1
|
Miyoshi Y, Saika A, Nagatake T, Matsunaga A, Kunisawa J, Katakura Y, Yamasaki-Yashiki S. Mechanisms underlying enhanced IgA production in Peyer's patch cells by membrane vesicles derived from Lactobacillus sakei. Biosci Biotechnol Biochem 2021; 85:1536-1545. [PMID: 33885732 DOI: 10.1093/bbb/zbab065] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/05/2021] [Indexed: 12/20/2022]
Abstract
We analyzed the mechanisms underlying enhanced IgA production in the cells of Peyer's patch cells via membrane vesicles derived from Lactobacillus sakei subsp. sakei NBRC 15893. Depletion of CD11c+ cells from Peyer's patch cells suppressed the enhanced IgA production mediated by membrane vesicles. Meanwhile, the stimulation of bone-marrow-derived dendritic cells with membrane vesicles increased gene expression of inducible nitric oxide synthase, retinaldehyde dehydrogenase 2, and several inflammatory cytokines. The production of nitric oxide and interleukin (IL)-6 by membrane vesicle stimulation was induced via Toll-like receptor 2 on bone marrow-derived dendritic cells. Inhibition of inducible nitric oxide synthase and retinaldehyde dehydrogenase 2, as well as the neutralization of IL-6 in Peyer's patch cells, suppressed the enhanced IgA production by membrane vesicle stimulation. Hence, nitric oxide, retinoic acid, and IL-6 induced by membrane vesicles play crucial roles in the enhanced IgA production elicited by membrane vesicles in Peyer's patch cells.
Collapse
Affiliation(s)
- Yuki Miyoshi
- Chemistry, Materials and Bioengineering Major, Graduate School of Science and Engineering, Kansai University, Suita, Osaka, Japan.,Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Azusa Saika
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Takahiro Nagatake
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Ayu Matsunaga
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan.,Department of Food and Life Science, School of Life and Environmental Science, Azabu University, Sagamihara, Kanagawa, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Yoshio Katakura
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, Japan
| | - Shino Yamasaki-Yashiki
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan.,Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, Japan
| |
Collapse
|
2
|
Zhang L, Qu YN, Zhang HY, Wu ZY, Li ZL, Guo WB, Wang QB, Fang NZ, Jiang XX. SOCS1 Regulates the Immunomodulatory Roles of MSCs on B Cells. Int J Stem Cells 2020; 13:237-245. [PMID: 32323514 PMCID: PMC7378896 DOI: 10.15283/ijsc20001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 12/11/2022] Open
Abstract
Background and Objectives The effective use of MSCs for the treatment of some B cell-mediated immune diseases is quite limited. The main reason is that the immunomodulatory effects of mesenchymal stem cells (MSCs) on B cells are unclear, and their underlying mechanisms have not been fully explored. Methods and Results By co-culturing B cells with MSCs without (MSC/CTLsh) or with suppressor of cytokine signaling 1 (SOCS1) knockdown (MSC/SOCS1sh), we found that MSCs inhibited B cell proliferation, activation and terminal differentiation. Remarkably, the highest inhibition of B cell proliferation was observed in MSC/SOCS1sh co-culture. Besides, MSC/SOCS1sh reversed the inhibitory effect of MSCs in the last stage of B cell differentiation. However, MSC/SOCS1sh had no effect on inhibiting B cell activation by MSCs. We also showed that IgA+ B cell production was significantly higher in MSC/SOCS1sh than in MSC/CTLsh, although no difference was observed when both MSCs co-cultures were compared to isolated B cells. In addition, MSCs increased PGE2 production after TNF-α/IFN-γ stimulation, with the highest increase observed in MSC/SOCS1sh co-culture. Conclusions Our results highlighted the role of SOCS1 as an important new mediator in the regulation of B cell function by MSCs. Therefore, these data may help to develop new treatments for B cell-mediated immune diseases.
