1
|
Torres-Guzman JC, Padilla-Guerrero IE, Cervantes-Quintero KY, Martinez-Vazquez A, Ibarra-Guzman M, Gonzalez-Hernandez GA. Peculiarities of nitronate monooxygenases and perspectives for in vivo and in vitro applications. Appl Microbiol Biotechnol 2021; 105:8019-8032. [PMID: 34655320 DOI: 10.1007/s00253-021-11623-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/14/2022]
Abstract
Nitroalkanes such as nitromethane, nitroethane, 1-nitropropane (1NP), and 2-nitropropane (2NP), derived from anthropogenic activities, are hazardous environmental pollutants due to their toxicity and carcinogenic activity. In nature, 3-nitropropionate (3NPA) and its derivatives are produced as a defense mechanism by many groups of organisms, including bacteria, fungi, insects, and plants. 3NPA is highly toxic as its conjugate base, propionate-3-nitronate (P3N), is a potent inhibitor of mitochondrial succinate dehydrogenase, essential to the tricarboxylic acid cycle, and can inhibit isocitrate lyase, a critical enzyme of the glyoxylate cycle. In response to these toxic compounds, several organisms on the phylogenetic scale express genes that code for enzymes involved in the catabolism of nitroalkanes: nitroalkane oxidases (NAOs) and nitronate monooxygenases (NMOs) (previously classified as nitropropane dioxygenases, NPDs). Two types of NMOs have been identified: class I and class II, which differ in structure, catalytic efficiency, and preferred substrates. This review focuses on the biochemical properties, structure, classification, and physiological functions of NMOs, and offers perspectives for their in vivo and in vitro applications. KEY POINTS: • Nitronate monooxygenases (NMOs) are key enzymes in nitroalkane catabolism. • NMO enzymes are involved in defense mechanisms in different organisms. • NMO applications include organic synthesis, biocatalysts, and bioremediation.
Collapse
Affiliation(s)
- Juan Carlos Torres-Guzman
- Biology Department, Division of Natural and Exact Sciences, University of Guanajuato, CP. 36000, Guanajuato, Mexico
| | | | | | - Azul Martinez-Vazquez
- Biology Department, Division of Natural and Exact Sciences, University of Guanajuato, CP. 36000, Guanajuato, Mexico
| | - Marcos Ibarra-Guzman
- Biology Department, Division of Natural and Exact Sciences, University of Guanajuato, CP. 36000, Guanajuato, Mexico
| | | |
Collapse
|
2
|
He HY, Ryan KS. Glycine-derived nitronates bifurcate to O-methylation or denitrification in bacteria. Nat Chem 2021; 13:599-606. [PMID: 33782561 DOI: 10.1038/s41557-021-00656-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 02/08/2021] [Indexed: 02/01/2023]
Abstract
Natural products with rare functional groups are likely to be constructed by unique biosynthetic enzymes. One such rare functional group is the O-methyl nitronate, which can undergo [3 + 2] cycloaddition reactions with olefins in mild conditions. O-methyl nitronates are found in some natural products; however, how such O-methyl nitronates are assembled biosynthetically is unknown. Here we show that the assembly of the O-methyl nitronate in the natural product enteromycin carboxamide occurs via activation of glycine on a peptidyl carrier protein, followed by reaction with a diiron oxygenase to give a nitronate intermediate and then with a methyltransferase to give an O-methyl nitronate. Guided by the discovery of this pathway, we then identify related cryptic biosynthetic gene cassettes in other bacteria and show that these alternative gene cassettes can, instead, facilitate oxidative denitrification of glycine-derived nitronates. Altogether, our work reveals bifurcating pathways from a central glycine-derived nitronate intermediate in bacteria.
