1
|
Gogichaeva KK, Ogneva IV. Administration of Essential Phospholipids Prevents Drosophila Melanogaster Oocytes from Responding to Change in Gravity. Cells 2024; 13:1593. [PMID: 39329774 PMCID: PMC11430006 DOI: 10.3390/cells13181593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/12/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024] Open
Abstract
The aim of this study was to prevent initial changes in Drosophila melanogaster oocytes under simulated weightlessness and hypergravity at the 2 g level. Phospholipids with polyunsaturated fatty acids in the tail groups (essential phospholipids) at a concentration of 500 mg/kg of nutrient medium were used as a protective agent. Cell stiffness was determined using atomic force microscopy, the change in the oocytes' area was assessed as a mark of deformation, and the contents of cholesterol and neutral lipids were determined using fluorescence microscopy. The results indicate that the administration of essential phospholipids leads to a decrease in the cholesterol content in the oocytes' membranes by 13% (p < 0.05). The stiffness of oocytes from flies that received essential phospholipids was 14% higher (p < 0.05) and did not change during 6 h of simulated weightlessness or hypergravity, and neither did the area, which indicates their resistance to deformation. Moreover, the exposure to simulated weightlessness and hypergravity of oocytes from flies that received a standard nutrient medium led to a more intense loss of cholesterol from cell membranes after 30 min by 13% and 18% (p < 0.05), respectively, compared to the control, but essential phospholipids prevented this effect.
Collapse
Affiliation(s)
- Ksenia K. Gogichaeva
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76 a, Khoroshevskoyoe Shosse, 123007 Moscow, Russia;
| | - Irina V. Ogneva
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76 a, Khoroshevskoyoe Shosse, 123007 Moscow, Russia;
- Medical and Biological Physics Department, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, 119991 Moscow, Russia
| |
Collapse
|
2
|
Kiseleva D, Kolmogorov V, Cherednichenko V, Khovantseva U, Bogatyreva A, Markina Y, Gorelkin P, Erofeev A, Markin A. Effect of LDL Extracted from Human Plasma on Membrane Stiffness in Living Endothelial Cells and Macrophages via Scanning Ion Conductance Microscopy. Cells 2024; 13:358. [PMID: 38391971 PMCID: PMC10887070 DOI: 10.3390/cells13040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
Mechanical properties of living cells play a crucial role in a wide range of biological functions and pathologies, including atherosclerosis. We used low-stress Scanning Ion-Conductance Microscopy (SICM) correlated with confocal imaging and demonstrated the topographical changes and mechanical properties alterations in EA.hy926 and THP-1 exposed to LDL extracted from CVD patients' blood samples. We show that the cells stiffened in the presence of LDL, which also triggered caveolae formation. Endothelial cells accumulated less cholesterol in the form of lipid droplets in comparison to THP-1 cells based on fluorescence intensity data and biochemical analysis; however, the effect on Young's modulus is higher. The cell stiffness is closely connected to the distribution of lipid droplets along the z-axis. In conclusion, we show that the sensitivity of endothelial cells to LDL is higher compared to that of THP-1, triggering changes in the cytoskeleton and membrane stiffness which may result in the increased permeability of the intima layer due to loss of intercellular connections and adhesion.
Collapse
Affiliation(s)
- Diana Kiseleva
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia; (V.C.); (A.B.); (Y.M.)
| | - Vasilii Kolmogorov
- Laboratory of Biophysics, National University of Science and Technology MISIS, Leninskiy Prospect, 4, 119049 Moscow, Russia
| | - Vadim Cherednichenko
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia; (V.C.); (A.B.); (Y.M.)
| | - Ulyana Khovantseva
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia; (V.C.); (A.B.); (Y.M.)
| | - Anastasia Bogatyreva
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia; (V.C.); (A.B.); (Y.M.)
| | - Yuliya Markina
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia; (V.C.); (A.B.); (Y.M.)
| | - Petr Gorelkin
- Laboratory of Biophysics, National University of Science and Technology MISIS, Leninskiy Prospect, 4, 119049 Moscow, Russia
| | - Alexander Erofeev
- Laboratory of Biophysics, National University of Science and Technology MISIS, Leninskiy Prospect, 4, 119049 Moscow, Russia
| | - Alexander Markin
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia; (V.C.); (A.B.); (Y.M.)
- Medical Institute, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), 117198 Moscow, Russia
| |
Collapse
|
3
|
Sventitskaya MA, Ogneva IV. Reorganization of the mouse oocyte' cytoskeleton after cultivation under simulated weightlessness. LIFE SCIENCES IN SPACE RESEARCH 2024; 40:8-18. [PMID: 38245351 DOI: 10.1016/j.lssr.2023.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/18/2023] [Accepted: 11/01/2023] [Indexed: 01/22/2024]
Abstract
Female germ cells provide the structural basis for the development of a new organism, while the main molecular mechanisms of the impact of weightlessness on the cell remain unknown. The aim of this work was to determine the relative content and distribution of the main proteins of microtubules and microfilaments, to assess the relative RNA content of genes in mouse oocytes after short-term exposure to simulated microgravity, and to determine the potential for embryo development up to the 3-cell stage. Before starting the study, BALB/c mice were divided into two groups. One group received water and standard food without any modifications. Before exposure to simulated microgravity, the oocytes of these animals were randomly divided into two groups - c and µg. The second group of animals additionally received essential phospholipids containing at least 80% phosphatidylcholines, per os for 6 weeks before the start of the experiment at a dosage of 350 mg/kg of the animal's body to modify the lipid composition of the oocyte membrane. The obtained oocytes of these animals were also randomly divided into two groups - ce and µge. To determine the protein distribution and its relative content, immunofluorescence analysis was performed, and the RNA content of genes was assessed using real-time PCR with reverse transcription. After cultivation under simulated microgravity, beta-actin and acetylated alpha-tubulin are redistributed from the cortical layer to the central part of the oocyte, and the relative content of acetylated alpha-tubulin and tubulin isoforms decreases. At the same time, the mRNA content of most genes encoding cytoskeletal proteins was significantly higher in comparison with the control level. The use of essential phospholipids led to a decrease in the content of cellular cholesterol in the oocyte and leveled changes in the content and redistribution of acetylated alpha-tubulin and beta-actin after cultivation under simulated microgravity. In addition, after in vitro fertilization and further cultivation under simulated weightlessness, we observed a decrease in the number of embryos that passed the stage of the 2-cell embryo, but while taking essential phospholipids, the number of embryos that reached the 3-cell stage did not differ from the control group. The results obtained show changes in the content and redistribution of cytoskeletal proteins in the oocyte, which may be involved in the process of pronucleus migration, the formation of the fission spindle and the contractile ring under simulated weightlessness, which may be important for normal fertilization and cleavage of the future embryo.
