1
|
Shukla RP, Tiwari P, Sardar A, Urandur S, Gautam S, Marwaha D, Tripathi AK, Rai N, Trivedi R, Mishra PR. Alendronate-functionalized porous nano-crystalsomes mitigate osteolysis and consequent inhibition of tumor growth in a tibia-induced metastasis model. J Control Release 2024; 372:331-346. [PMID: 38844176 DOI: 10.1016/j.jconrel.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/10/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Bone is one of the most prevalent sites of metastases in various epithelial malignancies, including breast cancer and this metastasis to bone often leads to severe skeletal complications in women due to its osteolytic nature. To address this, we devised a novel drug delivery approach using an Alendronate (ALN) functionalized self-assembled porous crystalsomes for concurrent targeting of Oleanolic acid (OA) and ALN (ALN + OA@NCs) to bone metastasis. Initially, the conjugation of both PEG-OA and OA-PEG-ALN with ALN and OA was achieved, and this conjugation was then self-assembled into porous crystalsomes (ALN + OA@NCs) by nanoemulsion crystallization. The reconstruction of a 3D single particle using transmission electron microscopy ensured the crystalline porous structure of ALN + OA@NCs, was well aligned with characteristic nanoparticle attributes including size distribution, polydispersity, and zeta potential. Further, ALN + OA@NCs showed enhanced efficacy in comparison to OA@NCs suggesting the cytotoxic roles of ALN towards cancer cells, followed by augmentation ROS generation (40.81%), mitochondrial membrane depolarization (57.20%), and induction of apoptosis (40.43%). We found that ALN + OA@NCs facilitated inhibiting osteoclastogenesis and bone resorption followed by inhibited osteolysis. In vivo activity of ALN + OA@NCs in the 4 T1 cell-induced tibia model rendered a reduced bone loss in the treated mice followed by restoring bone morphometric markers which were further corroborated bone-targeting effects of ALN + OA@NCs to reduce RANKL-stimulated osteoclastogenesis. Further, In vivo intravenous pharmacokinetics showed the improved therapeutic profile of the ALN + OA@NCs in comparison to the free drug, prolonging the levels of the drug in the systemic compartment by reducing the clearance culminating the higher accumulation at the tumor site. Our finding proposed that ALN + OA@NCs can effectively target and treat breast cancer metastasis to bone and its associated complications.
Collapse
Affiliation(s)
- Ravi Prakash Shukla
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Pratiksha Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anirban Sardar
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sandeep Urandur
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shalini Gautam
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Disha Marwaha
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ashish Kumar Tripathi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Nikhil Rai
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ritu Trivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Chin KY. Updates in the skeletal and joint protective effects of tocotrienol: a mini review. Front Endocrinol (Lausanne) 2024; 15:1417191. [PMID: 38974581 PMCID: PMC11224474 DOI: 10.3389/fendo.2024.1417191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024] Open
Abstract
Osteoporosis and osteoarthritis continue to pose significant challenges to the aging population, with limited preventive options and pharmacological treatments often accompanied by side effects. Amidst ongoing efforts to discover new therapeutic agents, tocotrienols (TTs) have emerged as potential candidates. Derived from annatto bean and palm oil, TTs have demonstrated efficacy in improving skeletal and joint health in numerous animal models of bone loss and osteoarthritis. Mechanistic studies suggest that TTs exert their effects through antioxidant, anti-inflammatory, Wnt-suppressive, and mevalonate-modulating mechanisms in bone, as well as through self-repair mechanisms in chondrocytes. However, human clinical trials in this field remain scarce. In conclusion, TTs hold promise as agents for preventing osteoporosis and osteoarthritis, pending further evidence from human clinical trials.
Collapse
Affiliation(s)
- Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| |
Collapse
|
3
|
Ekeuku SO, Nor Muhamad ML, Aminuddin AA, Ahmad F, Wong SK, Mark-Lee WF, Chin KY. Effects of emulsified and non-emulsified palm tocotrienol on bone and joint health in ovariectomised rats with monosodium iodoacetate-induced osteoarthritis. Biomed Pharmacother 2024; 170:115998. [PMID: 38091638 DOI: 10.1016/j.biopha.2023.115998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Postmenopausal women are susceptible to osteoporosis and osteoarthritis. Tocotrienol, a bone-protective nutraceutical, is reported to prevent osteoarthritis in male rats. However, its efficacy on joint health in oestrogen deficiency has not been validated. Besides, data on the use of emulsification systems in enhancing bioavailability and protective effects of tocotrienol are limited. Ovariectomised adult female Sprague-Dawley rats (3 months old) were treated with refined olive oil, emulsified (EPT, 100 mg/kg/day with 25% vitamin E content), non-emulsified palm tocotrienol (NEPT, 100 mg/kg/day with 50% vitamin E content) and calcium carbonate (1% w/v in drinking water) plus glucosamine sulphate (250 mg/kg/day) for 10 weeks. Osteoarthritis was induced with monosodium iodoacetate four weeks after ovariectomy. Baseline control was sacrificed upon receipt, while the sham group was not ovariectomised and treated with refined olive oil. EPT and NEPT prevented femoral metaphyseal and subchondral bone volume decline caused by ovariectomy. EPT decreased subchondral trabecular separation compared to the negative control. EPT preserved stiffness and Young's Modulus at the femoral mid-shaft of the rats. Circulating RANKL was reduced post-treatment in the EPT group. Joint width was reduced in all the treatment groups vs the negative control. The EPT group's grip strength was significantly improved over the negative control and NEPT group. EPT also preserved cartilage histology based on several Mankin's subscores. EPT performed as effectively as NEPT in preventing osteoporosis and osteoarthritis in ovariectomised rats despite containing less vitamin E content. This study justifies clinical trials for the use of EPT in postmenopausal women with both conditions.
Collapse
Affiliation(s)
- Sophia Ogechi Ekeuku
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Muhamed Lahtif Nor Muhamad
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Alya Aqilah Aminuddin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Wun Fui Mark-Lee
- Department of Chemistry, Faculty of Science, University Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia; Research Center for Quantum Engineering Design, Department of Physics, Faculty of Science and Technology, Universitas Airlangga, Jl. Mulyorejo, Surabaya 60115, Indonesia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Tocotrienol as a Protecting Agent against Glucocorticoid-Induced Osteoporosis: A Mini Review of Potential Mechanisms. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185862. [PMID: 36144598 PMCID: PMC9506150 DOI: 10.3390/molecules27185862] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022]
Abstract
Glucocorticoid-induced osteogenic dysfunction is the main pathologyical mechanism underlying the development of glucocorticoid-induced osteoporosis. Glucocorticoids promote adipogenic differentiation and osteoblast apoptosis through various pathways. Various ongoing studies are exploring the potential of natural products in preventing glucocorticoid-induced osteoporosis. Preclinical studies have consistently shown the bone protective effects of tocotrienol through its antioxidant and anabolic effects. This review aims to summarise the potential mechanisms of tocotrienol in preventing glucocorticoid-induced osteoporosis based on existing in vivo and in vitro evidence. The current literature showed that tocotrienol prevents oxidative damage on osteoblasts exposed to high levels of glucocorticoids. Tocotrienol reduces lipid peroxidation and increases oxidative stress enzyme activities. The reduction in oxidative stress protects the osteoblasts and preserves the bone microstructure and biomechanical strength of glucocorticoid-treated animals. In other animal models, tocotrienol has been shown to activate the Wnt/β-catenin pathway and lower the RANKL/OPG ratio, which are the targets of glucocorticoids. In conclusion, tocotrienol enhances osteogenic differentiation and bone formation in glucocorticoid-treated osteoblasts while improving structural integrity in glucocorticoid-treated rats. This is achieved by preventing oxidative stress and osteoblast apoptosis. However, these preclinical results should be validated in a randomised controlled trial.
