1
|
Xu K, Xiao Y, Luo J, Chao X, Wang R, Fan Z, Wang H, Xu L. Research progress on incomplete partition type 3 inner ear malformation. Eur Arch Otorhinolaryngol 2024; 281:3943-3948. [PMID: 38498189 PMCID: PMC11266284 DOI: 10.1007/s00405-024-08555-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/12/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE This review aims to provides a comprehensive overview of the latest research progress on IP-III inner ear malformation, focusing on its geneticbasis, imaging features, cochlear implantation, and outcome. METHODS Review the literature on clinical and genetic mechanisms associated with IP-III. RESULTS Mutations in the POU3F4 gene emerge as the principal pathogenic contributors to IP-III anomalies, primarily manifesting through inner ear potential irregularities leading to deafness. While cochlear implantation stands as the primary intervention for restoring hearing, the unique nature of the inner ear anomaly escalates the complexity of surgical procedures and postoperative results. Hence, meticulous preoperative assessment to ascertain surgical feasibility and postoperative verification of electrode placement are imperative. Additionally, gene therapy holds promise as a prospective treatment modality. CONCLUSIONS IP-III denotes X-linked recessive hereditary deafness, with cochlear implantation currently serving as the predominant therapeutic approach. Clinicians are tasked with preoperative assement and individualized postoperative rehabilitation.
Collapse
Affiliation(s)
- Kaifan Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Department of Auditory Implantology, Second People's Hospital of Shandong Province, jinan, China
- Shandong Institute of Otorhinolaryngology, jinan, China
| | - Yun Xiao
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Shandong Institute of Otorhinolaryngology, jinan, China
| | - Jianfen Luo
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Department of Auditory Implantology, Second People's Hospital of Shandong Province, jinan, China
| | - Xiuhua Chao
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Department of Auditory Implantology, Second People's Hospital of Shandong Province, jinan, China
| | - Ruijie Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
- Department of Auditory Implantology, Second People's Hospital of Shandong Province, jinan, China
| | - Zhaoming Fan
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, China.
- Department of Auditory Implantology, Second People's Hospital of Shandong Province, jinan, China.
| |
Collapse
|
2
|
Rose KP, Manilla G, Milon B, Zalzman O, Song Y, Coate TM, Hertzano R. Spatially distinct otic mesenchyme cells show molecular and functional heterogeneity patterns before hearing onset. iScience 2023; 26:107769. [PMID: 37720106 PMCID: PMC10502415 DOI: 10.1016/j.isci.2023.107769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/29/2023] [Accepted: 08/25/2023] [Indexed: 09/19/2023] Open
Abstract
The cochlea consists of diverse cellular populations working in harmony to convert mechanical stimuli into electrical signals for the perception of sound. Otic mesenchyme cells (OMCs), often considered a homogeneous cell type, are essential for normal cochlear development and hearing. Despite being the most numerous cell type in the developing cochlea, OMCs are poorly understood. OMCs are known to differentiate into spatially and functionally distinct cell types, including fibrocytes of the lateral wall and spiral limbus, modiolar osteoblasts, and specialized tympanic border cells of the basilar membrane. Here, we show that OMCs are transcriptionally and functionally heterogeneous and can be divided into four distinct populations that spatially correspond to OMC-derived cochlear structures. We also show that this heterogeneity and complexity of OMCs commences during early phases of cochlear development. Finally, we describe the cell-cell communication network of the developing cochlea, inferring a major role for OMC in outgoing signaling.
Collapse
Affiliation(s)
- Kevin P. Rose
- Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gabriella Manilla
- Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Beatrice Milon
- Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ori Zalzman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Thomas M. Coate
- Department of Biology, Georgetown University, Washington, DC 20007, USA
| | - Ronna Hertzano
- Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
3
|
Shi X, Li J, Liu T, Zhao H, Leng H, Sun K, Feng J. Divergence of cochlear transcriptomics between reference‑based and reference‑free transcriptome analyses among Rhinolophus ferrumequinum populations. PLoS One 2023; 18:e0288404. [PMID: 37432940 DOI: 10.1371/journal.pone.0288404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/26/2023] [Indexed: 07/13/2023] Open
Abstract
Differences in gene expression within tissues can lead to differences in tissue function. Understanding the transcriptome of a species helps elucidate the molecular mechanisms underlying phenotypic divergence. According to the presence or absence of a reference genome of for a studied species, transcriptome analyses can be divided into reference‑based and reference‑free methods, respectively. Presently, comparisons of complete transcriptome analysis results between those two methods are still rare. In this study, we compared the cochlear transcriptome analysis results of greater horseshoe bats (Rhinolophus ferrumequinum) from three lineages in China with different acoustic phenotypes using reference‑based and reference‑free methods to explore their differences in subsequent analysis. The results gained by reference-based results had lower false-positive rates and were more accurate because differentially expressed genes among the three populations obtained by this method had greater reliability and a higher annotation rate. Some phenotype-related enrichment terms, including those related to inorganic molecules and proton transmembrane channels, were also obtained only by the reference-based method. However, the reference‑based method might have the limitation of incomplete information acquisition. Thus, we believe that a combination of reference‑free and reference‑based methods is ideal for transcriptome analyses. The results of our study provided a reference for the selection of transcriptome analysis methods in the future.