Collapse
Affiliation(s)
- Maria A Sventitskaya
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoeshosse, Moscow, 123007, Russia; I. M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., Moscow, 119991, Russia.
| | - Irina V Ogneva
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoeshosse, Moscow, 123007, Russia; I. M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., Moscow, 119991, Russia
| |
Collapse
|
4
|
Vasileva VY, Khairullina ZM, Sudarikova AV, Chubinskiy-Nadezhdin VI. Role of Calcium-Activated Potassium Channels in Proliferation, Migration and Invasion of Human Chronic Myeloid Leukemia K562 Cells. MEMBRANES 2023; 13:583. [PMID: 37367787 DOI: 10.3390/membranes13060583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
Calcium-activated potassium channels (KCa) are important participants in calcium signaling pathways due to their ability to be activated by an increase in intracellular free calcium concentration. KCa channels are involved in the regulation of cellular processes in both normal and pathophysiological conditions, including oncotransformation. Previously, using patch-clamp, we registered the KCa currents in the plasma membrane of human chronic myeloid leukemia K562 cells, whose activity was controlled by local Ca2+ entry via mechanosensitive calcium-permeable channels. Here, we performed the molecular and functional identification of KCa channels and have uncovered their role in the proliferation, migration and invasion of K562 cells. Using a combined approach, we identified the functional activity of SK2, SK3 and IK channels in the plasma membrane of the cells. Selective SK and IK channel inhibitors, apamin and TRAM-34, respectively, reduced the proliferative, migratory and invasive capabilities of human myeloid leukemia cells. At the same time, the viability of K562 cells was not affected by KCa channel inhibitors. Ca2+ imaging showed that both SK and IK channel inhibitors affect Ca2+ entry and this could underlie the observed suppression of pathophysiological reactions of K562 cells. Our data imply that SK/IK channel inhibitors could be used to slow down the proliferation and spreading of chronic myeloid leukemia K562 cells that express functionally active KCa channels in the plasma membrane.
Collapse
Affiliation(s)
- Valeria Y Vasileva
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 Saint-Petersburg, Russia
| | - Zuleikha M Khairullina
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 Saint-Petersburg, Russia
| | - Anastasia V Sudarikova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 Saint-Petersburg, Russia
| | | |
Collapse
|
5
|
Vasileva V, Chubinskiy-Nadezhdin V. Regulation of PIEZO1 channels by lipids and the structural components of extracellular matrix/cell cytoskeleton. J Cell Physiol 2023; 238:918-930. [PMID: 36947588 DOI: 10.1002/jcp.31001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/31/2023] [Accepted: 03/02/2023] [Indexed: 03/23/2023]
Abstract
PIEZO1 is a mechanosensitive channel widely presented in eukaryotic organisms. Although the PIEZO family was discovered in 2010, main questions related to the molecular structure as well as to specific activation mechanisms and regulating pathways remain open. Two hypotheses of PIEZO1 gating were formulated: the first, as a dominant hypothesis, through the plasma membrane (force-from-lipids) and the second, via the participation of the cytoskeleton and the components of the extracellular matrix (ECM) (force-from-filaments). Many researchers provide convincing evidence for both hypotheses. It was demonstrated that PIEZO1 has a propeller-like shape forming a membrane curvature within the lipid bilayer. That suggests the participation of lipids in channel modulation, and many studies demonstrate the critical role of lipids and compounds that modify the lipid bilayer in the regulation of PIEZO1 properties. At the same time, the components of ECM and cortical cytoskeleton can be affected by the membrane curvature and thus have an impact on PIEZO1 properties. In living cells, PIEZO1 properties are reported to be critically dependent on channel microenvironment that is on combinatorial influence of plasma membrane, cytoskeleton and ECM. Thus, it is necessary to understand which factors can affect PIEZO1 and consider them when interpreting the role of PIEZO1 in various physiological processes. This review summarizes the current knowledge about regulation of Piezo1 by lipids and the components of ECM and cytoskeleton.
Collapse
Affiliation(s)
- Valeria Vasileva
- Group of Ionic Mechanisms of Cell Signalling, Department of Intracellular Signalling and Transport, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Vladislav Chubinskiy-Nadezhdin
- Group of Ionic Mechanisms of Cell Signalling, Department of Intracellular Signalling and Transport, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
6
|
Mechanotransduction for Muscle Protein Synthesis via Mechanically Activated Ion Channels. Life (Basel) 2023; 13:life13020341. [PMID: 36836698 PMCID: PMC9962945 DOI: 10.3390/life13020341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Cell mechanotransduction, the ability to detect physical forces and convert them into a series of biochemical events, is important for a wide range of physiological processes. Cells express an array of mechanosensors transducing physical forces into intracellular signaling cascades, including ion channels. Ion channels that can be directly activated by mechanical cues are known as mechanically activated (MA), or stretch-activated (SA), channels. In response to repeated exposures to mechanical stimulation in the form of resistance training, enhanced protein synthesis and fiber hypertrophy are elicited in skeletal muscle, whereas a lack of mechanical stimuli due to inactivity/mechanical unloading leads to reduced muscle protein synthesis and fiber atrophy. To date, the role of MA channels in the transduction of mechanical load to intracellular signaling pathways regulating muscle protein synthesis is poorly described. This review article will discuss MA channels in striated muscle, their regulation, and putative roles in the anabolic processes in muscle cells/fibers in response to mechanical stimuli.
Collapse
|
7
|
Greenlee JD, Liu K, Lopez-Cavestany M, King MR. Piezo1 Mechano-Activation Is Augmented by Resveratrol and Differs between Colorectal Cancer Cells of Primary and Metastatic Origin. Molecules 2022; 27:5430. [PMID: 36080197 PMCID: PMC9458129 DOI: 10.3390/molecules27175430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/09/2022] [Accepted: 08/20/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer cells must survive aberrant fluid shear stress (FSS) in the circulation to metastasize. Herein, we investigate the role that FSS has on colorectal cancer cell apoptosis, proliferation, membrane damage, calcium influx, and therapeutic sensitization. We tested this using SW480 (primary tumor) and SW620 cells (lymph node metastasis) derived from the same patient. The cells were exposed to either shear pulses, modeling millisecond intervals of high FSS seen in regions of turbulent flow, or sustained shear to model average magnitudes experienced by circulating tumor cells. SW480 cells were significantly more sensitive to FSS-induced death than their metastatic counterparts. Shear pulses caused significant cell membrane damage, while constant shear decreased cell proliferation and increased the expression of CD133. To investigate the role of mechanosensitive ion channels, we treated cells with the Piezo1 agonist Yoda1, which increased intracellular calcium. Pretreatment with resveratrol further increased the calcium influx via the lipid-raft colocalization of Piezo1. However, minimal changes in apoptosis were observed due to calcium saturation, as predicted via a computational model of apoptosis. Furthermore, SW480 cells had increased levels of Piezo1, calcium influx, and TRAIL-mediated apoptosis compared to SW620 cells, highlighting differences in the mechano-activation of metastatic cells, which may be a necessary element for successful dissemination in vivo.
