by NADPH oxidases (NOXs) at the plasma membrane, but their action also involves a complex machinery of multiple redox-sensitive protein families that differ in their subcellular localization and their activity. Given that the levels and distribution of ROS are highly dynamic, in part due to their limited stability, the development of various fluorescent ROS sensors, some of which are quantitative (ratiometric), represents a clear breakthrough in the field and have been adapted to both ex vivo and in vivo applications. The physiological implication of ROS signalling will be presented mainly in the frame of morphogenetic processes, embryogenesis, regeneration, and stem cell differentiation. Gain and loss of function, as well as pharmacological strategies, have demonstrated the wide but specific requirement of ROS signalling at multiple stages of these processes and its intricate relationship with other well-known signalling pathways.
Collapse
Affiliation(s)
- Christine Rampon
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75231 Paris, France.
- Sorbonne Paris Cité, Univ Paris Diderot, Biology Department, 75205 Paris CEDEX 13, France.
| | - Michel Volovitch
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75231 Paris, France.
- École Normale Supérieure, Department of Biology, PSL Research University, 75005 Paris, France.
| | - Alain Joliot
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75231 Paris, France.
| | - Sophie Vriz
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75231 Paris, France.
- Sorbonne Paris Cité, Univ Paris Diderot, Biology Department, 75205 Paris CEDEX 13, France.
| |
Collapse
|
24
|
Redox Signaling of NADPH Oxidases Regulates Oxidative Stress Responses, Immunity and Aging. Antioxidants (Basel) 2018; 7:antiox7100130. [PMID: 30274229 PMCID: PMC6210377 DOI: 10.3390/antiox7100130] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/14/2022] Open
Abstract
An accumulating body of evidence suggests that transient or physiological reactive oxygen species (ROS) generated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidases act as a redox signal to re-establish homeostasis. The capacity to re-establish homeostasis progressively declines during aging but is maintained in long-lived animals to promote healthy aging. In the model organism Caenorhabditis elegans, ROS generated by dual oxidases (Duox) are important for extracellular matrix integrity, pathogen defense, oxidative stress resistance, and longevity. The Duox enzymatic activity is tightly regulated and under cellular control. Developmental molting cycles, pathogen infections, toxins, mitochondrial-derived ROS, drugs, and small GTPases (e.g., RHO-1) can activate Duox (BLI-3) to generate ROS, whereas NADPH oxidase inhibitors and negative regulators, such as MEMO-1, can inhibit Duox from generating ROS. Three mechanisms-of-action have been discovered for the Duox/BLI-3-generated ROS: (1) enzymatic activity to catalyze crosslinking of free tyrosine ethyl ester in collagen bundles to stabilize extracellular matrices, (2) high ROS bursts/levels to kill pathogens, and (3) redox signaling activating downstream kinase cascades to transcription factors orchestrating oxidative stress and immunity responses to re-establish homeostasis. Although Duox function at the cell surface is well established, recent genetic and biochemical data also suggests a novel role for Duoxs at the endoplasmic reticulum membrane to control redox signaling. Evidence underlying these mechanisms initiated by ROS from NADPH oxidases, and their relevance for human aging, are discussed in this review. Appropriately controlling NADPH oxidase activity for local and physiological redox signaling to maintain cellular homeostasis might be a therapeutic strategy to promote healthy aging.
Collapse
|
25
|
van der Vliet A, Danyal K, Heppner DE. Dual oxidase: a novel therapeutic target in allergic disease. Br J Pharmacol 2018; 175:1401-1418. [PMID: 29405261 DOI: 10.1111/bph.14158] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 12/11/2022] Open
Abstract
NADPH oxidases (NOXs) represent a family of enzymes that mediate regulated cellular production of reactive oxygen species (ROS) and play various functional roles in physiology. Among the NOX family, the dual oxidases DUOX1 and DUOX2 are prominently expressed in epithelial cell types at mucosal surfaces and have therefore been considered to have important roles in innate host defence pathways. Recent studies have revealed important insights into the host defence mechanisms of DUOX enzymes, which control innate immune response pathways in response to either microbial or allergic triggers. In this review, we discuss the current level of understanding with respect to the biological role(s) of DUOX enzymes and the unique role of DUOX1 in mediating innate immune responses to epithelial injury and allergens and in the development of allergic disease. These novel findings highlight DUOX1 as an attractive therapeutic target, and opportunities for the development of selective inhibitor strategies will be discussed.
Collapse
Affiliation(s)
- Albert van der Vliet
- Department of Pathology and Laboratory Medicine, The Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, USA.,Vermont Lung Center, University of Vermont, Burlington, VT, USA
| | - Karamatullah Danyal
- Department of Pathology and Laboratory Medicine, The Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, USA.,Vermont Lung Center, University of Vermont, Burlington, VT, USA
| | - David E Heppner
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Schwerd T, Bryant RV, Pandey S, Capitani M, Meran L, Cazier JB, Jung J, Mondal K, Parkes M, Mathew CG, Fiedler K, McCarthy DJ, Sullivan PB, Rodrigues A, Travis SPL, Moore C, Sambrook J, Ouwehand WH, Roberts DJ, Danesh J, Russell RK, Wilson DC, Kelsen JR, Cornall R, Denson LA, Kugathasan S, Knaus UG, Goncalves Serra E, Anderson CA, Duerr RH, McGovern DPB, Cho J, Powrie F, Li VSW, Muise AM, Uhlig HH. NOX1 loss-of-function genetic variants in patients with inflammatory bowel disease. Mucosal Immunol 2018; 11:562-574. [PMID: 29091079 PMCID: PMC5924597 DOI: 10.1038/mi.2017.74] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/20/2017] [Indexed: 02/07/2023]
Abstract
Genetic defects that affect intestinal epithelial barrier function can present with very early-onset inflammatory bowel disease (VEOIBD). Using whole-genome sequencing, a novel hemizygous defect in NOX1 encoding NAPDH oxidase 1 was identified in a patient with ulcerative colitis-like VEOIBD. Exome screening of 1,878 pediatric patients identified further seven male inflammatory bowel disease (IBD) patients with rare NOX1 mutations. Loss-of-function was validated in p.N122H and p.T497A, and to a lesser degree in p.Y470H, p.R287Q, p.I67M, p.Q293R as well as the previously described p.P330S, and the common NOX1 SNP p.D360N (rs34688635) variant. The missense mutation p.N122H abrogated reactive oxygen species (ROS) production in cell lines, ex vivo colonic explants, and patient-derived colonic organoid cultures. Within colonic crypts, NOX1 constitutively generates a high level of ROS in the crypt lumen. Analysis of 9,513 controls and 11,140 IBD patients of non-Jewish European ancestry did not reveal an association between p.D360N and IBD. Our data suggest that loss-of-function variants in NOX1 do not cause a Mendelian disorder of high penetrance but are a context-specific modifier. Our results implicate that variants in NOX1 change brush border ROS within colonic crypts at the interface between the epithelium and luminal microbes.
