1
|
Camarda ND, Ibarrola J, Biwer LA, Jaffe IZ. Mineralocorticoid Receptors in Vascular Smooth Muscle: Blood Pressure and Beyond. Hypertension 2024; 81:1008-1020. [PMID: 38426347 PMCID: PMC11023801 DOI: 10.1161/hypertensionaha.123.21358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
After half a century of evidence suggesting the existence of mineralocorticoid receptors (MR) in the vasculature, the advent of technology to specifically knockout the MR from smooth muscle cells (SMCs) in mice has elucidated contributions of SMC-MR to cardiovascular function and disease, independent of the kidney. This review summarizes the latest understanding of the molecular mechanisms by which SMC-MR contributes to (1) regulation of vasomotor function and blood pressure to contribute to systemic and pulmonary hypertension; (2) vascular remodeling in response to hypertension, vascular injury, obesity, and aging, and the impact on vascular calcification; and (3) cardiovascular pathologies including aortic aneurysm, heart valve dysfunction, and heart failure. Data are reviewed from in vitro studies using SMCs and in vivo findings from SMC-specific MR-knockout mice that implicate target genes and signaling pathways downstream of SMC-MR. By regulating expression of the L-type calcium channel subunit Cav1.2 and angiotensin II type-1 receptor, SMC-MR contributes to myogenic tone and vasoconstriction, thereby contributing to systemic blood pressure. MR activation also promotes SMC proliferation, migration, production and degradation of extracellular matrix, and osteogenic differentiation by regulating target genes including connective tissue growth factor, osteopontin, bone morphogenetic protein 2, galectin-3, and matrix metallopeptidase-2. By these mechanisms, SMC-MR promotes disease progression in models of aging-associated vascular stiffness, vascular calcification, mitral and aortic valve disease, pulmonary hypertension, and heart failure. While rarely tested, when sexes were compared, the mechanisms of SMC-MR-mediated disease were sexually dimorphic. These advances support targeting SMC-MR-mediated mechanisms to prevent and treat diverse cardiovascular disorders.
Collapse
Affiliation(s)
- Nicholas D. Camarda
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Jaime Ibarrola
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Lauren A. Biwer
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - Iris Z. Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
2
|
Pu Y, Yang G, Pan X, Zhou Y, Zhong A, Ding N, Su Y, Peng W, Zeng M, Guo T, Chai X. Higher plasma aldosterone concentrations in patients with aortic diseases and hypertension: a retrospective observational study. Eur J Med Res 2023; 28:541. [PMID: 38008731 PMCID: PMC10676595 DOI: 10.1186/s40001-023-01528-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/14/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Aortic diseases remain a highly perilous macrovascular condition. The relationship between circulating aldosterone and aortic diseases is rarely explored, thus we investigated the difference in plasma aldosterone concentration (PAC) between patients with and without aortic disease in hypertensive people. METHODS We analyzed 926 patients with hypertension, ranging in age from 18 to 89 years, who had their PAC measured from the hospital's electronic database. The case group and control group were defined based on inclusion and exclusion criteria. The analysis included general information, clinical data, biochemical data, and medical imaging examination results as covariates. To further evaluate the difference in PAC between primary hypertension patients with aortic disease and those without, we used multivariate logistic regression analysis and also employed propensity score matching to minimize the influence of confounding factors. RESULTS In total, 394 participants were included in the analysis, with 66 individuals diagnosed with aortic diseases and 328 in the control group. The participants were predominantly male (64.5%) and over the age of 50 (68.5%), with an average PAC of 19.95 ng/dL. After controlling for confounding factors, the results showed hypertension patients with aortic disease were more likely to have high PAC levels than those without aortic disease (OR = 1.138, 95% CI [1.062 to 1.238]). Subgroup analysis revealed consistent relationship between PAC and primary hypertensive patients with aortic disease across the different stratification variables. Additionally, hypertensive patients with aortic disease still have a risk of higher PAC levels than those without aortic disease, even after propensity score matching. CONCLUSIONS The results of this study suggest that primary hypertensive patients with aortic diseases have elevated levels of PAC, but the causal relationship between PAC and aortic disease requires further study.
Collapse
Affiliation(s)
- Yuting Pu
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
- Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guifang Yang
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
- Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaogao Pan
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
- Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Zhou
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
- Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Aifang Zhong
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
- Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ning Ding
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
- Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yingjie Su
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
- Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wen Peng
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
- Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengping Zeng
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
- Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tuo Guo
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
- Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangping Chai
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China.
- Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
金 梅, 传 洁, 沈 毅, 傅 萍. [Effects of Shoutai pills on immune function and oxidative stress in pregnant rats with di(2-ethylhexyl) phthalate exposure]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:850-855. [PMID: 32895208 PMCID: PMC7321271 DOI: 10.12122/j.issn.1673-4254.2020.06.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effects of Shoutai pills (a traditional Chinese medicinal preparation) on immune functions and oxidative stress in pregnant rats exposed to di(2-ethylhexyl) phthalate (DEHP). METHODS Thirty-six mature female SD rats were randomly divided into 3 groups (n=12). After pregnancy was confirmed, the rats were given 10 mL/kg corn oil +10 mL/kg saline (control group), 500 mg/kg DEHP+10 mL/kg saline (model group), and 500 mg/kg DEHP+10 mL/kg Shoutai pills (treatment group). At 19 days of gestation, the rats were sacrificed and the fetal rats were weighed and the numbers of live and stillborn fetal rats were recorded. Serum levels of interleukin-6 (IL-6), interleukin-2 (IL-2), tumor necrosis factor-ɑ (TNF-ɑ), estradiol (E2) and progesterone (P) levels were detected. The appearance, color and quality of the placenta in each group were recorded, and the placental tissues were examined pathologically. The total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GSH- Px), catalase (CAT), reactive oxygen species (ROS) and malondialdehyde (MDA) in the placental tissues were measured. RESULTS Compared with the control group, the rats with DEHP exposure showed slow weight gain in the middle and late gestation period and significantly lower fetal weight (P < 0.05) with lowered serum levels of IL-2, IL-6 and TNF-ɑ, increased estradiol level (P < 0.05), decreased placental T-AOC, GSH-Px, SOD and CAT levels, and increased ROS and MDA levels (P < 0.01). Compared with the model group, the rats treated with Shoutai pills had significantly increased weight gain in mid and late pregnancy and greater fetal weight (P < 0.05) with significantly increased serum IL-2 and IL-6 levels, decreased estradiol level (P < 0.05), slightly increased TNF-ɑ expression (P> 0.05), increased placenta T-AOC, GSH- Px and CAT levels, decreased MDA level (P < 0.05), and slightly increased SOD and decreased ROS levels (P>0.05). No significant difference was found in progesterone levels among the groups (P>0.05). HE staining showed that the trophoblast in the placental tissue sponge in the model group was loose and irregular with numerous vacuoles. In the treatment group, the structure of the placenta remained intact with clearly visible labyrinth zone, sponge trophoblast and giant cell trophoblast, and the cell distribution in each layer was better than that in the model group. CONCLUSIONS Shoutai pills can regulate the immune function of DEHP-exposed pregnant rats possibly by antagonizing the estrogenlike effect of DEHP and regulating serum immune factors; Shoutai pills can also reduce placental tissue damage and improve pregnancy outcome by correcting DEHP-induced imbalance of oxidative stress in the placental tissues.
Collapse
Affiliation(s)
- 梅君 金
- 浙江中医药大学, 浙江 杭州 310053Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - 洁 传
- 浙江中医药大学, 浙江 杭州 310053Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - 毅 沈
- 浙江中医药大学附属广兴医院, 浙江 杭州 310007Guangxing Hospital Affiliated to Zhejiang Chinese Medicine University, Hangzhou 310007, China
| | - 萍 傅
- 浙江中医药大学附属广兴医院, 浙江 杭州 310007Guangxing Hospital Affiliated to Zhejiang Chinese Medicine University, Hangzhou 310007, China
| |
Collapse
|
4
|
Moss ME, Carvajal B, Jaffe IZ. The endothelial mineralocorticoid receptor: Contributions to sex differences in cardiovascular disease. Pharmacol Ther 2019; 203:107387. [PMID: 31271793 PMCID: PMC6848769 DOI: 10.1016/j.pharmthera.2019.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/26/2019] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease remains the leading cause of death for both men and women. The observation that premenopausal women are protected from cardiovascular disease relative to age-matched men, and that this protection is lost with menopause, has led to extensive study of the role of sex steroid hormones in the pathogenesis of cardiovascular disease. However, the molecular basis for sex differences in cardiovascular disease is still not fully understood, limiting the ability to tailor therapies to male and female patients. Therefore, there is a growing need to investigate molecular pathways outside of traditional sex hormone signaling to fully understand sex differences in cardiovascular disease. Emerging evidence points to the mineralocorticoid receptor (MR), a steroid hormone receptor activated by the adrenal hormone aldosterone, as one such mediator of cardiovascular disease risk, potentially serving as a sex-dependent link between cardiovascular risk factors and