1
|
Balan I, Grusca A, Chéry SL, Materia BR, O’Buckley TK, Morrow AL. Neurosteroid [3α,5α]-3-Hydroxy-pregnan-20-one Enhances the CX3CL1-CX3CR1 Pathway in the Brain of Alcohol-Preferring Rats with Sex-Specificity. Life (Basel) 2024; 14:860. [PMID: 39063614 PMCID: PMC11277648 DOI: 10.3390/life14070860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/04/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
This study investigates the impact of allopregnanolone ([3α,5α]3-hydroxypregnan-20-one or 3α,5α-tetrahydroprogesterone (3α,5α-THP); 10 mg/kg, IP) on fractalkine/CX3-C motif chemokine ligand 1 (CX3CL1) levels, associated signaling components, and markers for microglial and astrocytic cells in the nucleus accumbens (NAc) of male and female alcohol-preferring (P) rats. Previous research suggested that 3α,5α-THP enhances anti-inflammatory interleukin-10 (IL-10) cytokine production in the brains of male P rats, with no similar effect observed in females. This study reveals that 3α,5α-THP elevates CX3CL1 levels by 16% in the NAc of female P rats, with no significant changes observed in males. The increase in CX3CL1 levels induced by 3α,5α-THP was observed in females across multiple brain regions, including the NAc, amygdala, hypothalamus, and midbrain, while no significant effect was noted in males. Additionally, female P rats treated with 3α,5α-THP exhibited notable increases in CX3CL1 receptor (CX3CR1; 48%) and transforming growth factor-beta 1 (TGF-β1; 24%) levels, along with heightened activation (phosphorylation) of signal transducer and activator of transcription 1 (STAT1; 85%) in the NAc. Conversely, no similar alterations were observed in male P rats. Furthermore, 3α,5α-THP decreased glial fibrillary acidic protein (GFAP) levels by 19% in both female and male P rat NAc, without affecting microglial markers ionized calcium-binding adaptor molecule 1 (IBA1) and transmembrane protein 119 (TMEM119). These findings indicate that 3α,5α-THP enhances the CX3CL1/CX3CR1 pathway in the female P rat brain but not in males, primarily influencing astrocyte reactivity, with no observed effect on microglial activation.
Collapse
Affiliation(s)
- Irina Balan
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.)
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adelina Grusca
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.)
| | - Samantha Lucenell Chéry
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.)
- Neuroscience Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Baylee R. Materia
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.)
| | - Todd K. O’Buckley
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.)
| | - A. Leslie Morrow
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.)
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Srikanth M, Rasool M. Resistin - A Plausible Therapeutic Target in the Pathogenesis of Psoriasis. Immunol Invest 2024; 53:115-159. [PMID: 38054436 DOI: 10.1080/08820139.2023.2288836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Resistin, a cytokine hormone predominantly secreted by adipose tissue, is elevated in various metabolic disorders such as obesity, type 2 diabetes, and cardiovascular disease. In addition to its involvement in metabolic regulation, resistin has been implicated in the pathogenesis of psoriasis, a chronic inflammatory skin disorder. Numerous studies have reported increased resistin levels in psoriatic skin lesions, suggesting a possible association between resistin and psoriasis. Recent studies have suggested the potential involvement of resistin in the development and progression of certain cancers. Resistin is overexpressed in breast, colorectal, and gastric cancers. This suggests that it may play a role in the development of these cancers, possibly by inducing inflammation and cell growth. The link between resistin and cancer raises the possibility of shared underlying mechanisms driving the pathogenesis of psoriasis. Chronic inflammation, one such mechanism, is a hallmark of psoriasis and cancer. Further research is needed to fully understand the relationship between resistin and psoriasis. Identifying potential therapeutic targets is crucial for effective management of psoriasis. By doing so, we may be able to develop more effective treatment options for individuals living with psoriasis and ultimately improve their quality of life. Ultimately, a more comprehensive understanding of the mechanisms underlying the impact of resistin on psoriasis is essential for advancing our knowledge and finding new ways to treat and manage this challenging condition.
Collapse
Affiliation(s)
- Manupati Srikanth
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| |
Collapse
|
3
|
Abdalla MMI. Serum resistin and the risk for hepatocellular carcinoma in diabetic patients. World J Gastroenterol 2023; 29:4271-4288. [PMID: 37545641 PMCID: PMC10401662 DOI: 10.3748/wjg.v29.i27.4271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/11/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the predominant type of liver cancer, is a major contributor to cancer-related fatalities across the globe. Diabetes has been identified as a significant risk factor for HCC, with recent research indicating that the hormone resistin could be involved in the onset and advancement of HCC in diabetic individuals. Resistin is a hormone that is known to be involved in inflammation and insulin resistance. Patients with HCC have been observed to exhibit increased resistin levels, which could be correlated with more severe disease stages and unfavourable prognoses. Nevertheless, the exact processes through which resistin influences the development and progression of HCC in diabetic patients remain unclear. This article aims to examine the existing literature on the possible use of resistin levels as a biomarker for HCC development and monitoring. Furthermore, it reviews the possible pathways of HCC initiation due to elevated resistin and offers new perspectives on comprehending the fundamental mechanisms of HCC in diabetic patients. Gaining a better understanding of these processes may yield valuable insights into HCC’s development and progression, as well as identify possible avenues for prevention and therapy.
Collapse
Affiliation(s)
- Mona Mohamed Ibrahim Abdalla
- Department of Human Biology, School of Medicine, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Serum resistin is predictive marker of development of new digital ulcers in systemic sclerosis. Clin Exp Med 2021; 22:421-426. [PMID: 34462844 PMCID: PMC9338111 DOI: 10.1007/s10238-021-00756-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/19/2021] [Indexed: 11/04/2022]
Abstract
Systemic sclerosis (SSc) is autoimmune disease characterized by endothelial dysfunction and microvascular damage. Resistin has been implied in microvascular dysfunction. Objective of this study is to evaluate the association between baseline resistin and development of new digital ulcers (DUs) in SSc patients. At baseline, serum resistin has been assessed in 70 female SSc patients and 26 healthy controls (HC). In SSc patients, clinical assessment was performed at baseline and after a 52-weeks follow-up. Serum resistin level was increased in SSc patients compared to HC [5.89 ng/ml (2.5 ng/ml–8.1 ng/ml) vs 2.3 ng/ml (0.4 ng/ml–2.4 ng/ml), p = 0.0004)]. Resistin was lower (p = 0.005) in SSc patients with early capillaroscopic pattern than patients with active or late capillaroscopic pattern [2.49 ng/ml (0.89 ng/ml–5.81 ng/ml) vs 7.11 ng/ml (3.48 ng/ml–11.35 ng/ml) and 6.49 ng/ml (3.35 ng/ml–8.87 ng/ml), respectively]. After a 52-weeks follow-up, 34 (48.6%) patients developed new DUs. Median serum resistin was significantly higher in patients with new DUs than in patients without new DUs [6.54 ng/ml (3.35 ng/ml–11.02 ng/ml) vs 4.78 ng/ml (1.06 ng/ml–7.6 ng/ml), p = 0.019]. Kaplan–Meier curves show a significantly reduced free survival from DUs in patients with increased resistin (p = 0.002). In multivariate analysis, resistin is associated with the development of new DUs. Increased serum resistin level is a predictive marker of new DUs in SSc.