Collapse
Affiliation(s)
- T. Schwerd
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - R. V. Bryant
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- University of Adelaide, Adelaide, South Australia
| | - S. Pandey
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - M. Capitani
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - L. Meran
- The Francis Crick Institute, London, UK
| | - J.-B. Cazier
- The Wellcome Trust Centre for Human Genetics, Oxford, UK
| | - J. Jung
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - K. Mondal
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - M. Parkes
- Inflammatory Bowel Disease Research Group, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - CG Mathew
- Department of Medical and Molecular Genetics, King's College London School of Medicine, Guy's Hospital London, London, UK
| | - K. Fiedler
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Canada
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - D. J. McCarthy
- The Wellcome Trust Centre for Human Genetics, Oxford, UK
| | | | | | | | | | - PB Sullivan
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - A. Rodrigues
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - SPL Travis
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - C. Moore
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- INTERVAL Coordinating Centre, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - J. Sambrook
- INTERVAL Coordinating Centre, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Long Road, Cambridge, UK
| | - W. H. Ouwehand
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Long Road, Cambridge, UK
- NHS Blood and Transplant, Long Road, Cambridge, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - D. J. Roberts
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant - Oxford Centre, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - J. Danesh
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- INTERVAL Coordinating Centre, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | | | - R. K. Russell
- Department of Paediatric Gastroenterology, The Royal Hospital for Children, Glasgow, UK
| | - D. C. Wilson
- Royal Hospital for Sick Children, Edinburgh, UK
- Child Life and Health, University of Edinburgh, Edinburgh, UK
| | - J. R. Kelsen
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - R. Cornall
- Centre for Cellular and Molecular Physiology, University of Oxford, Oxford, UK
| | - L. A. Denson
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - S. Kugathasan
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - U. G. Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
- National Children’s Research Centre, Our Lady’s Children’s Hospital Crumlin, Dublin, Ireland
| | - E. Goncalves Serra
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - C. A. Anderson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - R. H. Duerr
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - D. P. B. McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - J. Cho
- Icahn School of Medicine, Mount Sinai Hospital, New York, New York, USA
| | - F. Powrie
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | | - A. M. Muise
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Canada
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - H. H. Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
| |
Collapse
|
27
|
Lee KA, Cho KC, Kim B, Jang IH, Nam K, Kwon YE, Kim M, Hyeon DY, Hwang D, Seol JH, Lee WJ. Inflammation-Modulated Metabolic Reprogramming Is Required for DUOX-Dependent Gut Immunity in Drosophila. Cell Host Microbe 2018; 23:338-352.e5. [DOI: 10.1016/j.chom.2018.01.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/07/2017] [Accepted: 01/23/2018] [Indexed: 12/22/2022]
|
28
|
Yang HT, Zou SS, Zhai LJ, Wang Y, Zhang FM, An LG, Yang GW. Pathogen invasion changes the intestinal microbiota composition and induces innate immune responses in the zebrafish intestine. FISH & SHELLFISH IMMUNOLOGY 2017; 71:35-42. [PMID: 28964859 DOI: 10.1016/j.fsi.2017.09.075] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/24/2017] [Accepted: 09/27/2017] [Indexed: 05/05/2023]
Abstract
Numerous bacteria are harbored in the animal digestive tract and are impacted by several factors. Intestinal microbiota homeostasis is critical for maintaining the health of an organism. However, how pathogen invasion affects the microbiota composition has not been fully clarified. The mechanisms for preventing invasion by pathogenic microorganisms are yet to be elucidated. Zebrafish is a useful model for developmental biology, and studies in this organism have gradually become focused on intestinal immunity. In this study, we analyzed the microbiota of normal cultivated and infected zebrafish intestines, the aquarium water and feed samples. We found that the predominant bacteria in the zebrafish intestine belonged to Gammaproteobacteria (67%) and that feed and environment merely influenced intestinal microbiota composition only partially. Intestinal microbiota changed after a pathogenic bacterial challenge. At the genus level, the abundance of some pathogenic intestinal bacteria increased, and these genera included Halomonas (50%), Pelagibacterium (3.6%), Aeromonas (2.6%), Nesterenkonia (1%), Chryseobacterium (3.4‰), Mesorhizobium (1.4‰), Vibrio (1‰), Mycoplasma (0.7‰) and Methylobacterium (0.6‰) in IAh group. However, the abundance of some beneficial intestinal bacteria decreased, and these genera included Nitratireductor (0.8‰), Enterococcus (0.8‰), Brevundimonas (0.7‰), Lactococcus (0.7‰) and Lactobacillus (0.4‰). Additionally, we investigated the innate immune responses after infection. ROS levels in intestine increased in the early stages after a challenge and recovered subsequently. The mRNA levels of antimicrobial peptide genes lectin, hepcidin and defensin1, were upregulated in the intestine after pathogen infection. These results suggested that the invasion of pathogen could change the intestinal microbiota composition and induce intestinal innate immune responses in zebrafish.