disease. Enhanced activation of the MR by aldosterone is associated with increased risk of cardiovascular disease. Emerging evidence implicates the MR specifically within the endothelial cells lining the blood vessels in mediating some of the sex differences observed in cardiovascular pathology. This review summarizes the available clinical and preclinical literature concerning the role of the MR in the pathophysiology of endothelial dysfunction, hypertension, atherosclerosis, and heart failure, with a special emphasis on sex differences in the role of endothelial-specific MR in these pathologies. The available data regarding the molecular mechanisms by which endothelial-specific MR may contribute to sex differences in cardiovascular disease is also summarized. A paradigm emerges from synthesis of the literature in which endothelial-specific MR regulates vascular function in a sex-dependent manner in response to cardiovascular risk factors to contribute to disease. Limitations in this field include the relative paucity of women in clinical trials and, until recently, the nearly exclusive use of male animals in preclinical investigations. Enhanced understanding of the sex-specific roles of endothelial MR could lead to novel mechanistic insights underlying sex differences in cardiovascular disease incidence and outcomes and could identify additional therapeutic targets to effectively treat cardiovascular disease in men and women.
Collapse
Affiliation(s)
- M Elizabeth Moss
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States of America; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States of America
| | - Brigett Carvajal
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States of America; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States of America
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States of America; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States of America.
| |
Collapse
|
5
|
Moss ME, Lu Q, Iyer SL, Engelbertsen D, Marzolla V, Caprio M, Lichtman AH, Jaffe IZ. Endothelial Mineralocorticoid Receptors Contribute to Vascular Inflammation in Atherosclerosis in a Sex-Specific Manner. Arterioscler Thromb Vasc Biol 2019; 39:1588-1601. [PMID: 31294624 DOI: 10.1161/atvbaha.119.312954] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE MR (mineralocorticoid receptor) activation is associated with cardiovascular ischemia in humans. This study explores the role of the MR in atherosclerotic mice of both sexes and identifies a sex-specific role for endothelial cell (EC)-MR in vascular inflammation. Approach and Results: In the AAV-PCSK9 (adeno-associated virus-proprotein convertase subtilisin/kexin type 9) mouse atherosclerosis model, MR inhibition attenuated vascular inflammation in males but not females. Further studies comparing male and female littermates with intact MR or EC-MR deletion revealed that although EC-MR deletion did not affect plaque size in either sex, it reduced aortic arch inflammation specifically in male mice as measured by flow cytometry. Moreover, MR-intact females had larger plaques but were protected from vascular inflammation compared with males. Intravital microscopy of the mesenteric vasculature demonstrated that EC-MR deletion attenuated TNFα (tumor necrosis factor α)-induced leukocyte slow rolling and adhesion in males, while females exhibited fewer leukocyte-endothelial interactions with no additional effect of EC-MR deletion. These effects corresponded with decreased TNFα-induced expression of the endothelial adhesion molecules ICAM-1 (intercellular adhesion molecule-1) and E-selectin in males with EC-MR deletion compared with MR-intact males and females of both genotypes. These observations were also consistent with MR and estrogen regulation of ICAM-1 transcription and E-selectin expression in primary cultured mouse ECs and human umbilical vein ECs. CONCLUSIONS In male mice, EC-MR deletion attenuates leukocyte-endothelial interactions, plaque inflammation, and expression of E-selectin and ICAM-1, providing a potential mechanism by which the MR promotes vascular inflammation. In females, plaque inflammation and leukocyte-endothelial interactions are decreased relative to males and EC-MR deletion is not protective.
Collapse
Affiliation(s)
- M Elizabeth Moss
- From the Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (M.E.M., Q.L., S.L.I., I.Z.J.)
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA (M.E.M., I.Z.J.)
| | - Qing Lu
- From the Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (M.E.M., Q.L., S.L.I., I.Z.J.)
| | - Surabhi L Iyer
- From the Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (M.E.M., Q.L., S.L.I., I.Z.J.)
| | - Daniel Engelbertsen
- Department of Pathology, Brigham and Women's Hospital, Boston, MA (D.E., A.H.L.)
| | - Vincenzo Marzolla
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy (V.M., M.C.)