Collapse
Affiliation(s)
- Xiaoxiao Shi
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
| | - Jun Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
| | - Tong Liu
- Department of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Hanbo Zhao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural, Shenzhen, China
| | - Haixia Leng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, Jilin, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Department of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
4
|
Defourny J. Considering gene therapy to protect from X-linked deafness DFNX2 and associated neurodevelopmental disorders. IBRAIN 2022; 8:431-441. [PMID: 37786584 PMCID: PMC10529175 DOI: 10.1002/ibra.12068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/10/2022] [Accepted: 09/13/2022] [Indexed: 10/04/2023]
Abstract
Mutations and deletions in the gene or upstream of the gene encoding the POU3F4 transcription factor cause X-linked progressive deafness DFNX2 and additional neurodevelopmental disorders in humans. Hearing loss can be purely sensorineural or mixed, that is, with both conductive and sensorineural components. Affected males show anatomical abnormalities of the inner ear, which are jointly defined as incomplete partition type III. Current approaches to improve hearing and speech skills of DFNX2 patients do not seem to be fully effective. Owing to inner ear malformations, cochlear implantation is surgically difficult and may predispose towards severe complications. Even in cases where implantation is safely performed, hearing and speech outcomes remain highly variable among patients. Mouse models for DFNX2 deafness revealed that sensorineural loss could arise from a dysfunction of spiral ligament fibrocytes in the lateral wall of the cochlea, which leads to reduced endocochlear potential. Highly positive endocochlear potential is critical for sensory hair cell mechanotransduction and hearing. In this context, here, we propose to develop a therapeutic approach in male Pou3f4 -/y mice based on an adeno-associated viral (AAV) vector-mediated gene transfer in cochlear spiral ligament fibrocytes. Among a broad range of AAV vectors, AAV7 was found to show a strong tropism for the spiral ligament. Thus, we suggest that an AAV7-mediated delivery of Pou3f4 complementary DNA in the spiral ligament of Pou3f4 -/y mice could represent an attractive strategy to prevent fibrocyte degeneration and to restore normal cochlear functions and properties, including a positive endocochlear potential, before hearing loss progresses to profound deafness.
Collapse
Affiliation(s)
- Jean Defourny
- GIGA‐Neurosciences, Unit of Cell and Tissue BiologyUniversity of Liège, C.H.U. B36LiègeBelgium
| |
Collapse
|
5
|
Yu R, Wang K, Xiong Y, Jiang H. A novel mutation of X-linked recessive deafness gene POU3F4 in a boy with congenital deafness. Laryngoscope Investig Otolaryngol 2022; 7:1150-1154. [PMID: 36000053 PMCID: PMC9392402 DOI: 10.1002/lio2.850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 11/07/2022] Open
Abstract
Purpose To report an interstitial deletion of Xq21.1 in chromosome X in a boy with congenital deafness. Methods The proband underwent a thorough physical examination and a detailed audiological and temporal bone computed tomography (CT) scan. Cochlear implantation was performed on the proband, and follow-up was conducted. High throughput sequencing and copy number analysis was made of peripheral blood samples from the proband, family members, and control subjects. Results Sensorineural hearing loss was present in the boy and temporal bone CT scan showed a bilateral incomplete partition type III anomaly (IP-III). Q21.1 (79.40-83.32 Mb) of chromosome X in the proband had a copy number deletion with a fragment size of about 3.92 Mb. Categories of auditory performance scores and SIR scores of the cochlea in this child improved after surgery. Conclusion Through the analysis of POU3F4, a novel mutation site with potentially pathogenic significance was found.Level of Evidence: 5.
Collapse
Affiliation(s)
- Rong Yu
- Department of OtorhinolaryngologyFirst Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Kai Wang
- Department of OtorhinolaryngologyThe 908th Hospital of Chinese People's Liberation Army Joint Logistic Support ForceNanchangChina
| | - Yuanping Xiong
- Department of OtorhinolaryngologyFirst Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Hongqun Jiang
- Department of OtorhinolaryngologyFirst Affiliated Hospital of Nanchang UniversityNanchangChina
| |
Collapse
|
6
|
Roesch S, Rasp G, Sarikas A, Dossena S. Genetic Determinants of Non-Syndromic Enlarged Vestibular Aqueduct: A Review. Audiol Res 2021; 11:423-442. [PMID: 34562878 PMCID: PMC8482117 DOI: 10.3390/audiolres11030040] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/02/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Hearing loss is the most common sensorial deficit in humans and one of the most common birth defects. In developed countries, at least 60% of cases of hearing loss are of genetic origin and may arise from pathogenic sequence alterations in one of more than 300 genes known to be involved in the hearing function. Hearing loss of genetic origin is frequently associated with inner ear malformations; of these, the most commonly detected is the enlarged vestibular aqueduct (EVA). EVA may be associated to other cochleovestibular malformations, such as cochlear incomplete partitions, and can be found in syndromic as well as non-syndromic forms of hearing loss. Genes that have been linked to non-syndromic EVA are SLC26A4, GJB2, FOXI1, KCNJ10, and POU3F4. SLC26A4 and FOXI1 are also involved in determining syndromic forms of hearing loss with EVA, which are Pendred syndrome and distal renal tubular acidosis with deafness, respectively. In Caucasian cohorts, approximately 50% of cases of non-syndromic EVA are linked to SLC26A4 and a large fraction of patients remain undiagnosed, thus providing a strong imperative to further explore the etiology of this condition.
Collapse
Affiliation(s)
- Sebastian Roesch
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University, 5020 Salzburg, Austria; (S.R.); (G.R.)
| | - Gerd Rasp
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University, 5020 Salzburg, Austria; (S.R.); (G.R.)
| | - Antonio Sarikas
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria;
- Correspondence: ; Tel.: +43-(0)662-2420-80564
| |
Collapse
|
7
|
Tekin AM, Matulic M, Wuyts W, Assadi MZ, Mertens G, van Rompaey V, Li Y, van de Heyning P, Topsakal V. A New Pathogenic Variant in POU3F4 Causing Deafness Due to an Incomplete Partition of the Cochlea Paved the Way for Innovative Surgery. Genes (Basel) 2021; 12:genes12050613. [PMID: 33919129 PMCID: PMC8143104 DOI: 10.3390/genes12050613] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 12/20/2022] Open
Abstract
Incomplete partition type III (IP-III) is a relatively rare inner ear malformation that has been associated with a POU3F4 gene mutation. The IP-III anomaly is mainly characterized by incomplete separation of the modiolus of the cochlea from the internal auditory canal. We describe a 71-year-old woman with profound sensorineural hearing loss diagnosed with an IP-III of the cochlea that underwent cochlear implantation. Via targeted sequencing with a non-syndromic gene panel, we identified a heterozygous c.934G > C p. (Ala31Pro) pathogenic variant in the POU3F4 gene that has not been reported previously. IP-III of the cochlea is challenging for cochlear implant surgery for two main reasons: liquor cerebrospinalis gusher and electrode misplacement. Surgically, it may be better to opt for a shorter array because it is less likely for misplacement with the electrode in a false route. Secondly, the surgeon has to consider the insertion angles of cochlear access very strictly to avoid misplacement along the inner ear canal. Genetic results in well describes genotype-phenotype correlations are a strong clinical tool and as in this case guided surgical planning and robotic execution.
