1
|
Yang Y, Song J, Shen S, Wang Y, Pan C, Wu J, Lan X. InDel mutations within the bovine PER2 gene are significantly associated with reproductive traits. Anim Biotechnol 2024:2397806. [PMID: 39222161 DOI: 10.1080/10495398.2024.2397806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Functioning as a key regulator of circadian rhythms, the PER2 gene exerts a substantial impact on the reproductive traits of animals. However, the effect of the PER2 gene on ovarian development remains unclear. In order to examine the relationship between bovine reproductive trait and the PER2 gene, a total of 901 ovarian samples were collected, categorized into different oestrus cycles (proestrus, oestrus, post-oestrus, anoestrous), and subjected to analysis for two potential insertion/deletions (InDels) in the PER2 gene. Through agarose gel electrophoresis and DNA sequencing, two polymorphic deletion mutations (P2-D5-bp, P3-D13-bp) were identified. Furthermore, a significant association between mature follicle diameter and P2-D5-bp was found (P < 0.05). Additionally, several significant correlations with ovarian length, width, height, and white body diameter were found for P3-D13-bp (P < 0.05). These findings suggested that the bovine PER2 gene plays an important role in above-mentioned reproductive traits, offering new avenues for improving cow fertility through marker-assisted selection (MAS).
Collapse
Affiliation(s)
- Yuanzhe Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiajun Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Siyuan Shen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiyao Wu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Gong M, Gao Y, Wang Z, Lu F, Dong H. The impact of chronic insomnia disorder on menstruation and ovarian reserve in childbearing-age women: A cross-sectional study. Clin Exp Reprod Med 2024; 51:142-150. [PMID: 38812244 PMCID: PMC11140260 DOI: 10.5653/cerm.2023.06513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 05/31/2024] Open
Abstract
OBJECTIVE Diminished ovarian reserve (DOR) is a disorder characterized by impaired ovarian function. Sleep disorders are disruptions of the circadian rhythm, which appears to be closely linked to reproductive systems. This study aimed to investigate the impact of poor sleep quality on the ovarian reserve of childbearing-age women. METHODS A cross-sectional study was conducted in China from June 2021 to March 2023. In total, 102 participants diagnosed with chronic insomnia disorder were included in the study. Questionnaires were administered to assess participants' menstrual patterns, insomnia severity, anxiety, and depression. The anti-Müllerian hormone level and the basal antral follicle count were measured for ovarian reserve evaluation. Correlation analysis and ordinal logistic regression analysis were conducted. RESULTS The women with insomnia presented high percentages of hypomenorrhea, premenstrual syndrome, and dysmenorrhea (78.4%, 74.5%, and 46.1%, respectively). Severe sleep disorder in the past month was identified as an independent risk factor for hypomenorrhea and premenstrual syndrome (odds ratio [OR], 2.64 and OR, 2.688; p<0.05). The prevalence of DOR among women with insomnia (33.3%) was significantly higher than the average reported in previous studies for young women. Insomnia duration exceeding 1 year was determined to be an independent risk factor for DOR in women aged 36 to 40 years (OR, 4.5; p=0.033). CONCLUSION This study highlights the association between sleep disorders and menstrual problems. Prolonged poor sleep quality in women aged 36 to 40 years was identified as a significant risk factor for DOR. We should pay more attention to improving sleep quality in order to maintain normal ovarian function.
Collapse
Affiliation(s)
- Minmin Gong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Cushman RA, Kaps M, Snider AP, Crouse MS, Woodbury BL, Keel BN, McCarthy KL. Relationship of length of the estrous cycle to antral follicle number in crossbred beef heifers. Transl Anim Sci 2024; 8:txae074. [PMID: 38800103 PMCID: PMC11127629 DOI: 10.1093/tas/txae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Length of the menstrual cycle was positively associated with antral follicle number in women. If this pattern is consistent in cattle, a value-added benefit to using automated activity monitors to determine estrous status could be the ability to predict antral follicle count (AFC). We, therefore, hypothesized that as inter-estrous interval increased ultrasonographic AFC would be greater in crossbred beef heifers. Over 3 yr, crossbred beef heifers (n = 1,394) were fitted with automated activity monitors for 81 d. From days 42 to 46, heifers were submitted for ultrasonographic examination to determine AFC. From days 60 to 81, heifers were visually observed twice daily for 45 min for signs of behavioral estrus. Heifers that had a behavioral estrus that coincided with a sensor-based estrus and had a previous sensor-based estrus between 15 and 26 d earlier were used for the analysis (n = 850). A combination of regression analyses and correlation analyses were applied to understand the association between data collected by sensors and follicle number determined by ultrasonographic examination. Antral follicle count was analyzed using the GLM procedure of SAS with estrous cycle length (15 to 26 d) as a fixed effect. Estrus was more likely to initiate in the early morning hours and peak activity was greater (P < 0.0001) when estrus initiated between 0200 and 0800 hours then when estrus initiated at other times of the day. Antral follicle count did not differ due to length of the estrous cycle (P = 0.87). Thus, length of the estrous cycle obtained from three-axis accelerometers cannot be used to predict follicle number in crossbred beef heifers; however, machine learning approaches that combine multiple features could be used to integrate parameters of activity with other relevant environmental and management data to quantify AFC and improve reproductive management in beef cows.
Collapse
Affiliation(s)
- Robert A Cushman
- USDA, ARS, US. Meat Animal Research Center, Clay Center, NE, USA
| | - Martim Kaps
- USDA, ARS, US. Meat Animal Research Center, Clay Center, NE, USA
| | | | - Matthew S Crouse
- USDA, ARS, US. Meat Animal Research Center, Clay Center, NE, USA
| | - Bryan L Woodbury
- USDA, ARS, US. Meat Animal Research Center, Clay Center, NE, USA
| | - Brittney N Keel
- USDA, ARS, US. Meat Animal Research Center, Clay Center, NE, USA
| | - Kacie L McCarthy
- Department of Animal Science, University of Nebraska at Lincoln, Lincoln, NE, USA
| |
Collapse
|
4
|
Zhang Z, Cheng J, Yang L, Li X, Li Q. Period circadian regulator 2-mediated steroid hormone synthesis by regulating transcription of steroidogenic acute regulatory protein in porcine granulosa cells. J Anim Sci 2024; 102:skae185. [PMID: 38982717 PMCID: PMC11303873 DOI: 10.1093/jas/skae185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/09/2024] [Indexed: 07/11/2024] Open
Abstract
Steroidogenesis is associated with circadian clock genes. However, the regulation of steroid hormone production in sow granulosal cells by Per2, a crucial circadian regulator, remains unexplored. In this study, we have identified the presence of Per2 in ovarian granulosa cells and have observed its circadian expression pattern. Employing siRNA to interfere with Per2 expression, our investigation revealed that Per2 knockdown notably elevated progesterone (P4) levels along with increasing the expression of StAR but interference of Per2 did not alter the rhythm of clock-related gene (Bmal1, Clock, Per1, and Cry1) in granulosa cells. Subsequent mechanistic analysis showed that Per2 formed complexes with PPARγ and interference with Per2 promoted the formation of the PPARγ:RXRα heterodimer. Importantly, we uncovered that PPARγ:RXRα heterodimer could control the expression of StAR via direct peroxisome proliferator response element binding to its promoter to regulate its activity, and knockdown of Per2 promoted the transcription of StAR via increasing the binding of PPARγ:RXRα ligands. Altogether, these findings indicated a noncanonical role of Per2 in controlling PPARγ:RXRα binding to regulate transcription of StAR and progesterone synthesis, thus revealing potential avenues of pharmacological and therapeutic intervention.
Collapse
Affiliation(s)
- Zelin Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jianyong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Li Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaoya Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Qingwang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
5
|
Liu LL, Meng J, Ma HY, Cao H, Liu WJ. Candidate genes for litter size in Xinjiang sheep identified by Specific Locus Amplified Fragment (SLAF) sequencing. Anim Biotechnol 2023; 34:3053-3062. [PMID: 36244020 DOI: 10.1080/10495398.2022.2131561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The aim of this study was to investigate the selection signatures at a genome-wide level in 'Pishan' sheep using Specific Locus Amplified Fragment (SLAF)-seq. Blood samples from 126 ewes were sequenced using SLAF tags, and the ovarian tissues from 8 ewes (Bashbay sheep, a single litter size group (SG group); 'Pishan' sheep, double litter size group (DG group)) were collected to detect expression levels by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Selection signature analysis was performed using global fixation index (Fst) and nucleotide diversity (π) ratio. A total of 1,192,168 high-quality SLAFs were identified. Notably, 2380 candidate regions under selection using two approaches were identified. A total of 2069 genes were identified, which were involved in dopaminergic synapses, thyroid hormone synthesis, ovarian steroidogenesis and thyroid hormone signalling pathways. Furthermore, Growth Differentiation Factor 9 (GDF9), Period Circadian Regulator 2 (PER2), Thyroid Stimulating Hormone Receptor (TSHR), and Nuclear Receptor Coactivator 1 (NCOA1) reside within these regions and pathways. The expression levels of GDF9 and PER2 genes in sheep tissue of the DG group were significantly higher than those in the SG group. These genes are interesting candidates for litter size and provide a starting point for further identification of conservation strategies for 'Pishan' sheep.