Collapse
|
5
|
Li Y, Yang Q, Cai D, Guo H, Fang J, Cui H, Gou L, Deng J, Wang Z, Zuo Z. Resistin, a Novel Host Defense Peptide of Innate Immunity. Front Immunol 2021; 12:699807. [PMID: 34220862 PMCID: PMC8253364 DOI: 10.3389/fimmu.2021.699807] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022] Open
Abstract
Resistin, a cysteine-rich protein, expressed in adipocytes, was initially proposed as a link between obesity and diabetes in mice. In humans, resistin is considered to be a pro-inflammatory molecule expressed in immune cells, which plays a regulatory role in many chronic inflammatory diseases, metabolic diseases, infectious diseases, and cancers. However, increasing evidence shows that resistin functions as a host defense peptide of innate immunity, in terms of its wide-spectrum anti-microbial activity, modulation of immunity, and limitation of microbial product-induced inflammation. To date, the understanding of resistin participating in host defense mechanism is still limited. The review aims to summarize current knowledge about the biological properties, functions, and related mechanisms of resistin in host defense, which provides new insights into the pleiotropic biological function of resistin and yields promising strategies for developing new antimicrobial therapeutic agents.
Collapse
Affiliation(s)
- Yanran Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiyuan Yang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dongjie Cai
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hongrui Guo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jing Fang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hengmin Cui
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liping Gou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhisheng Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Kytikova OY, Antonyuk MV, Gvozdenko TA, Novgorodtseva TP. The pathophysiological role of adipokines in the development of bronchial asthma combined with obesity. TERAPEVT ARKH 2021; 93:327-332. [DOI: 10.26442/00403660.2021.03.200659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 11/22/2022]
Abstract
The combined course of bronchial asthma (BA) and obesity is one of the urgent medical and social problems that requires a comprehensive and careful study in connection with a decrease in the quality of life of such patients, an increase in the frequency, duration of hospitalization and a high economic burden for the state as a whole. The relationship between BA and obesity is now confirmed by numerous studies, at the same time, despite the variability of the proposed mechanisms of pathogenetic effects of obesity on asthma, metabolic aspects of the relationship of these diseases need further study. Adipose tissue hormones are responsible for the energy homeostasis of the body therefore, excessive accumulation of adipose tissue is accompanied by the development of an imbalance in metabolic processes in various organs and tissues. Due to the emergence of new scientific data on the role and function of adipokines in the body, metabolic effects of adipokines are considered in the focus of their pathophysiological association with obesity and asthma. This literary review highlights the current understanding of the role of metabolic effects of the most studied adipokines (resistin, retinol-binding protein, leptin and adiponectin) in the development of obesity and BA. Gender and age-dependent features of adipokine levels in BA and obesity are described. Data on the confirmed role of adiponectin and leptin in the progression of BA combined with obesity are presented. It has been shown that the role of resistin and retinol-binding protein in the development of BA combined with obesity has not been studied. It is demonstrated that further study of metabolic activity of adipokines in BA is an actual and perspective direction of researches which will allow to develop new diagnostic and therapeutic strategies in patients with BA with obesity.
Collapse
|
7
|
Li X, Wang H. Multiple organs involved in the pathogenesis of non-alcoholic fatty liver disease. Cell Biosci 2020; 10:140. [PMID: 33372630 PMCID: PMC7720519 DOI: 10.1186/s13578-020-00507-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/27/2020] [Indexed: 02/08/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents the leading cause of chronic liver disease worldwide and the anticipated health burden is huge. There are limited therapeutic approaches for NAFLD now. It’s imperative to get a better understanding of the disease pathogenesis if new treatments are to be discovered. As the hepatic manifestation of metabolic syndrome, this disease involves complex interactions between different organs and regulatory pathways. It’s increasingly clear that brain, gut and adipose tissue all contribute to NAFLD pathogenesis and development, in view of their roles in energy homeostasis. In the present review, we try to summarize currently available data regarding NAFLD pathogenesis and to lay a particular emphasis on the inter-organ crosstalk evidence.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China. .,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, China.
| |
Collapse
|
8
|
Frommer KW, Neumann E, Müller-Ladner U. Role of adipokines in systemic sclerosis pathogenesis. Eur J Rheumatol 2020; 7:S165-S172. [PMID: 33164731 PMCID: PMC7647688 DOI: 10.5152/eurjrheum.2020.19107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/05/2020] [Indexed: 12/25/2022] Open
Abstract
Systemic sclerosis (SSc) is a chronic autoimmune connective tissue disease with manifestations in multiple organs, including the skin, lung, heart, joints, gastrointestinal tract, kidney, and liver. Its pathophysiology is characterized by inflammation, fibrosis, and vascular damage, with an increased expression of numerous cytokines, chemokines, and growth factors. However, besides these growth factors and cytokines, another group of molecules may be involved in the pathogenesis of SSc: the adipokines. Adipokines are proteins with metabolic and cytokine-like properties, which were originally found to be expressed by adipose tissue. However, their expression is not limited to this tissue, and they can also be found in other organs. Therefore, this review will describe the current knowledge regarding adipokines in the context of SSc and try to elucidate their potential role in the pathogenesis of SSc.
