1
|
Huang S, Li J, Li Q, Wang Q, Zhou X, Chen J, Chen X, Bellou A, Zhuang J, Lei L. Cardiomyopathy: pathogenesis and therapeutic interventions. MedComm (Beijing) 2024; 5:e772. [PMID: 39465141 PMCID: PMC11502724 DOI: 10.1002/mco2.772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Cardiomyopathy is a group of disease characterized by structural and functional damage to the myocardium. The etiologies of cardiomyopathies are diverse, spanning from genetic mutations impacting fundamental myocardial functions to systemic disorders that result in widespread cardiac damage. Many specific gene mutations cause primary cardiomyopathy. Environmental factors and metabolic disorders may also lead to the occurrence of cardiomyopathy. This review provides an in-depth analysis of the current understanding of the pathogenesis of various cardiomyopathies, highlighting the molecular and cellular mechanisms that contribute to their development and progression. The current therapeutic interventions for cardiomyopathies range from pharmacological interventions to mechanical support and heart transplantation. Gene therapy and cell therapy, propelled by ongoing advancements in overarching strategies and methodologies, has also emerged as a pivotal clinical intervention for a variety of diseases. The increasing number of causal gene of cardiomyopathies have been identified in recent studies. Therefore, gene therapy targeting causal genes holds promise in offering therapeutic advantages to individuals diagnosed with cardiomyopathies. Acting as a more precise approach to gene therapy, they are gradually emerging as a substitute for traditional gene therapy. This article reviews pathogenesis and therapeutic interventions for different cardiomyopathies.
Collapse
Affiliation(s)
- Shitong Huang
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Jiaxin Li
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Qiuying Li
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Qiuyu Wang
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Xianwu Zhou
- Department of Cardiovascular SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jimei Chen
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| | - Xuanhui Chen
- Department of Medical Big Data CenterGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Abdelouahab Bellou
- Department of Emergency Medicine, Institute of Sciences in Emergency MedicineGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Emergency MedicineWayne State University School of MedicineDetroitMichiganUSA
| | - Jian Zhuang
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| | - Liming Lei
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| |
Collapse
|
2
|
Guo Y, Wang J, Guo X, Gao R, Yang C, Li L, Sun Y, Qiu X, Xu Y, Yang Y. KLF13 Loss‐of‐Function Mutations Underlying Familial Dilated Cardiomyopathy. J Am Heart Assoc 2022; 11:e027578. [DOI: 10.1161/jaha.122.027578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background
Dilated cardiomyopathy (DCM), characterized by progressive left ventricular enlargement and systolic dysfunction, is the most common type of cardiomyopathy and a leading cause of heart failure and cardiac death. Accumulating evidence underscores the critical role of genetic defects in the pathogenesis of DCM, and >250 genes have been implicated in DCM to date. However, DCM is of substantial genetic heterogeneity, and the genetic basis underpinning DCM remains elusive in most cases.
Methods and Results
By genome‐wide scan with microsatellite markers and genetic linkage analysis in a 4‐generation family inflicted with autosomal‐dominant DCM, a new locus for DCM was mapped on chromosome 15q13.1–q13.3, a 4.77‐cM (≈3.43 Mbp) interval between markers D15S1019 and D15S1010, with the largest 2‐point logarithm of odds score of 5.1175 for the marker D15S165 at recombination fraction (θ)=0.00. Whole‐exome sequencing analyses revealed that within the mapping chromosomal region, only the mutation in the
KLF13
gene, c.430G>T (p.E144X), cosegregated with DCM in the family. In addition, sequencing analyses of
KLF13
in another cohort of 266 unrelated patients with DCM and their available family members unveiled 2 new mutations, c.580G>T (p.E194X) and c.595T>C (p.C199R), which cosegregated with DCM in 2 families, respectively. The 3 mutations were absent from 418 healthy subjects. Functional assays demonstrated that the 3 mutants had no transactivation on the target genes
ACTC1
and
MYH7
(2 genes causally linked to DCM), alone or together with GATA4 (another gene contributing to DCM), and a diminished ability to bind the promoters of
ACTC1
and
MYH7
. Add, the E144X‐mutant KLF13 showed a defect in intracellular distribution.
Conclusions
This investigation indicates
KLF13
as a new gene predisposing to DCM, which adds novel insight to the molecular pathogenesis underlying DCM, implying potential implications for prenatal prevention and precision treatment of DCM in a subset of patients.
Collapse
Affiliation(s)
- Yu‐Han Guo
- Department of Cardiology, Shanghai Fifth People’s Hospital Fudan University Shanghai China
| | - Jun Wang
- Department of Cardiology, Shanghai Jing’an District Central Hospital Fudan University Shanghai China
| | - Xiao‐Juan Guo
- Department of Cardiology, Shanghai Fifth People’s Hospital Fudan University Shanghai China
| | - Ri‐Feng Gao
- Department of Cardiology, Shanghai Fifth People’s Hospital Fudan University Shanghai China
| | - Chen‐Xi Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital Fudan University Shanghai China
| | - Li Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Institute of Medical Genetics Tongji University Shanghai China
| | - Yu‐Min Sun
- Department of Cardiology, Shanghai Jing’an District Central Hospital Fudan University Shanghai China
| | - Xing‐Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital Shanghai Jiao Tong University Shanghai China
| | - Ying‐Jia Xu
- Department of Cardiology, Shanghai Fifth People’s Hospital Fudan University Shanghai China
| | - Yi‐Qing Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital Fudan University Shanghai China
- Cardiovascular Research Laboratory and Central Laboratory, Shanghai Fifth People’s Hospital Fudan University Shanghai China
| |
Collapse
|
3
|
Kanduc D. Thromboses and Hemostasis Disorders Associated with COVID-19: The Possible Causal Role of Cross-Reactivity and Immunological Imprinting. Glob Med Genet 2021; 8:162-170. [PMID: 34877574 PMCID: PMC8635820 DOI: 10.1055/s-0041-1731068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
By examining the issue of the thromboses and hemostasis disorders associated with severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) through the lens of cross-reactivity, it was found that 60 pentapeptides are shared by SARS-CoV-2 spike glycoprotein (gp) and human proteins that— when altered, mutated, deficient or, however, improperly functioning— cause vascular diseases, thromboembolic complications, venous thrombosis, thrombocytopenia, coagulopathies, and bleeding, inter alia. The peptide commonality has a relevant immunological potential as almost all of the shared sequences are present in experimentally validated SARS-CoV-2 spike gp-derived epitopes, thus supporting the possibility of cross-reactions between the viral gp and the thromboses-related human proteins. Moreover, many of the shared peptide sequences are also present in pathogens to which individuals have previously been exposed following natural infection or vaccinal routes, and of which the immune system has stored imprint. Such an immunological memory might rapidly trigger anamnestic secondary cross-reactive responses of extreme affinity and avidity, in this way explaining the thromboembolic adverse events that can associate with SARS-CoV-2 infection or active immunization.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
4
|
Baban A, Lodato V, Parlapiano G, Drago F. Genetics in Congenital Heart Diseases: Unraveling the Link Between Cardiac Morphogenesis, Heart Muscle Disease, and Electrical Disorders. Heart Fail Clin 2021; 18:139-153. [PMID: 34776075 DOI: 10.1016/j.hfc.2021.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The genetic background of congenital heart diseases (CHDs) is extremely complex, heterogenous, and still majorly to be determined. CHDs can be sporadic or familial. In this article we discuss in detail the phenotypic spectrum of selected genes including MYH7, GATA4, NKX2-5, TBX5, and TBX20. Our goal is to offer the clinician a general overview of the clinical spectrum of the analyzed topics that are traditionally known as causative for CHDs but we underline in this review the possible progressive functional (cardiomyopathy) and electric aspects (arrhythmias) caused by the genetic background.
Collapse
Affiliation(s)
- Anwar Baban
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children Hospital and Research Institute, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy.
| | - Valentina Lodato
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children Hospital and Research Institute, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - Giovanni Parlapiano
- Laboratory of Medical Genetics, Bambino Gesù Children Hospital and Research Institute, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - Fabrizio Drago
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children Hospital and Research Institute, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| |
Collapse
|
5
|
Abbasi S, Mohsen-Pour N, Naderi N, Rahimi S, Maleki M, Kalayinia S. In silico analysis of GATA4 variants demonstrates main contribution to congenital heart disease. J Cardiovasc Thorac Res 2021; 13:336-354. [PMID: 35047139 PMCID: PMC8749364 DOI: 10.34172/jcvtr.2021.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/05/2021] [Accepted: 09/24/2021] [Indexed: 12/05/2022] Open
Abstract
Introduction: Congenital heart disease (CHD) is the most common congenital abnormality and the main cause of infant mortality worldwide. Some of the mutations that occur in the GATA4 gene region may result in different types of CHD. Here, we report our in silico analysis of gene variants to determine the effects of the GATA4 gene on the development of CHD.