Collapse
Affiliation(s)
- Hai-Yan He
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada.,Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Katherine S Ryan
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
3
|
Abstract
This chapter represents a journey through flavoprotein oxidases. The purpose is to excite the reader curiosity regarding this class of enzymes by showing their diverse applications. We start with a brief overview on oxidases to then introduce flavoprotein oxidases and elaborate on the flavin cofactors, their redox and spectroscopic characteristics, and their role in the catalytic mechanism. The six major flavoprotein oxidase families will be described, giving examples of their importance in biology and their biotechnological uses. Specific attention will be given to a few selected flavoprotein oxidases that are not extensively discussed in other chapters of this book. Glucose oxidase, cholesterol oxidase, 5-(hydroxymethyl)furfural (HMF) oxidase and methanol oxidase are four examples of oxidases belonging to the GMC-like flavoprotein oxidase family and that have been shown to be valuable biocatalysts. Their structural and mechanistic features and recent enzyme engineering will be discussed in details. Finally we give a look at the current trend in research and conclude with a future outlook.
Collapse
Affiliation(s)
- Caterina Martin
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands
| | - Claudia Binda
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands.
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
4
|
Kerber T, Vrielink A. The role of hydrogen atoms in redox catalysis by the flavoenzyme cholesterol oxidase. Methods Enzymol 2020; 634:361-377. [PMID: 32093840 DOI: 10.1016/bs.mie.2019.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Flavoenzymes comprise a large class of proteins that carry out a diverse range of important redox chemistry. Although X-ray crystal structures of many flavoenzymes have been determined, there are still unresolved questions regarding the actual oxidation state of the flavin cofactors in these structures due to photoreduction by the ionizing radiation of the X-ray beam during the diffraction experiment. Additionally, the ability to visualize hydrogen atoms in X-ray structures is difficult due to the weak scattering capability of these atoms. Since hydrogen atoms affect the electrostatic nature of enzyme active sites and play important roles in the chemistry of key amino acid residues, visualizing the precise positions of these atoms provides a more detailed understanding of their role in enzyme catalysis. Single crystal neutron diffraction is an alternative method to structure determination, circumventing problems associated with photoreduction of the sample thus providing a clearer view of the structural features of a flavoenzyme in different redox states. Additionally, the larger neutron scattering factors for hydrogen and deuterium atoms enables one to visualize these atoms much more easily than from X-ray scattering measurements. In this chapter we give an overview of neutron and X-ray crystallography studies on the flavoenzyme, cholesterol oxidase and how the observations of unusual hydrogen atom positions provide insight into the redox chemistry of the flavin cofactor.
Collapse
Affiliation(s)
- Tatiana Kerber
- School of Molecular Sciences, University of Western Australia, Perth, WA, Australia
| | - Alice Vrielink
- School of Molecular Sciences, University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
5
|
Sun L, Huang D, Zhu L, Zhang B, Peng C, Ma T, Deng X, Wu J, Wang W. Novel thermostable enzymes from Geobacillus thermoglucosidasius W-2 for high-efficient nitroalkane removal under aerobic and anaerobic conditions. BIORESOURCE TECHNOLOGY 2019; 278:73-81. [PMID: 30682639 DOI: 10.1016/j.biortech.2019.01.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
In this study, a thermophilic facultative anaerobic strain Geobacillus thermoglucosidasius W-2 was found to degrade nitroalkane under both aerobic and anaerobic conditions. Bioinformatical analysis revealed three putative nitroalkane-oxidizing enzymes (Gt-NOEs) genes from the W-2 genome. The three identified proteins Gt2929, Gt1378, and Gt1208 displayed optimal activities at high temperatures (70, 70, and 80 °C, respectively). Among these, Gt2929 exhibited excellent degradation capability, pH stability, and metal ion tolerance for nitronates under aerobic condition. Interestingly, under anaerobic condition, only Gt1378 still maintained high activity for 2-nitropropane and nitroethane, indicating that the W-2 strain utilized various pathways to degrade nitronates under aerobic and anaerobic conditions, respectively. Taken together, the first revelation of thermophilic nitroalkane-degrading mechanism under both aerobic and anaerobic conditions provides guidance and platform for biotechnological and industrial applications.