Collapse
Affiliation(s)
- Klaus W Frommer
- Department of Rheumatology and Clinical Immunology, Justus-Liebig-University Giessen, Hessen, Germany
| | - Elena Neumann
- Department of Rheumatology and Clinical Immunology, Justus-Liebig-University Giessen, Hessen, Germany
| | - Ulf Müller-Ladner
- Department of Rheumatology and Clinical Immunology, Justus-Liebig-University Giessen, Hessen, Germany
| |
Collapse
|
9
|
Macchi C, Greco MF, Botta M, Sperandeo P, Dongiovanni P, Valenti L, Cicero AFG, Borghi C, Lupo MG, Romeo S, Corsini A, Magni P, Ferri N, Ruscica M. Leptin, Resistin, and Proprotein Convertase Subtilisin/Kexin Type 9: The Role of STAT3. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2226-2236. [PMID: 32798443 DOI: 10.1016/j.ajpath.2020.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/17/2020] [Accepted: 07/30/2020] [Indexed: 01/13/2023]
Abstract
In a condition of dysfunctional visceral fat depots, as in the case of obesity, alterations in adipokine levels may be detrimental for the cardiovascular system. The proinflammatory leptin and resistin adipokines have been described as possible links between obesity and atherosclerosis. The present study was aimed at evaluating whether proprotein convertase subtilisin/kexin type 9 (PCSK9), a key regulator of low-density lipoprotein metabolism, is induced by leptin and resistin through the involvement of the inflammatory pathway of STAT3. In HepG2 cells, leptin and resistin up-regulated PCSK9 gene and protein expression, as well as the phosphorylation of STAT3. Upon STAT3 silencing, leptin and resistin lost their ability to activate PCSK9. The knockdown of STAT3 did not affect the expression of leptin and resistin receptors or that of PCSK9. The analysis of the human PCSK9 promoter region showed that the two adipokines raised PCSK9 promoter activity via the involvement of a sterol regulatory element motif. In healthy males, a positive association between circulating leptin and PCSK9 levels was found only when the body mass index was <25 kg/m2. In conclusion, this study identified STAT3 as one of the molecular regulators of leptin- and resistin-mediated transcriptional induction of PCSK9.
Collapse
Affiliation(s)
- Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| | - Maria Francesca Greco
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Margherita Botta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Paola Sperandeo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy; Translational Medicine, Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Arrigo F G Cicero
- Department of Medicine and Surgery Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Claudio Borghi
- Department of Medicine and Surgery Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Maria Giovanna Lupo
- Department of Pharmaceutical and Pharmacological Sciences, Università degli Studi di Padova, Padova, Italy
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden; Clinical Nutrition Unit, Department of Medical and Surgical Science, Magna Graecia University, Catanzaro, Italy; Department of Cardiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; IRCCS MultiMedica, Sesto S. Giovanni, Milan, Italy
| | - Paolo Magni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; IRCCS MultiMedica, Sesto S. Giovanni, Milan, Italy
| | - Nicola Ferri
- Department of Pharmaceutical and Pharmacological Sciences, Università degli Studi di Padova, Padova, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
10
|
Convery O, Gargan S, Kickham M, Schroder M, O'Farrelly C, Stevenson NJ. The hepatitis C virus (HCV) protein, p7, suppresses inflammatory responses to tumor necrosis factor (TNF)-α via signal transducer and activator of transcription (STAT)3 and extracellular signal-regulated kinase (ERK)-mediated induction of suppressor of cytokine signaling (SOCS)3. FASEB J 2019; 33:8732-8744. [PMID: 31163989 DOI: 10.1096/fj.201800629rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Viruses use a spectrum of immune evasion strategies that enable infection and replication. The acute phase of hepatitis C virus (HCV) infection is characterized by nonspecific and often mild clinical symptoms, suggesting an immunosuppressive mechanism that, unless symptomatic liver disease presents, allows the virus to remain largely undetected. We previously reported that HCV induced the regulatory protein suppressor of cytokine signaling (SOCS)3, which inhibited TNF-α-mediated inflammatory responses. However, the mechanism by which HCV up-regulates SOCS3 remains unknown. Here we show that the HCV protein, p7, enhances both SOCS3 mRNA and protein expression. A p7 inhibitor reduced SOCS3 induction, indicating that p7's ion channel activity was required for optimal up-regulation of SOCS3. Short hairpin RNA and chemical inhibition revealed that both the Janus kinase-signal transducer and activator of transcription (JAK-STAT) and MAPK pathways were required for p7-mediated induction of SOCS3. HCV-p7 expression suppressed TNF-α-mediated IκB-α degradation and subsequent NF-κB promoter activity, revealing a new and functional, anti-inflammatory effect of p7. Together, these findings identify a molecular mechanism by which HCV-p7 induces SOCS3 through STAT3 and ERK activation and demonstrate that p7 suppresses proinflammatory responses to TNF-α, possibly explaining the lack of inflammatory symptoms observed during early HCV infection.-Convery, O., Gargan, S., Kickham, M., Schroder, M., O'Farrelly, C., Stevenson, N. J. The hepatitis C virus (HCV) protein, p7, suppresses inflammatory responses to tumor necrosis factor (TNF)-α via signal transducer and activator of transcription (STAT)3 and extracellular signal-regulated kinase (ERK)-mediated induction of suppressor of cytokine signaling (SOCS)3.
Collapse
Affiliation(s)
- Orla Convery
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Siobhan Gargan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | | | - Cliona O'Farrelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Nigel J Stevenson
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
11
|
Neumann E, Lepper N, Vasile M, Riccieri V, Peters M, Meier F, Hülser ML, Distler O, Gay S, Mahavadi P, Günther A, Roeb E, Frommer KW, Diller M, Müller-Ladner U. Adipokine expression in systemic sclerosis lung and gastrointestinal organ involvement. Cytokine 2019; 117:41-49. [PMID: 30784899 DOI: 10.1016/j.cyto.2018.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 10/12/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The immunomodulatory properties of adipokines have previously been reported in autoimmune disorders. Less is known about the role of adipokines in systemic sclerosis (SSc). Lung and gastrointestinal tract are frequently involved in SSc; therefore, these organs were analyzed for adipokine expression as well as pulmonary samples of patients suffering from idiopathic pulmonary fibrosis (IPF) as comparison. METHODS Gastric samples (antrum, corpus) of SSc were analyzed immunohistochemically for adiponectin, resistin and visfatin compared with non-SSc related gastritis. Inflammatory cells were quantified in gastric samples and correlated with adipokine expression. Lung samples of SSc, IPF and healthy controls were also analyzed. Protein levels of lung tissue lysates and bronchoalveolar lavages (BAL) in minor fibrotic stages were measured by ELISA. RESULTS Lung sections of donor parenchyma showed significantly stronger adiponectin signals as IPF and SSc (donor vs. IPF: p < 0.0001). In SSc and IPF, resistin and visfatin were increased within immune cell infiltrates, but overall no difference in expression for resistin or visfatin compared to controls was observed. In BAL and lung protein lysates of early stages of fibrosis, adiponectin and visfatin were not reduced in IPF and SSc compared to controls. In gastric samples collected by standard endoscopic gastric biopsy, adiponectin was also significantly reduced in SSc- compared to non-SSc gastritis (p = 0.049) while resistin and visfatin were comparable although deeper fibrotic layers were not included in the respective samples. Adiponectin-positive tissues showed higher amounts of CD4+ but not CD8+ T cells. Controls showed no correlation between CD4+ T cells and resistin, whereas SSc showed significantly more CD4+ T cells in resistin-negative tissues. CONCLUSION Adipokines are expressed in gastric and lung samples of patients with SSc and in lung samples affected by IPF. Prominently, adiponectin levels were reduced in fibrotic SSc gastritic tissue as well as in IPF and SSc lung tissue. Consequently, adiponectin expression seems to be associated with fibrotic progression in the context of SSc and IPF.