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy (V.M., M.C.)
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy (M.C.)
| | - Andrew H Lichtman
- Department of Pathology, Brigham and Women's Hospital, Boston, MA (D.E., A.H.L.)
| | - Iris Z Jaffe
- From the Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (M.E.M., Q.L., S.L.I., I.Z.J.)
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA (M.E.M., I.Z.J.)
| |
Collapse
|
6
|
Mathews L, Subramanya V, Zhao D, Ouyang P, Vaidya D, Guallar E, Yeboah J, Herrington D, Hays AG, Budoff MJ, Michos ED. Endogenous Sex Hormones and Endothelial Function in Postmenopausal Women and Men: The Multi-Ethnic Study of Atherosclerosis. J Womens Health (Larchmt) 2019; 28:900-909. [PMID: 31170017 DOI: 10.1089/jwh.2018.7441] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: The relationship of endogenous sex hormones (SH) with vascular endothelial function and with cardiovascular disease (CVD) is incompletely understood. We examined the associations between SH and endothelial function measured by brachial artery flow-mediated dilation (FMD). Materials and Methods: We included 1368 postmenopausal women and 1707 men, free of clinical CVD, participating in MESA Visit 1 (2000-2002). Serum SH [total testosterone, SH binding globulin (SHBG), dehydroepiandrosterone (DHEA), estradiol] were measured; free testosterone was calculated. The percent FMD difference (%FMD) was measured by high-resolution ultrasound. Using multivariable-adjusted linear regression, we tested the cross-sectional associations of SH (log transformed, compared per one SD increment) with %FMD. Results: The mean age of women and men were 64.2 and 61.4 years, respectively. Among women, after adjusting for demographics, CVD risk factors, and hormone therapy, higher SHBG was associated with greater %FMD [β = 0.215% (95% CI 0.026-0.405)], whereas higher free testosterone was associated with a smaller %FMD [-0.209% (-0.402, -0.017)]. Estradiol and DHEA were not associated with %FMD in women after multivariable adjustment. There was an age interaction, with higher free testosterone and lower SHBG associated with worse FMD in women <65 years of age, but not in those ≥65 years (p = 0.04). We did not see similar associations in men. Conclusions: A more androgenic SH profile of higher free testosterone and lower SHBG was associated with worse %FMD in postmenopausal women. Changes in SH with aging and menopause may result in vascular changes in women. Further studies are needed to assess longitudinal changes in SH levels and their association with vascular function.
Collapse
Affiliation(s)
- Lena Mathews
- 1Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland.,2Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Vinita Subramanya
- 1Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Di Zhao
- 2Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Pamela Ouyang
- 1Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Dhananjay Vaidya
- 2Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,3Division of General Internal Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Eliseo Guallar
- 2Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Joseph Yeboah
- 4Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - David Herrington
- 4Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Allison G Hays
- 1Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Matthew J Budoff
- 5David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California
| | - Erin D Michos
- 1Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland.,2Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
7
|
Rodríguez-Lara SQ, García-Benavides L, Miranda-Díaz AG. The Renin-Angiotensin-Aldosterone System as a Therapeutic Target in Late Injury Caused by Ischemia-Reperfusion. Int J Endocrinol 2018; 2018:3614303. [PMID: 29849615 PMCID: PMC5904808 DOI: 10.1155/2018/3614303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 01/09/2018] [Accepted: 02/07/2018] [Indexed: 12/19/2022] Open
Abstract
Ischemia-reperfusion (I/R) injury is a well-known phenomenon that involves different pathophysiological processes. Connection in diverse systems of survival brings about cellular dysfunction or even apoptosis. One of the survival systems of the cells, to the assault caused by ischemia, is the activation of the renin-angiotensin-aldosterone system (also known as an axis), which is focused on activating diverse signaling pathways to favor adaptation to the decrease in metabolic supports caused by the hypoxia. In trying to adapt to the I/R event, great changes occur that unchain cellular dysfunction with the capacity to lead to cell death, which translates into a poor prognosis due to the progression of dysfunction of the cellular activity. The search for the understanding of the diverse therapeutic alternatives in molecular coupling could favor the prognosis and evolution of patients who are subject to the I/R process.