Collapse
Affiliation(s)
- Ahmet M. Tekin
- Department of Otorhinolaryngology, Head and Neck Surgery, Brussels Health Campus, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (A.M.T.); (M.M.)
| | - Marco Matulic
- Department of Otorhinolaryngology, Head and Neck Surgery, Brussels Health Campus, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (A.M.T.); (M.M.)
| | - Wim Wuyts
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, 2650 Antwerp, Belgium;
| | | | - Griet Mertens
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, 2650 Edegem, Belgium; (G.M.); (V.v.R.); (P.v.d.H.)
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Vincent van Rompaey
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, 2650 Edegem, Belgium; (G.M.); (V.v.R.); (P.v.d.H.)
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Yongxin Li
- Department of Otolaryngology, Head and Neck Surgery, Capital Medical University, Beijing 100730, China;
| | - Paul van de Heyning
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, 2650 Edegem, Belgium; (G.M.); (V.v.R.); (P.v.d.H.)
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Vedat Topsakal
- Department of Otorhinolaryngology, Head and Neck Surgery, Brussels Health Campus, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (A.M.T.); (M.M.)
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital UZ Brussel, Brussels Health Campus, Vrije Universiteit Brussel, 1090 Brussels, Belgium
- Correspondence: ; Tel.: +32-24776882; Fax: +32-24776880
| |
Collapse
|
8
|
van der Valk WH, Steinhart MR, Zhang J, Koehler KR. Building inner ears: recent advances and future challenges for in vitro organoid systems. Cell Death Differ 2020; 28:24-34. [PMID: 33318601 PMCID: PMC7853146 DOI: 10.1038/s41418-020-00678-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
While inner ear disorders are common, our ability to intervene and recover their sensory function is limited. In vitro models of the inner ear, like the organoid system, could aid in identifying new regenerative drugs and gene therapies. Here, we provide a perspective on the status of in vitro inner ear models and guidance on how to improve their applicability in translational research. We highlight the generation of inner ear cell types from pluripotent stem cells as a particularly promising focus of research. Several exciting recent studies have shown how the developmental signaling cues of embryonic and fetal development can be mimicked to differentiate stem cells into “inner ear organoids” containing otic progenitor cells, hair cells, and neurons. However, current differentiation protocols and our knowledge of embryonic and fetal inner ear development in general, have a bias toward the sensory epithelia of the inner ear. We propose that a more holistic view is needed to better model the inner ear in vitro. Moving forward, attention should be made to the broader diversity of neuroglial and mesenchymal cell types of the inner ear, and how they interact in space or time during development. With improved control of epithelial, neuroglial, and mesenchymal cell fate specification, inner ear organoids would have the ability to truly recapitulate neurosensory function and dysfunction. We conclude by discussing how single-cell atlases of the developing inner ear and technical innovations will be critical tools to advance inner ear organoid platforms for future pre-clinical applications.
Collapse
Affiliation(s)
- Wouter H van der Valk
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, Netherlands.,Department of Otolaryngology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Matthew R Steinhart
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jingyuan Zhang
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA, 02115, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Karl R Koehler
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, 02115, USA. .,Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA, 02115, USA. .,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA. .,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Peeleman N, Verdoodt D, Ponsaerts P, Van Rompaey V. On the Role of Fibrocytes and the Extracellular Matrix in the Physiology and Pathophysiology of the Spiral Ligament. Front Neurol 2020; 11:580639. [PMID: 33193034 PMCID: PMC7653186 DOI: 10.3389/fneur.2020.580639] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022] Open
Abstract
The spiral ligament in the cochlea has been suggested to play a significant role in the pathophysiology of different etiologies of strial hearing loss. Spiral ligament fibrocytes (SLFs), the main cell type in the lateral wall, are crucial in maintaining the endocochlear potential and regulating blood flow. SLF dysfunction can therefore cause cochlear dysfunction and thus hearing impairment. Recent studies have highlighted the role of SLFs in the immune response of the cochlea. In contrast to sensory cells in the inner ear, SLFs (more specifically type III fibrocytes) have also demonstrated the ability to regenerate after different types of trauma such as drug toxicity and noise. SLFs are responsible for producing proteins, such as collagen and cochlin, that create an adequate extracellular matrix to thrive in. Any dysfunction of SLFs or structural changes to the extracellular matrix can significantly impact hearing function. However, SLFs may prove useful in restoring hearing by their potential to regenerate cells in the spiral ligament.