Collapse
Affiliation(s)
- Elena Neumann
- Dept of Rheumatology and Clinical Immunology, Campus Kerckhoff, Justus-Liebig-University, Giessen, Germany.
| | - Nina Lepper
- Dept of Rheumatology and Clinical Immunology, Campus Kerckhoff, Justus-Liebig-University, Giessen, Germany
| | - Massimiliano Vasile
- Dept of Rheumatology and Clinical Immunology, Campus Kerckhoff, Justus-Liebig-University, Giessen, Germany; Dept Internal Medicine and Medical Specialties, Sapienza University Rome, Rome, Italy
| | - Valeria Riccieri
- Dept Internal Medicine and Medical Specialties, Sapienza University Rome, Rome, Italy
| | - Marvin Peters
- Dept of Rheumatology and Clinical Immunology, Campus Kerckhoff, Justus-Liebig-University, Giessen, Germany
| | - Florian Meier
- Dept of Rheumatology and Clinical Immunology, Campus Kerckhoff, Justus-Liebig-University, Giessen, Germany
| | - Marie-Lisa Hülser
- Dept of Rheumatology and Clinical Immunology, Campus Kerckhoff, Justus-Liebig-University, Giessen, Germany
| | - Oliver Distler
- Div Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Steffen Gay
- Div Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Poornima Mahavadi
- Med Clinic II, Pneumology, Justus-Liebig-University Giessen, Germany
| | - Andreas Günther
- Med Clinic II, Pneumology, Justus-Liebig-University Giessen, Germany
| | - Elke Roeb
- Med Clinic II, Gastroenterology, Justus-Liebig-University Giessen, Germany
| | - Klaus W Frommer
- Dept of Rheumatology and Clinical Immunology, Campus Kerckhoff, Justus-Liebig-University, Giessen, Germany
| | - Magnus Diller
- Dept of Rheumatology and Clinical Immunology, Campus Kerckhoff, Justus-Liebig-University, Giessen, Germany
| | - Ulf Müller-Ladner
- Dept of Rheumatology and Clinical Immunology, Campus Kerckhoff, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
12
|
Regulation and function of AMPK in physiology and diseases. Exp Mol Med 2016; 48:e245. [PMID: 27416781 PMCID: PMC4973318 DOI: 10.1038/emm.2016.81] [Citation(s) in RCA: 726] [Impact Index Per Article: 90.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 04/23/2016] [Accepted: 04/26/2016] [Indexed: 12/18/2022] Open
Abstract
5′-adenosine monophosphate (AMP)-activated protein kinase (AMPK) is an evolutionarily conserved serine/threonine kinase that was originally identified as the key player in maintaining cellular energy homeostasis. Intensive research over the last decade has identified diverse molecular mechanisms and physiological conditions that regulate the AMPK activity. AMPK regulates diverse metabolic and physiological processes and is dysregulated in major chronic diseases, such as obesity, inflammation, diabetes and cancer. On the basis of its critical roles in physiology and pathology, AMPK is emerging as one of the most promising targets for both the prevention and treatment of these diseases. In this review, we discuss the current understanding of the molecular and physiological regulation of AMPK and its metabolic and physiological functions. In addition, we discuss the mechanisms underlying the versatile roles of AMPK in diabetes and cancer.
Collapse
|
13
|
Skoczen S, Tomasik PJ, Fijorek K, Strojny W, Wieczorek A, Balwierz W, Sztefko K, Siedlar M. Concentrations of adipokines in children before and after hematopoietic stem cell transplantation. Pediatr Hematol Oncol 2016; 33:21-38. [PMID: 26901378 DOI: 10.3109/08880018.2015.1135362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adipokines have multiple effects, including regulation of glucose metabolism, cell proliferation, inflammation, and angiogenesis. The aim of the study was to determine plasma concentrations of adiponectin, apelin, leptin, and resistin as well as soluble leptin receptor in pediatric hematopoietic stem cell transplantation (HSCT). The expression of genes encoding the studied peptides was measured using microarray technique. Plasma concentrations of tested peptides were measured before and after oral glucose tolerance test in children treated with HSCT (n = 38) and in healthy controls (n = 26). The peptides were measured before HSCT (pre-HSCT group; n = 38) and after a median of 6 months after HSCT (post-HSCT group; n = 27 of 38 children treated with HSCT). In addition, measurements of fasting plasma glucose, insulin, lipids, and high-sensitivity C-reactive protein (hsCRP) were performed. In both HSCT groups, atherogenic lipid profile, low-grade systemic inflammation was observed. Leptin, adiponectin, and resistin also appear to be good markers of disease burden and low-grade systemic inflammation. Adipokines may be good markers of disease burden and may influence metabolic complications of HSCT. Future studies on larger groups of patients will explain if changes of the concentrations of leptin, adiponectin, and apelin observed in our study and confirmed by expression levels influence engraftment and reconstitution of cell lines.