Collapse
Affiliation(s)
- Simón Quetzalcóatl Rodríguez-Lara
- University of Guadalajara, Institute of Experimental and Clinical Therapeutics, Department of Physiology, University Health Sciences Centre, Guadalajara, JAL, Mexico
| | - Leonel García-Benavides
- University of Guadalajara, Institute of Experimental and Clinical Therapeutics, Department of Physiology, University Health Sciences Centre, Guadalajara, JAL, Mexico
| | - Alejandra Guillermina Miranda-Díaz
- University of Guadalajara, Institute of Experimental and Clinical Therapeutics, Department of Physiology, University Health Sciences Centre, Guadalajara, JAL, Mexico
| |
Collapse
|
8
|
Manosroi W, Tan JW, Rariy CM, Sun B, Goodarzi MO, Saxena AR, Williams JS, Pojoga LH, Lasky-Su J, Cui J, Guo X, Taylor KD, Chen YDI, Xiang AH, Hsueh WA, Raffel LJ, Buchanan TA, Rotter JI, Williams GH, Seely EW. The Association of Estrogen Receptor-β Gene Variation With Salt-Sensitive Blood Pressure. J Clin Endocrinol Metab 2017; 102:4124-4135. [PMID: 28938457 PMCID: PMC5673274 DOI: 10.1210/jc.2017-00957] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 08/29/2017] [Indexed: 11/19/2022]
Abstract
CONTEXT Hypertension in young women is uncommon compared with young men and older women. Estrogen appears to protect most women against hypertension, with incidence increasing after menopause. Because some premenopausal women develop hypertension, estrogen may play a different role in these women. Genetic variations in the estrogen receptor (ER) are associated with cardiovascular disease. ER-β, encoded by ESR2, is the ER predominantly expressed in vascular smooth muscle. OBJECTIVE To determine an association of single nucleotide polymorphisms in ESR2 with salt sensitivity of blood pressure (SSBP) and estrogen status in women. METHODS Candidate gene association study with ESR2 and SSBP conducted in normotensive and hypertensive women and men in two cohorts: International Hypertensive Pathotype (HyperPATH) (n = 584) (discovery) and Mexican American Hypertension-Insulin Resistance Study (n = 662) (validation). Single nucleotide polymorphisms in ESR1 (ER-α) were also analyzed. Analysis conducted in younger (<51 years, premenopausal, "estrogen-replete") and older women (≥51 years, postmenopausal, "estrogen-deplete"). Men were analyzed to control for aging. RESULTS Multivariate analyses of HyperPATH data between variants of ESR2 and SSBP documented that ESR2 rs10144225 minor (risk) allele carriers had a significantly positive association with SSBP driven by estrogen-replete women (β = +4.4 mm Hg per risk allele, P = 0.004). Findings were confirmed in Hypertension Insulin-Resistance Study premenopausal women. HyperPATH cohort analyses revealed risk allele carriers vs noncarriers had increased aldosterone/renin ratios. No associations were detected with ESR1. CONCLUSIONS The variation at rs10144225 in ESR2 was associated with SSBP in premenopausal women (estrogen-replete) and not in men or postmenopausal women (estrogen-deplete). Inappropriate aldosterone levels on a liberal salt diet may mediate the SSBP.