Collapse
|
5
|
Kim KW, Kim BM, Won JY, Min HK, Lee SJ, Lee SH, Kim HR. Tocotrienol regulates osteoclastogenesis in rheumatoid arthritis. Korean J Intern Med 2021; 36:S273-S282. [PMID: 32550719 PMCID: PMC8009144 DOI: 10.3904/kjim.2019.372] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND/AIMS The present study aimed to investigate whether tocotrienol regulates interleukin 17 (IL-17)-induced osteoclastogenesis in rheumatoid arthritis (RA). METHODS We evaluated the effect of tocotrienol on IL-17-induced receptor activator of nuclear factor kappa B ligand (RANKL) production using RA fibroblast-like synoviocyte (FLS), together with real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Osteoclast differentiation was confirmed after culturing IL-17-treated RA FLS and Th17 cells with tocotrienol and monocytes. We analyzed the suppressive effect of tocotrienol on Th17 cells percentage or Th17-cytokine levels among peripheral blood mononuclear cells using flow cytometry. RESULTS We found that IL-17 stimulated FLS to produce RANKL and tocotrienol decreased this IL-17-induced RANKL production. Tocotrienol decreased the IL-17-induced activation of mammalian target of rapamycin, extracellular signal-regulated kinase, and inhibitor of kappa B-alpha. When monocytes were incubated with IL-17, RANKL, IL-17-treated FLS or Th17 cells, osteoclasts were differentiated and tocotrienol decreased this osteoclast differentiation. Tocotrienol reduced Th17 cell differentiation and the production of IL-17 and sRANKL; however, tocotrienol did not affect Treg cell differentiation. CONCLUSION Tocotrienol inhibited IL-17- activated RANKL production in RA FLS and IL-17-activated osteoclast formation. In addition, tocotrienol reduced Th17 differentiation. Therefore, tocotrienol could be a new therapeutic choice to treat bone destructive processes in RA.
Collapse
Affiliation(s)
- Kyoung-Woon Kim
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Bo-Mi Kim
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji-Yeon Won
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Hong Ki Min
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Seoung Joon Lee
- Department of Orthopedic Surgery, Konkuk University School of Medicine, Seoul, Korea
| | - Sang-Heon Lee
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Hae-Rim Kim
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
- Correspondence to Hae-Rim Kim, M.D. Division of Rheumatology, Department of Internal Medicine, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Korea Tel: +82-2-2030-7542 Fax: +82-2-2030-7748 E-mail:
| |
Collapse
|
6
|
Mohd Zaffarin AS, Ng SF, Ng MH, Hassan H, Alias E. Pharmacology and Pharmacokinetics of Vitamin E: Nanoformulations to Enhance Bioavailability. Int J Nanomedicine 2020; 15:9961-9974. [PMID: 33324057 PMCID: PMC7733471 DOI: 10.2147/ijn.s276355] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
Vitamin E belongs to the family of lipid-soluble vitamins and can be divided into two groups, tocopherols and tocotrienols, with four isomers (alpha, beta, gamma and delta). Although vitamin E is widely known as a potent antioxidant, studies have also revealed that vitamin E possesses anti-inflammatory properties. These crucial properties of vitamin E are beneficial in various aspects of health, especially in neuroprotection and cardiovascular, skin and bone health. However, the poor bioavailability of vitamin E, especially tocotrienols, remains a great limitation for clinical applications. Recently, nanoformulations that include nanovesicles, solid-lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, and polymeric nanoparticles have shown promising outcomes in improving the efficacy and bioavailability of vitamin E. This review focuses on the pharmacological properties and pharmacokinetics of vitamin E and current advances in vitamin E nanoformulations for future clinical applications. The limitations and future recommendations are also discussed in this review.
Collapse
Affiliation(s)
- Anis Syauqina Mohd Zaffarin
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Shiow-Fern Ng
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, 56000, Malaysia
| | - Haniza Hassan
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Ekram Alias
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
7
|
Meister ML, Mo H, Ji X, Shen CL. Tocotrienols in Bone Protection: Evidence from Preclinical Studies. EFOOD 2020. [DOI: 10.2991/efood.k.200427.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
8
|
Radzi NFM, Ismail NAS, Alias E. Tocotrienols Regulate Bone Loss through Suppression on Osteoclast Differentiation and Activity: A Systematic Review. Curr Drug Targets 2019; 19:1095-1107. [PMID: 29412105 PMCID: PMC6094554 DOI: 10.2174/1389450119666180207092539] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 01/02/2018] [Accepted: 02/06/2018] [Indexed: 02/07/2023]
Abstract
Background There are accumulating studies reporting that vitamin E in general exhibits bone protective effects. This systematic review, however discusses the effects of a group of vitamin E isomers, tocotrienols in preventing bone loss through osteoclast differentiation and activity suppression. Objective This review is aimed to discuss the literature reporting the effects of tocotrienols on osteoclasts, the cells specialized for resorbing bone. Results Out of the total 22 studies from the literature search, only 11 of them were identified as relevant, which comprised of eight animal studies, two in vitro studies and only one combination of both. The in vivo studies indicated that tocotrienols improve the bone health and reduce bone loss via inhibition of osteoclast formation and resorption activity, which could be through regulation of RANKL and OPG expression as seen from their levels in the sera. This is well supported by data from the in vitro studies demonstrating the suppression of osteoclast formation and resorption activity following treatment with tocotrienol isomers. Conclusion Thus, tocotrienols are suggested to be potential antioxidants for prevention and treatment of bone-related diseases characterized by increased bone loss.
Collapse
Affiliation(s)
- Nur Fathiah Mohd Radzi
- Department of Biochemistry, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia
| | - Noor Akmal Shareela Ismail
- Department of Biochemistry, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia
| | - Ekram Alias
- Department of Biochemistry, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Wong SK, Chin KY, Ima-Nirwana S. The Effects of Tocotrienol on Bone Peptides in a Rat Model of Osteoporosis Induced by Metabolic Syndrome: The Possible Communication between Bone Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E3313. [PMID: 31505801 PMCID: PMC6765824 DOI: 10.3390/ijerph16183313] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 08/31/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023]
Abstract
A positive association between metabolic syndrome (MetS) and osteoporosis has been demonstrated in previous animal studies. The mechanisms of MetS in orchestrating the bone remodelling process have traditionally focused on the interactions between mature osteoblasts and osteoclasts, while the role of osteocytes is unexplored. Our earlier studies demonstrated the bone-promoting effects of tocotrienol using a rat model of osteoporosis induced by MetS. This study aimed to investigate the expression of osteocyte-derived peptides in the bone of rats with MetS-induced osteoporosis treated with tocotrienol. Age-matched male Wistar rats (12-week-old; n = 42) were divided into seven experimental groups. Two groups served as the baseline and normal group, respectively. The other five groups were fed with a high-carbohydrate high-fat (HCHF) diet to induce MetS. The five groups of HCHF animals were treated with tocopherol-stripped corn oil (vehicle), annatto tocotrienol (60 and 100 mg/kg), and palm tocotrienol (60 and 100 mg/kg) starting from week 8. At the end of the study, the rats were sacrificed and their right tibias were harvested. Protein was extracted from the metaphyseal region of the proximal right tibia and levels of bone peptides, including osteoprotegerin (OPG), soluble receptor activator of nuclear factor-kappa B ligand (sRANKL), sclerostin (SOST), Dickkopf-related protein 1 (DKK-1), fibroblast growth factor-23 (FGF-23), and parathyroid hormone (PTH), were measured. The vehicle-treated animals displayed higher levels of sRANKL, SOST, DKK-1, FGF-23, and PTH as compared to the normal animals. Oral supplementation of annatto and palm tocotrienol (60 and 100 mg/kg) reduced the levels of sRANKL and FGF-23 in the HCHF animals. Only 100 mg/kg annatto and palm tocotrienol lowered SOST and DKK-1 levels in the HCHF animals. In conclusion, tocotrienol exerts potential skeletal-promoting benefit by modulating the levels of osteocytes-derived bone-related peptides.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia.