Collapse
Affiliation(s)
- Ling-Ling Liu
- Department of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Jun Meng
- Department of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Hai-Yu Ma
- Department of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Hang Cao
- Department of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Wu-Jun Liu
- Department of Animal Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
6
|
Earnhardt-San AL, Baker EC, Riley DG, Ghaffari N, Long CR, Cardoso RC, Randel RD, Welsh TH. Differential Expression of Circadian Clock Genes in the Bovine Neuroendocrine Adrenal System. Genes (Basel) 2023; 14:2082. [PMID: 38003025 PMCID: PMC10670998 DOI: 10.3390/genes14112082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Knowledge of circadian rhythm clock gene expression outside the suprachiasmatic nucleus is increasing. The purpose of this study was to determine whether expression of circadian clock genes differed within or among the bovine stress axis tissues (e.g., amygdala, hypothalamus, pituitary, adrenal cortex, and adrenal medulla). Tissues were obtained at an abattoir from eight mature nonpregnant Brahman cows that had been maintained in the same pasture and nutritional conditions. Sample tissues were stored in RNase-free sterile cryovials at -80 °C until the total RNA was extracted, quantified, assessed, and sequenced (NovaSeq 6000 system; paired-end 150 bp cycles). The trimmed reads were then mapped to a Bos taurus (B. taurus) reference genome (Umd3.1). Further analysis used the edgeR package. Raw gene count tables were read into RStudio, and low-expression genes were filtered out using the criteria of three minimum reads per gene in at least five samples. Normalization factors were then calculated using the trimmed mean of M values method to produce normalized gene counts within each sample tissue. The normalized gene counts important for a circadian rhythm were analyzed within and between each tissue of the stress axis using the GLM and CORR procedures of the Statistical Analysis System (SAS). The relative expression profiles of circadian clock genes differed (p < 0.01) within each tissue, with neuronal PAS domain protein 2 (NPAS2) having greater expression in the amygdala (p < 0.01) and period circadian regulator (PER1) having greater expression in all other tissues (p < 0.01). The expression among tissues also differed (p < 0.01) for individual circadian clock genes, with circadian locomotor output cycles protein kaput (CLOCK) expression being greater within the adrenal tissues and nuclear receptor subfamily 1 group D member 1 (NR1D1) expression being greater within the other tissues (p < 0.01). Overall, the results indicate that within each tissue, the various circadian clock genes were differentially expressed, in addition to being differentially expressed among the stress tissues of mature Brahman cows. Future use of these findings may assist in improving livestock husbandry and welfare by understanding interactions of the environment, stress responsiveness, and peripheral circadian rhythms.
Collapse
Affiliation(s)
- Audrey L. Earnhardt-San
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (D.G.R.); (R.C.C.)
- Texas A&M AgriLife Research Center, Overton, TX 75684, USA; (C.R.L.); (R.D.R.)
| | - Emilie C. Baker
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (D.G.R.); (R.C.C.)
| | - David G. Riley
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (D.G.R.); (R.C.C.)
| | - Noushin Ghaffari
- Department of Computer Science, Prairie View A&M University, Prairie View, TX 77070, USA;
| | - Charles R. Long
- Texas A&M AgriLife Research Center, Overton, TX 75684, USA; (C.R.L.); (R.D.R.)
| | - Rodolfo C. Cardoso
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (D.G.R.); (R.C.C.)
| | - Ronald D. Randel
- Texas A&M AgriLife Research Center, Overton, TX 75684, USA; (C.R.L.); (R.D.R.)
| | - Thomas H. Welsh
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (D.G.R.); (R.C.C.)
| |
Collapse
|
7
|
Li Z, Zhang K, Zhou Y, Zhao J, Wang J, Lu W. Role of Melatonin in Bovine Reproductive Biotechnology. Molecules 2023; 28:4940. [PMID: 37446601 PMCID: PMC10343719 DOI: 10.3390/molecules28134940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Melatonin has profound antioxidant activity and numerous functions in humans as well as in livestock and poultry. Additionally, melatonin plays an important role in regulating the biological rhythms of animals. Combining melatonin with scientific breeding management has considerable potential for optimizing animal physiological functions, but this idea still faces significant challenges. In this review, we summarized the beneficial effects of melatonin supplementation on physiology and reproductive processes in cattle, including granulosa cells, oocytes, circadian rhythm, stress, inflammation, testicular function, spermatogenesis, and semen cryopreservation. There is much emerging evidence that melatonin can profoundly affect cattle. In the future, we hope that melatonin can not only be applied to cattle, but can also be used to safely and effectively improve the efficiency of animal husbandry.
Collapse
Affiliation(s)
- Zhiqiang Li
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Z.L.); (K.Z.); (Y.Z.); (J.Z.)
- Key Lab of Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Kaiyan Zhang
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Z.L.); (K.Z.); (Y.Z.); (J.Z.)
- Key Lab of Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yuming Zhou
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Z.L.); (K.Z.); (Y.Z.); (J.Z.)
- Key Lab of Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jing Zhao
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Z.L.); (K.Z.); (Y.Z.); (J.Z.)
- Key Lab of Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jun Wang
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Z.L.); (K.Z.); (Y.Z.); (J.Z.)
- Key Lab of Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Wenfa Lu
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Z.L.); (K.Z.); (Y.Z.); (J.Z.)
- Key Lab of Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
8
|
Huang L, Yuan H, Shi S, Song X, Zhang L, Zhou X, Gao L, Pang W, Yang G, Chu G. CLOCK inhibits the proliferation of porcine ovarian granulosa cells by targeting ASB9. J Anim Sci Biotechnol 2023; 14:82. [PMID: 37280645 DOI: 10.1186/s40104-023-00884-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/16/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Clock circadian regulator (CLOCK) is a core factor of the mammalian biological clock system in regulating female fertility and ovarian physiology. However, CLOCK's specific function and molecular mechanism in porcine granulosa cells (GCs) remain unclear. In this study, we focused on CLOCK's effects on GC proliferation. RESULTS CLOCK significantly inhibited cell proliferation in porcine GCs. CLOCK decreased the expression of cell cycle-related genes, including CCNB1, CCNE1, and CDK4 at the mRNA and protein levels. CDKN1A levels were upregulated by CLOCK. ASB9 is a newly-identified target of CLOCK that inhibits GC proliferation; CLOCK binds to the E-box element in the ASB9 promoter. CONCLUSIONS These findings suggest that CLOCK inhibits the proliferation of porcine ovarian GCs by increasing ASB9 level.
Collapse
Affiliation(s)
- Liang Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Huan Yuan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Shengjie Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiangrong Song
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Lutong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaoge Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Lei Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Weijun Pang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Guiyan Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China.
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
9
|
Huang L, Zhang L, Shi S, Zhou X, Yuan H, Song X, Hu Y, Pang W, Yang G, Gao L, Chu G. Mitochondrial function and E 2 synthesis are impaired following alteration of CLOCK gene expression in porcine ovarian granulosa cells. Theriogenology 2023; 202:51-60. [PMID: 36921565 DOI: 10.1016/j.theriogenology.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/08/2023]
Abstract
Circadian locomotor output cycles kaput (CLOCK) is a critical component of the mammalian circadian clock system and regulates ovarian physiology. However, the functions and mechanisms of CLOCK in porcine granulosa cells (GCs) are poorly understood. The present study focused on CLOCK's effects on estradiol synthesis. Similarity analysis showed that CLOCK is highly conserved between pigs and other species. The phylogenetic tree analysis indicated that porcine CLOCK was most closely related to that in Arabian camels. CLOCK significantly reduced E2 synthesis in GCs. CLOCK reduced the expression of steroidogenesis-related genes at the mRNA and protein levels, including CYP19A1, CYP11A1, and StAR. CYP17A1 levels were significantly downregulated. We demonstrated that CLOCK dramatically decreased ATP content, mitochondrial copy number, and mitochondrial membrane potential (MMP) and increased reactive oxygen species levels in GCs. We observed that mitochondria were severely damaged with fuzzy and fractured cristae and swollen matrix. These findings suggest that mitochondrial function and E2 synthesis are impaired following the alteration of CLOCK gene expression in porcine ovarian GCs.
Collapse
Affiliation(s)
- Liang Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Lutong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Shengjie Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Xiaoge Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Huan Yuan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Xiangrong Song
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Yamei Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Weijun Pang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Lei Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Guiyan Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
10
|
Qiu J, Dai T, Luo C, Cui W, Liu K, Li J, Sima Y, Xu S. Circadian clock regulates developmental time through ecdysone and juvenile hormones in Bombyx mori. INSECT MOLECULAR BIOLOGY 2023. [PMID: 36815346 DOI: 10.1111/imb.12835] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The circadian clock plays an integral role in hormone biosynthesis and secretion. However, how the circadian clock precisely coordinates hormonal homeostasis to maintain normal animal development remains unclear. Here, we show that knocking out the core clock gene Cryptochrome 1 (Cry1) significantly delays the developmental time in Bombyx mori. This study focuses on the ecdysone and juvenile hormone signalling pathways of fifth instar larvae with the longest developmental time delay. We found that the mutant reduced prothoracicotropic hormone synthesis in the brain, and could not produce sufficient ecdysone in the prothoracic gland, resulting in a delayed peak of 20-hydroxyecdysone titre in the hemolymph of fifth instar larvae, prolonging developmental time. Moreover, further investigation revealed that the mutant enhanced juvenile hormone biosynthesis and signalling pathway and that this higher juvenile hormone titre also resulted in prolonged developmental time in fifth instar larvae. Our results provide insights into the molecular mechanisms by which the circadian clock regulates animal development by maintaining hormonal homeostasis.
Collapse
Affiliation(s)
- Jianfeng Qiu
- School of Biology and Basic Medical Sciences, Suzhou Medical College Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Taiming Dai
- School of Biology and Basic Medical Sciences, Suzhou Medical College Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Cheng Luo
- School of Biology and Basic Medical Sciences, Suzhou Medical College Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Wenzhao Cui
- School of Biology and Basic Medical Sciences, Suzhou Medical College Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Kai Liu
- School of Biology and Basic Medical Sciences, Suzhou Medical College Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Jianglan Li
- School of Biology and Basic Medical Sciences, Suzhou Medical College Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Yanghu Sima
- School of Biology and Basic Medical Sciences, Suzhou Medical College Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| | - Shiqing Xu
- School of Biology and Basic Medical Sciences, Suzhou Medical College Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, China
| |
Collapse
|
11
|
Dauchy RT, Blask DE. Vivarium Lighting as an Important Extrinsic Factor Influencing Animal-based Research. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2023; 62:3-25. [PMID: 36755210 PMCID: PMC9936857 DOI: 10.30802/aalas-jaalas-23-000003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 01/22/2023]
Abstract
Light is an extrinsic factor that exerts widespread influence on the regulation of circadian, physiologic, hormonal, metabolic, and behavioral systems of all animals, including those used in research. These wide-ranging biologic effects of light are mediated by distinct photoreceptors, the melanopsin-containing intrinsically photosensitive retinal ganglion cells of the nonvisual system, which interact with the rods and cones of the conventional visual system. Here, we review the nature of light and circadian rhythms, current industry practices and standards, and our present understanding of the neurophysiology of the visual and nonvisual systems. We also consider the implications of this extrinsic factor for vivarium measurement, production, and technological application of light, and provide simple recommendations on artificial lighting for use by regulatory authorities, lighting manufacturers, designers, engineers, researchers, and research animal care staff that ensure best practices for optimizing animal health and wellbeing and, ultimately, improving scientific outcomes.