Collapse
Affiliation(s)
- Worapaka Manosroi
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Division of Endocrinology and Metabolism, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jia Wei Tan
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Cell and Molecular Biology Laboratory, Department of Cellular Biology and Pharmacology, Faculty of Medicine and Health Sciences, UCSI University, Cheras 56000, Kuala Lumpur, Malaysia
| | - Chevon M. Rariy
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Bei Sun
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Mark O. Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Aditi R. Saxena
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jonathan S. Williams
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Luminita H. Pojoga
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jessica Lasky-Su
- Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Jinrui Cui
- Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, Harbor-UCLA Medical Center, Torrance, California 90502
- Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, California 90502
| | - Kent D. Taylor
- Institute for Translational Genomics and Population Sciences, Harbor-UCLA Medical Center, Torrance, California 90502
- Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, California 90502
| | - Yii-Der I. Chen
- Institute for Translational Genomics and Population Sciences, Harbor-UCLA Medical Center, Torrance, California 90502
- Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, California 90502
| | - Anny H. Xiang
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, California 91101
| | - Willa A. Hsueh
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, California 91101
- Division of Endocrinology, Diabetes and Metabolism and Diabetes and Metabolism Research Center, The Ohio State University, Columbus, Ohio 43210
| | - Leslie J. Raffel
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of California, Irvine, California 92868
| | - Thomas A. Buchanan
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, California 90089
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences, Harbor-UCLA Medical Center, Torrance, California 90502
- Department of Pediatrics, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, California 90502
| | - Gordon H. Williams
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Ellen W. Seely
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
9
|
Somjen D, Kohen F, Limor R, Sharon O, Knoll E, Many A, Stern N. Estradiol-17β increases 12- and 15-lipoxygenase (type2) expression and activity and reactive oxygen species in human umbilical vascular smooth muscle cells. J Steroid Biochem Mol Biol 2016; 163:28-34. [PMID: 27033413 DOI: 10.1016/j.jsbmb.2016.03.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 11/28/2022]
Abstract
The net vascular effect of estrogens on the vasculature is still under debate. Here we tested the effects of estradiol- 17β (E2) as well as estrogen-receptor subtype specific and non-specific agonists and antagonists on the expression and eicosanoid production of lipoxygenase (LO) enzymes expressed in culture human umbilical vascular smooth muscle cells (VSMC), the platelet type 12LO and 15LO type 2. E2 increased 12 and 15LO mRNA expression by 2-3 folds and elicited an acute 50% increase 12 and 15 hydroxyeicosatetraenoic acid (HETE) production. Neither estrogen receptor ERα nor ERβ-specific agonists were able to reproduce the induction of LO expression, but E2-induced expression was effectively blocked by ER non-specific and receptor subtype specific antagonists. Because 12 and 15HETE can increase reactive oxygen species in other cell types, we tested the possibility that E2 could raise ROS through LO. Indeed, E2 as well as the LO products 12 and 15HETE increased reactive oxygen species (ROS) in VSMC. E2-dependent and HETE-induced ROS could be blocked by NAD (P) H-oxidase inhibitors and by the ER general antagonist ICI. E2-induced ROS was partially (∼50%) blocked by the LO inhibitor baicalein, but the LO blocker had no effect on 12 or 15HETE- induced ROS formation, thus suggesting that part of E2-dependent ROS generation resulted from E2-induced 12 and 15HETE. Collectively these findings unveil an unrecognized effect of E2 in human VSMC, to induce 12 and 15LO type 2 expression and activity and suggest that E2-dependent ROS formation in VSMC may be partially mediated by the induction of 12 and 15HETE.
Collapse
MESH Headings
- 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/metabolism
- Arachidonate 12-Lipoxygenase/genetics
- Arachidonate 12-Lipoxygenase/metabolism
- Arachidonate 15-Lipoxygenase/genetics
- Arachidonate 15-Lipoxygenase/metabolism
- Estradiol/pharmacology
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Estrogen Receptor beta/genetics
- Estrogen Receptor beta/metabolism
- Flavanones/pharmacology
- Gene Expression Regulation
- Humans
- Hydroxyeicosatetraenoic Acids/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- NADPH Oxidases/genetics
- NADPH Oxidases/metabolism
- Nitriles/pharmacology
- Phenols/pharmacology
- Piperidines/pharmacology
- Primary Cell Culture
- Propionates/pharmacology
- Pyrazoles/pharmacology
- Pyrimidines/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Raloxifene Hydrochloride/pharmacology
- Reactive Oxygen Species/agonists
- Reactive Oxygen Species/metabolism
- Umbilical Veins/cytology
- Umbilical Veins/drug effects
- Umbilical Veins/metabolism
Collapse
Affiliation(s)
- Dalia Somjen
- The Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Centre and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Fortune Kohen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Rona Limor