Collapse
Affiliation(s)
- Szymon Skoczen
- a Department of Clinical Immunology, Chair of Clinical Immunology and Transplantation , Institute of Pediatrics, Jagiellonian University Medical College , Krakow , Poland
| | - Przemyslaw J Tomasik
- b Department of Clinical Biochemistry , Institute of Pediatrics, Jagiellonian University Medical College , Krakow , Poland
| | - Kamil Fijorek
- c Department of Statistics , Cracow University of Economics , Krakow , Poland
| | - Wojciech Strojny
- d Department of Oncology and Hematology , Institute of Pediatrics, Jagiellonian University Medical College , Krakow , Poland
| | - Aleksandra Wieczorek
- d Department of Oncology and Hematology , Institute of Pediatrics, Jagiellonian University Medical College , Krakow , Poland
| | - Walentyna Balwierz
- d Department of Oncology and Hematology , Institute of Pediatrics, Jagiellonian University Medical College , Krakow , Poland
| | - Krystyna Sztefko
- b Department of Clinical Biochemistry , Institute of Pediatrics, Jagiellonian University Medical College , Krakow , Poland
| | - Maciej Siedlar
- a Department of Clinical Immunology, Chair of Clinical Immunology and Transplantation , Institute of Pediatrics, Jagiellonian University Medical College , Krakow , Poland
| |
Collapse
|
14
|
Ruscica M, Ricci C, Macchi C, Magni P, Cristofani R, Liu J, Corsini A, Ferri N. Suppressor of Cytokine Signaling-3 (SOCS-3) Induces Proprotein Convertase Subtilisin Kexin Type 9 (PCSK9) Expression in Hepatic HepG2 Cell Line. J Biol Chem 2015; 291:3508-19. [PMID: 26668321 DOI: 10.1074/jbc.m115.664706] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Indexed: 12/20/2022] Open
Abstract
The suppressor of cytokine signaling (SOCS) proteins are negative regulators of the JAK/STAT pathway activated by proinflammatory cytokines, including the tumor necrosis factor-α (TNF-α). SOCS3 is also implicated in hypertriglyceridemia associated to insulin resistance. Proprotein convertase subtilisin kexin type 9 (PCSK9) levels are frequently found to be positively correlated to insulin resistance and plasma very low density lipoprotein (VLDL) triglycerides concentrations. The present study aimed to investigate the possible role of TNF-α and JAK/STAT pathway on de novo lipogenesis and PCSK9 expression in HepG2 cells. TNF-α induced both SOCS3 and PCSK9 in a concentration-dependent manner. This effect was inhibited by transfection with siRNA anti-STAT3, suggesting the involvement of the JAK/STAT pathway. Retroviral overexpression of SOCS3 in HepG2 cells (HepG2(SOCS3)) strongly inhibited STAT3 phosphorylation and induced PCSK9 mRNA and protein, with no effect on its promoter activity and mRNA stability. Consistently, siRNA anti-SOCS3 reduced PCSK9 mRNA levels, whereas an opposite effect was observed with siRNA anti-STAT3. In addition, HepG2(SOCS3) express higher mRNA levels of key enzymes involved in the de novo lipogenesis, such as fatty-acid synthase, stearoyl-CoA desaturase (SCD)-1, and apoB. These responses were associated with a significant increase of SCD-1 protein, activation of sterol regulatory element-binding protein-1c (SREBP-1), accumulation of cellular triglycerides, and secretion of apoB. HepG2(SOCS3) show lower phosphorylation levels of insulin receptor substrate 1 (IRS-1) Tyr(896) and Akt Ser(473) in response to insulin. Finally, insulin stimulation produced an additive effect with SOCS3 overexpression, further inducing PCSK9, SREBP-1, fatty acid synthase, and apoB mRNA. In conclusion, our data candidate PCSK9 as a gene involved in lipid metabolism regulated by proinflammatory cytokine TNF-α in a SOCS3-dependent manner.
Collapse
Affiliation(s)
- Massimiliano Ruscica
- From the Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | - Chiara Ricci
- From the Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | - Chiara Macchi
- From the Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | - Paolo Magni
- From the Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy, Centro per lo Studio delle Malattie Dismetaboliche e delle Iperlipemie-Enrica Grossi Paoletti, Università degli Studi di Milano, 20162 Milan, Italy
| | - Riccardo Cristofani
- From the Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy, Centro di Eccellenza per le Malattie Neurodegenerative, Università degli Studi di Milano, Milan, Italy, and
| | - Jingwen Liu
- Department of Veterans Affairs, Palo Alto Health Care System, 94304 Palo Alto, California
| | - Alberto Corsini
- From the Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy, Multimedica IRCCS, 20099 Milan, Italy
| | - Nicola Ferri
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, 35131 Padua, Italy
| |
Collapse
|
15
|
Boosani CS, Agrawal DK. Methylation and microRNA-mediated epigenetic regulation of SOCS3. Mol Biol Rep 2015; 42:853-72. [PMID: 25682267 DOI: 10.1007/s11033-015-3860-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Epigenetic gene silencing of several genes causes different pathological conditions in humans, and DNA methylation has been identified as one of the key mechanisms that underlie this evolutionarily conserved phenomenon associated with developmental and pathological gene regulation. Recent advances in the miRNA technology with high throughput analysis of gene regulation further increased our understanding on the role of miRNAs regulating multiple gene expression. There is increasing evidence supporting that the miRNAs not only regulate gene expression but they also are involved in the hypermethylation of promoter sequences, which cumulatively contributes to the epigenetic gene silencing. Here, we critically evaluated the recent progress on the transcriptional regulation of an important suppressor protein that inhibits cytokine-mediated signaling, SOCS3, whose expression is directly regulated both by promoter methylation and also by microRNAs, affecting its vital cell regulating functions. SOCS3 was identified as a potent inhibitor of Jak/Stat signaling pathway which is frequently upregulated in several pathologies, including cardiovascular disease, cancer, diabetes, viral infections, and the expression of SOCS3 was inhibited or greatly reduced due to hypermethylation of the CpG islands in its promoter region or suppression of its expression by different microRNAs. Additionally, we discuss key intracellular signaling pathways regulated by SOCS3 involving cellular events, including cell proliferation, cell growth, cell migration and apoptosis. Identification of the pathway intermediates as specific targets would not only aid in the development of novel therapeutic drugs, but, would also assist in developing new treatment strategies that could successfully be employed in combination therapy to target multiple signaling pathways.
Collapse
Affiliation(s)
- Chandra S Boosani
- Center for Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | | |
Collapse
|
16
|
Wen F, Li B, Huang C, Wei Z, Zhou Y, Liu J, Zhang H. MiR-34a is Involved in the Decrease of ATP Contents Induced by Resistin Through Target on ATP5S in HepG2 Cells. Biochem Genet 2015; 53:301-9. [PMID: 26385595 DOI: 10.1007/s10528-015-9693-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/05/2015] [Indexed: 01/22/2023]
Abstract
Resistin is associated with metabolic syndrome and deciphering its developmental and molecular mechanisms may help the development of new treatments. MiRNAs serve as negative regulators in many physiological and pathological processes. Here, miRNA microarrays were used to detect differences in expression between resistin-treated and control mice, and results showed miR-34a to be upregulated by resistin. The purpose of this study was to determine whether miR-34a played a role in resistin-induced decrease of ATP contents. Transient transfection of miR-34a mimics was used to overexpress miR-34a and quantitative RT-PCR was used to detect its expression. Western blot analysis was used to determine the rate of expression at the protein level. ATP content was measured using an ATP assay kit. The target gene of miR-34a was analyzed using bioinformatics and confirmed with dual-luciferase report system. MiR-34a was upregulated by resistin in HepG2 cells, and overexpression of miR-34a was found to diminish ATP levels significantly. This study is the first to show that ATP5S is one of the target genes of miR-34a. Resistin diminishes ATP content through the targeting of ATP5S mRNA 3'UTR by miR-34a.