Collapse
Affiliation(s)
- Linbo Sun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Di Huang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Lin Zhu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Bingling Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Chenchen Peng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Junli Wu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Wei Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China; Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China.
| |
Collapse
|
6
|
Kim DW, Lee KS, Chi YM. Crystal structure of hypothetical protein PA4202 from Pseudomonas aeruginosa PAO1 in complex with nitroethane as a nitroalkane substrate. Biochem Biophys Res Commun 2018; 503:330-337. [PMID: 29885842 DOI: 10.1016/j.bbrc.2018.06.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 06/07/2018] [Indexed: 11/26/2022]
Abstract
Nitroalkane oxidase (NAO) and nitronate monooxygenase (NMO) are two different types of nitroalkane oxidizing flavoenzymes identified in nature. A previous study suggested that the hypothetical protein PA4202 from Pseudomonas aeruginosa PAO1 is NMO and utilizes only anionic nitronates. However, the structural similarity between the PA4202 protein and Streptomyces ansochromogenes NAO has motivated investigation for what features of the two enzymes differentiate between the NAO and NMO activities. Herein, we report the crystal structure of PA4202 in a ternary complex with a neutral nitroethane (NE) and flavin mononucleotide (FMN) cofactor to elucidate the substrate recognition mechanism using a site-directed mutagenesis. The ternary complex structure indicates that the NE is bound with an orientation, which is poised for the proton transfer to H183 (which is the essential first catalytic step with nitroalkanes), and subsequent reactions with FMN. Moreover, a kinetic study reveals that the catalytic reactions of the wild type and H183 mutants PA4202s with nitroalkane substrates may yield the products of hydrogen peroxide and nitrite that are specified to NAO, although they show a low catalytic efficiency. Our results provide the first structure-based molecular insight into the substrate binding property of the hypothetical protein PA4202, including the interactions with neutral nitroalkanes as the substrate.
Collapse
Affiliation(s)
- Do Wan Kim
- Division of Biotechnology, College of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Ki Seog Lee
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan, 46252, Republic of Korea.
| | - Young Min Chi
- Division of Biotechnology, College of Life Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
7
|
Fitzpatrick PF. Nitroalkane oxidase: Structure and mechanism. Arch Biochem Biophys 2017; 632:41-46. [PMID: 28529198 DOI: 10.1016/j.abb.2017.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 11/18/2022]
Abstract
The flavoprotein nitroalkane oxidase catalyzes the oxidation of neutral nitroalkanes to the corresponding aldehydes or ketones, releasing nitrite and transferring electrons to O2 to form H2O2. A combination of solution and structural analyses have provided a detailed understanding of the mechanism of this enzyme.
Collapse
Affiliation(s)
- Paul F Fitzpatrick
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, San Antonio, TX 78229, USA.
| |
Collapse
|
8
|
Ha BH, Shin SC, Moon JH, Keum G, Kim CW, Kim EE. Structural and biochemical characterization of FabK from Thermotoga maritima. Biochem Biophys Res Commun 2017; 482:968-974. [PMID: 27908729 DOI: 10.1016/j.bbrc.2016.11.141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/25/2016] [Indexed: 11/26/2022]
Abstract
TM0800 from Thermotoga maritima is one of the hypothetical proteins with unknown function. The crystal structure determined at 2.3 Å resolution reveals a two domain structure: the N-terminal domain forming a barrel and the C-terminal forming a lid. One FMN is bound between the two domains with the phosphate making intricate hydrogen bonds with protein and three tightly bound water molecules, and the isoalloxazine ring packed against the side chains of Met22 and Met276. The structure is almost identical to that of FabK (enoyl-acyl carrier protein (ACP) reductase, ENR II), a key enzyme in bacterial type II fatty-acid biosynthesis that catalyzes the final step in each elongation cycle; and the enzymatic activity confirms that TM0800 is an ENR. Enzymatic activity was almost completely abolished when the helices connecting the barrel and the lid were deleted. Also, the Met276Ala and Ser280Ala mutants showed a significant reduction in enzymatic activity. The crystal structure of Met276Ala mutant at 1.9 Å resolution showed an absence of FMN suggesting that FMN plays a role in catalysis, and Met276 is important in positioning FMN. TmFabK exists as a dimer in both solution and crystal. Together this study provides molecular basis for the catalytic activity of FabK.