Collapse
Affiliation(s)
- Hui-Ting Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Song-Song Zou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Li-Juan Zhai
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yao Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Fu-Miao Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Li-Guo An
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China.
| | - Gui-Wen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
29
|
Little AC, Sulovari A, Danyal K, Heppner DE, Seward DJ, van der Vliet A. Paradoxical roles of dual oxidases in cancer biology. Free Radic Biol Med 2017; 110:117-132. [PMID: 28578013 PMCID: PMC5535817 DOI: 10.1016/j.freeradbiomed.2017.05.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 02/06/2023]
Abstract
Dysregulated oxidative metabolism is a well-recognized aspect of cancer biology, and many therapeutic strategies are based on targeting cancers by altering cellular redox pathways. The NADPH oxidases (NOXes) present an important enzymatic source of biological oxidants, and the expression and activation of several NOX isoforms are frequently dysregulated in many cancers. Cell-based studies have demonstrated a role for several NOX isozymes in controlling cell proliferation and/or cell migration, further supporting a potential contributing role for NOX in promoting cancer. While various NOX isoforms are often upregulated in cancers, paradoxical recent findings indicate that dual oxidases (DUOXes), normally prominently expressed in epithelial lineages, are frequently suppressed in epithelial-derived cancers by epigenetic mechanisms, although the functional relevance of such DUOX silencing has remained unclear. This review will briefly summarize our current understanding regarding the importance of reactive oxygen species (ROS) and NOXes in cancer biology, and focus on recent observations indicating the unique and seemingly opposing roles of DUOX enzymes in cancer biology. We will discuss current knowledge regarding the functional properties of DUOX, and recent studies highlighting mechanistic consequences of DUOX1 loss in lung cancer, and its consequences for tumor invasiveness and current anticancer therapy. Finally, we will also discuss potentially unique roles for the DUOX maturation factors. Overall, a better understanding of mechanisms that regulate DUOX and the functional consequences of DUOX silencing in cancer may offer valuable new diagnostic insights and novel therapeutic opportunities.
Collapse
Affiliation(s)
- Andrew C Little
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States; Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, United States
| | - Arvis Sulovari
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, United States; Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - Karamatullah Danyal
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - David E Heppner
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - David J Seward
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States; Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, United States.
| |
Collapse
|
30
|
Parlato M, Charbit-Henrion F, Hayes P, Tiberti A, Aloi M, Cucchiara S, Bègue B, Bras M, Pouliet A, Rakotobe S, Ruemmele F, Knaus UG, Cerf-Bensussan N. First Identification of Biallelic Inherited DUOX2 Inactivating Mutations as a Cause of Very Early Onset Inflammatory Bowel Disease. Gastroenterology 2017; 153:609-611.e3. [PMID: 28683258 DOI: 10.1053/j.gastro.2016.12.053] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/14/2016] [Accepted: 12/23/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Marianna Parlato
- INSERM, UMR1163, Laboratory of Intestinal Immunity and Institut Imagine, Paris, France and GENIUS group from ESPGHAN and Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Fabienne Charbit-Henrion
- INSERM, UMR1163, Laboratory of Intestinal Immunity and Institut Imagine, Paris, France and GENIUS group from ESPGHAN and Université Paris Descartes-Sorbonne Paris Cité and Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Department of Pediatric Gastroenterology, Paris, France
| | - Patti Hayes
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Antonio Tiberti
- Pediatric Gastroenterology, Hepatology and Digestive Endoscopy Unit, University Hospital Umberto I, Rome, Italy
| | - Marina Aloi
- GENIUS group from ESPGHAN and Pediatric Gastroenterology, Hepatology and Digestive Endoscopy Unit, University Hospital Umberto I, Rome, Italy
| | - Salvatore Cucchiara
- GENIUS group from ESPGHAN and Pediatric Gastroenterology, Hepatology and Digestive Endoscopy Unit, University Hospital Umberto I, Rome, Italy
| | - Bernadette Bègue
- INSERM, UMR1163, Laboratory of Intestinal Immunity and Institut Imagine, Paris, France and GENIUS group from ESPGHAN and Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Marc Bras
- Bioinformatics Platform, Université Paris-Descartes-Paris Sorbonne Centre and Institut Imagine, Paris, France
| | | | - Sabine Rakotobe
- INSERM, UMR1163, Laboratory of Intestinal Immunity and Institut Imagine, Paris, France and GENIUS group from ESPGHAN and Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Frank Ruemmele
- INSERM, UMR1163, Laboratory of Intestinal Immunity and Institut Imagine, Paris, France and GENIUS group from ESPGHAN and Université Paris Descartes-Sorbonne Paris Cité, Paris, France and Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Department of Pediatric Gastroenterology, Paris, France
| | - Ulla G Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Nadine Cerf-Bensussan
- INSERM, UMR1163, Laboratory of Intestinal Immunity and Institut Imagine, Paris, France and GENIUS group from ESPGHAN and Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| |
Collapse
|
31
|
Burns JA, Zhang H, Hill E, Kim E, Kerney R. Transcriptome analysis illuminates the nature of the intracellular interaction in a vertebrate-algal symbiosis. eLife 2017; 6:e22054. [PMID: 28462779 PMCID: PMC5413350 DOI: 10.7554/elife.22054] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/15/2017] [Indexed: 12/19/2022] Open
Abstract
During embryonic development, cells of the green alga Oophila amblystomatis enter cells of the salamander Ambystoma maculatum forming an endosymbiosis. Here, using de novo dual-RNA seq, we compared the host salamander cells that harbored intracellular algae to those without algae and the algae inside the animal cells to those in the egg capsule. This two-by-two-way analysis revealed that intracellular algae exhibit hallmarks of cellular stress and undergo a striking metabolic shift from oxidative metabolism to fermentation. Culturing experiments with the alga showed that host glutamine may be utilized by the algal endosymbiont as a primary nitrogen source. Transcriptional changes in salamander cells suggest an innate immune response to the alga, with potential attenuation of NF-κB, and metabolic alterations indicative of modulation of insulin sensitivity. In stark contrast to its algal endosymbiont, the salamander cells did not exhibit major stress responses, suggesting that the host cell experience is neutral or beneficial.