Collapse
Key Words
- blad, blue-enriched led light at daytime
- clock, circadian locomotor output kaput
- cct, correlated color temperature
- cwf, cool white fluorescent
- iprgc, intrinsically photosensitive retinal ganglion cell
- hiomt, hydroxyindole-o-methyltransferase
- lan, light at night
- led, light-emitting diode
- plr, pupillary light reflex
- scn, suprachiasmatic nuclei
- spd, spectral power distribution
Collapse
Affiliation(s)
- Robert T Dauchy
- Department of Structural and Cellular Biology, Laboratory of Chrono-Neuroendocrine Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| | - David E Blask
- Department of Structural and Cellular Biology, Laboratory of Chrono-Neuroendocrine Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
12
|
Ding M, Lu Y, Huang X, Xing C, Hou S, Wang D, Zhang Y, Wang W, Zhang C, Zhang M, Meng F, Liu K, Liu G, Zhao J, Song L. Acute hypoxia induced dysregulation of clock-controlled ovary functions. Front Physiol 2022; 13:1024038. [PMID: 36620217 PMCID: PMC9816144 DOI: 10.3389/fphys.2022.1024038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
High altitudes or exposure to hypoxia leads to female reproductive disorders. Circadian clocks are intrinsic time-tracking systems that enable organisms to adapt to the Earth's 24-h light/dark cycle, which can be entrained by other environmental stimuli to regulate physiological and pathological responses. In this study, we focused on whether ovarian circadian clock proteins were involved in regulating female reproductive dysfunction under hypoxic conditions. Hypobaric hypoxia was found to induce a significantly prolonged estrous cycle in female mice, accompanied by follicular atresia, pituitary/ovarian hormone synthesis disorder, and decreased LHCGR expression in the ovaries. Under the same conditions, the levels of the ovarian circadian clock proteins, CLOCK and BMAL1, were suppressed, whereas E4BP4 levels were upregulated. Results from granulosa cells (GCs) further demonstrated that CLOCK: BMAL1 and E4BP4 function as transcriptional activators and repressors of LHCGR in ovarian GCs, respectively, whose responses were mediated by HIF1ɑ-dependent (E4BP4 upregulation) and ɑ-independent (CLOCK and BMAL1 downregulation) manners. The LHCGR agonist was shown to efficiently recover the impairment of ovulation-related gene (EREG and PGR) expression in GCs induced by hypoxia. We conclude that hypoxia exposure causes dysregulation of ovarian circadian clock protein (CLOCK, BMAL1, and E4BP4) expression, which mediates female reproductive dysfunction by impairing LHCGR-dependent signaling events. Adjusting the timing system or recovering the LHCGR level in the ovaries may be helpful in overcoming female reproductive disorders occurring in the highlands.
Collapse
Affiliation(s)
- Mengnan Ding
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yarong Lu
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng, China
| | - Xin Huang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chen Xing
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Shaojun Hou
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Anhui Medical University, Hefei, China
- School of Pharmacy, Jiamus University, Jiamusi, China
| | - Dongxue Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
- School of Pharmacy, Jiamus University, Jiamusi, China
| | - Yifan Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Wei Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
- School of Pharmacy, Jiamus University, Jiamusi, China
| | - Chongchong Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng, China
| | - Min Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Anhui Medical University, Hefei, China
| | - Fanfei Meng
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Kun Liu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Guangchao Liu
- Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng, China
| | - Jincheng Zhao
- School of Pharmacy, Jiamus University, Jiamusi, China
| | - Lun Song
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Anhui Medical University, Hefei, China
- School of Pharmacy, Jiamus University, Jiamusi, China
- College of Life Science, Henan Normal University, Xinxiang, China
| |
Collapse
|
13
|
Casper RF. Shining a light on shift work. Menopause 2022; 29:761-762. [PMID: 35728016 DOI: 10.1097/gme.0000000000002015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Robert F Casper
- From TRIO Fertility, the Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Toronto and Lunenfeld-Tanenbaum Research Institute, Mount Sinai System, Toronto, ON, Canada
| |
Collapse
|
14
|
Wang L, Li J, Zhang L, Shi S, Zhou X, Hu Y, Gao L, Yang G, Pang W, Chen H, Zhao L, Chu G, Cai C. NR1D1 targeting CYP19A1 inhibits estrogen synthesis in ovarian granulosa cells. Theriogenology 2021; 180:17-29. [PMID: 34933195 DOI: 10.1016/j.theriogenology.2021.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/18/2021] [Accepted: 12/09/2021] [Indexed: 11/26/2022]
Abstract
The circadian system performs an important role in mammalian reproduction with significant effects on hormone secretion. Nuclear receptor subfamily 1 group D member 1 (NR1D1) functions as a transcriptional repressor in the circadian system and affects granulosa cells (GCs), but how it regulates estrogen synthesis has not been clarified. We investigated the effect of NR1D1 on estrogen synthesis and found that NR1D1 was highly expressed in GCs, mainly in cell nuclei. Additionally, the expression of NR1D1 and estrogen synthesis key genes CYP19A1, CYP11A1 and StAR showed rhythmic changes in porcine ovarian GCs. Activation of NR1D1 enhances its ability to inhibit the transcriptional activity of CYP19A1 by binding to the RORE on the CYP19A1 promoter, resulting in a decrease in estradiol content. Interference with NR1D1 can eliminate the transcriptional inhibition of CYP19A1 and promote the synthesis of estradiol. The results suggest that the hormone secretion of the ovary itself is also regulated by the biological clock, and any factors that affect the circadian rhythm can affect the endocrine and reproductive performance of sows, so the natural rhythm of sows should be maintained in production.
Collapse
Affiliation(s)
- Liguang Wang
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Jingjing Li
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Lutong Zhang
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Shengjie Shi
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Xiaoge Zhou
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Yamei Hu
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Lei Gao
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Gongshe Yang
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Weijun Pang
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Huatao Chen
- College of Veterinary Medicine, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Lijia Zhao
- College of Veterinary Medicine, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Guiyan Chu
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Chuanjiang Cai
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
15
|
Novel InDel variations of the Cry2 gene are associated with litter size in Australian White sheep. Theriogenology 2021; 179:155-161. [PMID: 34875538 DOI: 10.1016/j.theriogenology.2021.11.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 12/15/2022]
Abstract
Cryptochrome 2 (Cry2) gene regulates circadian rhythm and affects reproduction and pregnancy. Therefore, this study aimed to explore polymorphisms of the Cry2 gene and their associations with litter size at different parity in Australian White (AuW) ewes. Five putative insertion or deletion mutations within the Cry2 gene were selected to study their association with litter size. Two novel deletion mutations were identified in intronic region of Cry2 gene and were genotyped by agarose gel electrophoresis and DNA sequencing. The polymorphism information content (PIC) indicated that both mutations were low polymorphism in tested groups. Statistical analysis revealed that the P1-Del-6-bp was significantly correlated with litter size at third parity (P = 0.010), in which individuals with insertion/deletion (ID) genotype had larger litter size than insertion/insertion (II) genotype (P < 0.05). Whereas, the P2-Del-6-bp was significantly correlated with litter size at first parity (P = 0.036), in which individuals with insertion/insertion (II) genotype had larger litter size than insertion/deletion (ID) genotype (P < 0.05). Collectively, these findings may provide new insights to expedite molecular breeding in sheep through marker-assisted selection strategies (MAS).
Collapse
|
16
|
Expression of cell proliferation regulatory factors bricd5, tnfrsf21, cdk1 correlates with expression of clock gene cry1 in testes of Hu rams during puberty. Mol Biol Rep 2021; 48:7379-7385. [PMID: 34626314 DOI: 10.1007/s11033-021-06747-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Cryptochrome 1 (cry1), the core regulator of the circadian clock, is essential for ontogeny and mammalian reproduction. Unlike in other tissues, the cry1 gene have noncircadian functions in spermatogenesis, which implies the unique role of cry1 gene in the development of testis. The role of cry1 during the puberty has not been described yet. This study aimed to explore the relationship between cry1 expression and spermatogenic cell numbers. METHODS AND RESULTS We analyzed testicular tissues from Hu sheep aged 0-180 days by hematoxylin and eosin staining, measured cry1 and cell proliferation regulatory factors (bricd5, tnfrsf21, cdk1) expression by quantitative real-time PCR and characterized the transcription factor in the 5' flanking region of cry1 gene. The data revealed that the number of spermatocytes and early spermatocytes increased rapidly from 90 to 120 dpp (day postpartum). Correspondingly, there was a marked variation in the cry1 and cell proliferation related genes (bricd5, tnfrsf21, cdk1) mRNA expression in the testes from the age of 90 days to 180 days (p < 0.05). We also identified some transcription factors (tcfl5) related to cell proliferation. CONCLUSIONS There is a significant causal relationship between the transcription level of cry1 gene in Hu sheep testes and the number of spermatogenic cells. It is speculated that cry1 gene may regulate the proliferation of spermatogenic cells by regulating the expression of cell proliferation related genes such as bricd5, tnfrsf21 and cdk1.
Collapse
|
17
|
Yang H, Fu L, Luo Q, Li L, Zheng F, Liu X, Zhao Z, Wang Z, Xu H. Comparative Analysis and Identification of Differentially Expressed microRNAs in the Hypothalamus of Kazakh Sheep Exposed to Different Photoperiod Conditions. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1315-1325. [PMID: 34903161 DOI: 10.1134/s0006297921100126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNA) plays an important role in several mammalian biological regulatory processes by post-transcriptionally regulating gene expression. However, there is little information on the miRNAs involved in the photoperiodism pathway that controls seasonal activity. To enhance our knowledge on the effect of different photoperiod conditions on miRNA, we divided Kazakh sheep into two groups: one exposed to a long photoperiod (LP, 16L:8D) and another with exposed to a short photoperiod (SP, 8L:16D) under supplemental feeding conditions. Further we compared the related miRNAs and target genes between the two groups. Fifteen differentially expressed miRNAs were identified, which were associated with 310 regulatory pathways covering photoperiodism, reproductive hormones, and nutrition. The miR-136-GNAQ pair was selected and validated as a differentially expressed, and a dual-luciferase reporter assay showed that the negative feedback loop existed between them. Examination of the expression profile revealed that the GNAQ expression was low in the estrous females both under LP and SP conditions, but high expression of GNAQ was observed in the anestrous females under LP conditions. Moreover, functional analysis revealed that KISS1 and GnRH expression was upregulated when GNAQ expression was downregulated in the hypothalamic cells, whereas DIO2 and TSHB expression was downregulated. Thus, miR-136-GNAQ might act as a switch in the regulation of seasonal estrus under different photoperiod conditions. These findings further enrich our understanding of the relationship between miRNAs and seasonal regulation of reproductive activity. Furthermore, our study provides novel insights into the miRNA-mediated regulatory mechanisms for overcoming photoinhibition in the seasonally breeding mammals, such as Kazakh sheep.