Methods: Online 1000 Genomes Project, ExAC, gnomAD, GO-ESP, TOPMed, Iranome, GME, ClinVar, and HGMD databases were drawn upon to collect information on all the reported GATA4 variations.The functional importance of the genetic variants was assessed by using SIFT, MutationTaster, CADD,PolyPhen-2, PROVEAN, and GERP prediction tools. Thereafter, network analysis of the GATA4protein via STRING, normal/mutant protein structure prediction via HOPE and I-TASSER, and phylogenetic assessment of the GATA4 sequence alignment via ClustalW were performed.
Results: The most frequent variant was c.874T>C (45.58%), which was reported in Germany.Ventricular septal defect was the most frequent type of CHD. Out of all the reported variants of GATA4,38 variants were pathogenic. A high level of pathogenicity was shown for p.Gly221Arg (CADD score=31), which was further analyzed.
Conclusion: The GATA4 gene plays a significant role in CHD; we, therefore, suggest that it be accorded priority in CHD genetic screening.
Collapse
Affiliation(s)
- Shiva Abbasi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Mohsen-Pour
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Niloofar Naderi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shahin Rahimi
- Department of Cardiology, Rajaie Cardiovascular Medical and Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Giri P, Mukhopadhyay A, Gupta M, Mohapatra B. Dilated cardiomyopathy: a new insight into the rare but common cause of heart failure. Heart Fail Rev 2021; 27:431-454. [PMID: 34245424 DOI: 10.1007/s10741-021-10125-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2021] [Indexed: 12/26/2022]
Abstract
Heart failure is a global health burden responsible for high morbidity and mortality with a prevalence of greater than 60 million individuals worldwide. One of the major causes of heart failure is dilated cardiomyopathy (DCM), characterized by associated systolic dysfunction. During the last few decades, there have been remarkable advances in our understanding about the genetics of dilated cardiomyopathy. The genetic causes were initially thought to be associated with mutations in genes encoding proteins that are localized to cytoskeleton and sarcomere only; however, with the advancement in mechanistic understanding, the roles of ion channels, Z-disc, mitochondria, nuclear proteins, cardiac transcription factors (e.g., NKX-2.5, TBX20, GATA4), and the factors involved in calcium homeostasis have also been identified and found to be implicated in both familial and sporadic DCM cases. During past few years, next-generation sequencing (NGS) has been established as a diagnostic tool for genetic analysis and it has added significantly to the existing candidate gene list for DCM. The animal models have also provided novel insights to develop a better treatment strategy based on phenotype-genotype correlation, epigenetic and phenomic profiling. Most of the DCM biomarkers that are used in routine genetic and clinical testing are structural proteins, but during the last few years, the role of mi-RNA has also emerged as a biomarker due to their accessibility through noninvasive methods. Our increasing genetic knowledge can improve the clinical management of DCM by bringing clinicians and geneticists on one platform, thereby influencing the individualized clinical decision making and leading to precision medicine.
Collapse
Affiliation(s)
- Prerna Giri
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi-5, India
| | - Amrita Mukhopadhyay
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi-5, India
| | - Mohini Gupta
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi-5, India
| | - Bhagyalaxmi Mohapatra
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi-5, India.
| |
Collapse
|
7
|
Bai L, Zhao Y, Zhao L, Zhang M, Cai Z, Yung KKL, Dong C, Li R. Ambient air PM 2.5 exposure induces heart injury and cardiac hypertrophy in rats through regulation of miR-208a/b, α/β-MHC, and GATA4. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 85:103653. [PMID: 33812011 DOI: 10.1016/j.etap.2021.103653] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Ambient air fine particulate matter (PM2.5) may increase cardiovascular disease risks. In this study, we investigated the miR-208/GATA4/myosin heavy chain (MHC) regulation mechanisms on cardiac injury in rats after PM2.5 exposure via an animal inhalation device. The results showed that PM2.5 exposure for 2 months caused pathological heart injury, reduced nucleus-cytoplasm ratio, and increased the levels of CK-MB and cTnI, showing cardiac hypertrophy. Oxidative stress and inflammatory responses were also observed in rats' hearts exposed to PM2.5. Of note, PM2.5 exposure for 2-month significantly elevated GATA4 and β-MHC mRNA and protein expression compared with the corresponding controls, along with the high-expression of miR-208b. The ratios of β-MHC/α-MHC expression induced by PM2.5 were remarkably raised in comparison to their controls. It suggested that the up-regulation of miR-208b/β-MHC and GATA4 and the conversion from α-MHC to β-MHC may be the important causes of cardiac hypertrophy in rats incurred by PM2.5.
Collapse
Affiliation(s)
- Lirong Bai
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Yufei Zhao
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Lifang Zhao
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Mei Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Ken Kin Lam Yung
- Institute of Environmental Science, Shanxi University, Taiyuan, China; Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan, China.
| | - Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan, China.
| |
Collapse
|
8
|
Abstract
Cardiac development is a complex developmental process that is initiated soon after gastrulation, as two sets of precardiac mesodermal precursors are symmetrically located and subsequently fused at the embryonic midline forming the cardiac straight tube. Thereafter, the cardiac straight tube invariably bends to the right, configuring the first sign of morphological left–right asymmetry and soon thereafter the atrial and ventricular chambers are formed, expanded and progressively septated. As a consequence of all these morphogenetic processes, the fetal heart acquired a four-chambered structure having distinct inlet and outlet connections and a specialized conduction system capable of directing the electrical impulse within the fully formed heart. Over the last decades, our understanding of the morphogenetic, cellular, and molecular pathways involved in cardiac development has exponentially grown. Multiples aspects of the initial discoveries during heart formation has served as guiding tools to understand the etiology of cardiac congenital anomalies and adult cardiac pathology, as well as to enlighten novels approaches to heal the damaged heart. In this review we provide an overview of the complex cellular and molecular pathways driving heart morphogenesis and how those discoveries have provided new roads into the genetic, clinical and therapeutic management of the diseased hearts.
Collapse
|
9
|
Qiao Q, Zhao CM, Yang CX, Gu JN, Guo YH, Zhang M, Li RG, Qiu XB, Xu YJ, Yang YQ. Detection and functional characterization of a novel MEF2A variation responsible for familial dilated cardiomyopathy. Clin Chem Lab Med 2020; 59:955-963. [PMID: 33554560 DOI: 10.1515/cclm-2020-1318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Dilated cardiomyopathy (DCM) represents the most frequent form of cardiomyopathy, leading to heart failure, cardiac arrhythmias and death. Accumulating evidence convincingly demonstrates the crucial role of genetic defects in the pathogenesis of DCM, and over 100 culprit genes have been implicated with DCM. However, DCM is of substantial genetic heterogeneity, and the genetic determinants underpinning DCM remain largely elusive. METHODS Whole-exome sequencing and bioinformatical analyses were implemented in a consanguineous Chinese family with DCM. A total of 380 clinically annotated control individuals and 166 more DCM index cases then underwent Sanger sequencing analysis for the identified genetic variation. The functional characteristics of the variant were delineated by utilizing a dual-luciferase assay system. RESULTS A heterozygous variation in the MEF2A gene (encoding myocyte enhancer factor 2A, a transcription factor pivotal for embryonic cardiogenesis and postnatal cardiac adaptation), NM_001365204.1: c.718G>T; p. (Gly240*), was identified, and verified by Sanger sequencing to segregate with autosome-dominant DCM in the family with complete penetrance. The nonsense variation was neither detected in 760 control chromosomes nor found in 166 more DCM probands. Functional analyses revealed that the variant lost transactivation on the validated target genes MYH6 and FHL2, both causally linked to DCM. Furthermore, the variation nullified the synergistic activation between MEF2A and GATA4, another key transcription factor involved in DCM. CONCLUSIONS The findings firstly indicate that MEF2A loss-of-function variation predisposes to DCM in humans, providing novel insight into the molecular mechanisms of DCM and suggesting potential implications for genetic testing and prognostic evaluation of DCM patients.