Collapse
Affiliation(s)
- Noa Peeleman
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Dorien Verdoodt
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Vincent Van Rompaey
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
10
|
Cochlear Implantation in a Patient with a Novel POU3F4 Mutation and Incomplete Partition Type-III Malformation. Neural Plast 2020; 2020:8829587. [PMID: 32952548 PMCID: PMC7481964 DOI: 10.1155/2020/8829587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/05/2020] [Accepted: 08/24/2020] [Indexed: 01/01/2023] Open
Abstract
Aims This study is aimed at (1) analyzing the clinical manifestations and genetic features of a novel POU3F4 mutation in a nonsyndromic X-linked recessive hearing loss family and (2) reporting the outcomes of cochlear implantation in a patient with this mutation. Methods A patient who was diagnosed as the IP-III malformation underwent cochlear implantation in our hospital. The genetic analysis was conducted in his family, including the whole-exome sequencing combined with Sanger sequencing and bioinformatic analysis. Clinical features, preoperative auditory and speech performances, and postoperative outcomes of cochlear implant (CI) were assessed on the proband and his family. Results A novel variant c.400_401insACTC (p.Q136LfsX58) in the POU3F4 gene was detected in the family, which was cosegregated with the hearing loss. This variant was absent in 200 normal-hearing persons. The phylogenetic analysis and structure modeling of Pou3f4 protein further confirmed that the novel mutation was pathogenic. The proband underwent cochlear implantation on the right ear at four years old and gained greatly auditory and speech improvement. However, the benefits of the CI declined about three and a half years postoperation. Though the right ear had been reimplanted, the outcomes were still worse than before. Conclusion A novel frame shift variant c.400_401insACTC (p.Q136LfsX58) in the POU3F4 gene was identified in a Chinese family with X-linked inheritance hearing loss. A patient with this mutation and IP-III malformation could get good benefits from CI. However, the outcomes of the cochlear implantation might decline as the patient grows old.
Collapse
|
11
|
Ritter KE, Martin DM. Neural crest contributions to the ear: Implications for congenital hearing disorders. Hear Res 2018; 376:22-32. [PMID: 30455064 DOI: 10.1016/j.heares.2018.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/30/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022]
Abstract
Congenital hearing disorders affect millions of children worldwide and can significantly impact acquisition of speech and language. Efforts to identify the developmental genetic etiologies of conductive and sensorineural hearing losses have revealed critical roles for cranial neural crest cells (NCCs) in ear development. Cranial NCCs contribute to all portions of the ear, and defects in neural crest development can lead to neurocristopathies associated with profound hearing loss. The molecular mechanisms governing the development of neural crest derivatives within the ear are partially understood, but many questions remain. In this review, we describe recent advancements in determining neural crest contributions to the ear, how they inform our understanding of neurocristopathies, and highlight new avenues for further research using bioinformatic approaches.
Collapse
Affiliation(s)
- K Elaine Ritter
- Department of Pediatrics, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Donna M Martin
- Department of Pediatrics, The University of Michigan Medical School, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Espino Guarch M, Font-Llitjós M, Murillo-Cuesta S, Errasti-Murugarren E, Celaya AM, Girotto G, Vuckovic D, Mezzavilla M, Vilches C, Bodoy S, Sahún I, González L, Prat E, Zorzano A, Dierssen M, Varela-Nieto I, Gasparini P, Palacín M, Nunes V. Mutations in L-type amino acid transporter-2 support SLC7A8 as a novel gene involved in age-related hearing loss. eLife 2018; 7:31511. [PMID: 29355479 PMCID: PMC5811215 DOI: 10.7554/elife.31511] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/18/2018] [Indexed: 12/19/2022] Open
Abstract
Age-related hearing loss (ARHL) is the most common sensory deficit in the elderly. The disease has a multifactorial etiology with both environmental and genetic factors involved being largely unknown. SLC7A8/SLC3A2 heterodimer is a neutral amino acid exchanger. Here, we demonstrated that SLC7A8 is expressed in the mouse inner ear and that its ablation resulted in ARHL, due to the damage of different cochlear structures. These findings make SLC7A8 transporter a strong candidate for ARHL in humans. Thus, a screening of a cohort of ARHL patients and controls was carried out revealing several variants in SLC7A8, whose role was further investigated by in vitro functional studies. Significant decreases in SLC7A8 transport activity was detected for patient’s variants (p.Val302Ile, p.Arg418His, p.Thr402Met and p.Val460Glu) further supporting a causative role for SLC7A8 in ARHL. Moreover, our preliminary data suggest that a relevant proportion of ARHL cases could be explained by SLC7A8 mutations. Age-related hearing loss affects about one in three individuals between the ages of 65 and 74. The first symptom is difficulty hearing high-pitched sounds like children’s voices. The disease starts gradually and worsens over time. Changes in the ear, the nerve that connects it to the brain, or the brain itself can cause hearing loss. Sometimes all three play a role. Genetics, exposure to noise, disease, and aging may all contribute. The condition is so complex it is difficult for scientists to pinpoint a primary suspect or develop treatments. Now, Guarch, Font-Llitjós et al. show that errors in a protein called SLC7A8 cause age-related hearing loss in mice and humans. The SLC7A8 protein acts like a door that allows amino acids – the building blocks of proteins – to enter or leave a cell. This door is blocked in mice lacking SLC7A8 and damage occurs in the part of their inner ear responsible for hearing. As a result, the animals lose their hearing. Next, Guarch, Font-Llitjós et al. scanned the genomes of 147 people from isolated villages in Italy for mutations in the gene for SLC7A8. The people also underwent hearing tests. Mutations in the gene for SLC7A8 that partially block the door and prevent the flow of amino acids were found in people with hearing loss. Some mutations in SLC7A8 that allow the door to stay open where found in people who could hear. The experiments suggest that certain mutations in the gene for SLC7A8 are likely an inherited cause of age-related hearing loss. It is possible that other proteins that control the flow of amino acids into or out of cells also may play a role in hearing. More studies are needed to see if it is possible to fix errors in the SLC7A8 protein to delay or restore the hearing loss.