Collapse
Affiliation(s)
- Heng Yang
- College of Veterinary Medicine, Southwest University, Chongqing, 404100, China. .,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 404100, China
| | - Lin Fu
- Research Institute of Herbivorous Livestock, Chongqing Academy of Animal Sciences, Chongqing, 404100, China
| | - Qifeng Luo
- College of Veterinary Medicine, Southwest University, Chongqing, 404100, China
| | - Licai Li
- College of Veterinary Medicine, Southwest University, Chongqing, 404100, China
| | - Fangling Zheng
- College of Veterinary Medicine, Southwest University, Chongqing, 404100, China
| | - Xianxia Liu
- College of Animal Science and Technology, Shihezi University, Xinjiang, 830000, China
| | - Zongsheng Zhao
- College of Animal Science and Technology, Shihezi University, Xinjiang, 830000, China
| | - Zhiying Wang
- College of Veterinary Medicine, Southwest University, Chongqing, 404100, China
| | - Huihao Xu
- College of Veterinary Medicine, Southwest University, Chongqing, 404100, China.
| |
Collapse
|
18
|
The role of clock genes in sleep, stress and memory. Biochem Pharmacol 2021; 191:114493. [DOI: 10.1016/j.bcp.2021.114493] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/23/2022]
|
19
|
Cui WZ, Qiu JF, Dai TM, Chen Z, Li JL, Liu K, Wang YJ, Sima YH, Xu SQ. Circadian Clock Gene Period Contributes to Diapause via GABAeric-Diapause Hormone Pathway in Bombyx mori. BIOLOGY 2021; 10:biology10090842. [PMID: 34571719 PMCID: PMC8469157 DOI: 10.3390/biology10090842] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022]
Abstract
Diapause is a developmental transition in insects based on seasonal adaptation to adversity; it is regulated by a circadian clock system and the endocrine system. However, the molecular node and its mechanism underlying the effects of these systems are still unclear. Here, a mutant of Bombyx mori with the circadian clock gene Period (Per) knocked out was constructed, which dramatically changed the classic diapause-destined pathway. Per-knockout silkworms powerfully attenuated, but could not completely block, the predetermined effects of temperature and photoperiod on diapause determination, and this effect depended on the diapause hormone (DH) pathway. The impaired transcription-translation feedback loop of the circadian clock system lacking the Per gene caused direct up-regulation of the expression of GRD, a receptor of γ-aminobutyric acid (GABA), by changing expression level of Cycle. The synthesis of GABA in the tissue complex of brain-suboesophageal ganglion then increased and restricted the decomposition, which continuously promoted the GABAergic signal to play a role, and finally inhibiting (delaying) the release of DH to the hemolymph, and reducing the diapause-inducing effect of DH. The results provided an example to explain the regulatory mechanism of the circadian clock on endocrine hormones in the silkworm.
Collapse
Affiliation(s)
- Wen-Zhao Cui
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China; (W.-Z.C.); (J.-F.Q.); (T.-M.D.); (Z.C.); (J.-L.L.); (K.L.); (Y.-H.S.)
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Jian-Feng Qiu
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China; (W.-Z.C.); (J.-F.Q.); (T.-M.D.); (Z.C.); (J.-L.L.); (K.L.); (Y.-H.S.)
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Tai-Ming Dai
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China; (W.-Z.C.); (J.-F.Q.); (T.-M.D.); (Z.C.); (J.-L.L.); (K.L.); (Y.-H.S.)
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Zhuo Chen
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China; (W.-Z.C.); (J.-F.Q.); (T.-M.D.); (Z.C.); (J.-L.L.); (K.L.); (Y.-H.S.)
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Jiang-Lan Li
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China; (W.-Z.C.); (J.-F.Q.); (T.-M.D.); (Z.C.); (J.-L.L.); (K.L.); (Y.-H.S.)
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Kai Liu
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China; (W.-Z.C.); (J.-F.Q.); (T.-M.D.); (Z.C.); (J.-L.L.); (K.L.); (Y.-H.S.)
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Yu-Jun Wang
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China;
| | - Yang-Hu Sima
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China; (W.-Z.C.); (J.-F.Q.); (T.-M.D.); (Z.C.); (J.-L.L.); (K.L.); (Y.-H.S.)
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Shi-Qing Xu
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China; (W.-Z.C.); (J.-F.Q.); (T.-M.D.); (Z.C.); (J.-L.L.); (K.L.); (Y.-H.S.)
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
- Correspondence: ; Tel.: +86-512-65880185
| |
Collapse
|
20
|
Shao S, Zhao H, Lu Z, Lei X, Zhang Y. Circadian Rhythms Within the Female HPG Axis: From Physiology to Etiology. Endocrinology 2021; 162:6298422. [PMID: 34125877 PMCID: PMC8256628 DOI: 10.1210/endocr/bqab117] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 12/12/2022]
Abstract
Declining female fertility has become a global health concern. It results partially from an abnormal circadian clock caused by unhealthy diet and sleep habits in modern life. The circadian clock system is a hierarchical network consisting of central and peripheral clocks. It not only controls the sleep-wake and feeding-fasting cycles but also coordinates and maintains the required reproductive activities in the body. Physiologically, the reproductive processes are governed by the hypothalamic-pituitary-gonadal (HPG) axis in a time-dependent manner. The HPG axis releases hormones, generates female characteristics, and achieves fertility. Conversely, an abnormal daily rhythm caused by aberrant clock genes or abnormal environmental stimuli contributes to disorders of the female reproductive system, such as polycystic ovarian syndrome and premature ovarian insufficiency. Therefore, breaking the "time code" of the female reproductive system is crucial. In this paper, we review the interplay between circadian clocks and the female reproductive system and present its regulatory principles, moving from normal physiology regulation to disease etiology.
Collapse
Affiliation(s)
- Shuyi Shao
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, 200011, China
| | - Huanqiang Zhao
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, 200011, China
| | - Zhiying Lu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, 200011, China
| | - Xiaohong Lei
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, 200011, China
| | - Ying Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, 200011, China
- Correspondence: Dr. Ying Zhang, Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road 419, Huangpu District, Shanghai, 200011, China.
| |
Collapse
|
21
|
The Circadian Physiology: Implications in Livestock Health. Int J Mol Sci 2021; 22:ijms22042111. [PMID: 33672703 PMCID: PMC7924354 DOI: 10.3390/ijms22042111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 12/16/2022] Open
Abstract
Circadian rhythms exist in almost all types of cells in mammals. Thousands of genes exhibit approximately 24 h oscillations in their expression levels, making the circadian clock a crucial regulator of their normal functioning. In this regard, environmental factors to which internal physiological processes are synchronized (e.g., nutrition, feeding/eating patterns, timing and light exposure), become critical to optimize animal physiology, both by managing energy use and by realigning the incompatible processes. Once the circadian clock is disrupted, animals will face the increased risks of diseases, especially metabolic phenotypes. However, little is known about the molecular components of these clocks in domestic species and by which they respond to external stimuli. Here we review evidence for rhythmic control of livestock production and summarize the associated physiological functions, and the molecular mechanisms of the circadian regulation in pig, sheep and cattle. Identification of environmental and physiological inputs that affect circadian gene expressions will help development of novel targets and the corresponding approaches to optimize production efficiency in farm animals.
Collapse
|
22
|
Wang Y, Chen M, Xu J, Liu X, Duan Y, Zhou C, Xu Y. Core clock gene Bmal1 deprivation impairs steroidogenesis in mice luteinized follicle cells. Reproduction 2020; 160:955-967. [PMID: 33112769 PMCID: PMC7707808 DOI: 10.1530/rep-20-0340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/17/2020] [Indexed: 12/29/2022]
Abstract
Luteinization is the event of corpus luteum formation, a way of follicle cells transformation and a process of steroidogenesis alteration. As the core clock gene, Bmal1 was involved in the regulation of ovulation process and luteal function afterwards. Till now, the underlying roles of luteinization played by Bmal1 remain unknown. To explore the unique role of Bmal1 in luteal steroidogenesis and its underlying pathway, we investigated the luteal hormone synthesis profile in Bmal1 knockout female mice. We found that luteal hormone synthesis was notably impaired, and phosphorylation of PI3K/NfκB pathway was significantly activated. Then, the results were verified in in vitro cultured cells, including isolated Bmal1 interference granulosa cells (GCs) and theca cells (TCs), respectively. Hormones levels of supernatant culture media and mRNA expressions of steroidogenesis-associated genes (star, Hsd3β2, cyp19a1 in GCs, Lhcgr, star, Hsd3β2, cyp17a1 in TCs) were mutually decreased, while the phosphorylation of PI3K/NfκB was promoted during in vitro luteinization. After PI3K specific-inhibitor LY294002 intervention, mRNA expressions of Lhcgr and Hsd3β2 were partially rescued in Bmal1 interference TCs, together with significantly increased androstenedione and T synthesis. Further exploration in TCs demonstrated BMAL1 interacted directly but negatively with NfκB p65 (RelA), a subunit which was supposed as a mediator in Bmal1-governed PI3K signaling regulation. Taken together, we verified the novel role of Bmal1 in luteal steroidogenesis, achieving by negative interplay with RelA-mediated PI3K/NfκB pathway.