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia.
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
10
|
The Molecular Mechanism of Vitamin E as a Bone-Protecting Agent: A Review on Current Evidence. Int J Mol Sci 2019; 20:ijms20061453. [PMID: 30909398 PMCID: PMC6471965 DOI: 10.3390/ijms20061453] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 01/16/2023] Open
Abstract
Bone remodelling is a tightly-coordinated and lifelong process of replacing old damaged bone with newly-synthesized healthy bone. In the bone remodelling cycle, bone resorption is coupled with bone formation to maintain the bone volume and microarchitecture. This process is a result of communication between bone cells (osteoclasts, osteoblasts, and osteocytes) with paracrine and endocrine regulators, such as cytokines, reactive oxygen species, growth factors, and hormones. The essential signalling pathways responsible for osteoclastic bone resorption and osteoblastic bone formation include the receptor activator of nuclear factor kappa-B (RANK)/receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin (OPG), Wnt/β-catenin, and oxidative stress signalling. The imbalance between bone formation and degradation, in favour of resorption, leads to the occurrence of osteoporosis. Intriguingly, vitamin E has been extensively reported for its anti-osteoporotic properties using various male and female animal models. Thus, understanding the underlying cellular and molecular mechanisms contributing to the skeletal action of vitamin E is vital to promote its use as a potential bone-protecting agent. This review aims to summarize the current evidence elucidating the molecular actions of vitamin E in regulating the bone remodelling cycle.
Collapse
|
11
|
Nazrun Shuid A, Das S, Mohamed IN. Therapeutic effect of Vitamin E in preventing bone loss: An evidence-based review. INT J VITAM NUTR RES 2019; 89:357-370. [PMID: 30856080 DOI: 10.1024/0300-9831/a000566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The present review explored the anti-inflammatory and immunomodulatory properties of vitamin E, which has protective action against osteoporosis. A systematic review of the literature was conducted to identify the published bone studies on vitamin E. The studies included inflammatory or immunology-related parameters. Medline and Scopus databases were searched for relevant studies published from 2005 till 2015. Research articles published in English and confined to the effect of vitamin E on bone were included. It is pertinent to mention that these studies took into consideration inflammatory or immunology parameters including interleukin (IL)-1, IL-6, receptor activator of nuclear factor kappa-B ligand (RANKL), inducible nitric oxide synthases (iNOS), serum amyloid A (SAA), e-selection and high-sensitivity C-reactive protein (hs-CRP). An extended literature search yielded 127 potentially relevant articles with seven articles meeting the inclusion and exclusion criteria. Another recent article was added with the total number accounting to eight. All these included literature comprised five animal studies, one in-vitro study and two human studies. These studies demonstrated that vitamin E, especially tocotrienol, was able to alleviate IL-1, IL-6, RANKL, iNOS and hs-CRP levels in relation to bone metabolism. In conclusion, vitamin E exerts its anti-osteoporotic actions via its anti-inflammatory and immunomodulatory effects.
Collapse
Affiliation(s)
- Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre
| | - Srijit Das
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre
| |
Collapse
|
12
|
Annatto-extracted tocotrienols improve glucose homeostasis and bone properties in high-fat diet-induced type 2 diabetic mice by decreasing the inflammatory response. Sci Rep 2018; 8:11377. [PMID: 30054493 PMCID: PMC6063954 DOI: 10.1038/s41598-018-29063-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/01/2018] [Indexed: 12/11/2022] Open
Abstract
Diabetes is a risk factor for osteoporosis. Annatto-extracted tocotrienols (TT) have proven benefits in preserving bone matrix. Here, we evaluated the effects of dietary TT on glucose homeostasis, bone properties, and liver pro-inflammatory mRNA expression in high-fat diet (HFD)-induced type 2 diabetic (T2DM) mice. 58 male C57BL/6 J mice were divided into 5 groups: low-fat diet (LFD), HFD, HFD + 400 mgTT/kg diet (T400), HFD + 1600 mgTT/kg diet (T1600), and HFD + 200 mg metformin/kg (Met) for 14 weeks. Relative to the HFD group, both TT-supplemented groups (1) improved glucose homeostasis by lowering the area under the curve for both glucose tolerance and insulin tolerance tests, (2) increased serum procollagen I intact N-terminal propeptide (bone formation) level, trabecular bone volume/total volume, trabecular number, connectivity density, and cortical thickness, (3) decreased collagen type 1 cross-linked C-telopeptide (bone resorption) levels, trabecular separation, and structure model index, and (4) suppressed liver mRNA levels of inflammation markers including IL-2, IL-23, IFN-γ, MCP-1, TNF-α, ITGAX and F4/80. There were no differences in glucose homeostasis and liver mRNA expression among T400, T1600, and Met. The order of osteo-protective effects was LFD ≥T1600 ≥T400 = Met >HFD. Collectively, these data suggest that TT exerts osteo-protective effects in T2DM mice by regulating glucose homeostasis and suppressing inflammation.
Collapse
|
13
|
Shen CL, Yang S, Tomison MD, Romero AW, Felton CK, Mo H. Tocotrienol supplementation suppressed bone resorption and oxidative stress in postmenopausal osteopenic women: a 12-week randomized double-blinded placebo-controlled trial. Osteoporos Int 2018; 29:881-891. [PMID: 29330573 DOI: 10.1007/s00198-017-4356-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 12/17/2017] [Indexed: 12/19/2022]
Abstract
UNLABELLED Tocotrienols have shown bone-protective effect in animals. This study showed that a 12-week tocotrienol supplementation decreased concentrations of bone resorption biomarker and bone remodeling regulators via suppressing oxidative stress in postmenopausal osteopenic women. INTRODUCTION Tocotrienols (TT) have been shown to benefit bone health in ovariectomized animals, a model of postmenopausal women. The purpose of this study was to evaluate the effect of 12-week TT supplementation on bone markers (serum bone-specific alkaline phosphatase (BALP), urine N-terminal telopeptide (NTX), serum soluble receptor activator of nuclear factor-kappaB ligand (sRANKL), and serum osteoprotegerin (OPG)), urine calcium, and an oxidative stress biomarker (8-hydroxy-2'-deoxyguanosine (8-OHdG)) in postmenopausal women with osteopenia. METHODS Eighty-nine postmenopausal osteopenic women (59.7 ± 6.8 year, BMI 28.7 ± 5.7 kg/m2) were randomly assigned to three groups: (1) placebo (430 mg olive oil/day), (2) low TT (430 mg TT/day, 70% purity), and (3) high TT (860 mg TT/day, 70% purity). TT, an extract from annatto seed with 70% purity, consisted of 90% delta-TT and 10% gamma-TT. Overnight fasting blood and urine samples were collected at baseline, 6, and 12 weeks for biomarker analyses. Eighty-seven subjects completed the 12-week study. RESULTS Relative to the placebo group, there were marginal decreases in serum BALP level in the TT-supplemented groups over the 12-week study period. Significant decreases in urine NTX levels, serum sRANKL, sRANKL/OPG ratio, and urine 8-OHdG concentrations and a significant increase in BALP/NTX ratio due to TT supplementation were observed. TT supplementation did not affect serum OPG concentrations or urine calcium levels throughout the study period. There were no significant differences in NTX level, BALP/NTX ratio, sRANKL level, and sRANKL/OPG ratio between low TT and high TT groups. CONCLUSIONS Twelve-week annatto-extracted TT supplementation decreased bone resorption and improved bone turnover rate via suppressing bone remodeling regulators in postmenopausal women with osteopenia. Such osteoprotective TT's effects may be, in part, mediated by an inhibition of oxidative stress. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT02058420. TITLE Tocotrienols and bone health of postmenopausal women.