Collapse
Affiliation(s)
- Fengyun Wen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, Henan, People's Republic of China.
| | - Bin Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Chunyan Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Zhiguo Wei
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, Henan, People's Republic of China
| | - Yingying Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, Henan, People's Republic of China
| | - Jianyu Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, Henan, People's Republic of China
| | - Haiwei Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, Henan, People's Republic of China
| |
Collapse
|
17
|
Masotti A, Donninelli G, Da Sacco L, Varano B, Del Cornò M, Gessani S. HIV-1 gp120 influences the expression of microRNAs in human monocyte-derived dendritic cells via STAT3 activation. BMC Genomics 2015; 16:480. [PMID: 26116514 PMCID: PMC4483217 DOI: 10.1186/s12864-015-1673-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/29/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND MicroRNAs (miRs) are an abundant class of small non-coding RNAs (~22 nt) that reprogram gene expression by targeting mRNA degradation and translational disruption. An emerging concept implicates miR coupling with transcription factors in myeloid cell development and function, thus contributing to host defense and inflammation. The important role that these molecules play in the pathogenesis of HIV-1 is only now emerging. RESULTS We provide evidence that exposure of monocyte-derived dendritic cells (MDDCs) to recombinant HIV-1 R5 gp120, but not to CCR5 natural ligand CCL4, influences the expression of a panel of miRs (i.e., miR-21, miR-155 and miR-181b) regulated by STAT3 and potentially targeting genes belonging to the STAT3 signaling pathway. The blockage of gp120-induced STAT3 activation impairs gp120 capacity to modulate the expression level of above mentioned miRs. Predictive analysis of miR putative targets emphasizes that these miRs share common target genes. Furthermore, gene ontology and pathway enrichment analysis outline that these genes mainly belong to biological processes related to regulation of transcription, in a complex network of interactions involving pathways relevant to HIV-DC interaction. CONCLUSIONS Overall, these results point to gp120-triggered modulation of miR expression via STAT3 activation as a novel molecular mechanism exploited by HIV-1 to affect DC biology and thus modulate the immune response through complex regulatory loops involving, at the same time, miRs and transcription factors.
Collapse
Affiliation(s)
- Andrea Masotti
- Bambino Gesù Children's Hospital-IRCCS, Viale di San Paolo 15, 00146, Rome, Italy.
| | - Gloria Donninelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Letizia Da Sacco
- Bambino Gesù Children's Hospital-IRCCS, Viale di San Paolo 15, 00146, Rome, Italy.
| | - Barbara Varano
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Manuela Del Cornò
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Sandra Gessani
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
18
|
Wen F, Zhang H, Bao C, Yang M, Wang N, Zhang J, Hu Y, Yang X, Geng J, Yang Z. Resistin Increases Ectopic Deposition of Lipids Through miR-696 in C2C12 Cells. Biochem Genet 2015; 53:63-71. [DOI: 10.1007/s10528-015-9672-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 04/04/2015] [Indexed: 12/19/2022]
|
19
|
Singh A, Suragani M, Krishna A. Effects of resistin on ovarian folliculogenesis and steroidogenesis in the vespertilionid bat, Scotophilus heathi. Gen Comp Endocrinol 2014; 208:73-84. [PMID: 25241398 DOI: 10.1016/j.ygcen.2014.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 08/01/2014] [Accepted: 09/04/2014] [Indexed: 12/15/2022]
Abstract
The bat Scotophilus heathi exhibit prolonged anovulatory condition known as delayed ovulation coinciding with the period of extensive fat accumulation. The present study was undertaken to find out whether extensive accumulation of fat in S. heathi is responsible for suppression of ovarian activity by increasing production of adipokine resistin in the bat. This was achieved by (a) investigating variation in serum resistin level in relation to the changes in the body fat mass and (b) evaluating the effect of resistin treatment on ovarian activity with reference to steroid synthesis. An attempt was also made to determine whether resistin mediate its effects on ovary through signal transducer and activator of transcription 3 (STAT3) signaling mechanism. The results showed significant seasonal variation in serum resistin level with the peak level coinciding with the period of maximum fat accumulation, high circulating androgen level and period of anovulation. The treatment with resistin to the bat caused increase in androstenedione due to stimulatory effects on 3β-hydroxysteroid dehydrogenase, but decrease in estradiol level due to inhibitory effect on aromatase. Resistin treatment increased androgen receptor protein together with increased insulin receptor but not through conventional luteinizing hormone receptor and steroidogenic acute regulatory protein mediated pathways. This study further showed that resistin treatment increases androstenedione synthesis and up-regulates insulin receptor in the ovary through STAT3 mediated pathways. These findings suggest that obese women through increased resistin synthesis may causes development of non-ovulatory antral follicles through insulin receptor signaling cascade.
Collapse
Affiliation(s)
- Ajit Singh
- Reproductive Endocrinology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Madhuri Suragani
- Dr. Reddy's Institute of Life Sciences, Hyderabad University Campus, Gachibowly, Hyderabad 500046, India
| | - Amitabh Krishna
- Reproductive Endocrinology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
20
|
Wójcik K, Jabłonowska E, Omulecka A, Piekarska A. Insulin resistance, adipokine profile and hepatic expression of SOCS-3 gene in chronic hepatitis C. World J Gastroenterol 2014; 20:10449-56. [PMID: 25132761 PMCID: PMC4130852 DOI: 10.3748/wjg.v20.i30.10449] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 05/04/2014] [Accepted: 05/23/2014] [Indexed: 02/06/2023] Open
Abstract
AIM To analyze adipokine concentrations, insulin resistance and hepatic expression of suppressor of cytokine signaling 3 (SOCS-3) in patients with chronic hepatitis C genotype 1 with normal body weight, glucose and lipid profile. METHODS The study group consisted of 31 patients with chronic hepatitis C and 9 healthy subjects. Total levels of adiponectin, leptin, resistin, visfatin, omentin, osteopontin and insulin were measured using an ELISA kit. The hepatic expression of SOCS-3 was determined by the use of the reverse transcription polymerase chain reaction method. RESULTS Homeostasis model assessment for insulin resistance (HOMA-IR) values were significantly higher in hepatitis C virus (HCV) infected patients without metabolic disorders compared to healthy controls (2.24 vs 0.59, P = 0.0003). Hepatic steatosis was observed in 32.2% of patients with HCV infection and was found in patients with increased HOMA-IR index (2.81 vs 1.99, P = 0.05) and reduced adiponectin level (5.96 vs 8.37, P = 0.04). Inflammatory activity (G ≥ 2) was related to increased osteopontin concentration (34.04 vs 23.35, P = 0.03). Advanced liver fibrosis (S ≥ 2) was associated with increased levels of omentin and osteopontin (436.94 vs 360.09, P = 0.03 and 32.84 vs 20.29, P = 0.03) and reduced resistin concentration (1.40 vs 1.74, P = 0.047). No correlations were reported between adipokine profile, HOMA-IR values and hepatic expression of the SOCS-3 gene. CONCLUSION We speculated that no relationship between adipokines and HOMA-IR values may indicate that HCV can induce insulin resistance itself. Some adipokines appear to be biochemical markers of steatosis, inflammation and fibrosis in patients with chronic HCV infection. © 2014 Baishideng Publishing Group Inc. All rights reserved.