Collapse
Affiliation(s)
- Lei Zhang
- Animal Physiology Laboratory, School of Agroforestry Engineering and Planning, Tongren University, Tongren, China.,Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China.,Department of Anatomy, School of Basic Medical Sciences, Xiangnan University, Chenzhou, China
| | - Yan-Nv Qu
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China.,Department of Geriatrics, Peking University Shenzhen Hospital, Shenzhen, China
| | - He-Yang Zhang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Zhen-Yang Wu
- Animal Physiology Laboratory, School of Agroforestry Engineering and Planning, Tongren University, Tongren, China
| | - Zhong-Li Li
- Animal Physiology Laboratory, School of Agroforestry Engineering and Planning, Tongren University, Tongren, China
| | - Wan-Bei Guo
- Department of Anatomy, School of Basic Medical Sciences, Xiangnan University, Chenzhou, China
| | - Qi-Ben Wang
- Department of Anatomy, School of Basic Medical Sciences, Xiangnan University, Chenzhou, China
| | - Nan-Zhu Fang
- Laboratory of Animal Genetic Breeding and Reproduction, Yanbian University, Yanji, China
| | - Xiao-Xia Jiang
- Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Pioli PD. Plasma Cells, the Next Generation: Beyond Antibody Secretion. Front Immunol 2019; 10:2768. [PMID: 31824518 PMCID: PMC6883717 DOI: 10.3389/fimmu.2019.02768] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/12/2019] [Indexed: 12/31/2022] Open
Abstract
Plasma cells (PCs) represent the terminal differentiation step of mature B lymphocytes. These cells are most recognizable for their extended lifespan as well as their ability to secrete large amounts of antibodies (Abs) thus positioning this cell type as a key component of humoral immunity. However, it is now appreciated that PCs can have far reaching effects on pathologic as well as non-pathologic processes independent of Ab secretion. This is highlighted by recent studies showing that PCs function as key regulators of processes such as hematopoiesis as well as neuro-inflammation. In part, PCs accomplish this by integrating extrinsic signals from their environment which dictate their downstream functionality. Here we summarize the current understanding of PC biology focusing on their ever-growing functional repertoire independent of Ab production. Furthermore, we discuss potential applications of PC immunotherapy and its implementation for translational benefit.
Collapse
Affiliation(s)
- Peter D Pioli
- Department of Biomedical Sciences, Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| |
Collapse
|
4
|
Jiang X, Xia S, He X, Ma H, Feng Y, Liu Z, Wang W, Tian M, Chen H, Peng F, Wang L, Zhao P, Ge J, Liu D. Targeting peptide‐enhanced antibody and CD11c+dendritic cells to inclusion bodies expressing protective antigen against ETEC in mice. FASEB J 2018; 33:2836-2847. [DOI: 10.1096/fj.201800289rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xinpeng Jiang
- Key Laboratory of Combining Farming and Animal HusbandryMinistry of AgricultureAnimal Husbandry Research InstituteHarbinChina
- Postdoctoral WorkstationHeilongjiang Academy of Agricultural SciencesHarbinChina
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - Shuang Xia
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - Xinmiao He
- Key Laboratory of Combining Farming and Animal HusbandryMinistry of AgricultureAnimal Husbandry Research InstituteHarbinChina
| | - Hong Ma
- Key Laboratory of Combining Farming and Animal HusbandryMinistry of AgricultureAnimal Husbandry Research InstituteHarbinChina
| | - Yanzhong Feng
- Key Laboratory of Combining Farming and Animal HusbandryMinistry of AgricultureAnimal Husbandry Research InstituteHarbinChina
| | - Ziguang Liu
- Key Laboratory of Combining Farming and Animal HusbandryMinistry of AgricultureAnimal Husbandry Research InstituteHarbinChina
| | - Wentao Wang
- Key Laboratory of Combining Farming and Animal HusbandryMinistry of AgricultureAnimal Husbandry Research InstituteHarbinChina
| | - Ming Tian
- Key Laboratory of Combining Farming and Animal HusbandryMinistry of AgricultureAnimal Husbandry Research InstituteHarbinChina
- Postdoctoral WorkstationHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Heshu Chen
- Key Laboratory of Combining Farming and Animal HusbandryMinistry of AgricultureAnimal Husbandry Research InstituteHarbinChina
| | - Fugang Peng
- Key Laboratory of Combining Farming and Animal HusbandryMinistry of AgricultureAnimal Husbandry Research InstituteHarbinChina
| | - Liang Wang
- Key Laboratory of Combining Farming and Animal HusbandryMinistry of AgricultureAnimal Husbandry Research InstituteHarbinChina
| | - Peng Zhao
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - Junwei Ge
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - Di Liu
- Key Laboratory of Combining Farming and Animal HusbandryMinistry of AgricultureAnimal Husbandry Research InstituteHarbinChina
| |
Collapse
|
5
|