Collapse
Affiliation(s)
- C-L Shen
- Department of Pathology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - S Yang
- Department of Pathology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - M D Tomison
- Department of Pathology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - A W Romero
- Clinical Research Institute, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - C K Felton
- Department of Obstetrics and Gynecology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - H Mo
- Department of Nutrition, Byrdine F. Lewis College of Nursing and Health Professions, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
14
|
Kim B, Kim HH, Lee ZH. α-Tocopheryl Succinate Inhibits Osteolytic Bone Metastasis of Breast Cancer by Suppressing Migration of Cancer Cells and Receptor Activator of Nuclear Factor-κB Ligand Expression of Osteoblasts. J Bone Metab 2018; 25:23-33. [PMID: 29564303 PMCID: PMC5854820 DOI: 10.11005/jbm.2018.25.1.23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/16/2018] [Accepted: 01/23/2018] [Indexed: 02/06/2023] Open
Abstract
Background Breast cancer is one of the most common cancers affecting women and has a high incidence of bone metastasis, causing osteolytic lesions. The elevated expression of receptor activator of nuclear factor-κB ligand (RANKL) in cancer activates osteoclasts, leading to bone destruction. We previously reported that α-tocopheryl succinate (αTP-suc) inhibited interleukin-1-induced RANKL expression in osteoblasts. Here, we examined the effect of αTP-suc on osteolytic bone metastasis in breast cancer. Methods To examine the effect of αTP-suc on the metastatic capacity of breast cancer, MDA-MB-231-FL cells were injected into the left cardiac ventricle of BALB/c nude mice along with intraperitoneal injection of αTP-suc. The mice were then analyzed by bioluminescence imaging. To investigate the effect of αTP-suc on osteolysis, 4T1 cells were directly injected into the femur of BALB/c mice along with intraperitoneal injection of αTP-suc. Microcomputed tomography analysis and histomorphometric analysis of the femora were performed. Results αTP-suc inhibited cell migration and cell growth of 4T1 cells. In line with these results, bone metastasis of MDA-MB-231-FL cells was reduced in mice injected with αTP-suc. In addition, αTP-suc decreased osteoclastogenesis by inhibiting 4T1-induced RANKL expression in osteoblasts. Consistent with these results, 4T1-induced bone destruction was ameliorated by αTP-suc, with in vivo analysis showing reduced tumor burden and osteoclast numbers. Conclusions Our findings suggest that αTP-suc may be efficiently utilized to prevent and treat osteolytic bone metastasis of breast cancer with dual effects.
Collapse
Affiliation(s)
- Bongjun Kim
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University College of Medicine, Seoul, Korea
| | - Hong-Hee Kim
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University College of Medicine, Seoul, Korea
| | - Zang Hee Lee
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Shen CL, Klein A, Chin KY, Mo H, Tsai P, Yang RS, Chyu MC, Ima-Nirwana S. Tocotrienols for bone health: a translational approach. Ann N Y Acad Sci 2017; 1401:150-165. [PMID: 28891093 DOI: 10.1111/nyas.13449] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/04/2017] [Accepted: 07/17/2017] [Indexed: 02/03/2023]
Abstract
Osteoporosis, a degenerative bone disease, is characterized by low bone mass and microstructural deterioration of bone tissue resulting in aggravated bone fragility and susceptibility to fractures. The trend of extended life expectancy is accompanied by a rise in the prevalence of osteoporosis and concomitant complications in the elderly population. Epidemiological evidence has shown an association between vitamin E consumption and the prevention of age-related bone loss in elderly women and men. Animal studies show that ingestion of vitamin E, especially tocotrienols, may benefit bone health in terms of maintaining higher bone mineral density and improving bone microstructure and quality. The beneficial effects of tocotrienols on bone health appear to be mediated via antioxidant/anti-inflammatory pathways and/or 3-hydroxy-3-methylglutaryl coenzyme A mechanisms. We discuss (1) an overview of the prevalence and etiology of osteoporosis, (2) types of vitamin E (tocopherols versus tocotrienols), (3) findings of tocotrienols and bone health from published in vitro and animal studies, (4) possible mechanisms involved in bone protection, and (5) challenges and future direction for research.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Annika Klein
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas
| | - Kok-Yong Chin
- Department of Pharmacology, Universiti Kebangasaan Malaysia, Kuala Lumpur, Malaysia
| | - Huanbiao Mo
- Department of Nutrition, Byrdine F. Lewis School of Nursing and Health Professions, Georgia State University, Atlanta, Georgia
| | - Peihsuan Tsai
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Rong-Sen Yang
- Department of Orthopedics, School of Medicine, National Taiwan University Hospital, Taipei City, Taiwan
| | - Ming-Chien Chyu
- Graduate Healthcare Engineering, Whitacre College of Engineering, Texas Tech University, Lubbock, Texas
| | | |
Collapse
|
16
|
Georgousopoulou E, Panagiotakos DB, Mellor D, Naumovski N. Authors’ reply to comments on tocotrienols, health and ageing. Maturitas 2017; 97:21. [DOI: 10.1016/j.maturitas.2016.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 10/20/2022]
|
17
|
Lu X, Mestres G, Singh VP, Effati P, Poon JF, Engman L, Ott MK. Selenium- and Tellurium-Based Antioxidants for Modulating Inflammation and Effects on Osteoblastic Activity. Antioxidants (Basel) 2017; 6:antiox6010013. [PMID: 28216602 PMCID: PMC5384176 DOI: 10.3390/antiox6010013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/10/2017] [Indexed: 01/04/2023] Open
Abstract
Increased oxidative stress plays a significant role in the etiology of bone diseases. Heightened levels of H2O2 disrupt bone homeostasis, leading to greater bone resorption than bone formation. Organochalcogen compounds could act as free radical trapping agents or glutathione peroxidase mimetics, reducing oxidative stress in inflammatory diseases. In this report, we synthesized and screened a library of organoselenium and organotellurium compounds for hydrogen peroxide scavenging activity, using macrophagic cell lines RAW264.7 and THP-1, as well as human mono- and poly-nuclear cells. These cells were stimulated to release H2O2, using phorbol 12-myristate 13-acetate, with and without organochalogens. Released H2O2 was then measured using a chemiluminescent assay over a period of 2 h. The screening identified an organoselenium compound which scavenged H2O2 more effectively than the vitamin E analog, Trolox. We also found that this organoselenium compound protected MC3T3 cells against H2O2-induced toxicity, whereas Trolox did not. The organoselenium compound exhibited no cytotoxicity to the cells and had no deleterious effects on cell proliferation, viability, or alkaline phosphatase activity. The rapidity of H2O2 scavenging and protection suggests that the mechanism of protection is due to the direct scavenging of extracellular H2O2. This compound is a promising modulators of inflammation and could potentially treat diseases involving high levels of oxidative stress.