Collapse
Affiliation(s)
- Qi Qiao
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China
| | - Cui-Mei Zhao
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China
| | - Jia-Ning Gu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China
| | - Yu-Han Guo
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China
| | - Min Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China.,Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China.,Center Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China
| |
Collapse
|
10
|
Patterson J, Coats C, McGowan R. Familial dilated cardiomyopathy associated with pathogenic TBX5 variants: Expanding the cardiac phenotype associated with Holt-Oram syndrome. Am J Med Genet A 2020; 182:1725-1734. [PMID: 32449309 DOI: 10.1002/ajmg.a.61635] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/03/2020] [Accepted: 04/29/2020] [Indexed: 11/07/2022]
Abstract
Holt-Oram syndrome (HOS) is a rare, autosomal dominant disorder caused by heterozygous pathogenic variants in cardiac T-box transcription factor, TBX5. Classically, it is associated with upper limb malformations and variable cardiac abnormalities. Limb manifestations are considered to be invariably present, ranging in severity from limitation in movement, to triphalangeal thumbs, absent thumbs, shortened forearms, or phocomelia. Cardiac involvement is characterized by congenital heart defects, most commonly septal structural malformations, and conduction system disease. Recently, novel TBX5 variants have also been reported in association with dilated cardiomyopathy (DCM). In this context, we report eight individuals from four unrelated families, in whom pathogenic variants in TBX5 segregated with an atypical HOS phenotype. Affected individuals exhibit relatively mild skeletal features of HOS, with a predominant cardiac phenotype, which includes several individuals affected by non-ischaemic DCM. To our knowledge, these represent the first reported cases of DCM in families with skeletal features of HOS, some of whom also harbored variants previously linked to a classical HOS phenotype (p. Arg279* and p.Arg237Gln). This finding supports diverse roles of TBX5 in cardiovascular development and function, and confirms the importance of long-term cardiac surveillance for individuals affected by HOS. Furthermore, these families highlight the wide phenotypic variability of HOS, which may include comparatively mild upper limb findings in respect to cardiac manifestations.
Collapse
Affiliation(s)
- Jenny Patterson
- West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow, UK
| | - Caroline Coats
- Department of Cardiology, Queen Elizabeth University Hospital, Glasgow, UK
| | - Ruth McGowan
- West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow, UK
| |
Collapse
|
11
|
Di RM, Yang CX, Zhao CM, Yuan F, Qiao Q, Gu JN, Li XM, Xu YJ, Yang YQ. Identification and functional characterization of KLF5 as a novel disease gene responsible for familial dilated cardiomyopathy. Eur J Med Genet 2020; 63:103827. [DOI: 10.1016/j.ejmg.2019.103827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/25/2019] [Accepted: 12/14/2019] [Indexed: 02/08/2023]
|
12
|
Brodehl A, Ebbinghaus H, Deutsch MA, Gummert J, Gärtner A, Ratnavadivel S, Milting H. Human Induced Pluripotent Stem-Cell-Derived Cardiomyocytes as Models for Genetic Cardiomyopathies. Int J Mol Sci 2019; 20:ijms20184381. [PMID: 31489928 PMCID: PMC6770343 DOI: 10.3390/ijms20184381] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022] Open
Abstract
In the last few decades, many pathogenic or likely pathogenic genetic mutations in over hundred different genes have been described for non-ischemic, genetic cardiomyopathies. However, the functional knowledge about most of these mutations is still limited because the generation of adequate animal models is time-consuming and challenging. Therefore, human induced pluripotent stem cells (iPSCs) carrying specific cardiomyopathy-associated mutations are a promising alternative. Since the original discovery that pluripotency can be artificially induced by the expression of different transcription factors, various patient-specific-induced pluripotent stem cell lines have been generated to model non-ischemic, genetic cardiomyopathies in vitro. In this review, we describe the genetic landscape of non-ischemic, genetic cardiomyopathies and give an overview about different human iPSC lines, which have been developed for the disease modeling of inherited cardiomyopathies. We summarize different methods and protocols for the general differentiation of human iPSCs into cardiomyocytes. In addition, we describe methods and technologies to investigate functionally human iPSC-derived cardiomyocytes. Furthermore, we summarize novel genome editing approaches for the genetic manipulation of human iPSCs. This review provides an overview about the genetic landscape of inherited cardiomyopathies with a focus on iPSC technology, which might be of interest for clinicians and basic scientists interested in genetic cardiomyopathies.
Collapse
Affiliation(s)
- Andreas Brodehl
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Hans Ebbinghaus
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Marcus-André Deutsch
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Jan Gummert
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Anna Gärtner
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Sandra Ratnavadivel
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, D-32545 Bad Oeynhausen, Germany.
| |
Collapse
|
13
|
Identification and Functional Characterization of an ISL1 Mutation Predisposing to Dilated Cardiomyopathy. J Cardiovasc Transl Res 2018; 12:257-267. [DOI: 10.1007/s12265-018-9851-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023]
|
14
|
Dixit R, Narasimhan C, Balekundri VI, Agrawal D, Kumar A, Mohapatra B. Functionally significant, novel GATA4
variants are frequently associated with Tetralogy of Fallot. Hum Mutat 2018; 39:1957-1972. [DOI: 10.1002/humu.23620] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 08/13/2018] [Accepted: 08/20/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Ritu Dixit
- Cytogenetics Laboratory; Department of Zoology; Banaras Hindu University; Varanasi Uttar Pradesh India
| | - Chitra Narasimhan
- Department of Pediatric Cardiology; Sri Jayadeva Institute of Cardiovascular Sciences and Research; Bengaluru Karnataka India
| | - Vijyalakshmi I. Balekundri
- Super Speciality Hospital; Prime Minister Swasth Suraksha Yojana (PMSSY); Bengaluru Medical College and Research Institute; Bengaluru Karnataka India
| | - Damyanti Agrawal
- Department of Cardio-vascular and Thoracic Surgery; Institute of Medical Science; Banaras Hindu University; Varanasi Uttar Pradesh India
| | - Ashok Kumar
- Department of Pediatrics; Institute of Medical Sciences; Banaras Hindu University; Varanasi Uttar Pradesh India
| | - Bhagyalaxmi Mohapatra
- Cytogenetics Laboratory; Department of Zoology; Banaras Hindu University; Varanasi Uttar Pradesh India
| |
Collapse
|
15
|
Stem cells are the most sensitive screening tool to identify toxicity of GATA4-targeted novel small-molecule compounds. Arch Toxicol 2018; 92:2897-2911. [PMID: 29987409 PMCID: PMC6132687 DOI: 10.1007/s00204-018-2257-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/04/2018] [Indexed: 01/10/2023]
Abstract
Safety assessment of drug candidates in numerous in vitro and experimental animal models is expensive, time consuming and animal intensive. More thorough toxicity profiling already in the early drug discovery projects using human cell models, which more closely resemble the physiological cell types, would help to decrease drug development costs. In this study we aimed to compare different cardiac and stem cell models for in vitro toxicity testing and to elucidate structure–toxicity relationships of novel compounds targeting the cardiac transcription factor GATA4. By screening the effects of eight compounds at concentrations ranging from 10 nM up to 30 µM on the viability of eight different cell types, we identified significant cell type- and structure-dependent toxicity profiles. We further characterized two compounds in more detail using high-content analysis. The results highlight the importance of cell type selection for toxicity screening and indicate that stem cells represent the most sensitive screening model, which can detect toxicity that may otherwise remain unnoticed. Furthermore, our structure–toxicity analysis reveals a characteristic dihedral angle in the GATA4-targeted compounds that causes stem cell toxicity and thus helps to direct further drug development efforts towards non-toxic derivatives.
Collapse
|
16
|
Sun YM, Wang J, Xu YJ, Wang XH, Yuan F, Liu H, Li RG, Zhang M, Li YJ, Shi HY, Zhao L, Qiu XB, Qu XK, Yang YQ. ZBTB17 loss-of-function mutation contributes to familial dilated cardiomyopathy. Heart Vessels 2018; 33:722-732. [DOI: 10.1007/s00380-017-1110-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/22/2017] [Indexed: 12/24/2022]
|
17
|
Tang VT, Arscott P, Helms AS, Day SM. Whole-Exome Sequencing Reveals
GATA4
and
PTEN
Mutations as a Potential Digenic Cause of Left Ventricular Noncompaction. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2018; 11:e001966. [DOI: 10.1161/circgen.117.001966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Vi T. Tang
- From the Departments of Molecular and Integrative Physiology (V.T.T., S.M.D.) and Internal Medicine (P.A., A.S.H., S.M.D.), University of Michigan, Ann Arbor
| | - Patricia Arscott
- From the Departments of Molecular and Integrative Physiology (V.T.T., S.M.D.) and Internal Medicine (P.A., A.S.H., S.M.D.), University of Michigan, Ann Arbor
| | - Adam S. Helms
- From the Departments of Molecular and Integrative Physiology (V.T.T., S.M.D.) and Internal Medicine (P.A., A.S.H., S.M.D.), University of Michigan, Ann Arbor
| | - Sharlene M. Day
- From the Departments of Molecular and Integrative Physiology (V.T.T., S.M.D.) and Internal Medicine (P.A., A.S.H., S.M.D.), University of Michigan, Ann Arbor
| |
Collapse
|
18
|
Xu JH, Gu JY, Guo YH, Zhang H, Qiu XB, Li RG, Shi HY, Liu H, Yang XX, Xu YJ, Qu XK, Yang YQ. Prevalence and Spectrum of NKX2-5 Mutations Associated With Sporadic Adult-Onset Dilated Cardiomyopathy. Int Heart J 2017; 58:521-529. [PMID: 28690296 DOI: 10.1536/ihj.16-440] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dilated cardiomyopathy (DCM), the most common form of primary myocardial disease, is a leading cause of congestive heart failure and the most common indication for heart transplantation. Recently, NKX2-5 mutations have been involved in the pathogenesis of familial DCM. However, the prevalence and spectrum of NKX2-5 mutations associated with sporadic DCM remain to be evaluated. In this study, the coding regions and flanking introns of the NKX2-5 gene, which encodes a cardiac transcription factor pivotal for cardiac development and structural remodeling, were sequenced in 210 unrelated patients with sporadic adult-onset DCM. A total of 300 unrelated healthy individuals used as controls were also genotyped for NKX2-5. The functional effect of the mutant NKX2-5 was investigated using a dual-luciferase reporter assay system. As a result, two novel heterozygous NKX2-5 mutations, p.R139W and p.E167X, were identified in 2 unrelated patients with sporadic adult-onset DCM, with a mutational prevalence of approximately 0.95%. The mutations were absent in 600 referential chromosomes and the altered amino acids were completely conserved evolutionarily across species. Functional assays revealed that the NKX2-5 mutants were associated with significantly reduced transcriptional activity. Furthermore, the mutations abrogated the synergistic activation between NKX2-5 and GATA4 as well as TBX20, two other cardiac key transcription factors that have been causally linked to adult-onset DCM. This study is the first to associate NKX2-5 loss-of-function mutations with enhanced susceptibility to sporadic DCM, which provides novel insight into the molecular etiology underpinning DCM, and suggests the potential implications for the genetic counseling and personalized treatment of the DCM patients.