Collapse
Affiliation(s)
| | | | | | - Michael R. King
- Department of Biomedical Engineering, Vanderbilt University, PMB 351631, 2301 Vanderbilt Place, Nashville, TN 37235-1631, USA
| |
Collapse
|
8
|
Turner DGP, Tyan L, DeGuire FC, Medvedev RY, Stroebel SJ, Lang D, Glukhov AV. Caveolin-3 prevents swelling-induced membrane damage via regulation of I Cl,swell activity. Biophys J 2022; 121:1643-1659. [PMID: 35378081 PMCID: PMC9117929 DOI: 10.1016/j.bpj.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 02/09/2022] [Accepted: 03/31/2022] [Indexed: 11/21/2022] Open
Abstract
Caveola membrane structures harbor mechanosensitive chloride channels (MCCs; including chloride channel 2, chloride channel 3, and SWELL1, also known as LRRC8A) that form a swelling-activated chloride current (ICl,swell) and play an important role in cell volume regulation and mechanoelectrical signal transduction. However, the role of the muscle-specific caveolar scaffolding protein caveolin-3 (Cav3) in regulation of MCC expression, activity, and contribution to membrane integrity in response to mechanical stress remains unclear. Here we showed that Cav3-transfected (Cav3-positive) HEK293 cells were significantly resistant to extreme (<20 milliosmole) hypotonic swelling compared with native (Cav3-negative) HEK293 cells; the percentage of cells with membrane damage decreased from 45% in Cav3-negative cells to 17% in Cav3-positive cells (p < 0.05). This mechanoprotection was significantly reduced (p < 0.05) when cells were exposed to the ICl,swell-selective inhibitor 4-[(2-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl)oxy]butanoic acid (10 μM). These results were recapitulated in isolated mouse ventricular myocytes, where the percentage of cardiomyocytes with membrane damage increased from 47% in control cells to 78% in 4-[(2-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl)oxy]butanoic acid-treated cells (p < 0.05). A higher resistance to hypotonic swelling in Cav3-positive HEK293 cells was accompanied by a significant twofold increase of ICl,swell current density and SWELL1 protein expression, whereas ClC-2/3 protein levels remained unchanged. Förster resonance energy transfer analysis showed a less than 10-nm membrane and intracellular association between Cav3 and SWELL1. Cav3/SWELL1 membrane Förster resonance energy transfer efficiency was halved in mild (220 milliosmole) hypotonic solution as well as after disruption of caveola structures via cholesterol depletion by 1-h treatment with 10 mM methyl-β-cyclodextrin. A close association between Cav3 and SWELL1 was confirmed by co-immunoprecipitation analysis. Our findings indicate that, in the MCCs tested, SWELL1 abundance and activity are regulated by Cav3 and that their association relies on membrane tension and caveola integrity. This study highlights the mechanoprotective role of Cav3, which is facilitated by complimentary SWELL1 expression and activity.
Collapse
Affiliation(s)
- Daniel G P Turner
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Leonid Tyan
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Frank C DeGuire
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Roman Y Medvedev
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Sami J Stroebel
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Di Lang
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Alexey V Glukhov
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin.
| |
Collapse
|
9
|
Dong C, Liu W, Zhang Y, Song Y, Du J, Huang Z, Wang T, Yu Z, Ma X. Identification of Common Hub Genes in Human Dermal Fibroblasts Stimulated by Mechanical Stretch at Both the Early and Late Stages. Front Surg 2022; 9:846161. [PMID: 35510126 PMCID: PMC9058084 DOI: 10.3389/fsurg.2022.846161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/16/2022] [Indexed: 11/25/2022] Open
Abstract
Background Mechanical stretch is vital for soft tissue regeneration and development and is utilized by plastic surgeons for tissue expansion. Identifying the common hub genes in human dermal fibroblasts (HDFs) stimulated by mechanical stretch at different stages will help elucidate the mechanisms involved and improve the efficiency of tissue expansion. Methods A gene expression dataset (GSE58389) was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) in HDFs between cyclic mechanical stretching and static samples were identified at 5 and 24 h. Common DEGs overlapped in both the 5 h and 24 h groups. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to determine the functions of the DEGs. Protein-protein interaction networks were constructed using the STRING database. The top 10 hub genes were selected using the plug-in Cytohubba within Cytoscape. The regulatory network of hub genes was predicted using NetworkAnalyst. Results A total of 669 and 249 DEGs were identified at the early (5 h) and late stages (24 h), respectively. Of these, 152 were present at both stages and were designated as common DEGs. The top enriched GO terms were “regulation of autophagy” at the early stage, and “sterol biosynthetic processes” at the late stage. The top KEGG terms were “pyrimidine metabolism” and “synaptic vesicle cycle” at the early and late stages, respectively. Seven common DEGs [DEAD-box helicase 17 (DDX17), exocyst complex component 7 (EXOC7), CASK interacting protein 1 (CASKIN1), ribonucleoprotein PTB-binding 1 (RAVER1), late cornified envelope 1D (LCE1D), LCE1C, and polycystin 1, transient receptor potential channel interacting (PKD1)] and three common DEGs [5′-3′ exoribonuclease 2 (XRN2), T-complex protein 1 (TCP1), and syntaxin 3 (STX3)] were shown to be upregulated and downregulated hub genes, respectively. The GO terms of the common hub genes were “skin development” and “mRNA processing.” After constructing the regulatory network, hsa-mir-92a-3p, hsa-mir-193b-3p, RNA polymerase II subunit A (POLR2A), SMAD family member 5 (SMAD5), and MYC-associated zinc finger protein (MAZ) were predicted as potential targets in both stages. Conclusion At the early stage, there were clear changes in gene expression related to DNA and chromatin alterations; at late stages, gene expression associated with cholesterol metabolism was suppressed. Common DEGs related to skin development, transcriptional regulation, and cytoskeleton rearrangement identified in both stages were found to be potential targets for promoting HDF growth and alignment under mechanical stretch.
Collapse
|
10
|
Corradi V, Bukiya AN, Miranda WE, Cui M, Plant LD, Logothetis DE, Tieleman DP, Noskov SY, Rosenhouse-Dantsker A. A molecular switch controls the impact of cholesterol on a Kir channel. Proc Natl Acad Sci U S A 2022; 119:e2109431119. [PMID: 35333652 PMCID: PMC9060494 DOI: 10.1073/pnas.2109431119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 01/12/2022] [Indexed: 11/18/2022] Open
Abstract
SignificanceCholesterol is one of the main components found in plasma membranes and is involved in lipid-dependent signaling enabled by integral membrane proteins such as inwardly rectifying potassium (Kir) channels. Similar to other ion channels, most of the Kir channels are down-regulated by cholesterol. One of the very few notable exceptions is Kir3.4, which is up-regulated by this important lipid. Here, we discovered and characterized a molecular switch that controls the impact (up-regulation vs. down-regulation) of cholesterol on Kir3.4. Our results provide a detailed molecular mechanism of tunable cholesterol regulation of a potassium channel.
Collapse
Affiliation(s)
- Valentina Corradi
- Centre for Molecular Simulation, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Anna N. Bukiya
- Department of Pharmacology, Addiction Science, and Toxicology, The University of Tennessee Health Science Center, Memphis, TN 38163
| | - Williams E. Miranda
- Centre for Molecular Simulation, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Meng Cui
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115
| | - Leigh D. Plant
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115
| | - Diomedes E. Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - D. Peter Tieleman
- Centre for Molecular Simulation, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Sergei Y. Noskov
- Centre for Molecular Simulation, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | |
Collapse
|
11
|
Selective Chemical Activation of Piezo1 in Leukemia Cell Membrane: Single Channel Analysis. Int J Mol Sci 2021; 22:ijms22157839. [PMID: 34360605 PMCID: PMC8346046 DOI: 10.3390/ijms22157839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/18/2022] Open
Abstract
Piezo1/2 are mechanosensitive calcium-permeable channels that can be activated by various modes of membrane deformation. The identification of the small molecule Yoda1, a synthetic Piezo1 agonist, revealed the possibility of chemical activation of the channel. Stimulating effects of Yoda1 on Piezo1 have been mainly documented using over-expressing cellular systems or channel proteins incorporated in artificial lipid bilayers. However, the activating effect of Yoda1 on native Piezo1 channels in the plasma membrane of living cells remains generally undefined, despite the increasing number of studies in which the agonist is utilized as a functional tool to reveal the contribution of Piezo1 to cellular reactions. In the current study, we used the human myeloid leukemia K562 cell line as a suitable model to examine chemically induced Piezo1 activity with the use of the patch-clamp technique in various specific modes. The functional expression of Piezo1 in leukemia cells was evidenced using a combinative approach, including single channel patch-clamp measurements. Utilizing our established single-current whole-cell assay on K562 cells, we have shown, for the first time, the selective real-time chemical activation of endogenously expressed Piezo1. Extracellular application of 0.5-1 µM Yoda1 effectively stimulated single Piezo1 currents in the cell membrane.