Collapse
Affiliation(s)
- John A Burns
- Division of Invertebrate Zoology, American Museum of Natural History, New York, United States
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, United States
| | - Huanjia Zhang
- Department of Biology, Gettysburg College, Gettysburg, United States
| | - Elizabeth Hill
- Department of Biology, Gettysburg College, Gettysburg, United States
| | - Eunsoo Kim
- Division of Invertebrate Zoology, American Museum of Natural History, New York, United States
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, United States
| | - Ryan Kerney
- Department of Biology, Gettysburg College, Gettysburg, United States
| |
Collapse
|
32
|
Aquaporin-3 mediates hydrogen peroxide-dependent responses to environmental stress in colonic epithelia. Proc Natl Acad Sci U S A 2017; 114:568-573. [PMID: 28049834 PMCID: PMC5255594 DOI: 10.1073/pnas.1612921114] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The colonic epithelium provides an essential barrier against the environment that is critical for protecting the body and controlling inflammation. In response to injury or gut microbes, colonic epithelial cells produce extracellular hydrogen peroxide (H2O2), which acts as a potent signaling molecule affecting barrier function and host defense. In humans, impaired regulation of H2O2 in the intestine has been associated with early-onset inflammatory bowel disease and colon cancer. Here, we show that signal transduction by H2O2 depends on entry into the cell by transit through aquaporin-3 (AQP3), a plasma membrane H2O2-conducting channel. In response to injury, AQP3-depleted colonic epithelial cells showed defective lamellipodia, focal adhesions, and repair after wounding, along with impaired H2O2 responses after exposure to the intestinal pathogen Citrobacter rodentium Correspondingly, AQP3-/- mice showed impaired healing of superficial wounds in the colon and impaired mucosal innate immune responses against C. rodentium infection, manifested by reduced crypt hyperplasia, reduced epithelial expression of IL-6 and TNF-α, and impaired bacterial clearance. These results elucidate the signaling mechanism of extracellular H2O2 in the colonic epithelium and implicate AQP3 in innate immunity at mucosal surfaces.
Collapse
|
33
|
Fehr AGJ, Ruetten M, Seth-Smith HMB, Nufer L, Voegtlin A, Lehner A, Greub G, Crosier PS, Neuhauss SCF, Vaughan L. A Zebrafish Model for Chlamydia Infection with the Obligate Intracellular Pathogen Waddlia chondrophila. Front Microbiol 2016; 7:1829. [PMID: 27917158 PMCID: PMC5114312 DOI: 10.3389/fmicb.2016.01829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/01/2016] [Indexed: 01/22/2023] Open
Abstract
Obligate intracellular chlamydial bacteria of the Planctomycetes-Verrucomicrobia-Chlamydiae (PVC) superphylum are important pathogens of terrestrial and marine vertebrates, yet many features of their pathogenesis and host specificity are still unknown. This is particularly true for families such as the Waddliacea which, in addition to epithelia, cellular targets for nearly all Chlamydia, can infect and replicate in macrophages, an important arm of the innate immune system or in their free-living amoebal counterparts. An ideal pathogen model system should include both host and pathogen, which led us to develop the first larval zebrafish model for chlamydial infections with Waddlia chondrophila. By varying the means and sites of application, epithelial cells of the swim bladder, endothelial cells of the vasculature and phagocytosing cells of the innate immune system became preferred targets for infection in zebrafish larvae. Through the use of transgenic zebrafish, we could observe recruitment of neutrophils to the infection site and demonstrate for the first time that W. chondrophila is taken up and replicates in these phagocytic cells and not only in macrophages. Furthermore, we present evidence that myeloid differentiation factor 88 (MyD88) mediated signaling plays a role in the innate immune reaction to W. chondrophila, eventually by Toll-like receptor (TLRs) recognition. Infected larvae with depleted levels of MyD88 showed a higher infection load and a lower survival rate compared to control fish. This work presents a new and potentially powerful non-mammalian experimental model to study the pathology of chlamydial virulence in vivo and opens up new possibilities for investigation of other members of the PVC superphylum.