Neumann L, Mueller M, Moos V, Heller F, Meyer TF, Loddenkemper C, Bojarski C, Fehlings M, Doerner T, Allers K, Aebischer T, Ignatius R, Schneider T. Mucosal Inducible NO Synthase-Producing IgA+ Plasma Cells in Helicobacter pylori-Infected Patients. THE JOURNAL OF IMMUNOLOGY 2016; 197:1801-8. [PMID: 27456483 DOI: 10.4049/jimmunol.1501330] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 06/20/2016] [Indexed: 12/20/2022]
Abstract
The mucosal immune system is relevant for homeostasis, immunity, and also pathological conditions in the gastrointestinal tract. Inducible NO synthase (iNOS)-dependent production of NO is one of the factors linked to both antimicrobial immunity and pathological conditions. Upregulation of iNOS has been observed in human Helicobacter pylori infection, but the cellular sources of iNOS are ill defined. Key differences in regulation of iNOS expression impair the translation from mouse models to human medicine. To characterize mucosal iNOS-producing leukocytes, biopsy specimens from H. pylori-infected patients, controls, and participants of a vaccination trial were analyzed by immunohistochemistry, along with flow cytometric analyses of lymphocytes for iNOS expression and activity. We newly identified mucosal IgA-producing plasma cells (PCs) as one major iNOS(+) cell population in H. pylori-infected patients and confirmed intracellular NO production. Because we did not detect iNOS(+) PCs in three distinct infectious diseases, this is not a general feature of mucosal PCs under conditions of infection. Furthermore, numbers of mucosal iNOS(+) PCs were elevated in individuals who had cleared experimental H. pylori infection compared with those who had not. Thus, IgA(+) PCs expressing iNOS are described for the first time, to our knowledge, in humans. iNOS(+) PCs are induced in the course of human H. pylori infection, and their abundance seems to correlate with the clinical course of the infection.
Collapse
Affiliation(s)
- Laura Neumann
- Medical Clinic I, Gastroenterology, Infectious Diseases and Rheumatology, Charité-University Medicine Berlin, 12203 Berlin, Germany;
| | - Mattea Mueller
- Medical Clinic I, Gastroenterology, Infectious Diseases and Rheumatology, Charité-University Medicine Berlin, 12203 Berlin, Germany
| | - Verena Moos
- Medical Clinic I, Gastroenterology, Infectious Diseases and Rheumatology, Charité-University Medicine Berlin, 12203 Berlin, Germany
| | - Frank Heller
- Practice for Gastroenterology, 12163 Berlin, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | | | - Christian Bojarski
- Medical Clinic I, Gastroenterology, Infectious Diseases and Rheumatology, Charité-University Medicine Berlin, 12203 Berlin, Germany
| | - Michael Fehlings
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Thomas Doerner
- Department of Medicine, Rheumatology and Clinical Immunology, Charité-University Medicine Berlin, 10117 Berlin, Germany
| | - Kristina Allers
- Medical Clinic I, Gastroenterology, Infectious Diseases and Rheumatology, Charité-University Medicine Berlin, 12203 Berlin, Germany
| | | | - Ralf Ignatius
- Institute for Microbiology and Hygiene, Charité-University Medicine Berlin, 12203 Berlin, Germany
| | - Thomas Schneider
- Medical Clinic I, Gastroenterology, Infectious Diseases and Rheumatology, Charité-University Medicine Berlin, 12203 Berlin, Germany
| |
Collapse
|
6
|
IL-1β in eosinophil-mediated small intestinal homeostasis and IgA production. Mucosal Immunol 2015; 8:930-42. [PMID: 25563499 PMCID: PMC4481137 DOI: 10.1038/mi.2014.123] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/30/2014] [Indexed: 02/04/2023]
Abstract
Eosinophils are multifunctional leukocytes that reside in the gastrointestinal (GI) lamina propria, where their basal function remains largely unexplored. In this study, by examining mice with a selective deficiency of systemic eosinophils (by lineage ablation) or GI eosinophils (eotaxin-1/2 double deficient or CC chemokine receptor 3 deficient), we show that eosinophils support immunoglobulin A (IgA) class switching, maintain intestinal mucus secretions, affect intestinal microbial composition, and promote the development of Peyer's patches. Eosinophil-deficient mice showed reduced expression of mediators of secretory IgA production, including intestinal interleukin 1β (IL-1β), inducible nitric oxide synthase, lymphotoxin (LT) α, and LT-β, and reduced levels of retinoic acid-related orphan receptor gamma t-positive (ROR-γt(+)) innate lymphoid cells (ILCs), while maintaining normal levels of APRIL (a proliferation-inducing ligand), BAFF (B cell-activating factor of the tumor necrosis factor family), and TGF-β (transforming growth factor β). GI eosinophils expressed a relatively high level of IL-1β, and IL-1β-deficient mice manifested the altered gene expression profiles observed in eosinophil-deficient mice and decreased levels of IgA(+) cells and ROR-γt(+) ILCs. On the basis of these collective data, we propose that eosinophils are required for homeostatic intestinal immune responses including IgA production and that their affect is mediated via IL-1β in the small intestine.