Collapse
|
21
|
Scotece M, Conde J, Abella V, López V, Pino J, Lago F, Gómez-Reino JJ, Gualillo O. Bone metabolism and adipokines: are there perspectives for bone diseases drug discovery? Expert Opin Drug Discov 2014; 9:945-57. [PMID: 24857197 DOI: 10.1517/17460441.2014.922539] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Over the past 20 years, the idea that white adipose tissue (WAT) is simply an energy depot organ has been radically changed. Indeed, present understanding suggests WAT to be an endocrine organ capable of producing and secreting a wide variety of proteins termed adipokines. These adipokines appear to be relevant factors involved in a number of different functions, including metabolism, immune response, inflammation and bone metabolism. AREAS COVERED In this review, the authors focus on the effects of several adipose tissue-derived factors in bone pathophysiology. They also consider how the modification of the adipokine network could potentially lead to promising treatment options for bone diseases. EXPERT OPINION There are currently substantial developments being made in the understanding of the interplay between bone metabolism and the metabolic system. These insights could potentially lead to the development of new treatment strategies and interventions with the aim of successful outcomes in many people affected by bone disorders. Specifically, future research should look into the intimate mechanisms regulating peripheral and central activity of adipokines as it has potential for novel drug discovery.
Collapse
Affiliation(s)
- Morena Scotece
- Santiago University Clinical Hospital, SERGAS, Division of Rheumatology, Research Laboratory 9 , Santiago de Compostela, 15706 , Spain
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Jiang S, Park DW, Tadie JM, Gregoire M, Deshane J, Pittet JF, Abraham E, Zmijewski JW. Human resistin promotes neutrophil proinflammatory activation and neutrophil extracellular trap formation and increases severity of acute lung injury. THE JOURNAL OF IMMUNOLOGY 2014; 192:4795-803. [PMID: 24719460 DOI: 10.4049/jimmunol.1302764] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although resistin was recently found to modulate insulin resistance in preclinical models of type II diabetes and obesity, recent studies also suggested that resistin has proinflammatory properties. We examined whether the human-specific variant of resistin affects neutrophil activation and the severity of LPS-induced acute lung injury. Because human and mouse resistin have distinct patterns of tissue distribution, experiments were performed using humanized resistin mice that exclusively express human resistin (hRTN(+/-)(/-)) but are deficient in mouse resistin. Enhanced production of TNF-α or MIP-2 was found in LPS-treated hRtn(+/-/-) neutrophils compared with control Rtn(-/-/-) neutrophils. Expression of human resistin inhibited the activation of AMP-activated protein kinase, a major sensor and regulator of cellular bioenergetics that also is implicated in inhibiting inflammatory activity of neutrophils and macrophages. In addition to the ability of resistin to sensitize neutrophils to LPS stimulation, human resistin enhanced neutrophil extracellular trap formation. In LPS-induced acute lung injury, humanized resistin mice demonstrated enhanced production of proinflammatory cytokines, more severe pulmonary edema, increased neutrophil extracellular trap formation, and elevated concentration of the alarmins HMGB1 and histone 3 in the lungs. Our results suggest that human resistin may play an important contributory role in enhancing TLR4-induced inflammatory responses, and it may be a target for future therapies aimed at reducing the severity of acute lung injury and other inflammatory situations in which neutrophils play a major role.
Collapse
Affiliation(s)
- Shaoning Jiang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Qiu W, Chen N, Zhang Q, Zhuo L, Wang X, Wang D, Jin H. Resistin increases platelet P-selectin levels via p38 MAPK signal pathway. Diab Vasc Dis Res 2014; 11:121-4. [PMID: 24396117 DOI: 10.1177/1479164113513912] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Resistin, an adipokine associated with the metabolic syndrome, is believed to have a role in thrombotic conditions. This work analyses the effects of resistin on P-selectin expression using a combination of ex vivo human studies, in vivo animal models and in vitro cell cultures. Human platelets and vascular endothelial cells were incubated with resistin, with or without anti-Toll-like receptor 4 (TLR-4) or mitogen-activated protein kinases (MAPK) pathway inhibitors, whereas mice were treated with resistin infusion followed by analysis of P-selectin expression. Resistin increased both human and murine platelet P-selectin expression compared with controls (human: 48.02% ± 7.6% vs 35.12% ± 2.62%, p < 0.05; mouse: 8.17% ± 0.37% vs 4.44% ± 0.37%, p < 0.05), through the p38 MAPK pathway. In contrast, resistin had no effect on endothelial P-selectin production. We conclude that resistin induces platelet activation by increasing P-selectin expression through the p38 MAPK-dependent pathway. These data provide one mechanism for the prothrombotic state in individuals with the metabolic syndrome.
Collapse
Affiliation(s)
- Wenbing Qiu
- Department of ICU, The First Affiliated Hospital of Shantou University Medical College, Shantou, PR China
| | | | | | | | | | | | | |
Collapse
|
24
|
Adipokines as drug targets in joint and bone disease. Drug Discov Today 2014; 19:241-58. [DOI: 10.1016/j.drudis.2013.07.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/09/2013] [Accepted: 07/18/2013] [Indexed: 02/07/2023]
|
25
|
Wen F, Yang Y, Jin D, Sun J, Yu X, Yang Z. MiRNA-145 is involved in the development of resistin-induced insulin resistance in HepG2 cells. Biochem Biophys Res Commun 2014; 445:517-23. [PMID: 24548410 DOI: 10.1016/j.bbrc.2014.02.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 02/08/2014] [Indexed: 01/14/2023]
Abstract
BACKGROUND Resistin is associated with insulin resistance, and determining its developmental and molecular mechanisms may help the development of novel treatments. MicroRNAs (miRNAs) are involved in many physiological and pathological processes as negative regulators. However, it remains unclear whether miRNAs play a role in resistin-induced insulin resistance. We performed mouse liver miRNA microarrays to analyze the differences in expression between resistin-treated and control mice. Resistin upregulated miR-145 both in vivo and in vitro. Therefore, we aimed to study whether miR-145 played a role in resistin-induced insulin resistance. METHODS AND RESULTS We transfected HepG2 cells, and used miR-145 mimics and inhibitors to assess the role of miR-145 in resistin-induced insulin resistance. The overexpression of miR-145 inhibited glucose uptake in HepG2 cells, diminished the phosphorylation of Akt and IRS-1, and induced insulin resistance in hepatocytes. Next, a study of transcriptional regulation revealed that p65 was essential for the upregulation of miR-145 by resistin, and chromatin immunoprecipitation (ChIP) confirmed that p65 could bind to the promoter region of miR-145. CONCLUSION miR-145 plays a role in the development of resistin-induced insulin resistance via the p65 pathway.