Collapse
Affiliation(s)
- Alexander G J Fehr
- Vetsuisse Faculty, Institute for Veterinary Pathology, University of Zurich Zurich, Switzerland
| | - Maja Ruetten
- Vetsuisse Faculty, Institute for Veterinary Pathology, University of Zurich Zurich, Switzerland
| | - Helena M B Seth-Smith
- Vetsuisse Faculty, Institute for Veterinary Pathology, University of ZurichZurich, Switzerland; Functional Genomics Center Zurich, Molecular and Life Sciences, University of ZurichZurich, Switzerland
| | - Lisbeth Nufer
- Vetsuisse Faculty, Institute for Veterinary Pathology, University of Zurich Zurich, Switzerland
| | - Andrea Voegtlin
- Vetsuisse Faculty, Institute of Veterinary Bacteriology, University of Zurich Zurich, Switzerland
| | - Angelika Lehner
- Vetsuisse Faculty, Institute for Food Safety and Hygiene, University of Zurich Zurich, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University Hospital Center and University of Lausanne Lausanne, Switzerland
| | - Philip S Crosier
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland Auckland, New Zealand
| | | | - Lloyd Vaughan
- Vetsuisse Faculty, Institute for Veterinary Pathology, University of Zurich Zurich, Switzerland
| |
Collapse
|
34
|
Brugman S. The zebrafish as a model to study intestinal inflammation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:82-92. [PMID: 26902932 DOI: 10.1016/j.dci.2016.02.020] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 06/05/2023]
Abstract
Starting out as a model for developmental biology, during the last decade, zebrafish have also gained the attention of the immunologists and oncologists. Due to its small size, high fecundity and full annotation of its genome, the zebrafish is an attractive model system. The fact that fish are transparent early in life combined with the growing list of immune cell reporter fish, enables in vivo tracking of immune responses in a complete organism. Since zebrafish develop ex utero from a fertilized egg, immune development can be monitored from the start of life. Given that several gut functions and immune genes are conserved between zebrafish and mammals, the zebrafish is an interesting model organism to investigate fundamental processes underlying intestinal inflammation and injury. This review will first provide some background on zebrafish intestinal development, bacterial colonization and immunity, showing the similarities and differences compared to mammals. This will be followed by an overview of the existing models for intestinal disease, and concluded by future perspectives in light of the newest technologies and insights.
Collapse
Affiliation(s)
- Sylvia Brugman
- Animal Sciences Group, Cell Biology and Immunology, Wageningen University, De Elst 1, room Ee1253, 6708 WD Wageningen, Netherlands.
| |
Collapse
|
35
|
Discovery of genes associated with cadmium accumulation from gill of scallop Chlamys farreri based on high-throughput sequencing. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0391-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Sirokmány G, Donkó Á, Geiszt M. Nox/Duox Family of NADPH Oxidases: Lessons from Knockout Mouse Models. Trends Pharmacol Sci 2016; 37:318-327. [DOI: 10.1016/j.tips.2016.01.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 11/21/2015] [Accepted: 01/11/2016] [Indexed: 02/07/2023]
|
37
|
Meng X, Tian X, Nie G, Wang J, Liu M, Jiang K, Wang B, Guo Q, Huang J, Wang L. The transcriptomic response to copper exposure in the digestive gland of Japanese scallops (Mizuhopecten yessoensis). FISH & SHELLFISH IMMUNOLOGY 2015; 46:161-167. [PMID: 26002639 DOI: 10.1016/j.fsi.2015.05.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 05/11/2015] [Accepted: 05/11/2015] [Indexed: 06/04/2023]
Abstract
The present study was conducted to elucidate the effects of copper exposure on the immune system and lipid metabolism of the Japanese scallop, Mizuhopecten yessoensis. Transcriptional levels of differentially expressed genes (DEGs)in M. yessoensis digestive gland tissue were analyzed using the deep-sequencing platform Illumina HiSeq™ 2000. In total, 841 and 877 genes were identified as significantly up- or down-regulated, respectively. In addition, significant enrichment analysis identified 3 gene ontology terms and 15 pathways involved in the response to copper exposure. Analysis of transcripts related to the immune response revealed a complex pattern of innate recognition receptors, including toll-like receptors, NOD-like receptors and downstream pathway effectors, including those involved in apoptosis. Furthermore, genomic analysis revealed that genes involved in extracellular matrix (ECM)-receptor interactions were enriched in Cu-exposed scallop glands. These results will provide a resource for subsequent gene expression studies regarding heavy metal exposure and the identification of copper-sensitive biomarkers for the aquaculture of M. yessoensis.
Collapse
Affiliation(s)
- Xiaolin Meng
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xue Tian
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China.
| | - Junli Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Mei Liu
- R&D Center of Marine, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Keyong Jiang
- R&D Center of Marine, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Baojie Wang
- R&D Center of Marine, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Qianqian Guo
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Jianrong Huang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Lei Wang
- R&D Center of Marine, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China.
| |
Collapse
|
38
|
Harvie EA, Huttenlocher A. Neutrophils in host defense: new insights from zebrafish. J Leukoc Biol 2015; 98:523-37. [PMID: 25717145 PMCID: PMC4569048 DOI: 10.1189/jlb.4mr1114-524r] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 12/11/2022] Open
Abstract
Neutrophils are highly motile phagocytic cells that play a critical role in the immune response to infection. Zebrafish (Danio rerio) are increasingly used to study neutrophil function and host-pathogen interactions. The generation of transgenic zebrafish lines with fluorescently labeled leukocytes has made it possible to visualize the neutrophil response to infection in real time by use of optically transparent zebrafish larvae. In addition, the genetic tractability of zebrafish has allowed for the generation of models of inherited neutrophil disorders. In this review, we discuss several zebrafish models of infectious disease, both in the context of immunocompetent, as well as neutrophil-deficient hosts and how these models have shed light on neutrophil behavior during infection.