Collapse
|
7
|
Abstract
The intestinal mucosa harbors the largest population of antibody (Ab)-secreting plasma cells (PC) in the human body, producing daily several grams of immunoglobulin A (IgA). IgA has many functions, serving as a first-line barrier that protects the mucosal epithelium from pathogens, toxins and food antigens (Ag), shaping the intestinal microbiota, and regulating host-commensal homeostasis. Signals induced by commensal colonization are central for regulating IgA induction, maintenance, positioning and function and the number of IgA(+) PC is dramatically reduced in neonates and germ-free (GF) animals. Recent evidence demonstrates that the innate immune effector molecules tumor necrosis factor α (TNFα) and inducible nitric oxide synthase (iNOS) are required for IgA(+) PC homeostasis during the steady state and infection. Moreover, new functions ascribed to PC independent of Ab secretion continue to emerge, suggesting that PC, including IgA(+) PC, should be re-examined in the context of inflammation and infection. Here, we outline mechanisms of IgA(+) PC generation and survival, reviewing their functions in health and disease.
Collapse
Key Words
- AID, activation-induced deaminase
- APC, antigen-presenting cell
- APRIL, a proliferation-inducing ligand
- Ab, antibody
- Ag, antigen
- Arg, arginase
- Atg, autophagy-related gene
- B cell
- BAFF, B-cell activating factor
- BCMA, B-cell maturation antigen
- BM, bone marrow
- Blimp, B-lymphocyte-induced maturation protein
- CCL, CC chemokine ligand
- CCR, CC chemokine receptor
- CD, cluster of differentiation
- CSR, class-switch recombination
- CXCL, CXC chemokine ligand
- DC, dendritic cell
- ER, endoplasmic reticulum
- FDC, follicular dendritic cells
- FcαR, Fc fragment of IgA receptor
- GALT, gut-associated lymphoid tissues
- GC, germinal center
- GF, germ-free
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- GRP, glucose-regulated proteins
- HIV, human immunodeficiency virus
- IEC, intestinal epithelial cells
- IFN, interferon
- IL, interleukin
- ILC, innate lymphoid cells
- ILF, isolated lymphoid follicles
- IRE, inositol-requiring enzyme
- IRF, interferon regulatory factor
- Id, inhibitor of DNA binding
- IgA, immunoglobulin A
- IgAD, selective IgA deficiency
- L-Arg, L-Arginine
- L-Cit, L-citrulline
- L-Glu, L-Glutamate
- L-Orn, L-Ornithine
- L-Pro, L-Proline
- LIGHT, homologous to lymphotoxin, exhibits inducible expression, and competes with HSV glycoprotein D for herpes virus entry mediator, a receptor expressed by T lymphocytes
- LP, lamina propria
- LT, lymphotoxinLTβR, LTβ-receptor
- LTi, lymphoid tissue-inducer
- LTo, lymphoid tissue organizing
- Ly, lymphocyte antigen
- MHC, major histocompatibility complex
- MLN, mesenteric lymph nodes
- NO, nitric oxide
- PC, plasma cells
- PP, Peyer's patch
- Pax, paired box
- ROR, Retionic acid receptor (RAR)- or retinoid-related orphan receptor
- SC, stromal cells
- SHM, somatic hypermutation
- SIGNR, specific intercellular adhesion molecule-3-grabbing non-integrin-related
- SIgAsecretory IgA
- TACI, transmembrane activator and calcium-modulator and cyclophilin ligand interactor
- TD, T-dependent
- TFH, T-follicular helper cells
- TGFβR, transforming growth factor β receptor
- TI, T-independent
- TLR, Toll-like receptor
- TNFR, TNF receptor
- TNFα, tumor necrosis factor α
- Th, T helper cell
- Treg, T-regulatory cell
- UPR, unfolded protein response
- XBP, X-box binding protein
- bcl, B-cell lymphoma
- cGMP, cyclic guanosine monophosphate
- iNOS, inducible nitric oxide synthase
- immunoglobulin A (IgA)
- inducible nitric oxide synthase (iNOS)
- innate immune recognition
- intestinal microbiota
- mucosa
- pIgA, polymeric IgA
- pIgR, polymeric Ig receptor
- plasma cell
Collapse
Affiliation(s)
| | - Olga L Rojas
- Department of Immunology; University of Toronto; Toronto, ON Canada
| | - Jörg H Fritz
- Department of Microbiology and Immunology; Department of Physiology; Complex Traits Group; McGill University; Montreal, QC Canada,Correspondence to: Jörg H Fritz;
| |
Collapse
|
8
|
Upadhyay V, Fu YX. Lymphotoxin signalling in immune homeostasis and the control of microorganisms. Nat Rev Immunol 2013; 13:270-9. [PMID: 23524463 PMCID: PMC3900493 DOI: 10.1038/nri3406] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lymphotoxin (LT) is a member of the tumour necrosis factor (TNF) superfamily that was originally thought to be functionally redundant to TNF, but these proteins were later found to have independent roles in driving lymphoid organogenesis. More recently, LT-mediated signalling has been shown to actively contribute to effector immune responses. LT regulates dendritic cell and CD4(+) T cell homeostasis in the steady state and determines the functions of these cells during pathogenic challenges. The LT receptor pathway is essential for controlling pathogens and even contributes to the regulation of the intestinal microbiota, with recent data suggesting that LT-induced changes in the microbiota promote metabolic disease. In this Review, we discuss these newly defined roles for LT, with a particular focus on how the LT receptor pathway regulates innate and adaptive immune responses to microorganisms.