Collapse
Affiliation(s)
- Jia-Hong Xu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine
| | - Jian-Yun Gu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine
| | - Yu-Han Guo
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine
| | - Hong Zhang
- Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University
| | - Hong-Yu Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University
| | - Hua Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University
| | - Xiao-Xiao Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University
| | - Xin-Kai Qu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University.,Department of Cardiovascular Research Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University.,Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University
| |
Collapse
|
19
|
Ang YS, Rivas RN, Ribeiro AJS, Srivas R, Rivera J, Stone NR, Pratt K, Mohamed TMA, Fu JD, Spencer CI, Tippens ND, Li M, Narasimha A, Radzinsky E, Moon-Grady AJ, Yu H, Pruitt BL, Snyder MP, Srivastava D. Disease Model of GATA4 Mutation Reveals Transcription Factor Cooperativity in Human Cardiogenesis. Cell 2017; 167:1734-1749.e22. [PMID: 27984724 DOI: 10.1016/j.cell.2016.11.033] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 08/09/2016] [Accepted: 11/17/2016] [Indexed: 12/12/2022]
Abstract
Mutation of highly conserved residues in transcription factors may affect protein-protein or protein-DNA interactions, leading to gene network dysregulation and human disease. Human mutations in GATA4, a cardiogenic transcription factor, cause cardiac septal defects and cardiomyopathy. Here, iPS-derived cardiomyocytes from subjects with a heterozygous GATA4-G296S missense mutation showed impaired contractility, calcium handling, and metabolic activity. In human cardiomyocytes, GATA4 broadly co-occupied cardiac enhancers with TBX5, another transcription factor that causes septal defects when mutated. The GATA4-G296S mutation disrupted TBX5 recruitment, particularly to cardiac super-enhancers, concomitant with dysregulation of genes related to the phenotypic abnormalities, including cardiac septation. Conversely, the GATA4-G296S mutation led to failure of GATA4 and TBX5-mediated repression at non-cardiac genes and enhanced open chromatin states at endothelial/endocardial promoters. These results reveal how disease-causing missense mutations can disrupt transcriptional cooperativity, leading to aberrant chromatin states and cellular dysfunction, including those related to morphogenetic defects.
Collapse
Affiliation(s)
- Yen-Sin Ang
- Gladstone Institute of Cardiovascular Disease and Roddenberry Center for Stem Cell Biology and Medicine, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Renee N Rivas
- Gladstone Institute of Cardiovascular Disease and Roddenberry Center for Stem Cell Biology and Medicine, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Rohith Srivas
- Department of Genetics and Center for Genomics and Personalized Medicine, Stanford University, Stanford, CA 94305, USA
| | - Janell Rivera
- Gladstone Institute of Cardiovascular Disease and Roddenberry Center for Stem Cell Biology and Medicine, San Francisco, CA 94158, USA
| | - Nicole R Stone
- Gladstone Institute of Cardiovascular Disease and Roddenberry Center for Stem Cell Biology and Medicine, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Karishma Pratt
- Gladstone Institute of Cardiovascular Disease and Roddenberry Center for Stem Cell Biology and Medicine, San Francisco, CA 94158, USA
| | - Tamer M A Mohamed
- Gladstone Institute of Cardiovascular Disease and Roddenberry Center for Stem Cell Biology and Medicine, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ji-Dong Fu
- Gladstone Institute of Cardiovascular Disease and Roddenberry Center for Stem Cell Biology and Medicine, San Francisco, CA 94158, USA
| | - C Ian Spencer
- Gladstone Institute of Cardiovascular Disease and Roddenberry Center for Stem Cell Biology and Medicine, San Francisco, CA 94158, USA
| | - Nathaniel D Tippens
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY 14850, USA
| | - Molong Li
- Gladstone Institute of Cardiovascular Disease and Roddenberry Center for Stem Cell Biology and Medicine, San Francisco, CA 94158, USA
| | - Anil Narasimha
- Department of Genetics and Center for Genomics and Personalized Medicine, Stanford University, Stanford, CA 94305, USA
| | - Ethan Radzinsky
- Gladstone Institute of Cardiovascular Disease and Roddenberry Center for Stem Cell Biology and Medicine, San Francisco, CA 94158, USA
| | - Anita J Moon-Grady
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Haiyuan Yu
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY 14850, USA
| | - Beth L Pruitt
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Michael P Snyder
- Department of Genetics and Center for Genomics and Personalized Medicine, Stanford University, Stanford, CA 94305, USA
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease and Roddenberry Center for Stem Cell Biology and Medicine, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
20
|
Alonso-Montes C, Rodríguez-Reguero J, Martín M, Gómez J, Coto E, Naves-Díaz M, Morís C, Cannata-Andía JB, Rodríguez I. Rare genetic variants in GATA transcription factors in patients with hypertrophic cardiomyopathy. J Investig Med 2017; 65:926-934. [PMID: 28381408 DOI: 10.1136/jim-2016-000364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2017] [Indexed: 11/03/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is a very heterogeneous disease. Although primarily caused by mutations in genes encoding sarcomeric proteins, other genes might explain that heterogeneity. Potential candidate genes are GATA transcription factors that regulate the expression of proteins associated with HCM. Exons of GATA2, GATA4, and GATA6 genes were sequenced in 212 patients with unrelated HCM previously analyzed for genes encoding the most frequently mutated sarcomeric proteins. Functional effects of variants were predicted by in silico analyses. 3 potentially pathogenic variants were identified: c.-77G>A in GATA2, p.Ala343Thr (rs370588269) in GATA4, and p.Pro555Ala (rs146243018) in GATA6 Multivariate analyses showed that angina was more frequent in patients carrying sarcomeric and GATA rare variants (55% vs 23.2% in non-carriers of GATA rare variants, OR (95% CI) 7.12 (1.23 to 41.27), p=0.029). Among patients without a known causal mutation, GATA rare variants were associated with a greater maximum posterior wall thickness (16.4±4.4 vs 14.0±3.1 mm in non-carriers, p=0.021). Thus, variants having a putative effect on GATA genes would alter the expression of their target genes and could modify the hypertrophic response. Therefore, although relatively infrequent in patients with HCM, they may represent a novel insight into the molecular mechanisms related to the pathogenesis of HCM.