Collapse
Affiliation(s)
- Elizabeth A Harvie
- *Microbiology Doctoral Training Program, Departments of Medical Microbiology and Immunology and Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Anna Huttenlocher
- *Microbiology Doctoral Training Program, Departments of Medical Microbiology and Immunology and Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
39
|
LU HUIXIA, WU QI, YANG HUIJUN. DUOX2 promotes the elimination of the Klebsiella pneumoniae strain K5 from T24 cells through the reactive oxygen species pathway. Int J Mol Med 2015; 36:551-8. [DOI: 10.3892/ijmm.2015.2234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 05/25/2015] [Indexed: 11/06/2022] Open
|
40
|
Localization of the Dual Oxidase BLI-3 and Characterization of Its NADPH Oxidase Domain during Infection of Caenorhabditis elegans. PLoS One 2015; 10:e0124091. [PMID: 25909649 PMCID: PMC4409361 DOI: 10.1371/journal.pone.0124091] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 02/25/2015] [Indexed: 01/10/2023] Open
Abstract
Dual oxidases (DUOX) are enzymes that contain an NADPH oxidase domain that produces hydrogen peroxide (H2O2) and a peroxidase domain that can utilize H2O2 to carry out a variety of reactions. The model organism Caenorhabditis elegans produces the DUOX, BLI-3, which has roles in both cuticle development and in protection against infection. In previous work, we demonstrated that while certain peroxidases were protective against the human bacterial pathogen Enterococcus faecalis, the peroxidase domain of BLI-3 was not, leading to the postulate that the NADPH oxidase domain is the basis for BLI-3’s protective effects. In this work, we show that a strain carrying a mutation in the NADPH oxidase domain of BLI-3, bli-3(im10), is more susceptible to E. faecalis and the human fungal pathogen Candida albicans. Additionally, less H2O2 is produced in response to pathogen using both an established Amplex Red assay and a strain of C. albicans, WT-OXYellow, which acts as a biosensor of reactive oxygen species (ROS). Finally, a C. elegans line containing a BLI-3::mCherry transgene was generated. Previous work suggested that BLI-3 is produced in the hypodermis and the intestine. Expression of the transgene was observed in both these tissues, and additionally in the pharynx. The amount and pattern of localization of BLI-3 did not change in response to pathogen exposure.
Collapse
|
41
|
Marjoram L, Bagnat M. Infection, Inflammation and Healing in Zebrafish: Intestinal Inflammation. CURRENT PATHOBIOLOGY REPORTS 2015; 3:147-153. [PMID: 26236567 PMCID: PMC4520400 DOI: 10.1007/s40139-015-0079-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Inflammatory bowel diseases (IBD), which include Crohn’s disease and ulcerative colitis, contribute to significant morbidity and mortality globally. Despite an increase in incidence, IBD onset is still poorly understood. Mouse models of IBD recapitulate several aspects of human disease, but limited accessibility for live imaging and the lack of forward genetics highlight the need for new model systems for disease onset characterization. Zebrafish represent a powerful platform to model IBD using forward and reverse genetics, live imaging of transgenic lines and physiological assays. In this review, we address current models of IBD in zebrafish and newly developed reagents available for future studies.
Collapse
Affiliation(s)
- Lindsay Marjoram
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, Tel: 919-684-4899,
| | - Michel Bagnat
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, Tel: 919-681-9268 ,
| |
Collapse
|
42
|
Abnave P, Conti F, Torre C, Ghigo E. What RNAi screens in model organisms revealed about microbicidal response in mammals? Front Cell Infect Microbiol 2015; 4:184. [PMID: 25629007 PMCID: PMC4290690 DOI: 10.3389/fcimb.2014.00184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/10/2014] [Indexed: 11/21/2022] Open
Abstract
The strategies evolved by pathogens to infect hosts and the mechanisms used by the host to eliminate intruders are highly complex. Because several biological pathways and processes are conserved across model organisms, these organisms have been used for many years to elucidate and understand the mechanisms of the host-pathogen relationship and particularly to unravel the molecular processes enacted by the host to kill pathogens. The emergence of RNA interference (RNAi) and the ability to apply it toward studies in model organisms have allowed a breakthrough in the elucidation of host-pathogen interactions. The aim of this mini-review is to highlight and describe recent breakthroughs in the field of host-pathogen interactions using RNAi screens of model organisms. We will focus specifically on the model organisms Drosophila melanogaster, Caenorhabditis elegans, and Danio rerio. Moreover, a recent study examining the immune system of planarian will be discussed.
Collapse
Affiliation(s)
- Prasad Abnave
- CNRS UMR 7278, URMITE, IRD198, INSERM U1095, Aix-Marseille Université Marseille, France
| | - Filippo Conti
- CNRS UMR 7278, URMITE, IRD198, INSERM U1095, Aix-Marseille Université Marseille, France
| | - Cedric Torre
- CNRS UMR 7278, URMITE, IRD198, INSERM U1095, Aix-Marseille Université Marseille, France
| | - Eric Ghigo
- CNRS UMR 7278, URMITE, IRD198, INSERM U1095, Aix-Marseille Université Marseille, France
| |
Collapse
|
43
|
van der Vliet A, Janssen-Heininger YMW. Hydrogen peroxide as a damage signal in tissue injury and inflammation: murderer, mediator, or messenger? J Cell Biochem 2014; 115:427-35. [PMID: 24122865 DOI: 10.1002/jcb.24683] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 09/24/2013] [Indexed: 12/17/2022]
Abstract
Tissue injury and inflammation are associated with increased production of reactive oxygen species (ROS), which have the ability to induce oxidative injury to various biomolecules resulting in protein dysfunction, genetic instability, or cell death. However, recent observations indicate that formation of hydrogen peroxide (H2 O2 ) during tissue injury is also an essential feature of the ensuing wound healing response, and functions as an early damage signal to control several critical aspects of the wound healing process. Because innate oxidative wound responses must be tightly coordinated to avoid chronic inflammation or tissue injury, a more complete understanding is needed regarding the origins and dynamics of ROS production, and their critical biological targets. This prospect highlights the current experimental evidence implicating H2 O2 in early epithelial wound responses, and summarizes technical advances and approaches that may help distinguish its beneficial actions from its more deleterious actions in conditions of chronic tissue injury or inflammation.