Collapse
Affiliation(s)
- Xi Lu
- Department of Engineering Science, Applied Materials Science, Uppsala University, Box 534, Uppsala 751 21, Sweden.
| | - Gemma Mestres
- Department of Engineering, Microsystems Technology, Uppsala University, Box 534, Uppsala 751 21, Sweden.
| | - Vijay Pal Singh
- Department of Chemistry, BMC, Uppsala University, Box 576, Uppsala 751 23, Sweden.
| | - Pedram Effati
- Department of Engineering Science, Applied Materials Science, Uppsala University, Box 534, Uppsala 751 21, Sweden.
| | - Jia-Fei Poon
- Department of Chemistry, BMC, Uppsala University, Box 576, Uppsala 751 23, Sweden.
| | - Lars Engman
- Department of Chemistry, BMC, Uppsala University, Box 576, Uppsala 751 23, Sweden.
| | - Marjam Karlsson Ott
- Department of Engineering Science, Applied Materials Science, Uppsala University, Box 534, Uppsala 751 21, Sweden.
| |
Collapse
|
18
|
Shen CL, Mo H, Yang S, Wang S, Felton CK, Tomison MD, Soelaiman IN. Safety and efficacy of tocotrienol supplementation for bone health in postmenopausal women: protocol for a dose-response double-blinded placebo-controlled randomised trial. BMJ Open 2016; 6:e012572. [PMID: 28011809 PMCID: PMC5223723 DOI: 10.1136/bmjopen-2016-012572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
INTRODUCTION Osteoporosis is a major health concern in postmenopausal women, and oxidative stress contributes to the development of bone loss. Cellular studies and ovariectomised rat model mimicking bone loss in postmenopausal women show the bone-protective effect of tocotrienols (TTs) with antioxidant capability. We aim to access the safety and efficacy of TT consumption for bone health in postmenopausal women. METHODS AND ANALYSIS In this 12-week randomised double-blinded placebo-controlled trial for the effects of dietary TT supplementation in postmenopausal women, postmenopausal women aged 45 years and older with at least 1 year after menopause and bone mineral density T-score at the spine and/or hip 2.5 or more below the reference values will be randomly assigned to 3 daily supplements: (1) placebo group receiving 860 mg olive oil, (2) low TT group receiving 430 mg of 70% pure TTs (containing 300 mg TT) and (3) high TT group receiving 860 mg of 70% pure TTs (600 mg TT). The primary outcome measure will be urinary N-terminal telopeptide. The secondary outcome measures will be serum bone-specific alkaline phosphatase, receptor activator of nuclear factor-κB ligand, osteoprotegerin, urinary 8-hydroxy-2'-deoxyguanosine and quality of life. At 0, 6 and 12 weeks, the following will be assessed: (1) primary and secondary outcome measures; (2) serum TT and tocopherol concentrations; (3) physical activity and food frequency questionnaires. Liver function will be monitored every 6 weeks for safety. 'Intent-to-treat' principle will be employed for data analysis. A model of repeated measurements with random effect error terms will be applied. Analysis of covariance, χ2 analysis and regression will be used for comparisons. ETHICS AND DISSEMINATION This study was approved by the Bioethics Committee of the Texas Tech University Health Sciences Center. The findings of this trial will be submitted to a peer-reviewed journal in the areas of bone or nutrition and international conferences. TRIAL REGISTRATION NUMBER NCT02058420; results.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Huanbiao Mo
- Department of Nutrition, Byrdine F. Lewis School of Nursing and Health Professions, Georgia State University, Atlanta, Georgia, USA
| | - Shengping Yang
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Shu Wang
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Carol K Felton
- Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Michael D Tomison
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | | |
Collapse
|
19
|
Johnson SA, Feresin RG, Soung DY, Elam ML, Arjmandi BH. Vitamin E suppresses ex vivo osteoclastogenesis in ovariectomized rats. Food Funct 2016; 7:1628-33. [PMID: 26923532 DOI: 10.1039/c5fo01066g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Postmenopausal osteoporosis may be caused, in part, by oxidative stress and inflammation. Vitamin E is a strong antioxidant which has been shown to have anti-inflammatory and bone-protective effects. The objective of this study was to investigate the effects of various doses of supplemental vitamin E on osteoclastogenesis in ovariectomized rats. Sixty 12-month-old female Sprague-Dawley rats were sham-operated (Sham) or ovariectomized (Ovx; 4 groups) and fed a diet containing basal levels of vitamin E (75 mg D-α tocopherol acetate per kg diet) for 220 days. Rats in three of the Ovx groups were given supplemental doses of vitamin E (300, 525, and 750 mg D-α tocopherol acetate per kg diet) for the last 100 days. Femoral bone marrow cells were isolated, cultured, and osteoclasts were counted and normalized to 1000 total bone marrow cells. Blood monocyte and lymphocyte counts were also determined. Osteoclast number was significantly higher in the Ovx control group and was suppressed by all three doses of vitamin E, although more effectively in the Ovx group that received 300 mg per kg diet vitamin E. Additionally, vitamin E suppressed the Ovx-induced increase in monocyte and lymphocyte production. The results of this study suggest that vitamin E supplementation suppresses osteoclastogenesis, possibly by inhibiting monocyte and lymphocyte production.
Collapse
Affiliation(s)
- Sarah A Johnson
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA and Center for Advancing Exercise and Nutrition Research on Aging (CAENRA), Florida State University, Tallahassee, FL 32306, USA
| | - Rafaela G Feresin
- Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Do Y Soung
- Columbia University Medical Center, Center of Orthopaedic Research, Department of Orthopaedic Surgery, New York, NY 10032, USA
| | - Marcus L Elam
- Department of Human Nutrition and Food Science, California State Polytechnic University, Pomona, CA 91768, USA
| | - Bahram H Arjmandi
- Center for Advancing Exercise and Nutrition Research on Aging (CAENRA), Florida State University, Tallahassee, FL 32306, USA and Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
20
|
Georgousopoulou EN, Panagiotakos DB, Mellor DD, Naumovski N. Tocotrienols, health and ageing: A systematic review. Maturitas 2016; 95:55-60. [PMID: 27889054 DOI: 10.1016/j.maturitas.2016.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 11/04/2016] [Indexed: 01/04/2023]
Abstract
OBJECTIVES A systematic review of studies was undertaken to evaluate the potential effect of intake of tocotrienols or circulating levels of tocotrienols on parameters associated with successful ageing, specifically in relation to cognitive function, osteoporosis and DNA damage. METHODS Following PRISMA guidelines a systematic review of epidemiological observational studies and clinical trials was undertaken. Inclusion criteria included all English language publications in the databases PubMed and Scopus, through to the end of July 2016. RESULTS Evidence from prospective and case-control studies suggested that increased blood levels of tocotrienols were associated with favorable cognitive function outcomes. A clinical trial of tocotrienol supplementation for 6 months suggested a beneficial effect of intake on DNA damage rates, but only in elderly people. Regarding osteoporosis, only in vitro studies with cultures of human bone cells were identified, and these demonstrated significant inhibition of osteoclast activity and promotion of osteoblast activity. CONCLUSIONS Research in middle-aged and elderly humans suggests that tocotrienols have a potential beneficial anti-ageing action with respect to cognitive impairment and DNA damage. Clinical trials are required to elucidate these effects.
