1
|
Rajamanickam V, Desouza CV, Castillo RT, Saraswathi V. Blocking Thromboxane-Prostanoid Receptor Signaling Attenuates Lipopolysaccharide- and Stearic Acid-Induced Inflammatory Response in Human PBMCs. Cells 2024; 13:1320. [PMID: 39195211 DOI: 10.3390/cells13161320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Inflammation is implicated in the etiology of obesity-related diseases. Thromboxane-prostanoid receptor (TPR) is known to play a role in mediating an inflammatory response in a variety of cells. Gut-derived lipopolysaccharide (LPS), a TLR4 agonist, is elevated in obesity. Moreover, free fatty acids (FFAs) are important mediators of obesity-related inflammation. However, the role and mechanisms by which TPR regulates the inflammatory response in human immune cells remain unclear. We sought to determine the link between TPR and obesity and the role/mechanisms by which TPR alters LPS- or stearic acid (SA)-induced inflammatory responses in PBMCs. Cells were pre-treated with agents blocking TPR signaling, followed by treatment with LPS or stearic acid (SA). Our findings showed that TPR mRNA levels are higher in PBMCs from individuals with obesity. Blockade of TPR as well as ROCK, which acts downstream of TPR, attenuated LPS- and/or SA-induced pro-inflammatory responses. On the other hand, TPR activation using its agonist enhanced the pro-inflammatory effects of LPS and/or SA. Of note, the TPR agonist by itself elicits an inflammatory response, which was attenuated by blocking TPR or ROCK. Our data suggest that TPR plays a key role in promoting an inflammatory response in human PBMCs, and this effect is mediated via TLR4 and/or ROCK signaling.
Collapse
Affiliation(s)
- Vinothkumar Rajamanickam
- Division of Diabetes, Endocrinology and Metabolism, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Research Service, VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Cyrus V Desouza
- Division of Diabetes, Endocrinology and Metabolism, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Research Service, VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Romilia T Castillo
- Division of Diabetes, Endocrinology and Metabolism, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Research Service, VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Viswanathan Saraswathi
- Division of Diabetes, Endocrinology and Metabolism, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Research Service, VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| |
Collapse
|
2
|
Dimitroglou Y, Aggeli C, Theofilis P, Tsioufis P, Oikonomou E, Chasikidis C, Tsioufis K, Tousoulis D. Novel Anti-Inflammatory Therapies in Coronary Artery Disease and Acute Coronary Syndromes. Life (Basel) 2023; 13:1669. [PMID: 37629526 PMCID: PMC10455741 DOI: 10.3390/life13081669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Evidence suggests that inflammation plays an important role in atherosclerosis and the consequent clinical presentation, including stable coronary artery disease (CAD) and acute coronary syndromes (ACS). The most essential elements are cytokines, proteins with hormone-like properties that are produced by the immune cells, endothelial cells, platelets, fibroblasts, and some stromal cells. Interleukins (IL-1β and IL-6), chemokines, interferon-γ (IFN-γ), and tumor necrosis factor-alpha (TNF-α) are the cytokines commonly associated with endothelial dysfunction, vascular inflammation, and atherosclerosis. These molecules can be targeted by commonly used therapeutic substances or selective molecules that exert targeted anti-inflammatory actions. The most significant anti-inflammatory therapies are aspirin, statins, colchicine, IL-1β inhibitors, and IL-6 inhibitors, along with novel therapies such as TNF-α inhibitors and IL-1 receptor antagonists. Aspirin and statins are well-established therapies for atherosclerosis and CAD and their pleiotropic and anti-inflammatory actions contribute to their efficacy and favorable profile. Colchicine may also be considered in high-risk patients if recurrent ACS episodes occur when on optimal medical therapy according to the most recent guidelines. Recent randomized studies have also shown that therapies specifically targeting inflammatory interleukins and inflammation can reduce the risk for cardiovascular events, but these therapies are yet to be fully implemented in clinical practice. Preclinical research is also intense, targeting various inflammatory mediators that are believed to be implicated in CAD, namely repeated transfers of the soluble mutant of IFN-γ receptors, NLRP3 inflammasome inhibitors, IL-10 delivery by nanocarriers, chemokine modulatory treatments, and reacting oxygen species (ROS) targeting nanoparticles. Such approaches, although intriguing and promising, ought to be tested in clinical settings before safe conclusions can be drawn. Although the link between inflammation and atherosclerosis is significant, further studies are needed in order to elucidate this association and improve outcomes in patients with CAD.