Collapse
|
12
|
Chong J, De Vecchis D, Hyman AJ, Povstyan OV, Ludlow MJ, Shi J, Beech DJ, Kalli AC. Modeling of full-length Piezo1 suggests importance of the proximal N-terminus for dome structure. Biophys J 2021; 120:1343-1356. [PMID: 33582137 PMCID: PMC8105715 DOI: 10.1016/j.bpj.2021.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/22/2021] [Accepted: 02/03/2021] [Indexed: 01/22/2023] Open
Abstract
Piezo1 forms a mechanically activated calcium-permeable nonselective cation channel that is functionally important in many cell types. Structural data exist for C-terminal regions, but we lack information about N-terminal regions and how the entire channel interacts with the lipid bilayer. Here, we use computational approaches to predict the three-dimensional structure of the full-length Piezo1 and simulate it in an asymmetric membrane. A number of novel insights are suggested by the model: 1) Piezo1 creates a trilobed dome in the membrane that extends beyond the radius of the protein, 2) Piezo1 changes the lipid environment in its vicinity via preferential interactions with cholesterol and phosphatidylinositol 4,5-bisphosphate (PIP2) molecules, and 3) cholesterol changes the depth of the dome and PIP2 binding preference. In vitro alteration of cholesterol concentration inhibits Piezo1 activity in a manner complementing some of our computational findings. The data suggest the importance of N-terminal regions of Piezo1 for dome structure and membrane cholesterol and PIP2 interactions.
Collapse
Affiliation(s)
- Jiehan Chong
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Dario De Vecchis
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Adam J Hyman
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Oleksandr V Povstyan
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Melanie J Ludlow
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Jian Shi
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom.
| | - Antreas C Kalli
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
13
|
Shenkman BS. How Postural Muscle Senses Disuse? Early Signs and Signals. Int J Mol Sci 2020; 21:E5037. [PMID: 32708817 PMCID: PMC7404025 DOI: 10.3390/ijms21145037] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
A mammalian soleus muscle along with other "axial" muscles ensures the stability of the body under the Earth's gravity. In rat experiments with hindlimb suspension, zero-gravity parabolic flights as well as in human dry immersion studies, a dramatic decrease in the electromyographic (EMG) activity of the soleus muscle has been repeatedly shown. Most of the motor units of the soleus muscle convert from a state of activity to a state of rest which is longer than under natural conditions. And the state of rest gradually converts to the state of disuse. This review addresses a number of metabolic events that characterize the earliest stage of the cessation of the soleus muscle contractile activity. One to three days of mechanical unloading are accompanied by energy-dependent dephosphorylation of AMPK, accumulation of the reactive oxygen species, as well as accumulation of resting myoplasmic calcium. In this transition period, a rapid rearrangement of the various signaling pathways occurs, which, primarily, results in a decrease in the rate of protein synthesis (primarily via inhibition of ribosomal biogenesis and activation of endogenous inhibitors of mRNA translation, such as GSK3β) and an increase in proteolysis (via upregulation of muscle-specific E3-ubiquitin ligases).
Collapse
Affiliation(s)
- Boris S Shenkman
- Myology Laboratory, Institute of Biomedical Problems RAS, 123007 Moscow, Russia
| |
Collapse
|
14
|
Chubinskiy-Nadezhdin VI, Vasileva VY, Negulyaev YA, Morachevskaya EA. Functional clustering and coupling of ion channels in cellular mechanosensing is independent on lipid raft integrity in plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118764. [PMID: 32479769 DOI: 10.1016/j.bbamcr.2020.118764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 10/24/2022]
|
15
|
Sanyour HJ, Li N, Rickel AP, Torres HM, Anderson RH, Miles MR, Childs JD, Francis KR, Tao J, Hong Z. Statin-mediated cholesterol depletion exerts coordinated effects on the alterations in rat vascular smooth muscle cell biomechanics and migration. J Physiol 2020; 598:1505-1522. [PMID: 32083311 DOI: 10.1113/jp279528] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/18/2020] [Indexed: 12/28/2022] Open
Abstract
KEY POINTS This study demonstrates and evaluates the changes in rat vascular smooth muscle cell biomechanics following statin-mediated cholesterol depletion. Evidence is presented to show correlated changes in migration and adhesion of vascular smooth muscle cells to extracellular matrix proteins fibronectin and collagen. Concurrently, integrin α5 expression was enhanced but not integrin α2. Atomic force microscopy analysis provides compelling evidence of coordinated reduction in vascular smooth muscle cell stiffness and actin cytoskeletal orientation in response to statin-mediated cholesterol depletion. Proof is provided that statin-mediated cholesterol depletion remodels total vascular smooth muscle cell cytoskeletal orientation that may additionally participate in altering ex vivo aortic vessel function. It is concluded that statin-mediated cholesterol depletion may coordinate vascular smooth muscle cell migration and adhesion to different extracellular matrix proteins and regulate cellular stiffness and cytoskeletal orientation, thus impacting the biomechanics of the cell. ABSTRACT Not only does cholesterol induce an inflammatory response and deposits in foam cells at the atherosclerotic plaque, it also regulates cellular mechanics, proliferation and migration in atherosclerosis progression. Statins are HMG-CoA reductase inhibitors that are known to inhibit cellular cholesterol biosynthesis and are clinically prescribed to patients with hypercholesterolemia or related cardiovascular conditions. Nonetheless, the effect of statin-mediated cholesterol management on cellular biomechanics is not fully understood. In this study, we aimed to assess the effect of fluvastatin-mediated cholesterol management on primary rat vascular smooth muscle cell (VSMC) biomechanics. Real-time measurement of cell adhesion, stiffness, and imaging were performed using atomic force microscopy (AFM). Cellular migration on extra cellular matrix (ECM) protein surfaces was studied by time-lapse imaging. The effect of changes in VSMC biomechanics on aortic function was assessed using an ex vivo myograph system. Fluvastatin-mediated cholesterol depletion (-27.8%) lowered VSMC migration distance on a fibronectin (FN)-coated surface (-14.8%) but not on a type 1 collagen (COL1)-coated surface. VSMC adhesion force to FN (+33%) and integrin α5 expression were enhanced but COL1 adhesion and integrin α2 expression were unchanged upon cholesterol depletion. In addition, VSMC stiffness (-46.6%) and ex vivo aortic ring contraction force (-40.1%) were lowered and VSMC actin cytoskeletal orientation was reduced (-24.5%) following statin-mediated cholesterol depletion. Altogether, it is concluded that statin-mediated cholesterol depletion may coordinate VSMC migration and adhesion to different ECM proteins and regulate cellular stiffness and cytoskeletal orientation, thus impacting the biomechanics of the cell and aortic function.