Collapse
Affiliation(s)
- Ekavi N Georgousopoulou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece; University of Canberra, Faculty of Health, Canberra, Australia
| | - Demosthenes B Panagiotakos
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece.
| | - Duane D Mellor
- University of Canberra, Faculty of Health, Canberra, Australia
| | - Nenad Naumovski
- University of Canberra, Faculty of Health, Canberra, Australia
| |
Collapse
|
21
|
Zhao L, Fang X, Marshall MR, Chung S. Regulation of Obesity and Metabolic Complications by Gamma and Delta Tocotrienols. Molecules 2016; 21:344. [PMID: 26978344 PMCID: PMC6274282 DOI: 10.3390/molecules21030344] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 12/22/2022] Open
Abstract
Tocotrienols (T3s) are a subclass of unsaturated vitamin E that have been extensively studied for their anti-proliferative, anti-oxidative and anti-inflammatory properties in numerous cancer studies. Recently, T3s have received increasing attention due to their previously unrecognized property to attenuate obesity and its associated metabolic complications. In this review, we comprehensively evaluated the recent published scientific literature about the influence of T3s on obesity, with a particular emphasis on the signaling pathways involved. T3s have been demonstrated in animal models or human subjects to reduce fat mass, body weight, plasma concentrations of free fatty acid, triglycerides and cholesterol, as well as to improve glucose and insulin tolerance. Their mechanisms of action in adipose tissue mainly include (1) modulation of fat cell adipogenesis and differentiation; (2) modulation of energy sensing; (3) induction of apoptosis in preadipocytes and (4) modulation of inflammation. Studies have also been conducted to investigate the effects of T3s on other targets, e.g., the immune system, liver, muscle, pancreas and bone. Since δT3 and γT3 are regarded as the most active isomers among T3s, their clinical relevance to reduce obesity should be investigated in human trials.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611, USA.
| | - Xiefan Fang
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32611, USA.
| | - Maurice R Marshall
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611, USA.
| | - Soonkyu Chung
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE 68583, USA.
| |
Collapse
|
22
|
Chin KY, Pang KL, Soelaiman IN. Tocotrienol and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 928:97-130. [DOI: 10.1007/978-3-319-41334-1_5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Association of dietary and serum vitamin E with bone mineral density in middle-aged and elderly Chinese adults: a cross-sectional study. Br J Nutr 2015; 115:113-20. [PMID: 26507315 DOI: 10.1017/s0007114515004134] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Previous studies have suggested that vitamin E (VE) may affect bone health, but the findings have been inconclusive. We examined the relationship between VE status (in both diet and serum) and bone mineral density (BMD) among Chinese adults. This community-based study included 3203 adults (2178 women and 1025 men) aged 40-75 years from Guangzhou, People's Republic of China. General and dietary intake information were collected using structured questionnaire interviews. The serum α-tocopherol (TF) level was quantified by reversed-phase HPLC. The BMD of the whole body, the lumbar spine and left hip sites (total, neck, trochanter, intertrochanter and Ward's triangle) were measured using dual-energy X-ray absorptiometry. In women, the dietary intake of VE was significantly and positively associated with BMD at the lumbar spine, total hip, intertrochanter and femur neck sites after adjusting for covariates (P(trend): 0·001-0·017). Women in quartile 3 of VE intake typically had the highest BMD; the covariate-adjusted mean BMD were 2·5, 3·06, 3·41 and 3·54% higher, respectively, in quartile 3 (v. 1) at the four above-mentioned sites. Similar positive associations were observed between cholesterol-adjusted serum α-TF levels and BMD at each of the studied bone sites (P(trend): 0·001-0·022). The covariate-adjusted mean BMD were 1·24-4·83% greater in quartile 4 (v. 1) in women. However, no significant associations were seen between the VE levels (dietary or serum) and the BMD at any site in men. In conclusion, greater consumption and higher serum levels of VE are associated with greater BMD in Chinese women but not in Chinese men.
Collapse
|
24
|
Chin KY, Ima-Nirwana S. The biological effects of tocotrienol on bone: a review on evidence from rodent models. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2049-61. [PMID: 25897211 PMCID: PMC4396581 DOI: 10.2147/dddt.s79660] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Osteoporosis causes significant health care and economic burden to society, leading to a relentless search for effective preventive agents. Tocotrienol, a member of the vitamin E family, has demonstrated promising potential as an osteoporosis-preventing agent. This review summarizes evidence on the effects of tocotrienol on bone in animal models. Techniques used to examine the effects of tocotrienol on bone in animals included bone histomorphometry, X-ray microtomography, dual-energy X-ray absorptiometry, bone turnover markers, bone calcium content, and biomechanical strength. Tocotrienol was shown to improve osteoblast number, bone formation, mineral deposition, and bone microarchitecture in osteopenic rats. It also decreased osteoclast number and bone erosion in the rats. Tocotrienol supplementation resulted in an improvement in bone mineral density, although biomechanical strength was not significantly altered in the rats. The beneficial effects of tocotrienol on bone can be attributed to its role as an antioxidant, anti-inflammatory agent, suppressor of the mevalonate pathway, and modulator of genes favorable to bone formation.
Collapse
Affiliation(s)
- Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
25
|
Ochi H, Takeda S. The Two Sides of Vitamin E Supplementation. Gerontology 2014; 61:319-26. [PMID: 25428288 DOI: 10.1159/000366419] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 08/05/2014] [Indexed: 11/19/2022] Open
Abstract
Vitamin E is a lipid-soluble antioxidant that inhibits lipid peroxidation by scavenging reactive oxygen species, and it is thought to protect against the aging process. Indeed, it is one of the most popular supplements in the US. However, recent studies have revealed that vitamin E has dual effects on the aging process. We discovered that α-tocopherol, the major form of vitamin E in the body, stimulates osteoclast fusion and bone resorption as well as induces an osteoporosis-like phenotype in rodents. Clinical intervention trials have also demonstrated that supplementation with vitamin E is neutral or even harmful for preventing age-related diseases in humans. Therefore, the role of vitamin E as an 'anti-ager' has been called into question. This review outlines the present understanding of the role of vitamin E in age-related disease prevention.
Collapse
Affiliation(s)
- Hiroki Ochi
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | |
Collapse
|
26
|
Chin KY, Ima-Nirwana S. Effects of annatto-derived tocotrienol supplementation on osteoporosis induced by testosterone deficiency in rats. Clin Interv Aging 2014; 9:1247-59. [PMID: 25120355 PMCID: PMC4128692 DOI: 10.2147/cia.s67016] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background Previous animal models have demonstrated that tocotrienol is a potential treatment for postmenopausal osteoporosis. This study evaluated the antiosteoporotic effects of annatto-derived tocotrienol (AnTT) using a testosterone-deficient osteoporotic rat model. Methods Forty rats were divided randomly into baseline, sham, orchidectomized, AnTT, and testosterone groups. The baseline group was euthanized without undergoing any surgical treatment or intervention. The remaining groups underwent orchidectomy, with the exception of the sham group. AnTT 60 mg/kg/day was given orally to the AnTT group, while the testosterone group received testosterone enanthate 7 mg/kg per week intramuscularly for 8 weeks. Structural changes in trabecular bone at the proximal tibia were examined using microcomputed tomography. Structural and dynamic changes at the distal femur were examined using histomorphometric methods. Serum osteocalcin and C-terminal of type 1 collagen crosslinks were measured. Bone-related gene expression in the distal femur was examined. Results There were significant degenerative changes in structural indices in the orchidectomized group (P<0.05), but no significant changes in dynamic indices, bone remodeling markers, or gene expression (P>0.05) when compared with the sham group. The AnTT group showed significant improvement in structural indices at the femur (P<0.05) and significantly increased expression of bone formation genes (P<0.05). Testosterone was more effective than AnTT in preventing degeneration of bone structural indices in the femur and tibia (P<0.05). Conclusion AnTT supplementation improves bone health in testosterone-deficient rats by enhancing bone formation. Its potential should be evaluated further by varying the dosage and treatment duration.