Collapse
Affiliation(s)
- Albert van der Vliet
- Department of Pathology, College of Medicine, University of Vermont, Burlington, Vermont, 05405
| | | |
Collapse
|
44
|
Donkó Á, Morand S, Korzeniowska A, Boudreau HE, Zana M, Hunyady L, Geiszt M, Leto TL. Hypothyroidism-associated missense mutation impairs NADPH oxidase activity and intracellular trafficking of Duox2. Free Radic Biol Med 2014; 73:190-200. [PMID: 24853759 PMCID: PMC4111973 DOI: 10.1016/j.freeradbiomed.2014.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 04/10/2014] [Accepted: 05/12/2014] [Indexed: 01/06/2023]
Abstract
In the thyroid gland Duox2-derived H2O2 is essential for thyroid hormone biosynthesis. Several patients were identified with partial or severe iodide organification defects caused by mutation in the gene for Duox2 or its maturation factor, DuoxA2. A Duox2-deficient (Duox2(thyd)) mouse model enabled in vivo investigation of its critical function in thyroid tissues, but its roles proposed in host defense or other innate responses in nonthyroid tissues remain less certain. These mice carry a spontaneous DUOX2 missense mutation, a T→G transversion, in exon 16 that changes the highly conserved valine 674 to glycine and results in severe congenital hypothyroidism. The exact mechanism underlying the effects of the V674G mutation has not been elucidated at the molecular or cellular level. To determine how the V674G mutation leads to congenital hypothyroidism, we introduced the same mutation into human Duox2 or Duox1 cDNAs and expressed them in HEK-293 cells stably expressing the corresponding DuoxA proteins. We found that the valine→glycine mutant Duox proteins fail to produce H2O2, lose their plasma membrane localization pattern, and are retained within the endoplasmic reticulum. The Duox2 mutant binds to DuoxA2, but appears to be unstable owing to this retention. Immunohistochemical staining of Duox2 in murine salivary gland ducts showed that Duox2 in mutant mice loses its condensed apical plasma membrane localization pattern characteristic of wild-type Duox2 and accumulates in punctate vesicular structures within cells. Our findings demonstrate that changing the highly conserved valine 674 in Duox2 leads to impaired subcellular targeting and reactive oxygen species release required for hormonogenesis, resulting in congenital hypothyroidism.
Collapse
Affiliation(s)
- Ágnes Donkó
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; Department of Physiology, Semmelweis University, Budapest, Hungary; "Lendület" Peroxidase Enzyme Research Group of the Semmelweis University and the Hungarian Academy of Sciences, Budapest, Hungary
| | - Stanislas Morand
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Agnieszka Korzeniowska
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Howard E Boudreau
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Melinda Zana
- Department of Physiology, Semmelweis University, Budapest, Hungary; "Lendület" Peroxidase Enzyme Research Group of the Semmelweis University and the Hungarian Academy of Sciences, Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Miklós Geiszt
- Department of Physiology, Semmelweis University, Budapest, Hungary; "Lendület" Peroxidase Enzyme Research Group of the Semmelweis University and the Hungarian Academy of Sciences, Budapest, Hungary
| | - Thomas L Leto
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
45
|
Acetylcholine serves as a derepressor in Loperamide-induced Opioid-Induced Bowel Dysfunction (OIBD) in zebrafish. Sci Rep 2014; 4:5602. [PMID: 24998697 PMCID: PMC4083263 DOI: 10.1038/srep05602] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/20/2014] [Indexed: 11/12/2022] Open
Abstract
The mechanisms underlying gut development, especially peristalsis, are widely studied topics. However, the causes of gut peristalsis-related diseases, especially Opioid-Induced Bowel Dysfunction (OIBD) disorder, have not been well defined. Therefore, our study used zebrafish, a popular model for studying both gut development and peristalsis, and DCFH-DA, a dye that clearly labels the live fish gut lumen, to characterize the formation process of gut lumen as well as the gut movement style in vivo. By applying Loperamide Hydrochloride (LH), the μ-opioid receptor-specific agonist, we established an OIBD-like zebrafish model. Our study found that acetylcholine (ACh) was a key transmitter that derepressed the phenotype induced by LH. Overall, the study showed that the antagonistic role of ACh in the LH-mediated opioid pathway was evolutionarily conserved; moreover, the OIBD-like zebrafish model will be helpful in the future dissection of the molecular pathways involved in gut lumen development and pathology.
Collapse
|
46
|
Hogan D, Wheeler RT. The complex roles of NADPH oxidases in fungal infection. Cell Microbiol 2014; 16:1156-67. [PMID: 24905433 DOI: 10.1111/cmi.12320] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/27/2014] [Accepted: 05/29/2014] [Indexed: 12/21/2022]
Abstract
NADPH oxidases play key roles in immunity and inflammation that go beyond the production of microbicidal reactive oxygen species (ROS). The past decade has brought a new appreciation for the diversity of roles played by ROS in signalling associated with inflammation and immunity. NADPH oxidase activity affects disease outcome during infections by human pathogenic fungi, an important group of emerging and opportunistic pathogens that includes Candida, Aspergillus and Cryptococcus species. Here we review how alternative roles of NADPH oxidase activity impact fungal infection and how ROS signalling affects fungal physiology. Particular attention is paid to roles for NADPH oxidase in immune migration, immunoregulation in pulmonary infection, neutrophil extracellular trap formation, autophagy and inflammasome activity. These recent advances highlight the power and versatility of spatiotemporally controlled redox regulation in the context of infection, and point to a need to understand the molecular consequences of NADPH oxidase activity in the cell.