Collapse
Affiliation(s)
- Hanna J Sanyour
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD, 57107, USA.,BioSNTR, Sioux Falls, SD, 57107, USA
| | - Na Li
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD, 57107, USA.,BioSNTR, Sioux Falls, SD, 57107, USA
| | - Alex P Rickel
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD, 57107, USA.,BioSNTR, Sioux Falls, SD, 57107, USA
| | - Haydee M Torres
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, 57104, USA.,Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, 57007, USA
| | - Ruthellen H Anderson
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD, 57104, USA.,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Miranda R Miles
- BioSNTR, Sioux Falls, SD, 57107, USA.,Mechanical Engineering Department, South Dakota State University, Brookings, SD, 57007, USA
| | - Josh D Childs
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD, 57107, USA.,BioSNTR, Sioux Falls, SD, 57107, USA
| | - Kevin R Francis
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD, 57107, USA.,Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD, 57104, USA.,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Jianning Tao
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD, 57107, USA.,Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, 57104, USA.,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA.,Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, 57007, USA
| | - Zhongkui Hong
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD, 57107, USA.,BioSNTR, Sioux Falls, SD, 57107, USA
| |
Collapse
|
16
|
Amphipathic molecules modulate PIEZO1 activity. Biochem Soc Trans 2020; 47:1833-1842. [PMID: 31754715 DOI: 10.1042/bst20190372] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/28/2019] [Accepted: 11/01/2019] [Indexed: 02/08/2023]
Abstract
PIEZO proteins are large eukaryotic mechanically-gated channels that function as homotrimers. The basic PIEZO1 structure has been elucidated by CryoEM and it assembles into a protein-lipid dome. A curved lipid region allows for the transition to the lipid bilayer from the dome (footprint). Gating PIEZO1 is mediated by bilayer tension that induces an area change in the lipid dome. The footprint region is thought to be energetically important for changes in lateral tension. Amphipathic molecules can modulate channel function beyond the intrinsic gating properties of PIEZO1. As a result, molecules that modify lipid properties within the lipid-channel complex (footprint and dome) will profoundly affect channel kinetics. In this review, we summarize the effects some amphipathic molecules have on the lipid bilayer and PIEZO1 function. PIEZO1 has three states, closed, open and inactivated and amphipathic molecules influence these transitions. The amphipathic peptide, GsMTx4, inhibits the closed to open transition. While saturated fatty acids also prevent PIEZO1 gating, the effect is mediated by stiffening the lipids, presumably in both the dome and footprint region. Polyunsaturated fatty acids can increase disorder within the lipid-protein complex affecting channel kinetics. PIEZO1 can also form higher-ordered structures that confers new kinetic properties associated with clustered channels. Cholesterol-rich domains house PIEZO1 channels, and depletion of cholesterol causes a breakdown of those domains with changes to channel kinetics and channel diffusion. These examples underscore the complex effects lipophilic molecules can have on the PIEZO1 lipid dome structure and thus on the mechanical response of the cell.
Collapse
|
17
|
Couto NF, Rezende L, Fernandes-Braga W, Alves AP, Agero U, Alvarez-Leite J, Damasceno NRT, Castro-Gomes T, Andrade LO. OxLDL alterations in endothelial cell membrane dynamics leads to changes in vesicle trafficking and increases cell susceptibility to injury. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183139. [PMID: 31812625 DOI: 10.1016/j.bbamem.2019.183139] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/14/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
Plasma membrane repair (PMR) is an important process for cell homeostasis, especially for cells under constant physical stress. Repair involves a sequence of Ca2+-dependent events, including lysosomal exocytosis and subsequent compensatory endocytosis. Cholesterol sequestration from plasma membrane causes actin cytoskeleton reorganization and polymerization, increasing cell stiffness, which leads to exocytosis and reduction of a peripheral pool of lysosomes involved in PMR. These changes in mechanical properties are similar to those observed in cells exposed to oxidized Low Density Lipoprotein (oxLDL), a key molecule during atherosclerosis development. Using a human umbilical vein endothelial cell line (EAhY926) we evaluated the influence of mechanical modulation induced by oxLDL in PMR and its effect in endothelial fragility. Similar to MβCD (a drug capable of sequestering cholesterol) treatment, oxLDL exposure led to actin reorganization and de novo polymerization, as well as an increase in cell rigidity and lysosomal exocytosis. Additionally, for both MβCD and oxLDL treated cells, there was an initial increase in endocytic events, likely triggered by the peak of exocytosis induced by both treatments. However, no further endocytic events were observed, suggesting that constitutive endocytosis is blocked upon treatment and that the reorganized cytoskeleton function as a mechanical barrier to membrane traffic. Finally, the increase in cell rigidity renders cells more prone to mechanical injury. Together, these data show that mechanical modulation induced by oxLDL exposure not only alters membrane traffic in cells, but also makes them more susceptible to mechanical injury, which may likely contribute to the initial steps of atherosclerosis development.
Collapse
Affiliation(s)
- Natália Fernanda Couto
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luisa Rezende
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Weslley Fernandes-Braga
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Paula Alves
- Department of Physics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ubirajara Agero
- Department of Physics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jacqueline Alvarez-Leite
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Thiago Castro-Gomes
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luciana O Andrade
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
18
|
Usik MA, Ogneva IV. DNA Methylation in Mouse Spermatozoa under Long-Term Modeling the Effects of Microgravity. Russ J Dev Biol 2019. [DOI: 10.1134/s1062360419040076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
DNA Methylation of Mouse Testes, Cardiac and Lung Tissue During Long-Term Microgravity Simulation. Sci Rep 2019; 9:7974. [PMID: 31138883 PMCID: PMC6538624 DOI: 10.1038/s41598-019-44468-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 05/17/2019] [Indexed: 01/05/2023] Open
Abstract
Under microgravity, the gene expression levels vary in different types of cells; however, the reasons for this have not been sufficiently studied. The aim of this work was to evaluate the methylation of CpG islands in the promoter regions of the genes encoding some cytoskeletal proteins, the total methylation and 5 hmC levels, and the levels of enzymes that regulate these processes in the testes, heart, and lungs in mice after a 30-day microgravity modeling by antiorthostatic suspension and after a subsequent 12-hour recovery as well as in the corresponding control group and identical groups treated with essential phospholipids. The obtained results indicate that under modeling microgravity in the examined tissues a decrease of cytoskeletal gene expression (mainly in the heart and lungs tissues) correlated with an increase in the CpG islands methylation and an increase of the expression (mainly in the testes tissue) - with a decrease of the CpG-methylation, despite of the fact that in the examined tissues took place a decrease of the content methylases and demethylases. But the deacetylase HDAC1 content increased in the heart and lungs tissues and decreased in the testes, letting us suggest its participation in the regulation of the methylation level under microgravity conditions.
Collapse
|
20
|
Rosenhouse-Dantsker A. Cholesterol Binding Sites in Inwardly Rectifying Potassium Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1135:119-138. [DOI: 10.1007/978-3-030-14265-0_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
21
|
Kanoldt V, Fischer L, Grashoff C. Unforgettable force – crosstalk and memory of mechanosensitive structures. Biol Chem 2018; 400:687-698. [DOI: 10.1515/hsz-2018-0328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/11/2018] [Indexed: 12/11/2022]
Abstract
Abstract
The ability of cells to sense and respond to mechanical stimuli is crucial for many developmental and homeostatic processes, while mechanical dysfunction of cells has been associated with numerous pathologies including muscular dystrophies, cardiovascular defects and epithelial disorders. Yet, how cells detect and process mechanical information is still largely unclear. In this review, we outline major mechanisms underlying cellular mechanotransduction and we summarize the current understanding of how cells integrate information from distinct mechanosensitive structures to mediate complex mechanoresponses. We also discuss the concept of mechanical memory and describe how cells store information on previous mechanical events for different periods of time.