Collapse
Affiliation(s)
- Meritxell Espino Guarch
- Experimental Genetics, Sidra Medical and Research Center, Doha, Qatar.,Genes, Disease and Therapy Program, Molecular Genetics Laboratory - IDIBELL, Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mariona Font-Llitjós
- Genes, Disease and Therapy Program, Molecular Genetics Laboratory - IDIBELL, Barcelona, Spain.,Biomedical Research Networking Centre on Rare Diseases (CIBERER), Institute of Health Carlos III, Barcelona, Spain
| | - Silvia Murillo-Cuesta
- Biomedical Research Networking Centre on Rare Diseases (CIBERER), Institute of Health Carlos III, Barcelona, Spain.,Alberto Sols Biomedical Research Institute (CSIC/UAM), Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Ekaitz Errasti-Murugarren
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Biomedical Research Networking Centre on Rare Diseases (CIBERER), Institute of Health Carlos III, Barcelona, Spain
| | - Adelaida M Celaya
- Biomedical Research Networking Centre on Rare Diseases (CIBERER), Institute of Health Carlos III, Barcelona, Spain.,Alberto Sols Biomedical Research Institute (CSIC/UAM), Madrid, Spain
| | - Giorgia Girotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.,Medical Genetics, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Dragana Vuckovic
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.,Medical Genetics, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | | | - Clara Vilches
- Genes, Disease and Therapy Program, Molecular Genetics Laboratory - IDIBELL, Barcelona, Spain
| | - Susanna Bodoy
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Biomedical Research Networking Centre on Rare Diseases (CIBERER), Institute of Health Carlos III, Barcelona, Spain
| | - Ignasi Sahún
- Biomedical Research Networking Centre on Rare Diseases (CIBERER), Institute of Health Carlos III, Barcelona, Spain.,Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Laura González
- Genes, Disease and Therapy Program, Molecular Genetics Laboratory - IDIBELL, Barcelona, Spain.,Biomedical Research Networking Centre on Rare Diseases (CIBERER), Institute of Health Carlos III, Barcelona, Spain
| | - Esther Prat
- Genes, Disease and Therapy Program, Molecular Genetics Laboratory - IDIBELL, Barcelona, Spain.,Biomedical Research Networking Centre on Rare Diseases (CIBERER), Institute of Health Carlos III, Barcelona, Spain.,Genetics Section, Physiological Sciences Department, Health Sciences and Medicine Faculty, University of Barcelona, Barcelona, Spain
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Biochemistry and Molecular Biomedicine Department, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centre on Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain
| | - Mara Dierssen
- Biomedical Research Networking Centre on Rare Diseases (CIBERER), Institute of Health Carlos III, Barcelona, Spain.,Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Isabel Varela-Nieto
- Biomedical Research Networking Centre on Rare Diseases (CIBERER), Institute of Health Carlos III, Barcelona, Spain.,Alberto Sols Biomedical Research Institute (CSIC/UAM), Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Paolo Gasparini
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.,Medical Genetics, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Manuel Palacín
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Biomedical Research Networking Centre on Rare Diseases (CIBERER), Institute of Health Carlos III, Barcelona, Spain.,Biochemistry and Molecular Biomedicine Department, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Virginia Nunes
- Genes, Disease and Therapy Program, Molecular Genetics Laboratory - IDIBELL, Barcelona, Spain.,Biomedical Research Networking Centre on Rare Diseases (CIBERER), Institute of Health Carlos III, Barcelona, Spain.,Genetics Section, Physiological Sciences Department, Health Sciences and Medicine Faculty, University of Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Lee S, Shin JO, Sagong B, Kim UK, Bok J. Spatiotemporal expression patterns of clusterin in the mouse inner ear. Cell Tissue Res 2017; 370:89-97. [PMID: 28687930 DOI: 10.1007/s00441-017-2650-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 05/22/2017] [Indexed: 12/13/2022]
Abstract
Clusterin (CLU) is an extracellular chaperone protein that is implicated in diverse physiological and pathophysiological cellular processes. CLU expression is upregulated in response to cellular stress and under certain conditions, such as neurodegenerative disease and cancer. CLU primarily functions as a chaperone that exerts cytoprotective effects by removing cellular debris and misfolded proteins and also acts as a signaling molecule that regulates pro-survival pathways. Deafness is caused by genetic factors and various extrinsic insults, including ototoxic drugs, exposure to loud sounds and aging. Considering its cytoprotectivity, CLU may also mediate cellular defense mechanisms against hearing loss due to cellular stresses. To understand the function of CLU in the inner ear, we analyze CLU expression patterns in the mouse inner ear during development and in the adult stage. Results of quantitative real-time polymerase chain reaction analysis showed that Clu mRNA levels in the inner ear were increased during embryogenesis and were constantly expressed in the adult. Detailed spatial expression patterns of Clu both in the mRNA and protein levels were analyzed throughout various developmental stages via in situ hybridization and immunofluorescence staining. Clu expression was found in specific domains of developing inner ear starting from the otocyst stage, mainly adjacent to the prosensory domain of the cochlear epithelium. In the mature inner ear, Clu expression was observed in Deiter's cells and pillar cells of the organ of Corti, outer sulcus and in basal cells of the stria vascularis in the cochlea. These specific spatiotemporal expression patterns suggest the possible roles of CLU in inner ear development and in maintaining proper hearing function.
Collapse
Affiliation(s)
- Seokwon Lee
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jeong-Oh Shin
- Department of Anatomy, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | | | - Un-Kyung Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Jinwoong Bok
- Department of Anatomy, Department of Otorhinolaryngology, BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
14
|
Xu J, Ueno H, Xu CY, Chen B, Weissman IL, Xu PX. Identification of mouse cochlear progenitors that develop hair and supporting cells in the organ of Corti. Nat Commun 2017; 8:15046. [PMID: 28492243 PMCID: PMC5437288 DOI: 10.1038/ncomms15046] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 02/23/2017] [Indexed: 01/20/2023] Open
Abstract
The adult mammalian cochlear sensory epithelium houses two major types of cells, mechanosensory hair cells and underlying supporting cells, and lacks regenerative capacity. Recent evidence indicates that a subset of supporting cells can spontaneously regenerate hair cells after ablation only within the first week postparturition. Here in vivo clonal analysis of mouse inner ear cells during development demonstrates clonal relationship between hair and supporting cells in sensory organs. We report the identification in mouse of a previously unknown population of multipotent stem/progenitor cells that are capable of not only contributing to the hair and supporting cells but also to other cell types, including glia, in cochlea undergoing development, maturation and repair in response to damage. These multipotent progenitors originate from Eya1-expressing otic progenitors. Our findings also provide evidence for detectable regenerative potential in the postnatal cochlea beyond 1 week of age.