Collapse
Affiliation(s)
- Yannis Dimitroglou
- First Department of Cardiology, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece; (Y.D.); (C.A.); (P.T.); (K.T.); (D.T.)
| | - Constantina Aggeli
- First Department of Cardiology, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece; (Y.D.); (C.A.); (P.T.); (K.T.); (D.T.)
| | - Panagiotis Theofilis
- First Department of Cardiology, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece; (Y.D.); (C.A.); (P.T.); (K.T.); (D.T.)
| | - Panagiotis Tsioufis
- First Department of Cardiology, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece; (Y.D.); (C.A.); (P.T.); (K.T.); (D.T.)
| | - Evangelos Oikonomou
- Third Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, University of Athens Medical School, 11527 Athens, Greece;
| | - Christos Chasikidis
- Department of Cardiology, General Hospital of Corinth, 20100 Corinth, Greece;
| | - Konstantinos Tsioufis
- First Department of Cardiology, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece; (Y.D.); (C.A.); (P.T.); (K.T.); (D.T.)
| | - Dimitris Tousoulis
- First Department of Cardiology, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece; (Y.D.); (C.A.); (P.T.); (K.T.); (D.T.)
| |
Collapse
|
3
|
Kim YK, Ning X, Munir KM, Davis SN. Emerging drugs for the treatment of diabetic nephropathy. Expert Opin Emerg Drugs 2022; 27:417-430. [PMID: 36472144 DOI: 10.1080/14728214.2022.2155632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Diabetic nephropathy remains a significant economic and social burden on both the individual patient and health-care systems as the prevalence of diabetes increases in the general population. The complex pathophysiology of diabetic kidney disease poses a challenge in the development of effective medical treatments for the disease. However, the multiple facets of diabetic nephropathy also offer a variety of potential strategies to manage this condition. AREAS COVERED We retrieved PubMed, Cochrane Library, Scopus, Google Scholar, and ClinicalTrials.gov records to identify studies and articles focused on new pharmacologic advances to treat diabetic nephropathy. EXPERT OPINION RAAS blockers have remained the mainstay of therapy for DM nephropathy for many years, with only recent advancements with SGLT2 inhibitors and nonsteroidal MRAs. Better understanding of the long-term renal effects of ambient hyperglycemia, ranging from hemodynamic changes to increased production of oxidative and pro-inflammatory substances, has evolved our approach to the treatment of diabetic nephropathy. With continuing research for new therapeutics as well as combination therapy, the medical community may be able to better ease the burden of diabetic kidney disease.
Collapse
Affiliation(s)
- Yoon Kook Kim
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Center for Diabetes and Endocrinology, Baltimore, MD, USA
| | - Xinyuan Ning
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Center for Diabetes and Endocrinology, Baltimore, MD, USA
| | - Kashif M Munir
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Center for Diabetes and Endocrinology, Baltimore, MD, USA
| | - Stephen N Davis
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Pelle MC, Zaffina I, Lucà S, Forte V, Trapanese V, Melina M, Giofrè F, Arturi F. Endothelial Dysfunction in COVID-19: Potential Mechanisms and Possible Therapeutic Options. Life (Basel) 2022; 12:1605. [PMID: 36295042 PMCID: PMC9604693 DOI: 10.3390/life12101605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
SARS-CoV-2, a novel coronavirus found in Wuhan (China) at the end of 2019, is the etiological agent of the current pandemic that is a heterogeneous disease, named coronavirus disease 2019 (COVID-19). SARS-CoV-2 affects primarily the lungs, but it can induce multi-organ involvement such as acute myocardial injury, myocarditis, thromboembolic eventsandrenal failure. Hypertension, chronic kidney disease, diabetes mellitus and obesity increase the risk of severe complications of COVID-19. There is no certain explanation for this systemic COVID-19 involvement, but it could be related to endothelial dysfunction, due to direct (endothelial cells are infected by the virus) and indirect damage (systemic inflammation) factors. Angiotensin-converting enzyme 2 (ACE2), expressed in human endothelium, has a fundamental role in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In fact, ACE2 is used as a receptor by SARS-CoV-2, leading to the downregulation of these receptors on endothelial cells; once inside, this virus reduces the integrity of endothelial tissue, with exposure of prothrombotic molecules, platelet adhesion, activation of coagulation cascades and, consequently, vascular damage. Systemic microangiopathy and thromboembolism can lead to multi-organ failure with an elevated risk of death. Considering the crucial role of the immunological response and endothelial damage in developing the severe form of COVID-19, in this review, we will attempt to clarify the underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- Maria Chiara Pelle