Collapse
Affiliation(s)
- Byung Hak Ha
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Sang Chul Shin
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Jin Ho Moon
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Gyochang Keum
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Chan-Wha Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Eunice EunKyeong Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
9
|
Salvi F, Agniswamy J, Yuan H, Vercammen K, Pelicaen R, Cornelis P, Spain JC, Weber IT, Gadda G. The combined structural and kinetic characterization of a bacterial nitronate monooxygenase from Pseudomonas aeruginosa PAO1 establishes NMO class I and II. J Biol Chem 2014; 289:23764-75. [PMID: 25002579 DOI: 10.1074/jbc.m114.577791] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Nitronate monooxygenase (NMO) oxidizes the mitochondrial toxin propionate 3-nitronate (P3N) to malonate semialdehyde. The enzyme has been previously characterized biochemically in fungi, but no structural information is available. Based on amino acid similarity 4,985 genes are annotated in the GenBank(TM) as NMO. Of these, 4,424 (i.e. 89%) are bacterial genes, including several Pseudomonads that have been shown to use P3N as growth substrate. Here, we have cloned and expressed the gene pa4202 of Pseudomonas aeruginosa PAO1, purified the resulting protein, and characterized it. The enzyme is active on P3N and other alkyl nitronates, but cannot oxidize nitroalkanes. P3N is the best substrate at pH 7.5 and atmospheric oxygen with k(cat)(app)/K(m)(app) of 12 × 10(6) M(-1) s(-1), k(cat)(app) of 1300 s(-1), and K(m)(app) of 110 μm. Anerobic reduction of the enzyme with P3N yields a flavosemiquinone, which is formed within 7.5 ms, consistent with this species being a catalytic intermediate. Absorption spectroscopy, mass spectrometry, and x-ray crystallography demonstrate a tightly, non-covalently bound FMN in the active site of the enzyme. Thus, PA4202 is the first NMO identified and characterized in bacteria. The x-ray crystal structure of the enzyme was solved at 1.44 Å, showing a TIM barrel-fold. Four motifs in common with the biochemically characterized NMO from Cyberlindnera saturnus are identified in the structure of bacterial NMO, defining Class I NMO, which includes bacterial, fungal, and two animal NMOs. Notably, the only other NMO from Neurospora crassa for which biochemical evidence is available lacks the four motifs, defining Class II NMO.
Collapse
Affiliation(s)
| | | | | | - Ken Vercammen
- the Department of Bioengineering Sciences, Vrije Universiteit Brussel, Belgium, and the Department of Structural Biology Brussels, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Rudy Pelicaen
- the Department of Bioengineering Sciences, Vrije Universiteit Brussel, Belgium, and the Department of Structural Biology Brussels, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Pierre Cornelis
- the Department of Bioengineering Sciences, Vrije Universiteit Brussel, Belgium, and the Department of Structural Biology Brussels, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Jim C Spain
- the School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30302
| | - Irene T Weber
- From the Departments of Chemistry, Biology, Center for Biotechnology and Drug Design,
| | - Giovanni Gadda
- From the Departments of Chemistry, Biology, Center for Biotechnology and Drug Design, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302,
| |
Collapse
|
10
|
Lee JH, Park AK, Oh JS, Lee KS, Chi YM. Expression, purification and preliminary X-ray crystallographic analysis of nitroalkane oxidase (NAO) from Pseudomonas aeruginosa. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:888-90. [PMID: 23908035 PMCID: PMC3729166 DOI: 10.1107/s1744309113017235] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/21/2013] [Indexed: 11/10/2022]
Abstract
Nitroalkane oxidase (NAO) is a flavin-dependent enzyme which catalyses the oxidation of nitroalkanes to the corresponding aldehydes or ketones, nitrite and hydrogen peroxide. In order to better understand the structure and function of this enzyme, NAO from Pseudomonas aeruginosa was purified and crystallized as a native and a selenomethionine-substituted (SeMet) enzyme. Both crystals diffracted to a resolution of 1.9 Å and belonged to the primitive orthorhombic space group P2₁, with unit-cell parameters a = 70.06, b = 55.43, c = 87.74 Å, β = 96.56° for native NAO and a = 69.89, b = 54.83, c = 88.20 Å, β = 95.79° for SeMet NAO. Assuming the presence of two molecules in the asymmetric unit in both crystals, the Matthews coefficients (VM) for native and SeMet NAO were calculated to be 2.30 and 2.48 ų Da⁻¹, with estimated solvent contents of 46.50 and 50.37%, respectively.