Collapse
Affiliation(s)
- Cristina Alonso-Montes
- Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación, Hospital Universitario Central de Asturias, Oviedo, Spain.,Red de Investigación Renal REDinREN from Instituto de Salud Carlos III, Oviedo, Spain
| | - Julián Rodríguez-Reguero
- Red de Investigación Renal REDinREN from Instituto de Salud Carlos III, Oviedo, Spain.,Cardiology Department, Fundación Asturcor, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - María Martín
- Red de Investigación Renal REDinREN from Instituto de Salud Carlos III, Oviedo, Spain.,Cardiology Department, Fundación Asturcor, Hospital Universitario Central de Asturias, Oviedo, Spain.,Molecular Genetics Unit, Instituto Reina Sofía de Investigación, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Juan Gómez
- Red de Investigación Renal REDinREN from Instituto de Salud Carlos III, Oviedo, Spain.,Universidad de Oviedo, Oviedo, Spain
| | - Eliecer Coto
- Red de Investigación Renal REDinREN from Instituto de Salud Carlos III, Oviedo, Spain.,Molecular Genetics Unit, Instituto Reina Sofía de Investigación, Hospital Universitario Central de Asturias, Oviedo, Spain.,Universidad de Oviedo, Oviedo, Spain
| | - Manuel Naves-Díaz
- Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación, Hospital Universitario Central de Asturias, Oviedo, Spain.,Red de Investigación Renal REDinREN from Instituto de Salud Carlos III, Oviedo, Spain
| | - César Morís
- Red de Investigación Renal REDinREN from Instituto de Salud Carlos III, Oviedo, Spain.,Cardiology Department, Fundación Asturcor, Hospital Universitario Central de Asturias, Oviedo, Spain.,Molecular Genetics Unit, Instituto Reina Sofía de Investigación, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Jorge B Cannata-Andía
- Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación, Hospital Universitario Central de Asturias, Oviedo, Spain.,Red de Investigación Renal REDinREN from Instituto de Salud Carlos III, Oviedo, Spain.,Molecular Genetics Unit, Instituto Reina Sofía de Investigación, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Isabel Rodríguez
- Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación, Hospital Universitario Central de Asturias, Oviedo, Spain.,Red de Investigación Renal REDinREN from Instituto de Salud Carlos III, Oviedo, Spain
| |
Collapse
|
21
|
Chen H, Chen X, Hong X, Liu C, Huang H, Wang Q, Chen S, Chen H, Yang K, Sun Q. Maternal exposure to ambient PM 2.5 exaggerates fetal cardiovascular maldevelopment induced by homocysteine in rats. ENVIRONMENTAL TOXICOLOGY 2017; 32:877-889. [PMID: 27203204 DOI: 10.1002/tox.22287] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 04/22/2016] [Accepted: 04/30/2016] [Indexed: 06/05/2023]
Abstract
Maternal exposure to airborne particulate matter with aerodynamic diameter <2.5 µm (PM2.5 ) during pregnancy and lactation periods is associated with filial congenital cardiovascular diseases. This study aimed to investigate the toxic effects of maternal exposure to ambient levels of PM2.5 on filial cardiovascular maldevelopment induced by homocysteine. Using a 2 × 2 factorial design, rats were randomized into four groups and were exposed to ambient PM2.5 or filtered air (FA) throughout the pregnancy and lactation periods coupled with the administration of either homocysteine (HCY) or normal saline (NS) daily from gestation days 8-10. Morphological changes in the heart, myocardial apoptosis, expressions of cardiac progenitor transcriptional factors, and levels of cytokines were investigated in the offspring. The apoptosis-like changes in the myocardium were seen in the FA plus HCY-treated group and more obviously in the PM2.5 plus HCY-treated group, which was in accordance with an increased myocardial apoptosis rate in the two groups. PM2.5 exposure resulted in significantly decreased Nkx2-5 protein level and GATA4 and Nkx2-5 mRNA expressions, and significantly increased TNF-α and IL-1β levels. There were significant interactions between PM2.5 exposure and HCY-treatment that PM2.5 exposure reduced Nkx2-5 protein levels and GATA4 and Nkx2-5 mRNA expressions in the HCY-treated groups. These results suggest that maternal exposure to PM2.5 , even at the ambient levels in urban regions in China, exaggerates filial cardiovascular maldevelopment induced by HCY in a murine model, exacerbating structural abnormalities in the filial cardiac tissue, which is possibly associated with oxidative stress and reduced GATA4 and Nkx2-5 transcription factor expressions. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 877-889, 2017.
Collapse
Affiliation(s)
- Huiqing Chen
- Department of Obstetrics and Gynecology, Fuzhou General Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaoqiu Chen
- Central Station of Environmental Monitoring of Fujian Province, Fuzhou, Fujian, China
| | - Xinru Hong
- Department of Obstetrics and Gynecology, Fuzhou General Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Dongfang Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- China International Science & Technology Cooperation Base for Environmental Factors on Early Development, Fuzhou, Fujian, China
| | - Chaobin Liu
- Department of Obstetrics and Gynecology, Fujian Maternity and Children Health Hospital, Teaching Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Huijuan Huang
- Department of Obstetrics and Gynecology, Fuzhou General Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Dongfang Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Qing Wang
- Fuzhou Institute of Product Quality Inspection, Fuzhou, Fujian, China
| | - Suqing Chen
- Department of Obstetrics and Gynecology, Fujian Maternity and Children Health Hospital, Teaching Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Hanqiang Chen
- Department of Obstetrics and Gynecology, Fujian Maternity and Children Health Hospital, Teaching Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Kai Yang
- Dongfang Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Qinghua Sun
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio, 43210-1240, USA
| |
Collapse
|
22
|
Qiu XB, Qu XK, Li RG, Liu H, Xu YJ, Zhang M, Shi HY, Hou XM, Liu X, Yuan F, Sun YM, Wang J, Huang RT, Xue S, Yang YQ. CASZ1 loss-of-function mutation contributes to familial dilated cardiomyopathy. ACTA ACUST UNITED AC 2017; 55:1417-1425. [DOI: 10.1515/cclm-2016-0612] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 12/09/2016] [Indexed: 02/06/2023]
Abstract
AbstractBackground:The zinc finger transcription factor CASZ1 plays a key role in cardiac development and postnatal adaptation, and in mice, deletion of theMethods:The coding exons and splicing junction sites of theResults:A novel heterozygous CASZ1 mutation, p.K351X, was identified in an index patient with DCM. Genetic analysis of the mutation carrier’s family showed that the mutation co-segregated with DCM, which was transmitted in an autosomal dominant pattern with complete penetrance. The nonsense mutation, which was absent in 400 referential chromosomes, altered the amino acid that was highly conserved evolutionarily. Biological investigations revealed that the mutant CASZ1 had no transcriptional activity.Conclusions:The current study reveals
Collapse
|
23
|
Zhou YM, Dai XY, Huang RT, Xue S, Xu YJ, Qiu XB, Yang YQ. A novel TBX20 loss-of-function mutation contributes to adult-onset dilated cardiomyopathy or congenital atrial septal defect. Mol Med Rep 2016; 14:3307-14. [DOI: 10.3892/mmr.2016.5609] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 07/22/2016] [Indexed: 11/06/2022] Open
|
24
|
Almomani R, Verhagen JM, Herkert JC, Brosens E, van Spaendonck-Zwarts KY, Asimaki A, van der Zwaag PA, Frohn-Mulder IM, Bertoli-Avella AM, Boven LG, van Slegtenhorst MA, van der Smagt JJ, van IJcken WF, Timmer B, van Stuijvenberg M, Verdijk RM, Saffitz JE, du Plessis FA, Michels M, Hofstra RM, Sinke RJ, van Tintelen JP, Wessels MW, Jongbloed JD, van de Laar IM. Biallelic Truncating Mutations in ALPK3 Cause Severe Pediatric Cardiomyopathy. J Am Coll Cardiol 2016; 67:515-25. [DOI: 10.1016/j.jacc.2015.10.093] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/25/2015] [Accepted: 10/27/2015] [Indexed: 10/22/2022]
|
25
|
Zhou YM, Dai XY, Qiu XB, Yuan F, Li RG, Xu YJ, Qu XK, Huang RT, Xue S, Yang YQ. HAND1 loss-of-function mutation associated with familial dilated cardiomyopathy. ACTA ACUST UNITED AC 2016; 54:1161-7. [DOI: 10.1515/cclm-2015-0766] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 10/13/2015] [Indexed: 01/11/2023]
Abstract
AbstractThe basic helix-loop-helix transcription factor HAND1 is essential for cardiac development and structural remodeling, and mutations in HAND1 have been causally linked to various congenital heart diseases. However, whether genetically compromised HAND1 predisposes to dilated cardiomyopathy (DCM) in humans remains unknown.The whole coding region and splicing junctions of theA novel heterozygous HAND1 mutation, p.R105X, was identified in a family with DCM transmitted as an autosomal dominant trait, which co-segregated with DCM in the family with complete penetrance. The nonsense mutation was absent in 520 control chromosomes. Functional analyses unveiled that the mutant HAND1 had no transcriptional activity. Furthermore, the mutation abolished the synergistic activation between HAND1 and GATA4, another crucial cardiac transcription factors that has been associated with various congenital cardiovascular malformations and DCM.This study firstly reports the association of HAND1 loss-of-function mutation with increased susceptibility to DCM in humans, which provides novel insight into the molecular mechanisms underpinning DCM.