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Isabella Zaffina
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Stefania Lucà
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Valentina Forte
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Trapanese
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Melania Melina
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Federica Giofrè
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Franco Arturi
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Research Centre for the Prevention and Treatment of Metabolic Diseases (CR METDIS), University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
5
|
Li L, Liu S, Tan J, Wei L, Wu D, Gao S, Weng Y, Chen J. Recent advance in treatment of atherosclerosis: Key targets and plaque-positioned delivery strategies. J Tissue Eng 2022; 13:20417314221088509. [PMID: 35356091 PMCID: PMC8958685 DOI: 10.1177/20417314221088509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Atherosclerosis, a chronic inflammatory disease of vascular wall, is a progressive pathophysiological process with lipids oxidation/depositing initiation and innate/adaptive immune responses. The coordination of multi systems covering oxidative stress, dysfunctional endothelium, diseased lipid uptake, cell apoptosis, thrombotic and pro-inflammatory responding as well as switched SMCs contributes to plaque growth. In this circumstance, inevitably, targeting these processes is considered to be effective for treating atherosclerosis. Arriving, retention and working of payload candidates mediated by targets in lesion direct ultimate therapeutic outcomes. Accumulating a series of scientific studies and clinical practice in the past decades, lesion homing delivery strategies including stent/balloon/nanoparticle-based transportation worked as the potent promotor to ensure a therapeutic effect. The objective of this review is to achieve a very brief summary about the effective therapeutic methods cooperating specifical targets and positioning-delivery strategies in atherosclerosis for better outcomes.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Sainan Liu
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Jianying Tan
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Lai Wei
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Dimeng Wu
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, PR China
| | - Shuai Gao
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, PR China
| | - Yajun Weng
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Junying Chen
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| |
Collapse
|
6
|
Cardiorenal Disease in COVID-19 Patients. J Renin Angiotensin Aldosterone Syst 2022; 2022:4640788. [PMID: 35359461 PMCID: PMC8956393 DOI: 10.1155/2022/4640788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 12/21/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an illness caused by a novel coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Mutations in the genetic coding and the variations in the spike proteins are critical for the virus's mechanism of facilitating fusion with the human host, making the disease more severe. Recent research indicates that comorbidities including diabetes, hypertension, renal disease, heart failure, and atherosclerosis play a significant role in the severity and high mortality rates of (COVID-19), suggesting that perhaps the metabolic syndrome and its components are associated with COVID-19 morbidity. Primarily, angiotensin-converting enzyme 2 (ACE2) receptor is identified as the entrance receptor of SARS-CoV-2. Increased ACE2 expression, endothelial dysfunction plays a vital role in the progression and severity of complications developed due to COVID-19. In this review, we will discuss the association and management of cardiorenal disease and COVID-19.