Collapse
Affiliation(s)
- Verena Kanoldt
- Group of Molecular Mechanotransduction , Max Planck Institute of Biochemistry , 82152 Martinsried , Germany
| | - Lisa Fischer
- Group of Molecular Mechanotransduction , Max Planck Institute of Biochemistry , 82152 Martinsried , Germany
| | - Carsten Grashoff
- Group of Molecular Mechanotransduction , Max Planck Institute of Biochemistry , 82152 Martinsried , Germany
- Department of Quantitative Cell Biology , Institute of Molecular Cell Biology, University of Münster , 48149 Münster , Germany
| |
Collapse
|
22
|
Bukiya AN, Blank PS, Rosenhouse-Dantsker A. Cholesterol intake and statin use regulate neuronal G protein-gated inwardly rectifying potassium channels. J Lipid Res 2018; 60:19-29. [PMID: 30420402 DOI: 10.1194/jlr.m081240] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/10/2018] [Indexed: 12/31/2022] Open
Abstract
Cholesterol, a critical component of the cellular plasma membrane, is essential for normal neuronal function. Cholesterol content is highest in the brain, where most cholesterol is synthesized de novo; HMG-CoA reductase controls the synthesis rate. Despite strict control, elevated blood cholesterol levels are common and are associated with various neurological disorders. G protein-gated inwardly rectifying potassium (GIRK) channels mediate the actions of inhibitory brain neurotransmitters. Loss of GIRK function enhances neuron excitability; gain of function reduces neuronal activity. However, the effect of dietary cholesterol or HMG-CoA reductase inhibition (i.e., statin therapy) on GIRK function remains unknown. Using a rat model, we compared the effects of a high-cholesterol versus normal diet both with and without atorvastatin, a widely prescribed HMG-CoA reductase inhibitor, on neuronal GIRK currents. The high-cholesterol diet increased hippocampal CA1 region cholesterol levels and correspondingly increased neuronal GIRK currents. Both phenomena were reversed by cholesterol depletion in vitro. Atorvastatin countered the high-cholesterol diet effects on neuronal cholesterol content and GIRK currents; these effects were reversed by cholesterol enrichment in vitro. Our findings suggest that high-cholesterol diet and atorvastatin therapy affect ion channel function in the brain by modulating neuronal cholesterol levels.
Collapse
Affiliation(s)
- Anna N Bukiya
- Department of Pharmacology, The University of Tennessee Health Science Center, Memphis, TN 38163
| | - Paul S Blank
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
23
|
Chubinskiy-Nadezhdin VI, Efremova TN, Negulyaev YA, Morachevskaya EA. Coupled Activation of Mechanosensitive and Calcium-Dependent Potassium Channels in 3T3 and 3T3-SV40 Cells. ACTA ACUST UNITED AC 2018. [DOI: 10.1134/s1990519x18030021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Rosenhouse-Dantsker A. Insights Into the Molecular Requirements for Cholesterol Binding to Ion Channels. CURRENT TOPICS IN MEMBRANES 2017; 80:187-208. [PMID: 28863816 DOI: 10.1016/bs.ctm.2017.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The concept that cholesterol binds to proteins via specific binding motifs, and thereby modulates their function, has emerged two decades ago. When we recently embarked on studies to uncover the putative binding region(s) of cholesterol in the Kir2.1 channel, we carried out an unbiased approach that combines computational and experimental methods. This approach resulted in the identification of novel cholesterol-binding regions distinct from known cholesterol-binding motifs. In recent years, a plethora of structures of proteins complexed with cholesterol have been determined revealing variegated cholesterol-binding regions that can provide invaluable insights into the prerequisites for cholesterol binding. Thus, using this database of structures, the goal of this chapter is to present a comprehensive analysis of representative cholesterol-binding regions, and thereby determine the molecular requirements for cholesterol binding. The analysis demonstrates that the primary requirement for cholesterol binding is a highly hydrophobic environment, and that the interaction with the cholesterol molecule can be stabilized by stacking interactions between its ring structure and hydrophobic aromatic residues, and by hydrogen bonding between its hydroxyl group and a variety of protein residues. This general requirement suggests that the known cholesterol-binding motifs describe a subset of cholesterol-binding regions, and provides a framework for expanding the search for novel cholesterol-binding regions in ion channels.
Collapse
|
25
|
Chubinskiy-Nadezhdin VI, Negulyaev YA, Morachevskaya EA. Simvastatin induced actin cytoskeleton disassembly in normal and transformed fibroblasts without affecting lipid raft integrity. Cell Biol Int 2017; 41:1020-1029. [PMID: 28656734 DOI: 10.1002/cbin.10812] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 06/24/2017] [Indexed: 02/02/2023]
Abstract
Statins are the most commonly prescribed agents used to modulate cholesterol levels in course of hypercholesterolemia treatment because of their relative tolerability and LDL-C lowering effect. Recently, there are emerging interests in the perspectives of statin drugs as anticancer agents based on preclinical evidence of their antiproliferative, proapoptotic, and anti-invasive properties. Functional impact of statin application on transformed cells still remains obscure that requires systematic study on adequate cellular models to provide correct comparison with their non-transformed counterparts. Cholesterol is the major lipid component of mammalian cells and it plays a crucial role in organization, lateral heterogeneity, and dynamics of plasma membrane as well as in membrane-cytoskeleton interrelations. To date, it is uncertain whether cellular effects of statins involve lipid-dependent alteration of plasma membrane. Here, the effects of simvastatin on lipid rafts, F-actin network and cellular viability were determined in comparative experiments on transformed fibroblasts and their non-transformed counterpart. GM1 lipid raft marker staining indicated no change of lipid raft integrity after short- or long-term simvastatin treatments. In the same time, simvastatin induced cytoskeleton rearrangement including partial F-actin disruption in cholesterol- and lipid raft-independent manner. Simvastatin dose-dependently affected viability of BALB/3T3 and 3T3B-SV40 cell lines: transformed fibroblasts were noticeably more sensitive to simvastatin comparing to non-transformed cells.
Collapse
Affiliation(s)
| | - Yuri A Negulyaev
- Institute of Cytology RAS, 4 Tikhoretsky Ave., St. Petersburg, 194064, Russia.,Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, 29, Polytechnicheskaya st., St.Petersburg, 195251, Russia
| | | |
Collapse
|
26
|
Lichtenhan JT, Hirose K, Buchman CA, Duncan RK, Salt AN. Direct administration of 2-Hydroxypropyl-Beta-Cyclodextrin into guinea pig cochleae: Effects on physiological and histological measurements. PLoS One 2017; 12:e0175236. [PMID: 28384320 PMCID: PMC5383289 DOI: 10.1371/journal.pone.0175236] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 03/22/2017] [Indexed: 12/26/2022] Open
Abstract
2-Hydroxypropyl-Beta-Cyclodextrin (HPβCD) can be used to treat Niemann-Pick type C disease, Alzheimer's disease, and atherosclerosis. But, a consequence is that HPβCD can cause hearing loss. HPβCD was recently found to be toxic to outer hair cells (OHCs) in the organ of Corti. Previous studies on the chronic effects of in vivo HPβCD toxicity did not know the intra-cochlear concentration of HPβCD and attributed variable effects on OHCs to indirect drug delivery to the cochlea. We studied the acute effects of known HPβCD concentrations administered directly into intact guinea pig cochleae. Our novel approach injected solutions through pipette sealed into scala tympani in the cochlear apex. Solutions were driven along the length of the cochlear spiral toward the cochlear aqueduct in the base. This method ensured that therapeutic levels were achieved throughout the cochlea, including those regions tuned to mid to low frequencies and code speech vowels and background noise. A wide variety of measurements were made. Results were compared to measurements from ears treated with the HPβCD analog methyl-β-cyclodextrin (MβCD), salicylate that is well known to attenuate the gain of the cochlear amplifier, and injection of artificial perilymph alone (controls). Histological data showed that OHCs appeared normal after treatment with a low dose of HPβCD, and physiological data was consistent with attenuation of cochlear amplifier gain and disruption of non-linearity associated with transferring acoustic sound into neural excitation, an origin of distortion products that are commonly used to objectively assess hearing and hearing loss. A high dose of HPβCD caused sporadic OHC losses and markedly affected all physiologic measurements. MβCD caused virulent destruction of OHCs and physiologic responses. Toxicity of HPβCD to OHC along the cochlear length is variable even when a known intra-cochlear concentration is administered, at least for the duration of our acute studies.