Collapse
|
26
|
Kinnunen S, Välimäki M, Tölli M, Wohlfahrt G, Darwich R, Komati H, Nemer M, Ruskoaho H. Nuclear Receptor-Like Structure and Interaction of Congenital Heart Disease-Associated Factors GATA4 and NKX2-5. PLoS One 2015; 10:e0144145. [PMID: 26642209 PMCID: PMC4671672 DOI: 10.1371/journal.pone.0144145] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/13/2015] [Indexed: 01/24/2023] Open
Abstract
AIMS Transcription factor GATA4 is a dosage sensitive regulator of heart development and alterations in its level or activity lead to congenital heart disease (CHD). GATA4 has also been implicated in cardiac regeneration and repair. GATA4 action involves combinatorial interaction with other cofactors such as NKX2-5, another critical cardiac regulator whose mutations also cause CHD. Despite its critical importance to the heart and its evolutionary conservation across species, the structural basis of the GATA4-NKX2-5 interaction remains incompletely understood. METHODS AND RESULTS A homology model was constructed and used to identify surface amino acids important for the interaction of GATA4 and NKX2-5. These residues were subjected to site-directed mutagenesis, and the mutant proteins were characterized for their ability to bind DNA and to physically and functionally interact with NKX2-5. The studies identify 5 highly conserved amino acids in the second zinc finger (N272, R283, Q274, K299) and its C-terminal extension (R319) that are critical for physical and functional interaction with the third alpha helix of NKX2-5 homeodomain. Integration of the experimental data with computational modeling suggests that the structural arrangement of the zinc finger-homeodomain resembles the architecture of the conserved DNA binding domain of nuclear receptors. CONCLUSIONS The results provide novel insight into the structural basis for protein-protein interactions between two important classes of transcription factors. The model proposed will help to elucidate the molecular basis for disease causing mutations in GATA4 and NKX2-5 and may be relevant to other members of the GATA and NK classes of transcription factors.
Collapse
Affiliation(s)
- Sini Kinnunen
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Mika Välimäki
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Marja Tölli
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Gerd Wohlfahrt
- Orion Pharma, Computer-Aided Drug Design, Espoo, Finland
| | - Rami Darwich
- Laboratory of Cardiac Development and Differentiation, Department of Biochemistry, Immunology and Microbiology, University of Ottawa, Ottawa, Canada
| | - Hiba Komati
- Laboratory of Cardiac Development and Differentiation, Department of Biochemistry, Immunology and Microbiology, University of Ottawa, Ottawa, Canada
| | - Mona Nemer
- Laboratory of Cardiac Development and Differentiation, Department of Biochemistry, Immunology and Microbiology, University of Ottawa, Ottawa, Canada
- * E-mail: (HR); (MN)
| | - Heikki Ruskoaho
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- * E-mail: (HR); (MN)
| |
Collapse
|
27
|
In vitro cardiomyocyte differentiation of umbilical cord blood cells: crucial role for c-kit+ cells. Cytotherapy 2015; 17:1627-37. [DOI: 10.1016/j.jcyt.2015.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 07/16/2015] [Accepted: 07/20/2015] [Indexed: 11/22/2022]
|
28
|
QU XINKAI, YUAN FANG, LI RUOGU, XU LEI, JING WEIFENG, LIU HUA, XU YINGJIA, ZHANG MIN, LIU XU, FANG WEIYI, YANG YIQING, QIU XINGBIAO. Prevalence and spectrum of LRRC10 mutations associated with idiopathic dilated cardiomyopathy. Mol Med Rep 2015; 12:3718-3724. [DOI: 10.3892/mmr.2015.3843] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 05/01/2015] [Indexed: 11/06/2022] Open
|
29
|
Augière C, Mégy S, El Malti R, Boland A, El Zein L, Verrier B, Mégarbané A, Deleuze JF, Bouvagnet P. A Novel Alpha Cardiac Actin (ACTC1) Mutation Mapping to a Domain in Close Contact with Myosin Heavy Chain Leads to a Variety of Congenital Heart Defects, Arrhythmia and Possibly Midline Defects. PLoS One 2015; 10:e0127903. [PMID: 26061005 PMCID: PMC4464657 DOI: 10.1371/journal.pone.0127903] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/20/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND A Lebanese Maronite family presented with 13 relatives affected by various congenital heart defects (mainly atrial septal defects), conduction tissue anomalies and midline defects. No mutations were found in GATA4 and NKX2-5. METHODS AND RESULTS A set of 399 poly(AC) markers was used to perform a linkage analysis which peaked at a 2.98 lod score on the long arm of chromosome 15. The haplotype analysis delineated a 7.7 meganucleotides genomic interval which included the alpha-cardiac actin gene (ACTC1) among 36 other protein coding genes. A heterozygous missense mutation was found (c.251T>C, p.(Met84Thr)) in the ACTC1 gene which changed a methionine residue conserved up to yeast. This mutation was absent from 1000 genomes and exome variant server database but segregated perfectly in this family with the affection status. This mutation and 2 other ACTC1 mutations (p.(Glu101Lys) and p.(Met125Val)) which result also in congenital heart defects are located in a region in close apposition to a myosin heavy chain head region by contrast to 3 other alpha-cardiac actin mutations (p.(Ala297Ser),p.(Asp313His) and p.(Arg314His)) which result in diverse cardiomyopathies and are located in a totally different interaction surface. CONCLUSIONS Alpha-cardiac actin mutations lead to congenital heart defects, cardiomyopathies and eventually midline defects. The consequence of an ACTC1 mutation may in part be dependent on the interaction surface between actin and myosin.
Collapse
Affiliation(s)
- Céline Augière
- EA 4173, Université Lyon 1 and Hôpital Nord-Ouest, Lyon, France
| | - Simon Mégy
- IBCP, UMR 5305 CNRS and Université Lyon 1, Lyon, France
| | - Rajae El Malti
- Laboratoire Cardiogénétique Malformation, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron, France
| | | | - Loubna El Zein
- EA 4173, Université Lyon 1 and Hôpital Nord-Ouest, Lyon, France
| | | | - André Mégarbané
- Unité de Génétique Médicale, Faculté de Médecine, Université Saint-Joseph, Beirut, Lebanon
- Institut Jérôme Lejeune, Paris, France
| | | | - Patrice Bouvagnet
- EA 4173, Université Lyon 1 and Hôpital Nord-Ouest, Lyon, France
- Laboratoire Cardiogénétique Malformation, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron, France
- Service de Cardiologie Pédiatrique, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron, France
- * E-mail:
| |
Collapse
|
30
|
Zhou W, Zhao L, Jiang JQ, Jiang WF, Yang YQ, Qiu XB. A novel TBX5 loss-of-function mutation associated with sporadic dilated cardiomyopathy. Int J Mol Med 2015; 36:282-8. [PMID: 25963046 DOI: 10.3892/ijmm.2015.2206] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 05/07/2015] [Indexed: 01/08/2023] Open
Abstract
Dilated cardiomyopathy (DCM) represents the most prevalent form of primary cardiomyopathy, and is the most common reason for heart transplantation and a major cause of congestive heart failure. Aggregating evidence demonstrates that genetic defects are associated with DCM, and a great number of mutations in >50 genes have been linked to DCM. However, DCM is a genetically heterogeneous disorder and the genetic components underpinning DCM in a significant proportion of patients remain unknown. In the present study, the coding exons and flanking exon‑intron boundaries of the T-Box 5 (TBX5) gene, which encodes a T‑box transcription factor required for normal cardiac development, were sequenced in 146 unrelated patients with sporadic DCM. The functional characteristics of the mutant TBX5 were assayed in contrast to its wild‑type counterpart by using a dual‑luciferase reporter assay system. As a result, a novel heterozygous TBX5 mutation, p.A143T, was identified in a patient with sporadic DCM. The missense mutation, which was absent in 400 control chromosomes, altered the amino acid that was completely conserved evolutionarily among species. Biological analyses revealed that the A143T mutation of TBX5 was associated with significantly decreased transcriptional activity on the promoter of the target gene atrial natriuretic factor (ANF), when compared to its wild‑type counterpart. Furthermore, the A143T mutation abolished the synergistic activation of the ANF promoter between TBX5 and GATA binding protein 4 (GATA4), another crucial transcriptional factor for heart development. To the best of our knowledge, this is the first report on the association of a TBX5 loss‑of‑function mutation with an enhanced susceptibility to sporadic DCM, providing novel insight into the molecular mechanisms of the pathogenesis of DCM and suggesting potential implications for the prenatal prophylaxis and personalized treatment of this commonest primary myocardial disease.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Emergency Medicine, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Lan Zhao
- Department of Cardiology, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Jin-Qi Jiang
- Department of Emergency Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Wei-Feng Jiang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|
31
|
Zhao CM, Peng LY, Li L, Liu XY, Wang J, Zhang XL, Yuan F, Li RG, Qiu XB, Yang YQ. PITX2 Loss-of-Function Mutation Contributes to Congenital Endocardial Cushion Defect and Axenfeld-Rieger Syndrome. PLoS One 2015; 10:e0124409. [PMID: 25893250 PMCID: PMC4404345 DOI: 10.1371/journal.pone.0124409] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 03/13/2015] [Indexed: 12/17/2022] Open
Abstract
Congenital heart disease (CHD), the most common type of birth defect, is still the leading non-infectious cause of infant morbidity and mortality in humans. Aggregating evidence demonstrates that genetic defects are involved in the pathogenesis of CHD. However, CHD is genetically heterogeneous and the genetic components underpinning CHD in an overwhelming majority of patients remain unclear. In the present study, the coding exons and flanking introns of the PITX2 gene, which encodes a paired-like homeodomain transcription factor 2essential for cardiovascular morphogenesis as well as maxillary facial development, was sequenced in 196 unrelated patients with CHD and subsequently in the mutation carrier's family members available. As a result, a novel heterozygous PITX2 mutation, p.Q102X for PITX2a, or p.Q148X for PITX2b, or p.Q155X for PITX2c, was identified in a family with endocardial cushion defect (ECD) and Axenfeld-Rieger syndrome (ARS). Genetic analysis of the pedigree showed that the nonsense mutation co-segregated with ECD and ARS transmitted in an autosomal dominant pattern with complete penetrance. The mutation was absent in 800 control chromosomes from an ethnically matched population. Functional analysis by using a dual-luciferase reporter assay system revealed that the mutant PITX2 had no transcriptional activity and that the mutation eliminated synergistic transcriptional activation between PITX2 and NKX2.5, another transcription factor pivotal for cardiogenesis. To our knowledge, this is the first report on the association of PITX2 loss-of-function mutation with increased susceptibility to ECD and ARS. The findings provide novel insight into the molecular mechanisms underpinning ECD and ARS, suggesting the potential implications for the antenatal prophylaxis and personalized treatment of CHD and ARS.