Collapse
Affiliation(s)
- Yizi Wang
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangdong, Guangzhou, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Minghui Chen
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangdong, Guangzhou, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian Xu
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangdong, Guangzhou, China
- Reproductive Medicine Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xinyan Liu
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangdong, Guangzhou, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuwei Duan
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangdong, Guangzhou, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Canquan Zhou
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangdong, Guangzhou, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanwen Xu
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangdong, Guangzhou, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
23
|
Baburski AZ, Andric SA, Kostic TS. Luteinizing hormone signaling is involved in synchronization of Leydig cell's clock and is crucial for rhythm robustness of testosterone production†. Biol Reprod 2020; 100:1406-1415. [PMID: 30722003 DOI: 10.1093/biolre/ioz020] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/22/2019] [Accepted: 02/03/2019] [Indexed: 12/16/2022] Open
Abstract
In mammals, circadian clock regulates concentration of many reproductive hormones including testosterone. Previously, we characterized pattern of circadian transcription of core clock genes in testosterone-producing Leydig cells. Here, the potential role of luteinizing hormone receptor (LHR)-cAMP signaling in synchronization of Leydig cell's circadian clock and rhythmic testosterone production were examined. Results showed that activation of LHR-cAMP signaling in primary rat Leydig cell culture increased Star/STAR and changed expression of many clock genes (upregulated Per1/PER1, Dec1/2, and Rorb, and downregulated Bmal1 and Rev-erba/b). Inhibition of protein kinase A prevented LHR-triggered increase in transcription of Per1 and Dec1. Effect of stimulated LHR-cAMP signaling on Leydig cell's clock transcription was also confirmed in vivo, using rats treated with single hCG injection. To analyze in vivo effect of low LH-cAMP activity on rhythmical Leydig cell function, rats with experimental hypogonadotropic hypogonadism were used. Characteristics of hypogonadal rats were decreased LH and testosterone secretion without circadian fluctuation; in Leydig cells decreased arrhythmic cAMP and transcription of steroidogenic genes (Cyp11a1 and Cyp17a1) were observed, while decreased Star/STAR expression retains circadian pattern. However, expression of clock genes, despite changes in transcription levels (increased Bmal1, Per2, Cry1, Cry2, Rora, Rorb, Rev-erba/b/REV-ERBB, Dec1, Csnk1e, and decreased Npas2 and PER1) kept circadian patterns observed in control groups. Altogether, the results strengthened the hypothesis about role of LH-cAMP signaling as synchronizer of Leydig cell's clock. However, clock in Leydig cells is not sufficient to sustain rhythmicity of testosterone production in absence of rhythmic activity of LH-cAMP signaling.
Collapse
Affiliation(s)
- Aleksandar Z Baburski
- Laboratory for Chronobiology and Aging, Laboratory for Reproductive Endocrinology and Signaling, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Silvana A Andric
- Laboratory for Chronobiology and Aging, Laboratory for Reproductive Endocrinology and Signaling, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Tatjana S Kostic
- Laboratory for Chronobiology and Aging, Laboratory for Reproductive Endocrinology and Signaling, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
24
|
Sen A, Hoffmann HM. Role of core circadian clock genes in hormone release and target tissue sensitivity in the reproductive axis. Mol Cell Endocrinol 2020; 501:110655. [PMID: 31756424 PMCID: PMC6962569 DOI: 10.1016/j.mce.2019.110655] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 12/17/2022]
Abstract
Precise timing in hormone release from the hypothalamus, the pituitary and ovary is critical for fertility. Hormonal release patterns of the reproductive axis are regulated by a feedback loop within the hypothalamic-pituitary-gonadal (HPG) axis. The timing and rhythmicity of hormone release and tissue sensitivity in the HPG axis is regulated by circadian clocks located in the hypothalamus (suprachiasmatic nucleus, kisspeptin and GnRH neurons), the pituitary (gonadotrophs), the ovary (theca and granulosa cells), the testis (Leydig cells), as well as the uterus (endometrium and myometrium). The circadian clocks integrate environmental and physiological signals to produce cell endogenous rhythms generated by a transcriptional-translational feedback loop of transcription factors that are collectively called the "molecular clock". This review specifically focuses on the contribution of molecular clock transcription factors in regulating hormone release patterns in the reproductive axis, with an emphasis on the female reproductive system. Specifically, we discuss the contributions of circadian rhythms in distinct neuronal populations of the female hypothalamus, the molecular clock in the pituitary and its overall impact on female and male fertility.
Collapse
Affiliation(s)
- Aritro Sen
- Department of Animal Science and the Reproductive and Developmental Science Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Hanne M Hoffmann
- Department of Animal Science and the Reproductive and Developmental Science Program, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
25
|
Nagao S, Iwata N, Soejima Y, Takiguchi T, Aokage T, Kozato Y, Nakano Y, Nada T, Hasegawa T, Otsuka F. Interaction of ovarian steroidogenesis and clock gene expression modulated by bone morphogenetic protein-7 in human granulosa cells. Endocr J 2019; 66:157-164. [PMID: 30518737 DOI: 10.1507/endocrj.ej18-0423] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A functional link between clock gene expression and ovarian steroidogenesis was studied using human granulosa KGN cells. Similarities between changes in the mRNA and protein expression levels of Bmal1 and Clock and those of Per2 and Cry1 were found in KGN cells after treatment with forskolin. Among the interrelationships between the expression levels of clock and steroidogenic factors, Clock mRNA had a strongly positive correlation with P450arom and a negative correlation with 3βHSD. Knockdown of Clock gene by siRNA resulted in a significant reduction of estradiol production by inhibiting P450arom expression, while it induced a significant increase of progesterone production by upregulating 3βHSD in KGN cells treated with forskolin. Moreover, BMP-7 had an enhancing effect on the expression of Clock mRNA and protein in KGN cells. Thus, the expression levels of Clock, being upregulated by forskolin and BMP-7, were functionally linked to estradiol production and progesterone suppression by human granulosa cells.
Collapse
Affiliation(s)
- Satoko Nagao
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kitaku, Okayama 700-8558, Japan
| | - Nahoko Iwata
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kitaku, Okayama 700-8558, Japan
| | - Yoshiaki Soejima
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kitaku, Okayama 700-8558, Japan
| | - Takaaki Takiguchi
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kitaku, Okayama 700-8558, Japan
| | - Tamami Aokage
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kitaku, Okayama 700-8558, Japan
| | - Yuka Kozato
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kitaku, Okayama 700-8558, Japan
| | - Yasuhiro Nakano
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kitaku, Okayama 700-8558, Japan
| | - Takahiro Nada
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kitaku, Okayama 700-8558, Japan
| | - Toru Hasegawa
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kitaku, Okayama 700-8558, Japan
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kitaku, Okayama 700-8558, Japan
| |
Collapse
|
26
|
Brzezinski A, Saada A, Miller H, Brzezinski-Sinai NA, Ben-Meir A. Is the aging human ovary still ticking?: Expression of clock-genes in luteinized granulosa cells of young and older women. J Ovarian Res 2018; 11:95. [PMID: 30463623 PMCID: PMC6247686 DOI: 10.1186/s13048-018-0471-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/13/2018] [Indexed: 11/30/2022] Open
Abstract
Background It has been shown – mostly in animal models - that circadian clock genes are expressed in granulosa cells and in corpora luteum and might be essential for the ovulatory process and steroidogenesis. Objective We sought to investigate which circadian clock genes exist in human granulosa cells and whether their expression and activity decrease during aging of the ovary. Study design Human luteinized granulosa cells were isolated from young (age 18–33) and older (age 39–45) patients who underwent in-vitro fertilization treatment. Levels of clock genes expression were measured in these cells 36 h after human chorionic gonadotropin stimulation. Methods Human luteinized granulosa cells were isolated from follicular fluid during oocyte retrieval. The mRNA expression levels of the circadian genes CRY1, CRY2, PER1, PER2, CLOCK, ARNTL, ARNTL2, and NPAS2 were analyzed by quantitative polymerase chain reaction. Results We found that the circadian genes CRY1, CRY2, PER1, PER2, CLOCK, ARNTL, ARNTL2, and NPAS2, are expressed in cultured human luteinized granulosa cells. Among these genes, there was a general trend of decreased expression in cells from older women but it reached statistical significance only for PER1 and CLOCK genes (fold change of 0.27 ± 0.14; p = 0.03 and 0.29 ± 0.16; p = 0.05, respectively). Conclusions This preliminary report indicates that molecular circadian clock genes exist in human luteinized granulosa cells. There is a decreased expression of some of these genes in older women. This decline may partially explain the decreased fertility and steroidogenesis of reproductive aging.
Collapse
Affiliation(s)
- Amnon Brzezinski
- Department of Obstetrics and Gynecology, The Hebrew University Hadassah Medical Center, Jerusalem, Israel.
| | - A Saada
- Department of Genetics & Metabolism, The Hebrew University Hadassah Medical Center, Jerusalem, Israel
| | - H Miller
- Department of Genetics & Metabolism, The Hebrew University Hadassah Medical Center, Jerusalem, Israel
| | - N A Brzezinski-Sinai
- Department of Obstetrics and Gynecology, The Hebrew University Hadassah Medical Center, Jerusalem, Israel
| | - A Ben-Meir
- Department of Obstetrics and Gynecology, The Hebrew University Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
27
|
Emmer KM, Russart KL, Walker WH, Nelson RJ, DeVries AC. Effects of light at night on laboratory animals and research outcomes. Behav Neurosci 2018; 132:302-314. [PMID: 29952608 PMCID: PMC6062441 DOI: 10.1037/bne0000252] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Light has substantial influences on the physiology and behavior of most laboratory animals. As such, lighting conditions within animal rooms are potentially significant and often underappreciated variables within experiments. Disruption of the light/dark cycle, primarily by exposing animals to light at night (LAN), disturbs biological rhythms and has widespread physiological consequences because of mechanisms such as melatonin suppression, sympathetic stimulation, and altered circadian clock gene expression. Thus, attention to the lighting environment of laboratory animals and maintaining consistency of a light/dark cycle is imperative for study reproducibility. Light intensity, as well as wavelength, photoperiod, and timing, are all important variables. Although modern rodent facilities are designed to facilitate appropriate light cycling, there are simple ways to modify rooms to prevent extraneous light exposure during the dark period. Attention to lighting conditions of laboratory animals by both researchers and research care staff ensures best practices for maintaining animal welfare, as well as reproducibility of research results. (PsycINFO Database Record
Collapse
Affiliation(s)
- Kathryn M. Emmer
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, 43210 USA
- Department of Veterinary Preventative Medicine, The Ohio State University, Columbus, Ohio, 43210 USA
| | - Kathryn L.G. Russart
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, 43210 USA
| | - William H. Walker
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, 43210 USA
| | - Randy J. Nelson
- Department of Behavioral Medicine and Psychiatry, West Virginia University, Morgantown, West Virginia, 26505 USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, 26505 USA
| | - A. Courtney DeVries
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, 26505 USA
- Department of Medicine, West Virginia University, Morgantown, West Virginia, 26505 USA
| |
Collapse
|
28
|
Caba M, González-Mariscal G, Meza E. Circadian Rhythms and Clock Genes in Reproduction: Insights From Behavior and the Female Rabbit's Brain. Front Endocrinol (Lausanne) 2018; 9:106. [PMID: 29599751 PMCID: PMC5862793 DOI: 10.3389/fendo.2018.00106] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/02/2018] [Indexed: 12/31/2022] Open
Abstract
Clock gene oscillations are necessary for a successful pregnancy and parturition, but little is known about their function during lactation, a period demanding from the mother multiple physiological and behavioral adaptations to fulfill the requirements of the offspring. First, we will focus on circadian rhythms and clock genes in reproductive tissues mainly in rodents. Disruption of circadian rhythms or proper rhythmic oscillations of clock genes provoke reproductive problems, as found in clock gene knockout mice. Then, we will focus mainly on the rabbit doe as this mammal nurses the young just once a day with circadian periodicity. This daily event synchronizes the behavior and the activity of specific brain regions critical for reproductive neuroendocrinology and maternal behavior, like the preoptic area. This region shows strong rhythms of the PER1 protein (product of the Per1 clock gene) associated with circadian nursing. Additionally, neuroendocrine cells related to milk production and ejections are also synchronized to daily nursing. A threshold of suckling is necessary to entrain once a day nursing; this process is independent of milk output as even virgin does (behaving maternally following anosmia) can display circadian nursing behavior. A timing motivational mechanism may regulate such behavior as mesolimbic dopaminergic cells are entrained by daily nursing. Finally, we will explore about the clinical importance of circadian rhythms. Indeed, women in chronic shift-work schedules show problems in their menstrual cycles and pregnancies and also have a high risk of preterm delivery, making this an important field of translational research.