- The Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Centre and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orli Sharon
- The Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Centre and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Esther Knoll
- The Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Centre and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Many
- The Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Centre and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Naftali Stern
- The Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Centre and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
10
|
Van Kempen TA, Narayan A, Waters EM, Marques-Lopes J, Iadecola C, Glass MJ, Pickel VM, Milner TA. Alterations in the subcellular distribution of NADPH oxidase p47(phox) in hypothalamic paraventricular neurons following slow-pressor angiotensin II hypertension in female mice with accelerated ovarian failure. J Comp Neurol 2016; 524:2251-65. [PMID: 26659944 PMCID: PMC4892978 DOI: 10.1002/cne.23944] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 12/12/2022]
Abstract
At younger ages, women have a lower risk for hypertension than men, but this sexual dimorphism declines with the onset of menopause. These differences are paralleled in rodents following "slow-pressor" angiotensin II (AngII) administration: young male and aged female mice, but not young females, develop hypertension. There is also an established sexual dimorphism both in the cardiovascular response to the neurohypophyseal hormone arginine vasopressin (AVP) and in the expression of oxidative stress. We examined the relationship between AngII-mediated hypertension and the cellular distribution of the superoxide generating NADPH oxidase (NOX) in AVP-expressing hypothalamic paraventricular nucleus (PVN) neurons in "menopausal" female mice. Dual-labeling immunoelectron microscopy was used to determine whether the subcellular distribution of the organizer/adapter NOX p47(phox) subunit is altered in PVN dendrites following AngII administered (14 days) during the "postmenopausal" stage of accelerated ovarian failure (AOF) in young female mice treated with 4-vinylcyclohexene diepoxide. Slow-pressor AngII elevated blood pressure in AOF females and induced a significant increase in near plasmalemmal p47(phox) and a decrease in cytoplasmic p47(phox) in PVN AVP dendrites. These changes are the opposite of those observed in AngII-induced hypertensive male mice (Coleman et al. [2013] J. Neurosci. 33:4308-4316) and may be ascribed in part to baseline differences between young females and males in the near plasmalemmal p47(phox) on AVP dendrites seen in the present study. These findings highlight fundamental differences in the neural substrates of oxidative stress in the PVN associated with AngII hypertension in postmenopausal females compared with males. J. Comp. Neurol. 524:2251-2265, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tracey A. Van Kempen
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021
| | - Ankita Narayan
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021
| | - Elizabeth M. Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Jose Marques-Lopes
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021
| | - Michael J. Glass
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021
| | - Virginia M. Pickel
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021
| | - Teresa A. Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| |
Collapse
|
11
|
Liu L, Kashyap S, Murphy B, Hutson DD, Budish RA, Trimmer EH, Zimmerman MA, Trask AJ, Miller KS, Chappell MC, Lindsey SH. GPER activation ameliorates aortic remodeling induced by salt-sensitive hypertension. Am J Physiol Heart Circ Physiol 2016; 310:H953-61. [PMID: 26873963 DOI: 10.1152/ajpheart.00631.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 02/08/2016] [Indexed: 12/24/2022]
Abstract
The mRen2 female rat is an estrogen- and salt-sensitive model of hypertension that reflects the higher pressure and salt sensitivity associated with menopause. We previously showed that the G protein-coupled estrogen receptor (GPER) mediates estrogenic effects in this model. The current study hypothesized that GPER protects against vascular injury during salt loading. Intact mRen2 female rats were fed a normal (NS; 0.5% Na(+)) or high-salt diet (HS; 4% Na(+)) for 10 wk, which significantly increased systolic blood pressure (149 ± 5 vs. 224 ± 8 mmHg;P< 0.001). Treatment with the selective GPER agonist G-1 for 2 wk did not alter salt-sensitive hypertension (216 ± 4 mmHg;P> 0.05) or ex vivo vascular responses to angiotensin II or phenylephrine (P> 0.05). However, G-1 significantly attenuated salt-induced aortic remodeling assessed by media-to-lumen ratio (NS: 0.43; HS+veh: 0.89; HS+G-1: 0.61;P< 0.05). Aortic thickening was not accompanied by changes in collagen, elastin, or medial proliferation. However, HS induced increases in medial layer glycosaminoglycans (0.07 vs. 0.42 mm(2);P< 0.001) and lipid peroxidation (0.11 vs. 0.51 mm(2);P< 0.01), both of which were reduced by G-1 (0.20 mm(2)and 0.23 mm(2); both P< 0.05). We conclude that GPER's beneficial actions in the aorta of salt-loaded mRen2 females occur independently of changes in blood pressure and vasoreactivity. GPER-induced attenuation of aortic remodeling was associated with a reduction in oxidative stress and decreased accumulation of glycosaminoglycans. Endogenous activation of GPER may protect females from salt- and pressure-induced vascular damage.