Collapse
Affiliation(s)
- Jinshu Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Hiroo Ueno
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California 94305, USA
- Ludwig Center, Stanford University, Stanford, California 94305, USA
- Department of Pathology, Stanford University, Stanford, California 94305, USA
| | - Chelsea Y. Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Binglai Chen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Irving L. Weissman
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California 94305, USA
- Ludwig Center, Stanford University, Stanford, California 94305, USA
- Department of Pathology, Stanford University, Stanford, California 94305, USA
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
15
|
Kanno A, Mutai H, Namba K, Morita N, Nakano A, Ogahara N, Sugiuchi T, Ogawa K, Matsunaga T. Frequency and specific characteristics of the incomplete partition type III anomaly in children. Laryngoscope 2016; 127:1663-1669. [DOI: 10.1002/lary.26245] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Ayako Kanno
- Division of Hearing and Balance Research; National Institute of Sensory Organs; National Hospital Organization Tokyo Medical Center; Tokyo Japan
- Department of Otolaryngology; Inagi Municipal Hospital; Tokyo Japan
- Department of Otolaryngology; Keio University School of Medicine; Tokyo Japan
| | - Hideki Mutai
- Division of Hearing and Balance Research; National Institute of Sensory Organs; National Hospital Organization Tokyo Medical Center; Tokyo Japan
| | - Kazunori Namba
- Division of Hearing and Balance Research; National Institute of Sensory Organs; National Hospital Organization Tokyo Medical Center; Tokyo Japan
| | - Noriko Morita
- Department of Otolaryngology; Kobari General Hospital; Chiba Japan
| | - Atsuko Nakano
- Division of Otolaryngology; Chiba Children's Hospital; Chiba Japan
| | - Noboru Ogahara
- Department of Otorhinolaryngology; Kanagawa Children's Medical Center; Kanagawa Japan
| | - Tomoko Sugiuchi
- Department of Otolaryngology; Kanto Rosai Hospital; Kanagawa Japan
| | - Kaoru Ogawa
- Department of Otolaryngology; Keio University School of Medicine; Tokyo Japan
| | - Tatsuo Matsunaga
- Division of Hearing and Balance Research; National Institute of Sensory Organs; National Hospital Organization Tokyo Medical Center; Tokyo Japan
- Medical Genetics Center; National Hospital Organization Tokyo Medical Center; Tokyo Japan
| |
Collapse
|
16
|
Deletion of Tricellulin Causes Progressive Hearing Loss Associated with Degeneration of Cochlear Hair Cells. Sci Rep 2015; 5:18402. [PMID: 26677943 PMCID: PMC4683410 DOI: 10.1038/srep18402] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 11/17/2015] [Indexed: 12/20/2022] Open
Abstract
Tricellulin (also known as MARVELD2) is considered as a central component of tricellular tight junctions and is distributed among various epithelial tissues. Although mutations in the gene encoding tricellulin are known to cause deafness in humans (DFNB49) and mice, the influence of its systemic deletion in vivo remains unknown. When we generated tricellulin-knockout mice (Tric−/−), we found an early-onset rapidly progressive hearing loss associated with the degeneration of hair cells (HCs); however, their body size and overall appearance were normal. Tric−/− mice did not show any morphological change pertaining to other organs such as the gastrointestinal tract, liver, kidney, thyroid gland and heart. The endocochlear potential (EP) was normal in Tric−/− mice, suggesting that the tight junction barrier is maintained in the stria vascularis, where EP is generated. The degeneration of HCs, which occurred after the maturation of EP, was prevented in the culture medium with an ion concentration similar to that of the perilymph. These data demonstrate the specific requirement of tricellulin for maintaining ion homeostasis around cochlear HCs to ensure their survival. The Tric−/− mouse provides a new model for understanding the distinct roles of tricellulin in different epithelial systems as well as in the pathogenesis of DFNB49.
Collapse
|
17
|
Raft S, Coate TM, Kelley MW, Crenshaw EB, Wu DK. Pou3f4-mediated regulation of ephrin-b2 controls temporal bone development in the mouse. PLoS One 2014; 9:e109043. [PMID: 25299585 PMCID: PMC4192298 DOI: 10.1371/journal.pone.0109043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/01/2014] [Indexed: 12/25/2022] Open
Abstract
The temporal bone encases conductive and sensorineural elements of the ear. Mutations of POU3F4 are associated with unique temporal bone abnormalities and X-linked mixed deafness (DFNX2/DFN3). However, the target genes and developmental processes controlled by POU3F4 transcription factor activity have remained largely uncharacterized. Ephrin-B2 (Efnb2) is a signaling molecule with well-documented effects on cell adhesion, proliferation, and migration. Our analyses of targeted mouse mutants revealed that Efnb2 loss-of-function phenocopies temporal bone abnormalities of Pou3f4 hemizygous null neonates: qualitatively identical malformations of the stapes, styloid process, internal auditory canal, and cochlear capsule were present in both mutants. Using failed/insufficient separation of the stapes and styloid process as a quantitative trait, we found that single gene Efnb2 loss-of-function and compound Pou3f4/Efnb2 loss-of-function caused a more severe phenotype than single gene Pou3f4 loss-of-function. Pou3f4 and Efnb2 gene expression domains overlapped at the site of impending stapes-styloid process separation and at subcapsular mesenchyme surrounding the cochlea; at both these sites, Efnb2 expression was attenuated in Pou3f4 hemizygous null mutants relative to control. Results of immunoprecipitation experiments using chromatin isolated from nascent middle ear mesenchyme supported the hypothesis of a physical association between Pou3f4 and specific non-coding sequence of Efnb2. We propose that Efnb2 is a target of Pou3f4 transcription factor activity and an effector of mesenchymal patterning during temporal bone development.