Collapse
Affiliation(s)
- Fengyun Wen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, PR China
| | - Yi Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Dan Jin
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Jun Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Xiaoling Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Zaiqing Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China.
| |
Collapse
|
26
|
MicroRNA-492 reverses high glucose-induced insulin resistance in HUVEC cells through targeting resistin. Mol Cell Biochem 2014; 391:117-25. [PMID: 24526524 PMCID: PMC4006129 DOI: 10.1007/s11010-014-1993-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/29/2014] [Indexed: 12/31/2022]
Abstract
The development of atherosclerosis (AS) is a multifactorial process, in which elevated plasma resistin (a key factor leading to insulin resistance) levels play an important role. Emerging evidence indicate that microRNAs (miRNAs) are involved in AS; However, the regulation and function of miRNAs in response to AS remain poorly understood. Our study analyzed the effects of miR-492 on insulin resistance, endothelial activation, and resistin expression in apoE knock-out mice and human umbilical vein endothelial cells after high-glucose treatment and miR-492 mimics transfection. We also investigated the underlying molecular mechanisms. Our results showed that high glucose stress induced a significant decrease in miR-492 expression, with a remarkable upregulation of resistin expression. We then identified resistin as a novel direct target of miR-492 using 3′-UTR luciferase reporter assay. Histopathologic examination demonstrated that upregulation of miR-492 attenuated endothelial cells migration and lipid accumulation induced by high glucose stress. Further investigation demonstrated that the upregulation of p-STAT3, SOCS, and P-selectin activation induced by high glucose stress was attenuated by upregulation of miR-492. Together, our findings indicate that miR-492 contributes to insulin resistance and endothelial dysfunction induced by high glucose, via directly downregulating resistin expression, and involving STAT3 phosphorylation, SOCS, and P-selectin activation.
Collapse
|
27
|
Pirvulescu MM, Gan AM, Stan D, Simion V, Calin M, Butoi E, Manduteanu I. Subendothelial resistin enhances monocyte transmigration in a co-culture of human endothelial and smooth muscle cells by mechanisms involving fractalkine, MCP-1 and activation of TLR4 and Gi/o proteins signaling. Int J Biochem Cell Biol 2014; 50:29-37. [PMID: 24508784 DOI: 10.1016/j.biocel.2014.01.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 12/23/2013] [Accepted: 01/28/2014] [Indexed: 01/03/2023]
Abstract
The cytokine resistin and the chemokine fractalkine (FKN) were found at increased levels in human atherosclerotic plaque, in the subendothelium, but their role in this location still needs to be characterized. Recently, high local resistin in the arterial vessel wall was shown to contribute to an enhanced accumulation of macrophages by mechanisms that need to be clarified. Our recent data showed that resistin activated smooth muscle cells (SMC) by up-regulating FKN and MCP-1 expression and monocyte chemotaxis by activating toll-like receptor 4 (TLR4) and Gi/o proteins. Since in the vessel wall both endothelial cells (EC) and SMC respond to cytokines and promote atherosclerosis, we questioned whether subendothelial resistin (sR) has a role in vascular cells cross-talk leading to enhanced monocyte transmigration and we investigated the mechanisms involved. To this purpose we used an in vitro system of co-cultured SMC and EC activated by sR and we analyzed monocyte transmigration. Our results indicated that: (1) sR enhanced monocyte transmigration in EC/SMC system compared to EC cultured alone; (2) sR activated TLR4 and Gi/o signaling in EC/SMC system and induced the secretion of more FKN and MCP-1 compared to EC cultured alone and used both chemokines to specifically recruit monocytes by CX3CR1 and CCR2 receptors. Moreover, FKN produced by resistin in EC/SMC system, by acting on CX3CR1 on EC/SMC specifically contributes to MCP-1 secretion in the system and to the enhanced monocyte transmigration. Our study indicates new possible targets for therapy to reduce resistin-dependent enhanced macrophage infiltration in the atherosclerotic arterial wall.
Collapse
Affiliation(s)
| | - Ana Maria Gan
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest 050568, Romania
| | - Daniela Stan
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest 050568, Romania
| | - Viorel Simion
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest 050568, Romania
| | - Manuela Calin
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest 050568, Romania
| | - Elena Butoi
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest 050568, Romania
| | - Ileana Manduteanu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest 050568, Romania
| |
Collapse
|
28
|
Feng X, Tang H, Leng J, Jiang Q. Suppressors of cytokine signaling (SOCS) and type 2 diabetes. Mol Biol Rep 2014; 41:2265-74. [PMID: 24414000 DOI: 10.1007/s11033-014-3079-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 01/04/2014] [Indexed: 12/11/2022]
Abstract
The suppressors of cytokine signaling (SOCS) proteins are originally identified as negative regulators of cytokine-activated Janus kinase/signal transducers and activators of transcription signaling pathway, but increasing evidence reveals that SOCS proteins play an important role in the development of type 2 diabetes involving regulation of the insulin signaling and pancreatic β-cell function, and that SOCS are promising to be the targets for the treatment of type 2 diabetes. In this review, we focus on the emerging role for SOCS and the potential drugs targeting SOCS for type 2 diabetes.
Collapse
Affiliation(s)
- Xiaotao Feng
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530001, People's Republic of China
| | | | | | | |
Collapse
|
29
|
Brown JE. Dysregulated adipokines in the pathogenesis of type 2 diabetes and vascular disease. ACTA ACUST UNITED AC 2012. [DOI: 10.1177/1474651412464794] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Obesity is commonly associated with type 2 diabetes and vascular disease. Changes in body composition in the obese state lead to a dysregulation of secretion of adipocyte-secreted hormones known as adipokines. Adipokines such as leptin and adiponectin are known to be involved in many physiological and pathological processes. Current knowledge suggests that adipokines provide potential therapeutic targets against type 2 diabetes and vascular disease.
Collapse
|
30
|
Jean S, Landry D, Daigle M, Martin LJ. Influence of the adipose derived hormone resistin on signal transducer and activator of transcription factors, steroidogenesis and proliferation of Leydig cells. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2012. [DOI: 10.1016/s2305-0500(13)60038-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|