Collapse
Affiliation(s)
- Mario Caba
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Mexico
- *Correspondence: Mario Caba,
| | - Gabriela González-Mariscal
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Enrique Meza
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Mexico
| |
Collapse
|
29
|
Shimizu T, Watanabe K, Anayama N, Miyazaki K. Effect of lipopolysaccharide on circadian clock genes Per2 and Bmal1 in mouse ovary. J Physiol Sci 2017; 67:623-628. [PMID: 28213822 PMCID: PMC10717690 DOI: 10.1007/s12576-017-0532-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/12/2017] [Indexed: 12/12/2022]
Abstract
In mammals, circadian rhythms are associated with multiple physiological events. The aim of the present study was to examine the effect of lipopolysaccharide (LPS) on circadian systems in the ovary. Immature female mice were received an intra-peritoneal injection of equine chorionic gonadotropin (eCG) and LPS. Total RNA was collected from the ovary at 6-h intervals throughout a 48 h of experimental period. The expression of the circadian genes period 2 (Per2) and brain and muscle ARNT-like 1 (Bmal1) such as circadian genes was measured by quantitative PCR. Although expression of Per2 and Bmal1 in the ovary did not display clear diurnal oscillation, LPS suppressed the amplitude of Per2 expression. Additionally, LPS inhibited the expression of cytochrome P450 aromatase (CYP19) and luteinizing hormone receptor (LHr) genes in the ovary of eCG-treated mice. Our data suggest that Per2 may be associated with the inhibition of CYP19 and LHr expression by LPS in the ovaries of immature mice.
Collapse
Affiliation(s)
- Takashi Shimizu
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 0808555, Japan.
| | - Kaya Watanabe
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 0808555, Japan
| | - Nozomi Anayama
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 0808555, Japan
| | - Koyomi Miyazaki
- Biomedical Research Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 3058568, Japan
| |
Collapse
|
30
|
Chen M, Xu Y, Miao B, Zhao H, Gao J, Zhou C. Temporal effects of human chorionic gonadotropin on expression of the circadian genes and steroidogenesis-related genes in human luteinized granulosa cells. Gynecol Endocrinol 2017; 33:570-573. [PMID: 28277108 DOI: 10.1080/09513590.2017.1296423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE It has been shown in animal models that circadian clock exists in corpora luteum which is essential for maintaining pregnancy. However, it is unknown whether circadian clock exists in corpora luteum and its relation with steroidogenesis in human ovary. STUDY DESIGN Human luteinized granulosa cells from patients who underwent in vitro fertilization treatment were purified and cultured in vitro. Accumulation patterns of circadian gene and steroidogenesis-related gene mRNAs in human luteinized granulosa cells were observed during the 48 hours after treatment with human chorionic gonadotropin (hCG) by quantitative PCR. RESULTS We found that the circadian genes CLOCK, PER2, and BMAL1 were expressed in cultured human luteinized granulosa cells. Among these genes, only expression of PER2 displayed oscillating patterns with a 16-h period in these cells after stimulation by hCG. Expression of CLOCK and BMAL1 did not show significant oscillating patterns. Expression of the steroidal acute regulatory protein (STAR) gene showed an oscillating pattern that was similar to that of PER2. Expression of CYP11A1, HSD3B2, and CYP19A1 increased significantly after hCG stimulation; however, none of these genes displayed significant oscillating patterns. CONCLUSIONS Molecular circadian clock exists in human luteinized granulosa cells and may be related with steroidogenesis in human ovary.
Collapse
Affiliation(s)
- Minghui Chen
- a Reproductive Medicine Center, Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , P.R. China and
| | - Yanwen Xu
- a Reproductive Medicine Center, Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , P.R. China and
| | - Benyu Miao
- a Reproductive Medicine Center, Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , P.R. China and
| | - Hui Zhao
- b Department of Hepatic Surgery , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , P.R. China
| | - Jun Gao
- a Reproductive Medicine Center, Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , P.R. China and
| | - Canquan Zhou
- a Reproductive Medicine Center, Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University , Guangzhou , P.R. China and
| |
Collapse
|
31
|
Komatsu K, Masubuchi S. Observation of the dynamics of follicular development in the ovary. Reprod Med Biol 2016; 16:21-27. [PMID: 29259446 PMCID: PMC5715870 DOI: 10.1002/rmb2.12010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/09/2016] [Indexed: 12/26/2022] Open
Abstract
The number of ovulated oocytes is different among mammals but does not vary much within the same species. In order to sustain periodic ovulation, follicular development must be coordinated at the tissue level. Elucidating the regulatory mechanisms of follicular development is difficult because the ovary has a complicated structure and it takes a long time for primordial follicles to develop into Graafian follicles. Therefore, it is not possible to observe follicular development by conventional experiments. The authors previously developed a new ovarian tissue culture method that enabled the observation of follicular development from the early follicle stage. These findings indicated that follicular interactions are important in regulating follicular development and ovulation. This review describes the current methods of observing follicular development in the ovary and the regulatory mechanisms of follicular development.
Collapse
Affiliation(s)
- Kouji Komatsu
- Department of PhysiologyAichi Medical UniversityAichiJapan
| | | |
Collapse
|
32
|
Chen M, Xu Y, Miao B, Zhao H, Luo L, Shi H, Zhou C. Expression pattern of circadian genes and steroidogenesis-related genes after testosterone stimulation in the human ovary. J Ovarian Res 2016; 9:56. [PMID: 27614897 PMCID: PMC5018165 DOI: 10.1186/s13048-016-0264-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/01/2016] [Indexed: 11/11/2022] Open
Abstract
Background Previous studies have shown that circadian genes might be involved in the development of polycystic ovarian syndrome (PCOS). Hyperandrogenism is a hallmark feature of PCOS. However, the effect of hyperandrogenism on circadian gene expression in human granulosa cells is unknown, and the general expression pattern of circadian genes in the human ovary is unclear. Methods Expression of the circadian proteins CLOCK and PER2 in human ovaries was observed by immunohistochemistry. The mRNA expression patterns of the circadian genes CLOCK, PER2, and BMAL1, and the steroidogenesis-related genes STAR, CYP11A1, HSD3B2, and CYP19A1 in cultured human luteinized granulosa cells were analyzed over the course of 48 h after testosterone treatment by quantitative polymerase chain reaction. Results Immunostaining of CLOCK and PER2 protein was detected in the granulosa cells of dominant antral follicles but was absent in the primordial, primary, or preantral follicles of human ovaries. After testosterone stimulation, expression of PER2 showed an oscillating pattern, with two peaks occurring at the 24th and 44th hours; expression of CLOCK increased significantly to the peak at the 24th hour, whereas expression of BMAL1 did not change significantly over time in human luteinized granulosa cells. Among the four steroidogenesis-related genes evaluated, only STAR displayed an oscillating expression pattern with two peaks occurring at the 24th and 40th hours after testosterone stimulation. Conclusions Circadian genes are expressed in the dominant antral follicles of the human ovary. Oscillating expression of the circadian gene PER2 can be induced by testosterone in human granulosa cells in vitro. Expression of STAR also displayed an oscillating pattern after testosterone stimulation. Our results indicate a potential relationship between the circadian clock and steroidogenesis in the human ovary, and demonstrate the effect of testosterone on circadian gene expression in granulosa cells.
Collapse
Affiliation(s)
- Minghui Chen
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, 58 2nd Zhongshan Road, Guangzhou, GD510080, People's Republic of China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University, 58 2nd Zhongshan Road, Guangzhou, GD510080, People's Republic of China
| | - Yanwen Xu
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, 58 2nd Zhongshan Road, Guangzhou, GD510080, People's Republic of China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University, 58 2nd Zhongshan Road, Guangzhou, GD510080, People's Republic of China
| | - Benyu Miao
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, 58 2nd Zhongshan Road, Guangzhou, GD510080, People's Republic of China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University, 58 2nd Zhongshan Road, Guangzhou, GD510080, People's Republic of China
| | - Hui Zhao
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, GD510630, People's Republic of China
| | - Lu Luo
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, 58 2nd Zhongshan Road, Guangzhou, GD510080, People's Republic of China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University, 58 2nd Zhongshan Road, Guangzhou, GD510080, People's Republic of China
| | - Huijuan Shi
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 58 2nd Zhongshan Road, Guangzhou, GD510080, People's Republic of China
| | - Canquan Zhou
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, 58 2nd Zhongshan Road, Guangzhou, GD510080, People's Republic of China. .,Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University, 58 2nd Zhongshan Road, Guangzhou, GD510080, People's Republic of China.
| |
Collapse
|
33
|
Zhang J, Liu J, Zhu K, Hong Y, Sun Y, Zhao X, Du Y, Chen ZJ. Effects of BMAL1-SIRT1-positive cycle on estrogen synthesis in human ovarian granulosa cells: an implicative role of BMAL1 in PCOS. Endocrine 2016; 53:574-84. [PMID: 27117143 DOI: 10.1007/s12020-016-0961-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/14/2016] [Indexed: 01/24/2023]
Abstract
Brain and muscle ARNT-like protein 1 (BMAL1) is necessary for fertility and has been found to be essential to follicle growth and steroidogenesis. Sirtuin1 (SIRT1) has been reported to interact with BMAL1 and function in a circadian manner. Evidence has shown that SIRT1 regulates aromatase expression in estrogen-producing cells. We aimed to ascertain if there is a relationship between polycystic ovary syndrome (PCOS) and BMAL1, and whether and how BMAL1 takes part in estrogen synthesis in human granulosa cells (hGCs). Twenty-four women diagnosed with PCOS and 24 healthy individuals undergoing assisted reproduction were studied. BMAL1 expression in their granulosa cells (GCs) was observed by quantitative real-time polymerase chain reaction (qRT-PCR). The level of expression in the PCOS group was lower than that of the group without PCOS (p < 0.05). We also analyzed estrogen synthesis and aromatase expression in KGN cell lines. Both were downregulated after BMAL1 and SIRT1 knock-down and, conversely, upregulated after overexpression treatments of these two genes in KGN cells. Both BMAL1 and SIRT1 had a mutually positive regulation, as did the phosphorylation of JNK. Furthermore, JNK overexpression increased estrogen synthesis activity and the expression levels of aromatase, BMAL1, and SIRT1. In KGN and hGCs, estrogen synthesis and aromatase expression were downregulated after treatment with JNK and SIRT1 inhibitors. In addition, BMAL1, SIRT1, and JNK expression levels were all downregulated. Our results demonstrate the effects of BMAL1 on estrogen synthesis in hGCs and suggest a BMAL1-SIRT1-JNK positive feedback cycle in this process, which points out an important role of BMAL1 in the development of PCOS.