Collapse
Affiliation(s)
- Steven Raft
- Section on Sensory Cell Regeneration and Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas M. Coate
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Matthew W. Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States of America
| | - E. Bryan Crenshaw
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Doris K. Wu
- Section on Sensory Cell Regeneration and Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
18
|
Baird A, Lee J, Podvin S, Kurabi A, Dang X, Coimbra R, Costantini T, Bansal V, Eliceiri BP. Esophageal cancer-related gene 4 at the interface of injury, inflammation, infection, and malignancy. ACTA ACUST UNITED AC 2014; 2014:131-142. [PMID: 25580077 PMCID: PMC4287990 DOI: 10.2147/gictt.s49085] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In humans, esophageal cancer-related gene 4 (ECRG4) is encoded by four exons in the c2orf40 locus of chromosome 2. Translation of ECRG4 messenger ribonucleic acid produces a 148 amino acid-secreted 17 KDa protein that is then processed to 14, ten, eight, six, four, and two KDa peptides, depending on the cell in which the gene is expressed. As hypermethylation at the c2orf40 locus inhibits ECRG4 gene expression in many epithelial cancers, several investigators have speculated that ECRG4 is a candidate tumor suppressor. Indeed, overexpression of ECRG4 inhibits cell proliferation in vitro, but it also has a wide range of effects in vivo beyond its antitumor activity. ECRG4 overexpression affects apoptosis, senescence, cell migration, inflammation, injury, and infection responsiveness. ECRG4 activities also depend on its cellular localization, secretion, and post-translational processing. These cytokine/chemokine-like characteristics argue that ECRG4 is not a traditional candidate tumor suppressor gene, as originally predicted by its downregulation in cancer. We review how insights into the regulation of ECRG4 gene expression, knowledge of its primary structure, and the study of its emerging physiological functions come together to support a much more complex role for ECRG4 at the interface of inflammation, infection, and malignancy.
Collapse
Affiliation(s)
- Andrew Baird
- Division of Trauma, Burn, and Acute Critical Care, Department of Surgery, University of California San Diego Health Sciences, San Diego, CA, USA
| | - Jisook Lee
- Division of Trauma, Burn, and Acute Critical Care, Department of Surgery, University of California San Diego Health Sciences, San Diego, CA, USA
| | - Sonia Podvin
- Division of Trauma, Burn, and Acute Critical Care, Department of Surgery, University of California San Diego Health Sciences, San Diego, CA, USA
| | - Arwa Kurabi
- Division of Trauma, Burn, and Acute Critical Care, Department of Surgery, University of California San Diego Health Sciences, San Diego, CA, USA
| | - Xitong Dang
- Division of Trauma, Burn, and Acute Critical Care, Department of Surgery, University of California San Diego Health Sciences, San Diego, CA, USA
| | - Raul Coimbra
- Division of Trauma, Burn, and Acute Critical Care, Department of Surgery, University of California San Diego Health Sciences, San Diego, CA, USA
| | - Todd Costantini
- Division of Trauma, Burn, and Acute Critical Care, Department of Surgery, University of California San Diego Health Sciences, San Diego, CA, USA
| | - Vishal Bansal
- Division of Trauma, Burn, and Acute Critical Care, Department of Surgery, University of California San Diego Health Sciences, San Diego, CA, USA
| | - Brian P Eliceiri
- Division of Trauma, Burn, and Acute Critical Care, Department of Surgery, University of California San Diego Health Sciences, San Diego, CA, USA
| |
Collapse
|
19
|
Deficiency of transcription factor Brn4 disrupts cochlear gap junction plaques in a model of DFN3 non-syndromic deafness. PLoS One 2014; 9:e108216. [PMID: 25259580 PMCID: PMC4178122 DOI: 10.1371/journal.pone.0108216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 08/26/2014] [Indexed: 11/19/2022] Open
Abstract
Brn4, which encodes a POU transcription factor, is the gene responsible for DFN3, an X chromosome-linked, non-syndromic type of hearing loss. Brn4-deficient mice have a low endocochlear potential (EP), hearing loss, and ultrastructural alterations in spiral ligament fibrocytes, however the molecular pathology through which Brn4 deficiency causes low EP is still unclear. Mutations in the Gjb2 and Gjb6 genes encoding the gap junction proteins connexin26 (Cx26) and connexin30 (Cx30) genes, respectively, which encode gap junction proteins and are expressed in cochlear fibrocytes and non-sensory epithelial cells (i.e., cochlear supporting cells) to maintain the proper EP, are responsible for hereditary sensorineural deafness. It has been hypothesized that the gap junction in the cochlea provides an intercellular passage by which K+ is transported to maintain the EP at the high level necessary for sensory hair cell excitation. Here we analyzed the formation of gap junction plaques in cochlear supporting cells of Brn4-deficient mice at different stages by confocal microscopy and three-dimensional graphic reconstructions. Gap junctions from control mice, which are composed mainly of Cx26 and Cx30, formed linear plaques along the cell-cell junction sites with adjacent cells. These plaques formed pentagonal or hexagonal outlines of the normal inner sulcus cells and border cells. Gap junction plaques in Brn4-deficient mice did not, however, show the normal linear structure but instead formed small spots around the cell-cell junction sites. Gap junction lengths were significantly shorter, and the level of Cx26 and Cx30 was significantly reduced in Brn4-deficient mice compared with littermate controls. Thus the Brn4 mutation affected the assembly and localization of gap junction proteins at the cell borders of cochlear supporting cells, suggesting that Brn4 substantially contributes to cochlear gap junction properties to maintain the proper EP in cochleae, similar to connexin-related deafness.