Collapse
Affiliation(s)
- Liu Liu
- Department of Pharmacology, Tulane University, New Orleans, Louisiana
| | - Shreya Kashyap
- Department of Pharmacology, Tulane University, New Orleans, Louisiana
| | - Brennah Murphy
- Department of Pharmacology, Tulane University, New Orleans, Louisiana
| | - Dillion D Hutson
- Department of Pharmacology, Tulane University, New Orleans, Louisiana
| | - Rebecca A Budish
- Department of Pharmacology, Tulane University, New Orleans, Louisiana
| | - Emma H Trimmer
- Department of Pharmacology, Tulane University, New Orleans, Louisiana
| | | | - Aaron J Trask
- Center for Cardiovascular and Pulmonary Research, Nationwide Children's Hospital, Columbus, Ohio
| | - Kristin S Miller
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana; and
| | - Mark C Chappell
- Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Sarah H Lindsey
- Department of Pharmacology, Tulane University, New Orleans, Louisiana;
| |
Collapse
|
12
|
Grizzell JA, Echeverria V. New Insights into the Mechanisms of Action of Cotinine and its Distinctive Effects from Nicotine. Neurochem Res 2014; 40:2032-46. [PMID: 24970109 DOI: 10.1007/s11064-014-1359-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/10/2014] [Indexed: 12/20/2022]
Abstract
Tobacco consumption is far higher among a number of psychiatric and neurological diseases, supporting the notion that some component(s) of tobacco may underlie the oft-reported reduction in associated symptoms during tobacco use. Popular dogma holds that this component is nicotine. However, increasing evidence support theories that cotinine, the main metabolite of nicotine, may underlie at least some of nicotine's actions in the nervous system, apart from its adverse cardiovascular and habit forming effects. Though similarities exist, disparate and even antagonizing actions between cotinine and nicotine have been described both in terms of behavior and physiology, underscoring the need to further characterize this potentially therapeutic compound. Cotinine has been shown to be psychoactive in humans and animals, facilitating memory, cognition, executive function, and emotional responding. Furthermore, recent research shows that cotinine acts as an antidepressant and reduces cognitive-impairment associated with disease and stress-induced dysfunction. Despite these promising findings, continued focus on this potentially safe alternative to tobacco and nicotine use is lacking. Here, we review the effects of cotinine, including comparisons with nicotine, and discuss potential mechanisms of cotinine-specific actions in the central nervous system which are, to date, still being elucidated.
Collapse
Affiliation(s)
- J Alex Grizzell
- Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, 33611, USA.,Department of Research and Development, Bay Pines VA Healthcare System, 10,000 Bay Pines Blvd., Bldg. 23, Rm. 123, Bay Pines, FL, 33744, USA
| | - Valentina Echeverria
- Department of Research and Development, Bay Pines VA Healthcare System, 10,000 Bay Pines Blvd., Bldg. 23, Rm. 123, Bay Pines, FL, 33744, USA. .,Universidad Autónoma de Chile, Carlos Antúnez 1920, Providencia, Santiago, Chile. .,Department of Molecular Medicine, University of South Florida, Tampa, FL, 33647, USA.
| |
Collapse
|
13
|
Katayama M, Fukuda T, Hatabu T, Narabara K, Abe A, Kondo Y. Changes in estrogen receptor expression in the chick thymus during late embryonic development. Anim Sci J 2013; 85:277-85. [PMID: 24000785 DOI: 10.1111/asj.12114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/30/2013] [Indexed: 11/27/2022]
Abstract
In chickens, although estrogen receptors (ER) are reported to be associated with the immunological processes, detailed information about the differences in ER expression in the tissues related to the development of lymphocytes is not fully known, especially during the developmental stage. To learn more about this immunological relationship, we used semi-quantitative polymerase chain reaction method to detect the ER expression levels in the thymus tissues of chicks during the developmental stage. Furthermore, ER-expressing cells were detected by immunohistochemistry. The results of this study show that the expression level of ER increased on embryonic day 16 and decreased on day 20. Furthermore, ER expression was significantly higher in male than in female chickens at day 16. The increased expression on day 16 and decreased level on day 20 were also reproduced in the incidence of immunoreactive cells, although there was a 1-day delay in the elevated incidence of the cells. This study revealed the changes in ER expression and the incidence of ER-positive cells in the thymus of chickens during the developmental stage.
Collapse
Affiliation(s)
- Masafumi Katayama
- Faculty of Agriculture, Okayama University, Kita, Okayama; Graduate School of Agricultural Science, Tohoku University, Aoba, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Arias-Loza PA, Muehlfelder M, Pelzer T. Estrogen and estrogen receptors in cardiovascular oxidative stress. Pflugers Arch 2013; 465:739-46. [DOI: 10.1007/s00424-013-1247-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 01/21/2023]
|