Collapse
Affiliation(s)
- Jiaou Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Lingshan Road, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Jiansheng Liu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Lingshan Road, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Kai Zhu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Lingshan Road, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Yan Hong
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Lingshan Road, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Yun Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Lingshan Road, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Xiaoming Zhao
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Lingshan Road, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Yanzhi Du
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Lingshan Road, Shanghai, 200135, China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China.
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 845 Lingshan Road, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory for Reproductive Endocrinology of Ministry of Education, Shandong Provincial Key Laboratory of Reproductive Medicine, Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, Jingwu Road 324, Jinan, 250021, China
| |
Collapse
|
34
|
Mereness AL, Murphy ZC, Forrestel AC, Butler S, Ko C, Richards JS, Sellix MT. Conditional Deletion of Bmal1 in Ovarian Theca Cells Disrupts Ovulation in Female Mice. Endocrinology 2016; 157:913-27. [PMID: 26671182 PMCID: PMC5393362 DOI: 10.1210/en.2015-1645] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/08/2015] [Indexed: 12/31/2022]
Abstract
Rhythmic events in female reproductive physiology, including ovulation, are tightly controlled by the circadian timing system. The molecular clock, a feedback loop oscillator of clock gene transcription factors, dictates rhythms of gene expression in the hypothalamo-pituitary-ovarian axis. Circadian disruption due to environmental factors (eg, shift work) or genetic manipulation of the clock has negative impacts on fertility. Although the central pacemaker in the suprachiasmatic nucleus classically regulates the timing of ovulation, we have shown that this rhythm also depends on phasic sensitivity to LH. We hypothesized that this rhythm relies on clock function in a specific cellular compartment of the ovarian follicle. To test this hypothesis we generated mice with deletion of the Bmal1 locus in ovarian granulosa cells (GCs) (Granulosa Cell Bmal1 KO; GCKO) or theca cells (TCs) (Theca Cell Bmal1 KO; TCKO). Reproductive cycles, preovulatory LH secretion, ovarian morphology and behavior were not grossly altered in GCKO or TCKO mice. We detected phasic sensitivity to LH in wild-type littermate control (LC) and GCKO mice but not TCKO mice. This decline in sensitivity to LH is coincident with impaired fertility and altered patterns of LH receptor (Lhcgr) mRNA abundance in the ovary of TCKO mice. These data suggest that the TC is a pacemaker that contributes to the timing and amplitude of ovulation by modulating phasic sensitivity to LH. The TC clock may play a critical role in circadian disruption-mediated reproductive pathology and could be a target for chronobiotic management of infertility due to environmental circadian disruption and/or hormone-dependent reprogramming in women.
Collapse
MESH Headings
- ARNTL Transcription Factors/genetics
- Animals
- Behavior, Animal
- CLOCK Proteins/genetics
- CLOCK Proteins/metabolism
- Circadian Rhythm/genetics
- Cryptochromes/genetics
- Cryptochromes/metabolism
- Female
- Fertility/genetics
- Gene Expression
- Granulosa Cells/metabolism
- Infertility/genetics
- Luteinizing Hormone/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Nuclear Receptor Subfamily 1, Group D, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- Ovarian Follicle/metabolism
- Ovary/anatomy & histology
- Ovulation/genetics
- Ovulation Induction
- Period Circadian Proteins/genetics
- Period Circadian Proteins/metabolism
- RNA, Messenger/metabolism
- Real-Time Polymerase Chain Reaction
- Receptors, FSH/genetics
- Receptors, FSH/metabolism
- Receptors, LH/genetics
- Theca Cells/metabolism
Collapse
Affiliation(s)
- Amanda L Mereness
- Department of Medicine (A.L.M., Z.C.M., A.C.F., S.B., M.T.S.), Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642; Department of Comparative Biosciences (C.K.), College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61802; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Zachary C Murphy
- Department of Medicine (A.L.M., Z.C.M., A.C.F., S.B., M.T.S.), Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642; Department of Comparative Biosciences (C.K.), College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61802; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Andrew C Forrestel
- Department of Medicine (A.L.M., Z.C.M., A.C.F., S.B., M.T.S.), Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642; Department of Comparative Biosciences (C.K.), College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61802; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Susan Butler
- Department of Medicine (A.L.M., Z.C.M., A.C.F., S.B., M.T.S.), Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642; Department of Comparative Biosciences (C.K.), College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61802; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - CheMyong Ko
- Department of Medicine (A.L.M., Z.C.M., A.C.F., S.B., M.T.S.), Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642; Department of Comparative Biosciences (C.K.), College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61802; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - JoAnne S Richards
- Department of Medicine (A.L.M., Z.C.M., A.C.F., S.B., M.T.S.), Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642; Department of Comparative Biosciences (C.K.), College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61802; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Michael T Sellix
- Department of Medicine (A.L.M., Z.C.M., A.C.F., S.B., M.T.S.), Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642; Department of Comparative Biosciences (C.K.), College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61802; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
35
|
Chen H, Isayama K, Kumazawa M, Zhao L, Yamauchi N, Shigeyoshi Y, Hashimoto S, Hattori MA. Integration of the nuclear receptor REV-ERBα linked with circadian oscillators in the expressions ofAlas1, Ppargc1a, andIl6genes in rat granulosa cells. Chronobiol Int 2015; 32:739-49. [DOI: 10.3109/07420528.2015.1042582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
36
|
Murphy BA, Blake CM, Brown JA, Martin AM, Forde N, Sweeney LM, Evans ACO. Evidence of a molecular clock in the ovine ovary and the influence of photoperiod. Theriogenology 2015; 84:208-16. [PMID: 25892340 DOI: 10.1016/j.theriogenology.2015.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 10/23/2022]
Abstract
The influence of the central circadian clock on reproductive timing is well established. Much less is known about the role of peripheral oscillators such as those in the ovary. We investigated the influence of photoperiod and timing of the LH surge on expression of circadian clock genes and genes involved in steroidogenesis in ovine ovarian stroma. Seventy-two Suffolk cross ewes were divided into two groups, and their estrous cycles were synchronized. Progestagen sponge removal was staggered by 12 hours between the groups such that expected LH peak would occur midway through either the light or dark phase of the photoperiodic cycle. Four animals from each group were killed, and their ovaries were harvested beginning 36 hours after sponge removal, at 6-hour intervals for 48 hours. Blood was sampled every 3 hours for the period 24 to 48 hours after sponge removal to detect the LH surge. The interval to peak LH did not differ between the groups (36.2 ± 1.2 and 35.6 ± 1.1 hours, respectively). There was an interaction between group and the time of sponge removal on the expression of the core clock genes ARNTL, PER1, CRY1, CLOCK, and DBP (P < 0.01, P < 0.05, P < 0.01, P < 0.01, and P < 0.01, respectively). As no significant interaction between group and time of day was detected, the datasets were combined. Statistically significant rhythmic oscillation was observed for ARNTL, CLOCK, CRY1 (P < 0.01, respectively), PTGS2, DBP, PTGER2, and CYP17A1 (P < 0.05, respectively), confirming the existence of a time-sensitive functionality within the ovary, which may influence steroidogenesis and is independent of the ovulatory cycle.
Collapse
Affiliation(s)
- B A Murphy
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - C M Blake
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - J A Brown
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - A-M Martin
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - N Forde
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - L M Sweeney
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland.
| | - A C O Evans
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
37
|
Incorporation of genetic technologies associated with applied reproductive technologies to enhance world food production. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 752:77-96. [PMID: 24170355 DOI: 10.1007/978-1-4614-8887-3_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Animal breeding and reproductive physiology have been closely related throughout the history of animal production science. Artificial insemination provides the best method of increasing the influence of sires with superior genetics to improve production traits. Multiple ovulation embryo transfer (MOET) provides some ability to increase the genetic influence of the maternal line as well. The addition of genetic technologies to this paradigm allows for improved methods of selecting sires and dams carrying the best genes for production and yield of edible products and resistance to diseases and parasites. However, decreasing the number of influential parents within a population also increases the risk of propagating a recessive gene that could negatively impact the species (Reprod Domest Anim 44:792-796, 2009; BMC Genomics 11:337, 2010). Furthermore, antagonistic genotypic relationships between production traits and fertility (Anim Prod Sci 49:399-412, 2009; Anim Genet 43:442-446, 2012) suggest that care must be taken to ensure that increasing the frequency of genes with a positive influence on production does not negatively impact the fertility of the replacement females entering the herd.