Collapse
Affiliation(s)
- Cui-Mei Zhao
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Division of Medical Genetics, Tongji University School of Medicine, Shanghai, China
| | - Lu-Ying Peng
- Division of Medical Genetics, Tongji University School of Medicine, Shanghai, China
| | - Li Li
- Division of Medical Genetics, Tongji University School of Medicine, Shanghai, China
| | - Xing-Yuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Juan Wang
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xian-Ling Zhang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fang Yuan
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Cardiovascular Research Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
32
|
Zhang XL, Dai N, Tang K, Chen YQ, Chen W, Wang J, Zhao CM, Yuan F, Qiu XB, Qu XK, Yang YQ, Xu YW. GATA5 loss-of-function mutation in familial dilated cardiomyopathy. Int J Mol Med 2015; 35:763-70. [PMID: 25543888 DOI: 10.3892/ijmm.2014.2050] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/22/2014] [Indexed: 11/05/2022] Open
Abstract
Dilated cardiomyopathy (DCM), the most common form of primary myocardial disease, is an important cause of sudden cardiac death and heart failure and is the leading indication for heart transplantation in children and adults worldwide. Recent studies have revealed a strong genetic basis for idiopathic DCM, with many distinct genes causally implicated. Nevertheless, DCM is a genetically heterogeneous disorder and the genetic determinants underlying DCM in a substantial proportion of patients remain unclear. In this study, the whole coding exons and flanking introns of the GATA binding protein 5 (GATA5) gene, which codes for a zinc-finger transcription factor essential for cardiovascular development and structural remodeling, were sequenced in 130 unrelated patients with idiopathic DCM. The available relatives of the index patient carrying an identified mutation and 200 unrelated ethnically matched healthy individuals used as the controls were genotyped for GATA5. The functional characteristics of the mutant GATA5 were analyzed in contrast to its wild-type counterpart by using a dual-luciferase reporter assay system. As a result, a novel heterozygous GATA5 mutation, p.G240D, was identified in a family with DCM inherited in an autosomal dominant pattern, which co-segregated with DCM in the family with complete penetrance. The missense mutation was absent in 400 reference chromosomes and the altered amino acid was completely conserved evolutionarily across species. Functional analyses revealed that the GATA5 mutant was associated with significantly diminished transcriptional activity. This study firstly links GATA5 mutation to DCM, which provides novel insight into the molecular mechanisms of DCM, suggesting a potential molecular target for the prenatal prophylaxis and allele-specific treatment of DCM.
Collapse
Affiliation(s)
- Xian-Ling Zhang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Neng Dai
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Kai Tang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Yan-Qing Chen
- Department of Emergency Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Wei Chen
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Juan Wang
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Cui-Mei Zhao
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Fang Yuan
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xin-Kai Qu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Ya-Wei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| |
Collapse
|
33
|
Zhang XL, Qiu XB, Yuan F, Wang J, Zhao CM, Li RG, Xu L, Xu YJ, Shi HY, Hou XM, Qu XK, Xu YW, Yang YQ. TBX5 loss-of-function mutation contributes to familial dilated cardiomyopathy. Biochem Biophys Res Commun 2015; 459:166-71. [DOI: 10.1016/j.bbrc.2015.02.094] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 02/17/2015] [Indexed: 12/29/2022]
|
34
|
PAN YUN, GENG RUI, ZHOU NING, ZHENG GUIFEN, ZHAO HONG, WANG JUAN, ZHAO CUIMEI, QIU XINGBIAO, YANG YIQING, LIU XINGYUAN. TBX20 loss-of-function mutation contributes to double outlet right ventricle. Int J Mol Med 2015; 35:1058-66. [DOI: 10.3892/ijmm.2015.2077] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 01/20/2015] [Indexed: 11/05/2022] Open
|
35
|
Yuan F, Qiu XB, Li RG, Qu XK, Wang J, Xu YJ, Liu X, Fang WY, Yang YQ, Liao DN. A novel NKX2-5 loss-of-function mutation predisposes to familial dilated cardiomyopathy and arrhythmias. Int J Mol Med 2014; 35:478-86. [PMID: 25503402 DOI: 10.3892/ijmm.2014.2029] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 12/05/2014] [Indexed: 01/08/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is the most prevalent type of primary myocardial disease, which is the third most common cause of heart failure and the most frequent reason for heart transplantation. Aggregating evidence demonstrates that genetic risk factors are involved in the pathogenesis of idiopathic DCM. Nevertheless, DCM is of remarkable genetic heterogeneity and the genetic defects underpinning DCM in an overwhelming majority of patients remain unknown. In the present study, the whole coding exons and splice junction sites of the NKX2-5 gene, which encodes a homeodomain transcription factor crucial for cardiac development and structural remodeling, were sequenced in 130 unrelated patients with idiopathic DCM. The available relatives of the index patient harboring an identified mutation and 200 unrelated ethnically matched healthy individuals used as controls were genotyped for the NKX2-5 gene. The functional effect of the mutant NKX2-5 was characterized in contrast to its wild-type counterpart using a dual-luciferase reporter assay system. As a result, a novel heterozygous NKX2-5 mutation, p.S146W, was identified in a family with DCM inherited as an autosomal dominant trait, which co-segregated with DCM in the family with complete penetrance. Notably, the mutation carriers also had arrhythmias, such as paroxysmal atrial fibrillation and atrioventricular block. The missense mutation was absent in 400 reference chromosomes and the altered amino acid was completely conserved evolutionarily among species. Functional analysis revealed that the NKX2-5 mutant was associated with a significantly reduced transcriptional activity. The findings expand the mutational spectrum of NKX2-5 linked to DCM and provide novel insight into the molecular mechanisms underlying DCM, contributing to the antenatal prophylaxis and allele-specific management of DCM.
Collapse
Affiliation(s)
- Fang Yuan
- Department of Cardiology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xin-Kai Qu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Juan Wang
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xu Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Wei-Yi Fang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - De-Ning Liao
- Department of Cardiology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
36
|
Mason SE, Lipshultz SE, Kaushal S, Fisher S. The implication of coronary artery malformations and congenital heart disease on cardiomyopathy. PROGRESS IN PEDIATRIC CARDIOLOGY 2014. [DOI: 10.1016/j.ppedcard.2014.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Wang J, Zhang DF, Sun YM, Li RG, Qiu XB, Qu XK, Liu X, Fang WY, Yang YQ. NKX2-6 mutation predisposes to familial atrial fibrillation. Int J Mol Med 2014; 34:1581-90. [PMID: 25319568 DOI: 10.3892/ijmm.2014.1971] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 10/10/2014] [Indexed: 12/29/2022] Open
Abstract
Atrial fibrillation (AF) is the most common form of sustained cardiac arrhythmia and is associated with substantially increased morbidity and mortality rates. Aggregating evidence demonstrates that genetic defects are involved in the pathogenesis of AF and a number of AF-associated genes have been identified. Nevertheless, AF is a genetically heterogeneous disorder and the genetic components underpinning AF in an overwhelming majority of patients remain unclear. In this study, the entire coding exons and splice junction sites of the NK2 homeobox 6 (NKX2-6) gene, which encodes a homeodomain transcription factor important for cardiovascular development, were sequenced in 150 unrelated patients with lone AF, and a novel heterozygous NKX2-6 mutation, p.Q175H, was identified in an index patient. Genetic analysis of the available family members of the mutation carrier revealed that the mutation co-segregated with AF transmitted in an autosomal dominant pattern. The missense mutation was absent in the 200 unrelated ethnically matched healthy individuals used as controls and the altered amino acid was completely conserved evolutionarily among species. Due to unknown transcriptional targets of NKX2-6, the functional characteristics of the mutation as regards transcriptional activity were analyzed using NKX2-5 as a surrogate. Alignment between human NKX2-6 and NKX2-5 proteins displayed that the Q175H-mutant NKX2-6 was equivalent to the Q181H-mutant NKX2-5, and the introduction of Q181H into NKX2-5 significantly decreased its transcriptional activity at the atrial natriuretic factor promoter. The present study firstly associates genetically defective NKX2-6 with enhanced susceptibility to AF, providing novel insight into the molecular mechanisms underlying AF and suggesting potential strategies for the antenatal prophylaxis and personalized treatment of AF.