Collapse
Affiliation(s)
- J. T. Lichtenhan
- Washington University School of Medicine Department of Otolaryngology Saint Louis, Missouri, United States of America
| | - K. Hirose
- Washington University School of Medicine Department of Otolaryngology Saint Louis, Missouri, United States of America
| | - C. A. Buchman
- Washington University School of Medicine Department of Otolaryngology Saint Louis, Missouri, United States of America
| | - R. K. Duncan
- University of Michigan Kresge Hearing Research Institute Department of Otolaryngology-Head and Neck Surgery Ann Arbor, Michigan, United States of America
| | - A. N. Salt
- Washington University School of Medicine Department of Otolaryngology Saint Louis, Missouri, United States of America
| |
Collapse
|
27
|
Bukiya AN, Durdagi S, Noskov S, Rosenhouse-Dantsker A. Cholesterol up-regulates neuronal G protein-gated inwardly rectifying potassium (GIRK) channel activity in the hippocampus. J Biol Chem 2017; 292:6135-6147. [PMID: 28213520 DOI: 10.1074/jbc.m116.753350] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 02/13/2017] [Indexed: 02/06/2023] Open
Abstract
Hypercholesterolemia is a well known risk factor for the development of neurodegenerative disease. However, the underlying mechanisms are mostly unknown. In recent years, it has become increasingly evident that cholesterol-driven effects on physiology and pathophysiology derive from its ability to alter the function of a variety of membrane proteins including ion channels. Yet, the effect of cholesterol on G protein-gated inwardly rectifying potassium (GIRK) channels expressed in the brain is unknown. GIRK channels mediate the actions of inhibitory brain neurotransmitters. As a result, loss of GIRK function can enhance neuron excitability, whereas gain of GIRK function can reduce neuronal activity. Here we show that in rats on a high-cholesterol diet, cholesterol levels in hippocampal neurons are increased. We also demonstrate that cholesterol plays a critical role in modulating neuronal GIRK currents. Specifically, cholesterol enrichment of rat hippocampal neurons resulted in enhanced channel activity. In accordance, elevated currents upon cholesterol enrichment were also observed in Xenopus oocytes expressing GIRK2 channels, the primary GIRK subunit expressed in the brain. Furthermore, using planar lipid bilayers, we show that although cholesterol did not affect the unitary conductance of GIRK2, it significantly enhanced the frequency of channel openings. Last, combining computational and functional approaches, we identified two putative cholesterol-binding sites in the transmembrane domain of GIRK2. These findings establish that cholesterol plays a critical role in modulating GIRK activity in the brain. Because up-regulation of GIRK function can reduce neuronal activity, our findings may lead to novel approaches for prevention and therapy of cholesterol-driven neurodegenerative disease.
Collapse
Affiliation(s)
- Anna N Bukiya
- the Department of Pharmacology, The University of Tennessee Health Science Center, Memphis, Tennessee 38103
| | - Serdar Durdagi
- the Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4 Canada, and.,the Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul 34353, Turkey
| | - Sergei Noskov
- the Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4 Canada, and
| | | |
Collapse
|
28
|
Cox CD, Bavi N, Martinac B. Origin of the Force: The Force-From-Lipids Principle Applied to Piezo Channels. CURRENT TOPICS IN MEMBRANES 2016; 79:59-96. [PMID: 28728824 DOI: 10.1016/bs.ctm.2016.09.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Piezo channels are a ubiquitously expressed, principal type of molecular force sensor in eukaryotes. They enable cells to decode a myriad of physical stimuli and are essential components of numerous mechanosensory processes. Central to their physiological role is the ability to change conformation in response to mechanical force. Here we discuss the evolutionary origin of Piezo in relation to other MS channels in addition to the force that gates Piezo channels. In particular, we discuss whether Piezo channels are inherently mechanosensitive in accordance with the force-from-lipid paradigm which has been firmly established for bacterial MS channels and two-pore domain K+ (K2P) channels. We also discuss the evidence supporting a reliance on or direct interaction with structural scaffold proteins of the cytoskeleton and extracellular matrix according to the force-from-filament principle. In doing so, we explain the false dichotomy that these distinctions represent. We also discuss the possible unifying models that shed light on channel mechanosensitivity at the molecular level.
Collapse
Affiliation(s)
- C D Cox
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia; University of New South Wales, Darlinghurst, NSW, Australia
| | - N Bavi
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia; University of New South Wales, Darlinghurst, NSW, Australia
| | - B Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia; University of New South Wales, Darlinghurst, NSW, Australia
| |
Collapse
|
29
|
Ogneva IV, Biryukov NS. Lecithin Prevents Cortical Cytoskeleton Reorganization in Rat Soleus Muscle Fibers under Short-Term Gravitational Disuse. PLoS One 2016; 11:e0153650. [PMID: 27073851 PMCID: PMC4830545 DOI: 10.1371/journal.pone.0153650] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/07/2016] [Indexed: 01/03/2023] Open
Abstract
The aim of this study was to prevent the cortical cytoskeleton reorganization of rat soleus muscle fibers under short-term gravitational disuse. Once a day, we injected the right soleus muscle with 0.5 ml lecithin at a concentration of 200 mg/ml and the left soleus muscle with a diluted solution in an equal volume for 3 days prior to the experiment. To simulate microgravity conditions in rats, an anti-orthostatic suspension was used according to the Ilyin-Novikov method modified by Morey-Holton et al. for 6 hours. The following groups of soleus muscle tissues were examined: «C», «C+L», «HS», and «HS+L». The transversal stiffness of rat soleus muscle fibers after 6 hours of suspension did not differ from that of the control group for the corresponding legs; there were no differences between the groups without lecithin «C» and «HS» or between the groups with lecithin «C+L» and «HS+L». However, lecithin treatment for three days resulted in an increase in cell stiffness; in the «C+L» group, cell stiffness was significantly higher by 22.7% (p < 0.05) compared with that of group «C». The mRNA content of genes encoding beta- and gamma-actin and beta-tubulin did not significantly differ before and after suspension in the corresponding groups. However, there was a significant increase in the mRNA content of these genes after lecithin treatment: the beta-actin and gamma-actin mRNA content in group «C+L» increased by 200% compared with that of group «C», and beta-tubulin increased by 100% (as well as the mRNA content of tubulin-binding proteins Ckap5, Tcp1, Cct5 and Cct7). In addition, desmin mRNA content remained unchanged in all of the experimental groups. As a result of the lecithin injections, there was a redistribution of the mRNA content of genes encoding actin monomer- and filament-binding proteins in the direction of increasing actin polymerization and filament stability; the mRNA content of Arpc3 and Lcp1 increased by 3- and 5-fold, respectively, but the levels of Tmod1 and Svil decreased by 2- and 5-fold, respectively. However, gravitational disuse did not result in changes in the mRNA content of Arpc3, Tmod1, Svil or Lcp1. Anti-orthostatic suspension for 6 hours resulted in a decrease in the mRNA content of alpha-actinin-4 (Actn4) and alpha-actinin-1 (Actn1) in group «HS» compared with that of group «C» by 25% and 30%, respectively, as well as a decrease and increase in the ACTN4 protein content in the membrane and cytoplasmic fractions, respectively. Lecithin injection resulted in an increase in the Actn1 and Actn4 mRNA content in group «C+L» by 1.5-fold and more than 2-fold, respectively, compared with the levels in group «C». Moreover, in group «HS+L», the mRNA content did not change in these genes compared with the levels in group «C+L», and the ACTN4 protein content in the membrane and cytoplasmic fractions also remained unchanged. Thus, lecithin prevented the reduction of Actn1 and Actn4 mRNA and the migration of ACTN4 from the cortical cytoskeleton to the cytoplasm.