Collapse
Affiliation(s)
- Vaibhav Upadhyay
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
9
|
Park SR. Activation-induced Cytidine Deaminase in B Cell Immunity and Cancers. Immune Netw 2012; 12:230-9. [PMID: 23396757 PMCID: PMC3566417 DOI: 10.4110/in.2012.12.6.230] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 11/09/2012] [Accepted: 11/13/2012] [Indexed: 01/26/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) is an enzyme that is predominantly expressed in germinal center B cells and plays a pivotal role in immunoglobulin class switch recombination and somatic hypermutation for antibody (Ab) maturation. These two genetic processes endow Abs with protective functions against a multitude of antigens (pathogens) during humoral immune responses. In B cells, AID expression is regulated at the level of either transcriptional activation on AID gene loci or post-transcriptional suppression of AID mRNA. Furthermore, AID stabilization and targeting are determined by post-translational modifications and interactions with other cellular/nuclear factors. On the other hand, aberrant expression of AID causes B cell leukemias and lymphomas, including Burkitt's lymphoma caused by c-myc/IgH translocation. AID is also ectopically expressed in T cells and non-immune cells, and triggers point mutations in relevant DNA loci, resulting in tumorigenesis. Here, I review the recent literatures on the function of AID, regulation of AID expression, stability and targeting in B cells, and AID-related tumor formation.
Collapse
Affiliation(s)
- Seok-Rae Park
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 302-718, Korea
| |
Collapse
|
10
|
Fritz JH, Rojas OL, Simard N, McCarthy DD, Hapfelmeier S, Rubino S, Robertson SJ, Larijani M, Gosselin J, Ivanov II, Martin A, Casellas R, Philpott DJ, Girardin SE, McCoy KD, Macpherson AJ, Paige CJ, Gommerman JL. Acquisition of a multifunctional IgA+ plasma cell phenotype in the gut. Nature 2011; 481:199-203. [PMID: 22158124 PMCID: PMC3487691 DOI: 10.1038/nature10698] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 11/04/2011] [Indexed: 12/26/2022]
Abstract
The largest mucosal surface in the body is in the gastrointestinal tract, a location that is heavily colonized by microbes that are normally harmless. A key mechanism required for maintaining a homeostatic balance between this microbial burden and the lymphocytes that densely populate the gastrointestinal tract is the production and transepithelial transport of poly-reactive IgA (ref. 1). Within the mucosal tissues, B cells respond to cytokines, sometimes in the absence of T-cell help, undergo class switch recombination of their immunoglobulin receptor to IgA, and differentiate to become plasma cells. However, IgA-secreting plasma cells probably have additional attributes that are needed for coping with the tremendous bacterial load in the gastrointestinal tract. Here we report that mouse IgA(+) plasma cells also produce the antimicrobial mediators tumour-necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS), and express many molecules that are commonly associated with monocyte/granulocytic cell types. The development of iNOS-producing IgA(+) plasma cells can be recapitulated in vitro in the presence of gut stroma, and the acquisition of this multifunctional phenotype in vivo and in vitro relies on microbial co-stimulation. Deletion of TNF-α and iNOS in B-lineage cells resulted in a reduction in IgA production, altered diversification of the gut microbiota and poor clearance of a gut-tropic pathogen. These findings reveal a novel adaptation to maintaining homeostasis in the gut, and extend the repertoire of protective responses exhibited by some B-lineage cells.
Collapse
Affiliation(s)
- Jörg H Fritz
- Department of Immunology, University of Toronto, Toronto M5S 1A8, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|