Collapse
Affiliation(s)
- Jun Wang
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Dai-Fu Zhang
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yu-Min Sun
- Department of Cardiology, Jing-An District Central Hospital, Shanghai 200040, P.R. China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xin-Kai Qu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xu Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Wei-Yi Fang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|
38
|
Xu L, Zhao L, Yuan F, Jiang WF, Liu H, Li RG, Xu YJ, Zhang M, Fang WY, Qu XK, Yang YQ, Qiu XB. GATA6 loss-of-function mutations contribute to familial dilated cardiomyopathy. Int J Mol Med 2014; 34:1315-22. [PMID: 25119427 DOI: 10.3892/ijmm.2014.1896] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 08/08/2014] [Indexed: 11/05/2022] Open
Abstract
Dilated cardiomyopathy (DCM), the most prevalent form of primary heart muscle disease, is the third most common cause of heart failure and the most frequent reason for cardiac transplantation. Mounting evidence has demonstrated that genetic risk factors are crucial in the pathogenesis of DCM. However, DCM is genetically heterogeneous, and the genetic basis of DCM in a large majority of cases remains unclear. In the current study, the coding exons and flanking introns of the GATA6 gene, which encodes a zinc‑finger transcription factor essential for cardiogenesis, was sequenced in 140 unrelated patients with DCM, and two novel heterozygous mutations, p.C447Y and p.H475R, were identified in two index patients with DCM, respectively. Analysis of the pedigrees showed that in each family the mutation co-segregated with DCM transmitted in an autosomal-dominant pattern, with complete penetrance. The missense mutations were absent in 400 control chromosomes and predicted to be disease-causing by MutationTaster or probably damaging by PolyPhen-2. The alignment of multiple GATA6 proteins across species revealed that the altered amino acids were completely conserved evolutionarily. The functional assays showed that the mutated GATA6 proteins were associated with significantly reduced transcriptional activation in comparison with their wild-type counterpart. To the best of our knowledge, this is the first study on the association of GATA6 loss-of-function mutations with enhanced susceptibility to familial DCM, which provides novel insight into the molecular mechanism of DCM and suggests potential implications for the antenatal prophylaxis and allele-specific treatment of DCM.
Collapse
Affiliation(s)
- Lei Xu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Lan Zhao
- Department of Cardiology, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Fang Yuan
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Wei-Feng Jiang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Hua Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Min Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Wei-Yi Fang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xin-Kai Qu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|
39
|
Prevalence and spectrum of GATA4 mutations associated with sporadic dilated cardiomyopathy. Gene 2014; 548:174-81. [PMID: 25017055 DOI: 10.1016/j.gene.2014.07.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/12/2014] [Accepted: 07/09/2014] [Indexed: 01/14/2023]
Abstract
Dilated cardiomyopathy (DCM) is the most frequent type of primary myocardial disorder responsible for substantial morbidity and mortality. DCM is the third most common cause of heart failure and the most common reason for heart transplantation. A recent study has implicated GATA4 mutation in the pathogenesis of familial DCM. However, the prevalence and spectrum of GATA4 mutations associated with sporadic DCM remain unclear. In this study, the coding exons and exon-intron boundaries of the GATA4 gene, which encodes a cardiac transcription factor crucial for normal cardiogenesis, were sequenced in 220 unrelated patients with sporadic DCM. A total of 200 unrelated ethnically-matched healthy individuals used as controls were genotyped. The functional characteristics of the mutant GATA4 were assayed in contrast to its wild-type counterpart using a luciferase reporter assay system. As a result, 3 novel heterozygous GATA4 mutations, p.V39L, p.P226Q and p.T279S, were identified in 3 unrelated patients with sporadic DCM, with a mutational prevalence of approximately 1.36%. The missense mutations were absent in 400 control chromosomes and the altered amino acids were completely conserved evolutionarily across species. Functional analysis showed that the GATA4 mutants were consistently associated with significantly decreased transcriptional activity and markedly reduced the synergistic activation between GATA4 and NKX2-5. This study firstly links GATA4 mutations to increased susceptibility to sporadic DCM and provides novel insight into the molecular etiology underlying DCM, suggesting the potential implications for the early prophylaxis and allele-specific treatment of this common form of cardiomyopathy.
Collapse
|
40
|
Shi LM, Tao JW, Qiu XB, Wang J, Yuan F, Xu L, Liu H, Li RG, Xu YJ, Wang Q, Zheng HZ, Li X, Wang XZ, Zhang M, Qu XK, Yang YQ. GATA5 loss-of-function mutations associated with congenital bicuspid aortic valve. Int J Mol Med 2014; 33:1219-26. [PMID: 24638895 DOI: 10.3892/ijmm.2014.1700] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/11/2014] [Indexed: 11/05/2022] Open
Abstract
Bicuspid aortic valve (BAV) is the most common form of congenital cardiovascular defect in humans worldwide and is responsible for substantial morbidity and mortality. Accumulating evidence has demonstated that genetic risk factors are involved in the pathogenesis of BAV. However, BAV is genetically heterogeneous and the genetic basis underlying BAV in a large number of patients remains unknown. In the present study, the coding regions and splice junction sites of the GATA5 gene, which codes for a zinc-finger transcription factor crucial for the normal development of the aortic valve, was sequenced initially in 110 unrelated patients with BAV. The available relatives of the mutation carriers and 200 unrelated healthy individuals used as controls were subsequently genotyped for GATA5. The functional effect of the mutations was characterized by using a luciferase reporter assay system. As a result, two novel heterozygous GATA5 mutations, p.Y16D and p.T252P, were identified in two families with autosomal dominant inheritance of BAV, respectively. The variations were absent in 400 control chromosomes and the altered amino acids were completely conserved evolutionarily. Functional assays revealed that the two GATA5 mutants were associated with significantly reduced transcriptional activity compared with their wild-type counterpart. To the best of our knowledge, this is the first study on the association of GATA5 loss-of-function mutations with enhanced susceptibility to BAV, providing novel insight into the molecular mechanism involved in human BAV and suggesting a potential role for the early prophylaxis and personalized treatment of this common congenital heart disease.
Collapse
Affiliation(s)
- Lin-Mei Shi
- Department of Ultrasonics, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Ju-Wei Tao
- Department of Ultrasonics, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Juan Wang
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Fang Yuan
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Lei Xu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Hua Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Qian Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Hong-Zhen Zheng
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xin Li
- Department of Extracorporeal Circulation, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xiao-Zhou Wang
- Department of Cardiac Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Min Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xin-Kai Qu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|
41
|
Zhao L, Xu JH, Xu WJ, Yu H, Wang Q, Zheng HZ, Jiang WF, Jiang JF, Yang YQ. A novel GATA4 loss-of-function mutation responsible for familial dilated cardiomyopathy. Int J Mol Med 2013; 33:654-60. [PMID: 24366163 DOI: 10.3892/ijmm.2013.1600] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 12/20/2013] [Indexed: 11/06/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is the most common form of primary myocardial disorder and is associated with substantial morbidity and mortality. Increasing evidence suggests that genetic risk factors play an important role in the pathogenesis of idiopathic DCM. However, DCM is a genetically heterogeneous disease, and the genetic defects responsible for DCM in an overwhelming majority of cases remain to be identified. In the present study, the entire coding region and the splice junction sites of the GATA4 gene, which encodes a cardiac transcription factor essential for cardiogenesis, were sequenced in 150 unrelated patients with idiopathic DCM. The available relatives of the index patient harboring an identified mutation and 200 unrelated ethnically matched healthy individuals used as controls were genotyped. The functional characteristics of the mutant GATA4 were delineated in contrast to its wild-type counterpart using a luciferase reporter assay system. As a result, a novel heterozygous GATA4 mutation, p.V291L, was identified in a family with DCM inherited in an autosomal dominant pattern, which co-segregated with DCM in the family with complete penetrance. The missense mutation was absent in 400 control chromosomes, and the altered amino acid was completely conserved evolutionarily among species. Functional analysis revealed that the GATA4 mutant was associated with significantly diminished transcriptional activity. The findings expand the mutational spectrum of GATA4 linked to DCM and provide novel insight into the molecular etiology involved in DCM, suggesting the potential implications in the early prophylaxis and allele-specific treatment for this common type of cardiomyopathy.
Collapse
Affiliation(s)
- Lan Zhao
- Department of Cardiology, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Jia-Hong Xu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Wen-Jun Xu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Hong Yu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Qian Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Hong-Zhen Zheng
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Wei-Feng Jiang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Jin-Fa Jiang
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|