Collapse
|
20
|
Nayak G, Lee SI, Yousaf R, Edelmann SE, Trincot C, Van Itallie CM, Sinha GP, Rafeeq M, Jones SM, Belyantseva IA, Anderson JM, Forge A, Frolenkov GI, Riazuddin S. Tricellulin deficiency affects tight junction architecture and cochlear hair cells. J Clin Invest 2013; 123:4036-49. [PMID: 23979167 DOI: 10.1172/jci69031] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 05/30/2013] [Indexed: 01/06/2023] Open
Abstract
The two compositionally distinct extracellular cochlear fluids, endolymph and perilymph, are separated by tight junctions that outline the scala media and reticular lamina. Mutations in TRIC (also known as MARVELD2), which encodes a tricellular tight junction protein known as tricellulin, lead to nonsyndromic hearing loss (DFNB49). We generated a knockin mouse that carries a mutation orthologous to the TRIC coding mutation linked to DFNB49 hearing loss in humans. Tricellulin was absent from the tricellular junctions in the inner ear epithelia of the mutant animals, which developed rapidly progressing hearing loss accompanied by loss of mechanosensory cochlear hair cells, while the endocochlear potential and paracellular permeability of a biotin-based tracer in the stria vascularis were unaltered. Freeze-fracture electron microscopy revealed disruption of the strands of intramembrane particles connecting bicellular and tricellular junctions in the inner ear epithelia of tricellulin-deficient mice. These ultrastructural changes may selectively affect the paracellular permeability of ions or small molecules, resulting in a toxic microenvironment for cochlear hair cells. Consistent with this hypothesis, hair cell loss was rescued in tricellulin-deficient mice when generation of normal endolymph was inhibited by a concomitant deletion of the transcription factor, Pou3f4. Finally, comprehensive phenotypic screening showed a broader pathological phenotype in the mutant mice, which highlights the non-redundant roles played by tricellulin.
Collapse
Affiliation(s)
- Gowri Nayak
- Laboratory of Molecular Genetics, Division of Pediatric Otolaryngology / Head and Neck Surgery, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Parzefall T, Shivatzki S, Lenz DR, Rathkolb B, Ushakov K, Karfunkel D, Shapira Y, Wolf M, Mohr M, Wolf E, Sabrautzki S, de Angelis MH, Frydman M, Brownstein Z, Avraham KB. Cytoplasmic mislocalization of POU3F4 due to novel mutations leads to deafness in humans and mice. Hum Mutat 2013; 34:1102-10. [PMID: 23606368 DOI: 10.1002/humu.22339] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/08/2013] [Indexed: 11/12/2022]
Abstract
POU3F4 is a POU domain transcription factor that is required for hearing. In the ear, POU3F4 is essential for mesenchymal remodeling of the bony labyrinth and is the causative gene for DFNX2 human nonsyndromic deafness. Ear abnormalities underlie this form of deafness, characterized previously in multiple spontaneous, radiation-induced and transgenic mouse mutants. Here, we report three novel mutations in the POU3F4 gene that result in profound hearing loss in both humans and mice. A p.Gln79* mutation was identified in a child from an Israeli family, revealed by massively parallel sequencing (MPS). This strategy demonstrates the strength of MPS for diagnosis with only one affected individual. A second mutation, p.Ile285Argfs*43, was identified by Sanger sequencing. A p.Cys300* mutation was found in an ENU-induced mutant mouse, schwindel (sdl), by positional cloning. The mutation leads to a predicted truncated protein, similar to the human mutations, providing a relevant mouse model. The p.Ile285Argfs*43 and p.Cys300* mutations lead to a shift of Pou3f4 nuclear localization to the cytoplasm, demonstrated in cellular localization studies and in the inner ears of the mutant mice. The discovery of these mutations facilitates a deeper comprehension of the molecular basis of inner ear defects due to mutations in the POU3F4 transcription factor.
Collapse
Affiliation(s)
- Thomas Parzefall
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Choi BY, Kim DH, Chung T, Chang M, Kim EH, Kim AR, Seok J, Chang SO, Bok J, Kim D, Oh SH, Park WY. Destabilization and mislocalization of POU3F4 by C-terminal frameshift truncation and extension mutation. Hum Mutat 2012; 34:309-16. [PMID: 23076972 DOI: 10.1002/humu.22232] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 09/13/2012] [Indexed: 11/06/2022]
Abstract
Most X-linked nonsyndromic hearing loss is caused by various types of mutations of the POU domain class 3 transcription factor 4 gene (POU3F4). We found five unique missense and frameshift truncation and extension mutations in Korean patients. Two missense mutations (p.Thr211Met and p.Gln229Arg) disturbed transcriptional activity. Two frameshift extension mutations (p.Thr354GlnfsX115 and p.X362ArgextX113) were located outside of POU domain and nuclear localization signal (NLS) at the C-terminus. POU3F4 protein levels were low and could be restored by MG132, a proteasome inhibitor, in vitro. These mutant POU3F4 proteins were exclusively localized to the cytoplasm and did not have transcriptional activity. Frameshift mutation (p.Leu317PhefsX12) in POU3F4 leads to the truncation of the C-terminal 44 amino acids spanning the POU domain and NLS. This frameshift truncation mutant protein was located in both the nucleus and cytoplasm and was present at low protein levels. This mutant was also transcriptionally inactive, even in the presence of MG132. From these results, we conclude that frameshift truncation and extension mutations in the C-terminus of POU3F4 lead to cytoplasmic localization and subsequent proteosomal degradation due to structural aberrations, which cause transcriptional inactivity and thus nonsyndromic hearing loss.
Collapse
Affiliation(s)
- Byung Yoon Choi
- Department of Otolaryngology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|