Collapse
Affiliation(s)
- Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Chin KY, Ima-Nirwana S. The effects of α-tocopherol on bone: a double-edged sword? Nutrients 2014; 6:1424-41. [PMID: 24727433 PMCID: PMC4011043 DOI: 10.3390/nu6041424] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/22/2014] [Accepted: 02/28/2014] [Indexed: 12/18/2022] Open
Abstract
Recent studies have found conflicting evidence on the role of α-tocopherol (αTF) on bone health. This nonsystematic review aimed to summarize the current evidence on the effects of αTF on bone health from cell culture, animal, and human studies in order to clarify the role of αTF on bone health. Our review found that αTF exerted beneficial, harmful or null effects on bone formation cells. Animal studies generally showed positive effects of αTF supplementation on bone in various models of osteoporosis. However, high-dose αTF was possibly detrimental to bone in normal animals. Human studies mostly demonstrated a positive relationship between αTF, as assessed using high performance liquid chromatography and/or dietary questionnaire, and bone health, as assessed using bone mineral density and/or fracture incidence. Three possible reasons high dosage of αTF can be detrimental to bone include its interference with Vitamin K function on bone, the blocking of the entry of other Vitamin E isomers beneficial to bone, and the role of αTF as a prooxidant. However, these adverse effects have not been shown in human studies. In conclusion, αTF may have a dual role in bone health, whereby in the appropriate doses it is beneficial but in high doses it may be harmful to bone.
Collapse
Affiliation(s)
- Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia.
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia.
| |
Collapse
|
28
|
Badraoui R, Ben-Nasr H, Amamou S, El-May MV, Rebai T. Walker 256/B malignant breast cancer cells disrupt osteoclast cytomorphometry and activity in rats: modulation by α-tocopherol acetate. Pathol Res Pract 2014; 210:135-41. [PMID: 24314812 DOI: 10.1016/j.prp.2013.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 09/18/2013] [Accepted: 11/06/2013] [Indexed: 01/24/2023]
Abstract
We examined the effects of vitamin E supplementation (VES) on osteoclast (OC) resorbing activity and cytomorphometry in Walker 256/B tumor osteolytic rats. Twenty-four aged male rats were randomized into 3 groups: 6 were sham operated; 9 were injected in the right hind limb with Walker 256/B cells (W256 group); and 9 were injected as above and supplemented with VE (45mg/kg BW) (W256VE group). Twenty days later, bone mass (BV/TV) and some microarchitectural parameters were assessed. Some histodynamic parameters, cellular and nuclear form factors (FFC and FFN), and nuclear-cytoplasmic ratio (N/C) of OC were measured for each group. W256 group exhibited osteolytic lesions in the operated femora. Walker 256/B induced trabecular perforation and decreased BV/TV associated with significant increases in OC numbering (N.Oc/B.Ar and Oc.N/B.Pm) and activity (ES/BS and Oc.S/BS). While FFN remain unchanged, the FFC and N/C ratio increased in the W256 group. W256VE showed less osteolytic lesions. Moreover, disruption of bone microarchitecture and OC activity in W256VE group decreased. VES reduced the malignant Walker 256/B-induced enhanced OC resorbing activity with cytoinhibition rate reaching 41%. The protective effect of VE may be due to its modulation of OC cytomorphometry and subsequently their activity.
Collapse
Affiliation(s)
- Riadh Badraoui
- Laboratory of Histology-Embryology, Faculty of Medicine, University of Sfax, 3029 Sfax, Tunisia; Laboratory of Cytology-Histology, Faculty of Medicine, University of Tunis El-Manar, 1007 Tunis, Tunisia.
| | - Hmed Ben-Nasr
- Laboratory of Pharmacology, Faculty of Medicine, University of Sfax, 3029 Sfax, Tunisia
| | - Selma Amamou
- Laboratory of Histology-Embryology, Faculty of Medicine, University of Sfax, 3029 Sfax, Tunisia
| | - Michèle Véronique El-May
- Laboratory of Cytology-Histology, Faculty of Medicine, University of Tunis El-Manar, 1007 Tunis, Tunisia
| | - Tarek Rebai
- Laboratory of Histology-Embryology, Faculty of Medicine, University of Sfax, 3029 Sfax, Tunisia
| |
Collapse
|
29
|
Mitogen- and stress-activated protein kinase 1 activates osteoclastogenesis in vitro and affects bone destruction in vivo. J Mol Med (Berl) 2013; 91:977-87. [DOI: 10.1007/s00109-013-1035-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/07/2013] [Accepted: 03/25/2013] [Indexed: 10/26/2022]
|
30
|
Mo H, Yeganehjoo H, Shah A, Mo WK, Soelaiman IN, Shen CL. Mevalonate-suppressive dietary isoprenoids for bone health. J Nutr Biochem 2012; 23:1543-51. [DOI: 10.1016/j.jnutbio.2012.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/13/2012] [Accepted: 07/19/2012] [Indexed: 12/19/2022]
|
31
|
Kim HN, Lee JH, Jin WJ, Lee ZH. α-Tocopheryl Succinate Inhibits Osteoclast Formation by Suppressing Receptor Activator of Nuclear Factor-kappaB Ligand (RANKL) Expression and Bone Resorption. J Bone Metab 2012; 19:111-20. [PMID: 24524041 PMCID: PMC3780928 DOI: 10.11005/jbm.2012.19.2.111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 09/13/2012] [Accepted: 10/08/2012] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE Osteoclasts are bone-resorbing multinucleated cells derived from the monocyte/macrophage lineage during normal and pathological bone turnover. Recently, several studies revealed that alpha-tocopheryl succinate (αTP-suc) have demonstrated potent anti-cancer activities in vitro and in vivo. However, the effects of αTP-suc on osteoclast formation and bone resorption remain unknown. Thus, in this study, we examined the effects of αTP-suc on osteoclast differentiation and bone resorbing activity in inflammatory bone loss model. METHODS Osteoclast differentiation assay was performed by cocultures of mouse bone marrow cells and calvarial osteoblasts in culture media including interleukin-1 (IL-1). Osteoclasts were stained for tartrate-resistant acid phosphatase (TRAP). The level of receptor activator of nuclear factor-kappaB ligand (RANKL) mRNA was determined by reverse transcriptase-polymerase chain reaction (RT-PCR). ICR mice were administered an intraperitoneal injections of αTP-suc or dimethyl sulfoxide (DMSO) 1 day before the implantation of a freeze-dried collagen sponge loaded with phosphate-buffered saline (PBS) or IL-1 over the calvariae and every other day for 7 days. The whole calvariae were obtained and analyzed by micro-computed tomography (CT) scanning, and stained for TRAP. RESULTS αTP-suc inhibits osteoclast formation in cocultures stimulated by IL-1 and decreased the level of expression of RANKL mRNA in osteoblasts. In addition, administered intraperitoneal injections of αTP-suc prevented IL-1-mediated osteoclast formation and bone loss in vivo. CONCLUSION Our findings suggest that αTP-suc may have therapeutic value for treating and preventing bone-resorptive diseases, such as osteoporosis.