Collapse
|
38
|
Chen H, Zhao L, Kumazawa M, Yamauchi N, Shigeyoshi Y, Hashimoto S, Hattori MA. Downregulation of core clock gene Bmal1 attenuates expression of progesterone and prostaglandin biosynthesis-related genes in rat luteinizing granulosa cells. Am J Physiol Cell Physiol 2013; 304:C1131-40. [DOI: 10.1152/ajpcell.00008.2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ovarian circadian oscillators have been implicated in the reproductive processes of mammals. However, there are few reports regarding the detection of ovarian clock-controlled genes (CCGs). The present study was designed to unravel the mechanisms through which CCG ovarian circadian oscillators regulate fertility, primarily using quantitative RT-PCR and RNA interference against Bmal1 in rat granulosa cells. Mature granulosa cells were prepared from mouse Per2-destabilized luciferase ( dLuc) reporter gene transgenic rats. A real-time monitoring system of Per2 promoter activity was employed to detect Per2-dLuc oscillations. The cells exposed to luteinizing hormone (LH) displayed clear Per2-dLuc oscillations and a rhythmic expression of clock genes ( Bmal1, Per1, Per2, Rev-erbα, and Dbp). Meanwhile, the examined ovarian genes ( Star, Cyp19a1, Cyp11a1, Ptgs2, Lhcgr, and p53) showed rhythmic transcript profiles except for Hsd3b2, indicating that these rhythmic expression genes may be CCGs. Notably, Bmal1 small interfering (si)RNA treatment significantly decreased both the amplitude of Per2-dLuc oscillations and Bmal1 mRNA levels compared with nonsilencing RNA treatment in luteinizing granulosa cells. Depletion of Bmal1 by siRNA decreased the transcript levels of clock genes ( Per1, Per2, Rev-erbα, and Dbp) and examined ovarian genes ( Star, Cyp19a1, Cyp11a1, Ptgs2, Hsd3b2, and Lhcgr). Accordingly, knockdown of Bmal1 also inhibited the synthesis of progesterone and prostaglandin E2, which are associated with crucial reproductive processes. Collectively, these data suggest that ovarian circadian oscillators regulate the synthesis of steroid hormones and prostaglandins through ovarian-specific CCGs in response to LH stimuli. The present study provides new insights into the physiologic significance of Bmal1 related to fertility in ovarian circadian oscillators.
Collapse
Affiliation(s)
- Huatao Chen
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Lijia Zhao
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Makoto Kumazawa
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Nobuhiko Yamauchi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yasufumi Shigeyoshi
- Department of Anatomy and Neurobiology, Kinki University School of Medicine, Osaka, Japan; and
| | | | - Masa-aki Hattori
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
39
|
Chen H, Zhao L, Chu G, Kito G, Yamauchi N, Shigeyoshi Y, Hashimoto S, Hattori MA. FSH induces the development of circadian clockwork in rat granulosa cells via a gap junction protein Cx43-dependent pathway. Am J Physiol Endocrinol Metab 2013; 304:E566-75. [PMID: 23299500 DOI: 10.1152/ajpendo.00432.2012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The present study was designed to assess the relationship between gap junctions and the maturation of a clock system in rat granulosa cells stimulated by follicle-stimulating hormone (FSH). Immature and mature granulosa cells were prepared by puncturing the ovaries of diethylstilbestrol- and equine chorionic gonadotropin (eCG)-treated mouse Period2 (Per2)-dLuc reporter gene transgenic rats, respectively. Mature granulosa cells exposed to dexamethasone (DXM) synchronization displayed several Per2-dLuc oscillations and a rhythmic expression of clock genes. Intriguingly, we observed clear evidence that the FSH stimulation significantly increased the amplitude of Per2 oscillations in the granulosa cells, which was confirmed by the elevation of the Per2 and Rev-erbα (Nr1d1) mRNA levels. FSH also induced a major phase-advance shift of Per2 oscillations. The mature granulosa cells cultured for 2 days with FSH expressed higher mRNA levels of Per2, Rev-erbα, Bmal1 (Arnt1), Lhcgr, and connexin (Cx) 43 (Gja1) compared with the immature granulosa cells. Consistently, our immunofluorescence results revealed abundant Cx43 protein in antral follicles stimulated with eCG and weak or no fluorescence signal of Cx43 in primary and preantral follicles. Similar results were confirmed by Western blotting analysis. Two gap junction blockers, lindane and carbenoxolone (CBX), significantly decreased the amplitude of Per2 oscillations, which further adhered significant decreases in Per2 and Rev-erbα transcript levels. In addition, both lindane and CBX induced a clear phase-delay shift of Per2 oscillations. These findings suggest that FSH induces the development of the clock system by increasing the expression of Cx43.
Collapse
Affiliation(s)
- Huatao Chen
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Villamizar N, Ribas L, Piferrer F, Vera LM, Sánchez-Vázquez FJ. Impact of daily thermocycles on hatching rhythms, larval performance and sex differentiation of zebrafish. PLoS One 2012; 7:e52153. [PMID: 23284912 PMCID: PMC3527402 DOI: 10.1371/journal.pone.0052153] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 11/08/2012] [Indexed: 12/16/2022] Open
Abstract
In the wild, water temperature cycles daily: it warms up after sunrise, and cools rapidly after sunset. Surprisingly, the impact of such daily thermocycles during the early development of fish remains neglected. We investigated the influence of constant vs daily thermocycles in zebrafish, from embryo development to sexual differentiation, by applying four temperature regimens: two constant (24°C and 28°C) and two daily thermocycles: 28:24°C, TC (thermophase coinciding with daytime, and cryophase coinciding with night-time) and 24:28°C, CT (opposite to TC) in a 12:12 h light:dark cycle (LD). Embryo development was temperature-dependent but enhanced at 28°C and TC. Hatching rhythms were diurnal (around 4 h after lights on), but temperature- and cycle-sensitive, since hatching occurred sooner at 28°C (48 hours post fertilization; hpf) while it was delayed at 24°C (96 hpf). Under TC, hatching occurred at 72 hpf, while under CT hatching displayed two peaks (at 70 hpf and 94 hpf). In constant light (LL) or darkness (DD), hatching rhythms persisted with tau close to 24 h, suggesting a clock-controlled “gating” mechanism. Under 28°C or TC, larvae showed the best performance (high growth and survival, and low malformations). The sex ratio was strongly influenced by temperature, as the proportion of females was higher in CT and TC (79 and 83% respectively), contrasting with 28°C and 24°C, which led to more males (83 and 76%). Ovarian aromatase (cyp19a) expression in females was highest in TC and CT (6.5 and 4.6 fold higher than at 28°C, respectively); while anti-müllerian hormone (amh) expression in males increased in testis at 24°C (3.6 fold higher compared to TC) and particularly at 28°C (14.3 fold increase). Taken together, these findings highlight the key role of environmental cycles during early development, which shaped the daily rhythms in fish embryo and larvae, and ultimately influenced sex differentiation.
Collapse
Affiliation(s)
- Natalia Villamizar
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
| | - Laia Ribas
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Luisa M. Vera
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
| | - Francisco Javier Sánchez-Vázquez
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
- * E-mail:
| |
Collapse
|
41
|
Liu Z, Chu G. Chronobiology in mammalian health. Mol Biol Rep 2012; 40:2491-501. [DOI: 10.1007/s11033-012-2330-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 11/19/2012] [Indexed: 11/30/2022]
|
42
|
Spencer S, Falcon E, Kumar J, Krishnan V, Mukherjee S, Birnbaum SG, McClung CA. Circadian genes Period 1 and Period 2 in the nucleus accumbens regulate anxiety-related behavior. Eur J Neurosci 2012; 37:242-50. [PMID: 23039899 DOI: 10.1111/ejn.12010] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 08/29/2012] [Accepted: 09/01/2012] [Indexed: 11/27/2022]
Abstract
It has been suggested for some time that circadian rhythm abnormalities underlie the development of multiple psychiatric disorders. However, it is unclear how disruptions in individual circadian genes might regulate mood and anxiety. Here we found that mice lacking functional mPeriod 1 (mPer1) or mPeriod 2 (mPer2) individually did not have consistent behavioral abnormalities in measures of anxiety-related behavior. However, mice deficient in both mPer1 and mPer2 had an increase in levels of anxiety-like behavior in multiple measures. Moreover, we found that mPer1 and mPer2 expression was reduced in the nucleus accumbens (NAc) after exposure to chronic social defeat stress, a paradigm that led to increased anxiety-related behavior. Following social defeat, chronic treatment with fluoxetine normalized Per gene expression towards wild-type levels. Knockdown of both mPer1 and mPer2 expression via RNA interference specifically in the NAc led to a similar increase in anxiety-like behavior as seen in the mutant animals. Taken together, these results implicate the Per genes in the NAc in response to stress and the development of anxiety.
Collapse
Affiliation(s)
- Sade Spencer
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Gräs S, Georg B, Jørgensen HL, Fahrenkrug J. Expression of the clock genes Per1 and Bmal1 during follicle development in the rat ovary. Effects of gonadotropin stimulation and hypophysectomy. Cell Tissue Res 2012; 350:539-48. [PMID: 22940729 DOI: 10.1007/s00441-012-1489-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 08/16/2012] [Indexed: 12/15/2022]
Abstract
Daily oscillations of clock genes have recently been demonstrated in the ovaries of several species. Clock gene knockout or mutant mice demonstrate a variety of reproductive defects. Accumulating evidence suggests that these rhythms act to synchronise the expression of specific ovarian genes to hypothalamo-pituitary signals and that they are regulated by one or both of the gonadotropins. The aim of this study has been to examine the spatio-temporal expression of the clock genes Per1 and Bmal1 during gonadotropin-independent and gonadotropin-dependent follicle development in the rat ovary. We have examined the ovaries of prepubertal rats, of prepubertal rats stimulated with equine chorionic gonadotropin (eCG)/human chorionic gonadotropin (hCG) and of hypophysectomised adult animals. Using quantitative reverse transcription with the polymerase chain reaction, in situ hybridisation histochemistry and immunohistochemistry, we have demonstrated that the expression of the two clock genes is low and arrhythmic in ovarian cells during early gonadotropin-independent follicle development in prepubertal animals and in hypophysectomised animals. We have also demonstrated that the expression of the clock genes becomes rhythmic following eCG stimulation in the theca interna cells and the secondary interstitial cells and that, following additional hCG stimulation, the expression of the clock genes also becomes rhythmic in the granulosa cells of preovulatory follicles. These findings link the initiation of clock gene rhythms in the rat ovary to the luteinising hormone receptor and suggest a functional link to androgen and progesterone production. In hypophysectomised animals, rhythmic clock gene expression is also observed in the corpora lutea and in secondary interstitial cells demonstrating that, in these compartments, entrainment of clock gene rhythms is gonadotropin-independent.
Collapse
Affiliation(s)
- Søren Gräs
- Department of Obstetrics and Gynecology, Herlev Hospital, Faculty of Health Sciences, University of Copenhagen, Denmark.
| | | | | | | |
Collapse
|
44
|
Expressions of the circadian genes Per2, Bmal1, Clock and Cry1 during the different stages of follicular development and their regulation by FSH in bovine granulosa cells from small follicles. Livest Sci 2012. [DOI: 10.1016/j.livsci.2012.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|