Collapse
Affiliation(s)
- Irina V. Ogneva
- Department of Molecular and Cell Biomedicine, State Scientific Center of Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- * E-mail:
| | - Nikolay S. Biryukov
- Department of Molecular and Cell Biomedicine, State Scientific Center of Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology (State University), Moscow region, Russia
| |
Collapse
|
30
|
Bukiya AN, Osborn CV, Kuntamallappanavar G, Toth PT, Baki L, Kowalsky G, Oh MJ, Dopico AM, Levitan I, Rosenhouse-Dantsker A. Cholesterol increases the open probability of cardiac KACh currents. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015. [DOI: 10.1016/j.bbamem.2015.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
31
|
Amiloride-insensitive sodium channels are directly regulated by actin cytoskeleton dynamics in human lymphoma cells. Biochem Biophys Res Commun 2015; 461:54-8. [DOI: 10.1016/j.bbrc.2015.03.167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 03/28/2015] [Indexed: 01/03/2023]
|
32
|
Entry of Bombyx mori nucleopolyhedrovirus into BmN cells by cholesterol-dependent macropinocytic endocytosis. Biochem Biophys Res Commun 2014; 453:166-71. [PMID: 25264104 DOI: 10.1016/j.bbrc.2014.09.073] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 09/18/2014] [Indexed: 11/19/2022]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is a serious viral pathogen of silkworm, and no drug or specific protection against BmNPV infection is available at present time. Although functions of most BmNPV genes were depicted in recent years, knowledge on the mechanism of BmNPV entry into insect cells is still limited. Here BmNPV cell entry mechanism is investigated by different endocytic inhibitor application and subcellular analysis. Results indicated that BmNPV enters BmN cells by clathrin-independent macropinocytic endocytosis, which is mediated by cholesterol in a dose-dependent manner, and cholesterol replenishment rescued the BmNPV infection partially.
Collapse
|
33
|
Selyutina OY, Polyakov NE, Korneev DV, Zaitsev BN. Influence of glycyrrhizin on permeability and elasticity of cell membrane: perspectives for drugs delivery. Drug Deliv 2014; 23:858-65. [DOI: 10.3109/10717544.2014.919544] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- O. Yu. Selyutina
- Institute of Chemical Kinetics and Combusion, Novosibirsk, Russia,
- Novosibirsk State University, Novosibirsk, Russia, and
| | - N. E. Polyakov
- Institute of Chemical Kinetics and Combusion, Novosibirsk, Russia,
| | | | | |
Collapse
|
34
|
Martinac B. The ion channels to cytoskeleton connection as potential mechanism of mechanosensitivity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:682-91. [PMID: 23886913 DOI: 10.1016/j.bbamem.2013.07.015] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 07/05/2013] [Accepted: 07/15/2013] [Indexed: 01/07/2023]
Abstract
As biological force-sensing systems mechanosensitive (MS) ion channels present the best example of coupling molecular dynamics of membrane proteins to the mechanics of the surrounding cell membrane. In animal cells MS channels have over the past two decades been very much in focus of mechanotransduction research. In recent years this helped to raise awareness of basic and medical researchers about the role that abnormal MS channels may play in the pathophysiology of diseases, such as cardiac hypertrophy, atrial fibrillation, muscular dystrophy or polycystic kidney disease. To date a large number of MS channels from organisms of diverse phylogenetic origins have been identified at the molecular level; however, the structure of only few of them has been determined. Although their function has extensively been studied in a great variety of cells and tissues by different experimental approaches it is, with exception of bacterial MS channels, very little known about how these channels sense mechanical force and which cellular components may contribute to their function. By focusing on MS channels found in animal cells this article discusses the ways in which the connections between cytoskeleton and ion channels may contribute to mechanosensory transduction in these cells. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
Affiliation(s)
- Boris Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
35
|
Chubinskiy-Nadezhdin VI, Sudarikova AV, Nikolsky NN, Morachevskaya EA. Role of submembranous actin cytoskeleton in regulation of non-voltage-gated sodium channels. DOKL BIOCHEM BIOPHYS 2013; 450:126-9. [DOI: 10.1134/s1607672913030010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Indexed: 11/23/2022]
|
36
|
Chubinskiy-Nadezhdin VI, Efremova TN, Khaitlina SY, Morachevskaya EA. Functional impact of cholesterol sequestration on actin cytoskeleton in normal and transformed fibroblasts. Cell Biol Int 2013; 37:617-23. [PMID: 23447521 DOI: 10.1002/cbin.10079] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 02/11/2013] [Indexed: 11/07/2022]
Abstract
Membrane cholesterol and lipid rafts are implicated in various signalling processes involving actin rearrangement in living cells. However, functional link between raft integrity and organisation of cytoskeleton remains unclear. We have compared the effect of cholesterol sequestration on F-actin structures in normal and transformed fibroblasts in which microfilament system is developed to a different extent. The depletion of membrane cholesterol by methyl-beta-cyclodextrin (MbCD) resulted in a disruption of lipid rafts in plasma membrane as it was revealed by fluorescent labelling of GM1 ganglioside. In normal fibroblasts with highly developed microfilament system, the cholesterol depletion resulted in actin disassembly and reduction of stress fibres. However, in transformed cells containing low amount of fibrillar actin, MbCD treatment induced intensive formation of stress fibres and increased cell spreading. The results show that the effect of cholesterol depletion and lipid raft disruption on microfilament system is critically determined by the initial state of cytoskeleton, specifically, by the balance of polymerised and monomeric actin in the cell. We assume that uncapping of the microfilaments is the key step of cholesterol-regulated actin remodelling.
Collapse
|
37
|
Abstract
How mechanical forces are sensed remains largely mysterious. The forces that gate prokaryotic and several eukaryotic channels were found to come from the lipid membrane. Our survey of animal cells found that membrane force foci all have cholesterol-gathering proteins and are reinforced with cholesterol. This result is evident in overt force sensors at the tips of stereocilia for vertebrate hearing and the touch receptor of Caenorhabditis elegans and mammalian neurons. For less specialized cells, cadherins sustain the force between neighboring cells and integrins between cells and matrix. These tension bearers also pass through and bind to a cholesterol-enriched platform before anchoring to cytoskeleton through other proteins. Cholesterol, in alliance with sphingomyelin and specialized proteins, enforces a more ordered structure in the bilayer. Such a stiffened platform can suppress mechanical noise, redirect, rescale, and confine force. We speculate that such platforms may be dynamic. The applied force may allow disordered-phase lipids to enter the platform-staging channel opening in the thinner mobile neighborhood. The platform may also contain specialized protein/lipid subdomains enclosing mechanosensitive channels to open with localized tension. Such a dynamic stage can mechanically operate structurally disparate channels or enzymes without having to tie them directly to cadherin, integrin, or other protein tethers.
Collapse
|
38
|
Efremova TN, Chubinskij-Nadezhdin VI, Khaitlina SY, Morachevskaya EA. Assembly of actin filaments induced by sequestration of membrane cholesterol in transformed cells. ACTA ACUST UNITED AC 2012. [DOI: 10.1134/s1990519x12040050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|