Collapse
Affiliation(s)
- Ha-Neui Kim
- Department of Cell and Developmental Biology, DRI, School of Dentistry, Seoul National University, Seoul, Korea
| | - Jong-Ho Lee
- Department of Cell and Developmental Biology, DRI, School of Dentistry, Seoul National University, Seoul, Korea
| | - Won Jong Jin
- Department of Cell and Developmental Biology, DRI, School of Dentistry, Seoul National University, Seoul, Korea
| | - Zang Hee Lee
- Department of Cell and Developmental Biology, DRI, School of Dentistry, Seoul National University, Seoul, Korea
| |
Collapse
|
32
|
Two different isomers of vitamin e prevent bone loss in postmenopausal osteoporosis rat model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:161527. [PMID: 23118785 PMCID: PMC3484319 DOI: 10.1155/2012/161527] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/15/2012] [Indexed: 11/17/2022]
Abstract
Postmenopausal osteoporotic bone loss occurs mainly due to cessation of ovarian function, a condition associated with increased free radicals. Vitamin E, a lipid-soluble vitamin, is a potent antioxidant which can scavenge free radicals in the body. In this study, we investigated the effects of alpha-tocopherol and pure tocotrienol on bone microarchitecture and cellular parameters in ovariectomized rats. Three-month-old female Wistar rats were randomly divided into ovariectomized control, sham-operated, and ovariectomized rats treated with either alpha-tocopherol or tocotrienol. Their femurs were taken at the end of the four-week study period for bone histomorphometric analysis. Ovariectomy causes bone loss in the control group as shown by reduction in both trabecular volume (BV/TV) and trabecular number (Tb.N) and an increase in trabecular separation (Tb.S). The increase in osteoclast surface (Oc.S) and osteoblast surface (Ob.S) in ovariectomy indicates an increase in bone turnover rate. Treatment with either alpha-tocopherol or tocotrienol prevents the reduction in BV/TV and Tb.N as well as the increase in Tb.S, while reducing the Oc.S and increasing the Ob.S. In conclusion, the two forms of vitamin E were able to prevent bone loss due to ovariectomy. Both tocotrienol and alpha-tocopherol exert similar effects in preserving bone microarchitecture in estrogen-deficient rat model.
Collapse
|
33
|
Effects of Low-Dose versus High-Dose γ-Tocotrienol on the Bone Cells Exposed to the Hydrogen Peroxide-Induced Oxidative Stress and Apoptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:680834. [PMID: 22956976 PMCID: PMC3432387 DOI: 10.1155/2012/680834] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 07/24/2012] [Indexed: 11/18/2022]
Abstract
Oxidative stress and apoptosis can disrupt the bone formation activity of osteoblasts which can lead to osteoporosis. This study was conducted to investigate the effects of γ-tocotrienol on lipid peroxidation, antioxidant enzymes activities, and apoptosis of osteoblast exposed to hydrogen peroxide (H2O2). Osteoblasts were treated with 1, 10, and 100 μM of γ-tocotrienol for 24 hours before being exposed to 490 μM (IC50) H2O2 for 2 hours. Results showed that γ-tocotrienol prevented the malondialdehyde (MDA) elevation induced by H2O2 in a dose-dependent manner. As for the antioxidant enzymes assays, all doses of γ-tocotrienol were able to prevent the reduction in SOD and CAT activities, but only the dose of 1 μM of GTT was able to prevent the reduction in GPx. As for the apoptosis assays, γ-tocotrienol was able to reduce apoptosis at the dose of 1 and 10 μM. However, the dose of 100 μM of γ-tocotrienol induced an even higher apoptosis than H2O2. In conclusion, low doses of γ-tocotrienol offered protection for osteoblasts against H2O2 toxicity, but itself caused toxicity at the high doses.
Collapse
|
34
|
Vitamin E as an Antiosteoporotic Agent via Receptor Activator of Nuclear Factor Kappa-B Ligand Signaling Disruption: Current Evidence and Other Potential Research Areas. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:747020. [PMID: 22919420 PMCID: PMC3419565 DOI: 10.1155/2012/747020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 06/26/2012] [Indexed: 12/19/2022]
Abstract
Osteoporosis is a growing healthcare burden that affects the quality of life in the aging population. Vitamin E is a potential prophylactic agent that can impede the progression of osteoporosis. Various in vivo studies demonstrated the antiosteoporotic potential of vitamin E, but evidence on its molecular mechanism of action is limited. A few in vitro studies showed that various forms of vitamin E can affect the receptor activator of nuclear factor kappa-B ligand (RANKL) signaling and their molecular targets, thus preventing the formation of osteoclasts in the early stage of osteoclastogenesis. Various studies have also shown that the effects of the different isoforms of vitamin E differ. The effects of single isoforms and combinations of isoforms on bone metabolism are also different. Vitamin E may affect bone metabolism by disruption of free radical-mediated RANKL signaling, by its oestrogen-like effects, by its effects on the molecular mechanism of bone formation, by the anti-inflammatory effects of its long-chain metabolites on bone cells, and by the inhibition of 3-hydroxyl-3-methyglutaryl coenzyme A (HMG-CoA). In conclusion, the vitamin E isoforms have enormous potential to be used as prophylactic and therapeutic agents in preventing osteoporosis, but further studies should be conducted to elucidate their mechanisms of action.
Collapse
|
35
|
Kara MI, Erciyas K, Altan AB, Ozkut M, Ay S, Inan S. Thymoquinone accelerates new bone formation in the rapid maxillary expansion procedure. Arch Oral Biol 2012; 57:357-63. [DOI: 10.1016/j.archoralbio.2011.09.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/25/2011] [Accepted: 09/21/2011] [Indexed: 10/15/2022]
|
36
|
Ghayor C, Correro RM, Lange K, Karfeld-Sulzer LS, Grätz KW, Weber FE. Inhibition of osteoclast differentiation and bone resorption by N-methylpyrrolidone. J Biol Chem 2011; 286:24458-66. [PMID: 21613210 DOI: 10.1074/jbc.m111.223297] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of RANKL (receptor activator of nuclear factor κB ligand)-induced osteoclast differentiation is of current interest in the development of antiresorptive agents. Osteoclasts are multinucleated cells that play a crucial role in bone resorption. In this study, we investigated the effects of N-methylpyrrolidone (NMP) on the regulation of RANKL-induced osteoclastogenesis. NMP inhibited RANKL-induced tartrate-resistant acid phosphatase activity and the formation of tartrate-resistant acid phosphatase-positive multinucleated cells. The RANKL-induced expression of NFATc1 (nuclear factor of activated T cells, cytoplasmic 1) and c-Fos, which are key transcription factors for osteoclastogenesis, was also reduced by treatment with NMP. Furthermore, NMP induced disruption of the actin rings and decreased the mRNAs of cathepsin K and MMP-9 (matrix metalloproteinase-9), both involved in bone resorption. Taken together, these results suggest that NMP inhibits osteoclast differentiation and attenuates bone resorption. Therefore, NMP could prove useful for the treatment of osteoporosis or other bone diseases associated with excessive bone resorption.
Collapse
Affiliation(s)
- Chafik Ghayor
- Oral Biotechnology and Bioengineering, Department of Cranio-Maxillofacial Surgery, University Hospital Zurich, University of Zurich, 8091 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|