Collapse
Affiliation(s)
- Jeong Hye Lee
- Division of Biotechnology, College of Life Sciences, Korea University, Seoul 136-713, Republic of Korea
| | - Ae Kyung Park
- Division of Biotechnology, College of Life Sciences, Korea University, Seoul 136-713, Republic of Korea
| | - Jae Soon Oh
- Division of Biotechnology, College of Life Sciences, Korea University, Seoul 136-713, Republic of Korea
| | - Ki Seog Lee
- Department of Clinical Laboratory Science, College of Health Science, Catholic University of Pusan, Busan 609-757, Republic of Korea
| | - Young Min Chi
- Division of Biotechnology, College of Life Sciences, Korea University, Seoul 136-713, Republic of Korea
| |
Collapse
|
11
|
Flavoprotein oxidases: classification and applications. Appl Microbiol Biotechnol 2013; 97:5177-88. [PMID: 23640366 DOI: 10.1007/s00253-013-4925-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/10/2013] [Accepted: 04/11/2013] [Indexed: 10/26/2022]
Abstract
This review provides an overview of oxidases that utilise a flavin cofactor for catalysis. This class of oxidative flavoenzymes has shown to harbour a large number of biotechnologically interesting enzymes. Applications range from their use as biocatalysts for the synthesis of pharmaceutical compounds to the integration in biosensors. Through the recent developments in genome sequencing, the number of newly discovered oxidases is steadily growing. Recent progress in the field of flavoprotein oxidase discovery and the obtained biochemical knowledge on these enzymes are reviewed. Except for a structure-based classification of known flavoprotein oxidases, also their potential in recent biotechnological applications is discussed.
Collapse
|
12
|
Isabella VM, Clark VL. Identification of a conserved protein involved in anaerobic unsaturated fatty acid synthesis in Neiserria gonorrhoeae: implications for facultative and obligate anaerobes that lack FabA. Mol Microbiol 2011; 82:489-501. [PMID: 21895795 DOI: 10.1111/j.1365-2958.2011.07826.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Transcriptome analysis of the facultative anaerobe, Neisseria gonorrhoeae, revealed that many genes of unknown function were induced under anaerobic conditions. Mutation of one such gene, NGO1024, encoding a protein belonging to the 2-nitropropane dioxygenase-like superfamily of proteins, was found to result in an inability of gonococci to grow anaerobically. Anaerobic growth of an NG1024 mutant was restored upon supplementation with unsaturated fatty acids (UFA), but not with the saturated fatty acid palmitate. Gonococcal fatty acid profiles confirmed that NGO1024 was involved in UFA synthesis anaerobically, but not aerobically, demonstrating that gonococci contain two distinct pathways for the production of UFAs, with a yet unidentified aerobic mechanism, and an anaerobic mechanism involving NGO1024. Expression of genes involved in classical anaerobic UFA synthesis, fabA, fabM and fabB, was toxic in gonococci and unable to complement a NGO1024 mutation, suggesting that the chemistry involved in gonococcal anaerobic UFA synthesis is distinct from that of the classical pathway. NGO1024 homologues, which we suggest naming UfaA, form a distinct lineage within the 2-nitropropane dioxygenase-like superfamily, and are found in many facultative and obligate anaerobes that produce UFAs but lack fabA, suggesting that UfaA is part of a widespread pathway involved in UFA synthesis.
Collapse
Affiliation(s)
- Vincent M Isabella
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Box 672, 601 Elmwood Ave, Rochester, NY 14642, USA
| | | |
Collapse
|