Collapse
Affiliation(s)
- Deborah Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | | |
Collapse
|
47
|
De Deken X, Corvilain B, Dumont JE, Miot F. Roles of DUOX-mediated hydrogen peroxide in metabolism, host defense, and signaling. Antioxid Redox Signal 2014; 20:2776-93. [PMID: 24161126 DOI: 10.1089/ars.2013.5602] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Among the NADPH oxidases, the dual oxidases, DUOX1 and DUOX2, constitute a distinct subfamily initially called thyroid oxidases, based on their high level of expression in thyroid tissue. Genetic alterations causing inherited hypothyroidism clearly demonstrate their physiological implication in thyroid hormonogenesis. However, a growing list of biological functions triggered by DUOX-dependent reactive oxygen species (ROS) in highly differentiated mucosae have recently emerged. RECENT ADVANCES A role of DUOX enzymes as ROS providers for lactoperoxidase-mediated killing of invading pathogens has been well established and a role in bacteria chemorepulsion has been proposed. Control of DUOX expression and activity by inflammatory molecules and immune receptor activation consolidates their contributions to innate immune defense of mucosal surfaces. Recent studies conducted in ancestral organisms have identified effectors of DUOX redox signaling involved in wound healing including epithelium regeneration and leukocyte recruitment. Moreover, local generation of hydrogen peroxide (H2O2) by DUOX has also been suggested to constitute a positive feedback loop to promote receptor signaling activation. CRITICAL ISSUES A correct balance between H2O2 generation and detoxification mechanisms must be properly maintained to avoid oxidative damages. Overexpression of DUOX genes has been associated with an increasing number of chronic inflammatory diseases. Furthermore, H2O2-mediated DNA damage supports a mutagenic function promoting tumor development. FUTURE DIRECTIONS Despite the high sequence similarity shared between DUOX1 and DUOX2, the two isoforms present distinct regulations, tissue expression and catalytic functions. The phenotypic characterization of novel DUOX/DUOXA invalidated animal models will be very useful for defining their medical importance in pathological conditions.
Collapse
Affiliation(s)
- Xavier De Deken
- Faculté de Médecine, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB) , Brussels, Belgium
| | | | | | | |
Collapse
|
48
|
Strengert M, Jennings R, Davanture S, Hayes P, Gabriel G, Knaus UG. Mucosal reactive oxygen species are required for antiviral response: role of Duox in influenza a virus infection. Antioxid Redox Signal 2014; 20:2695-709. [PMID: 24128054 DOI: 10.1089/ars.2013.5353] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AIMS Influenza A virus (IAV), a major airborne pathogen, is closely associated with significant morbidity and mortality. The primary target for influenza virus replication is the respiratory epithelium, which reacts to infection by mounting a multifaceted antiviral response. A part of this mucosal host defense is the generation of reactive oxygen species (ROS) by NADPH oxidases. Duox1 and Duox2 are the main ROS-producing enzymes in the airway epithelium, but their contribution to mammalian host defense is still ill defined. RESULTS To gain a better understanding of Duox function in respiratory tract infections, human differentiated lung epithelial cells and an animal model were used to monitor the effect of epithelial ROS on IAV propagation. IAV infection led to coordinated up-regulation of Duox2 and Duox-mediated ROS generation. Interference with H2O2 production and ROS signaling by oxidase inhibition or H2O2 decomposition augmented IAV replication. A nuclear pool of Duox enzymes participated in the regulation of the spliceosome, which is critical for alternative splicing of viral transcripts and controls the assembly of viable virions. In vivo silencing of Duox increased the viral load on intranasal infection with 2009 pandemic H1N1 influenza virus. INNOVATION This is the first study conclusively linking Duox NADPH oxidases with the antiviral mammalian immune response. Further, ROS generated by Duox enzymes localized adjacent to nuclear speckles altered the splicing of viral genes. CONCLUSION Duox-derived ROS are host protective and essential for counteracting IAV replication.
Collapse
|
49
|
Meng X, Tian X, Liu M, Nie G, Jiang K, Wang B, Wang L. The transcriptomic response to copper exposure by the gill tissue of Japanese scallops (Mizuhopecten yessoensis) using deep-sequencing technology. FISH & SHELLFISH IMMUNOLOGY 2014; 38:287-293. [PMID: 24650576 DOI: 10.1016/j.fsi.2014.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 02/26/2014] [Accepted: 03/07/2014] [Indexed: 06/03/2023]
Abstract
The bivalve Mizuhopecten yessoensis has been greatly impacted by marine pollutants in northern China. To elucidate the toxicological mechanism of copper exposure on the immune system, we investigated differentially expressed genes (DEGs) and transcript abundance in M. yessoensis gill tissue using the deep-sequencing platform Illumina HiSeq™ 2000. In total, 1312 and 2237 genes were identified as significantly up- or down-regulated, respectively. In addition, significant enrichment analysis identified 9 GO terms and 38 pathways involved in the response to copper exposure. The analysis of immune-related transcripts revealed a complex repertoire of innate recognition receptors, including toll-like receptors, NOD-like receptors and RIG-like receptors. Downstream pathway effectors, such as apoptotic, lysosomal and C-type lectin transcripts, were also analyzed. These results will provide a resource for subsequent gene expression studies regarding heavy metal exposure and the identification of copper-sensitive biomarkers to monitor the aquaculture of M. yessoensis.
Collapse
Affiliation(s)
- Xiaolin Meng
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xue Tian
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Mei Liu
- R&D Center of Marine, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Keyong Jiang
- R&D Center of Marine, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Baojie Wang
- R&D Center of Marine, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Lei Wang
- R&D Center of Marine, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China.
| |
Collapse
|
50
|
Yan B, Han P, Pan L, Lu W, Xiong J, Zhang M, Zhang W, Li L, Wen Z. Il-1β and Reactive Oxygen Species Differentially Regulate Neutrophil Directional Migration and Basal Random Motility in a Zebrafish Injury–Induced Inflammation Model. THE JOURNAL OF IMMUNOLOGY 2014; 192:5998-6008. [DOI: 10.4049/jimmunol.1301645] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|