Collapse
|
7
|
Eicosanoid blood vessel regulation in physiological and pathological states. Clin Sci (Lond) 2021; 134:2707-2727. [PMID: 33095237 DOI: 10.1042/cs20191209] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/26/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022]
Abstract
Arachidonic acid can be metabolized in blood vessels by three primary enzymatic pathways; cyclooxygenase (COX), lipoxygenase (LO), and cytochrome P450 (CYP). These eicosanoid metabolites can influence endothelial and vascular smooth muscle cell function. COX metabolites can cause endothelium-dependent dilation or constriction. Prostaglandin I2 (PGI2) and thromboxane (TXA2) act on their respective receptors exerting opposing actions with regard to vascular tone and platelet aggregation. LO metabolites also influence vascular tone. The 12-LO metabolite 12S-hydroxyeicosatrienoic acid (12S-HETE) is a vasoconstrictor whereas the 15-LO metabolite 11,12,15-trihydroxyeicosatrienoic acid (11,12,15-THETA) is an endothelial-dependent hyperpolarizing factor (EDHF). CYP enzymes produce two types of eicosanoid products: EDHF vasodilator epoxyeicosatrienoic acids (EETs) and the vasoconstrictor 20-HETE. The less-studied cross-metabolites generated from arachidonic acid metabolism by multiple pathways can also impact vascular function. Likewise, COX, LO, and CYP vascular eicosanoids interact with paracrine and hormonal factors such as the renin-angiotensin system and endothelin-1 (ET-1) to maintain vascular homeostasis. Imbalances in endothelial and vascular smooth muscle cell COX, LO, and CYP metabolites in metabolic and cardiovascular diseases result in vascular dysfunction. Restoring the vascular balance of eicosanoids by genetic or pharmacological means can improve vascular function in metabolic and cardiovascular diseases. Nevertheless, future research is necessary to achieve a more complete understanding of how COX, LO, CYP, and cross-metabolites regulate vascular function in physiological and pathological states.
Collapse
|
8
|
Badimon L, Vilahur G, Rocca B, Patrono C. The key contribution of platelet and vascular arachidonic acid metabolism to the pathophysiology of atherothrombosis. Cardiovasc Res 2021; 117:2001-2015. [PMID: 33484117 DOI: 10.1093/cvr/cvab003] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/17/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Arachidonic acid is one of the most abundant and ubiquitous ω-6 polyunsaturated fatty acid, present in esterified form in the membrane phospholipids of all mammalian cells and released from phospholipids by several phospholipases in response to various activating or inhibitory stimuli. Arachidonic acid is the precursor of a large number of enzymatically and non-enzymatically derived, biologically active autacoids, including prostaglandins (PGs), thromboxane (TX) A2, leukotrienes, and epoxyeicosatetraenoic acids (collectively called eicosanoids), endocannabinoids and isoprostanes, respectively. Eicosanoids are local modulators of the physiological functions and pathophysiological roles of blood vessels and platelets. For example, the importance of cyclooxygenase (COX)-1-derived TXA2 from activated platelets in contributing to primary haemostasis and atherothrombosis is demonstrated in animal and human models by the bleeding complications and cardioprotective effects associated with low-dose aspirin, a selective inhibitor of platelet COX-1. The relevance of vascular COX-2-derived prostacyclin (PGI2) in endothelial thromboresistance and atheroprotection is clearly shown by animal and human models and by the adverse cardiovascular effects exerted by COX-2 inhibitors in humans. A vast array of arachidonic acid-transforming enzymes, downstream synthases and isomerases, transmembrane receptors, and specificity in their tissue expression make arachidonic acid metabolism a fine-tuning system of vascular health and disease. Its pharmacological regulation is central in human cardiovascular diseases, as demonstrated by biochemical measurements and intervention trials.
Collapse
Affiliation(s)
- Lina Badimon
- Cardiovascular Program-ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain; CIBERCV, Instituto Salud Carlos III, Madrid, Spain.,Cardiovascular Research Chair Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Gemma Vilahur
- Cardiovascular Program-ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain; CIBERCV, Instituto Salud Carlos III, Madrid, Spain
| | - Bianca Rocca
- Department of Bioethics and Safety, Section of Pharmacology, Catholic University School of Medicine, Rome, Italy.,Gemelli' Foundation, IRCCS, Rome, Italy
| | - Carlo Patrono
- Department of Bioethics and Safety, Section of Pharmacology, Catholic University School of Medicine, Rome, Italy.,Gemelli' Foundation, IRCCS, Rome, Italy
| |
Collapse
|
9
|
Kelham M, Choudry FA, Hamshere S, Beirne AM, Rathod KS, Baumbach A, Ahluwalia A, Mathur A, Jones DA. Therapeutic Implications of COVID-19 for the Interventional Cardiologist. J Cardiovasc Pharmacol Ther 2020; 26:203-216. [PMID: 33331160 DOI: 10.1177/1074248420982736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although COVID-19 is viewed primarily as a respiratory disease, cardiovascular risk factors and disease are prevalent among infected patients and are associated with worse outcomes. In addition, among multiple extra-pulmonary manifestations, there has been an increasing recognition of specific cardiovascular complications of COVID-19. Despite this, in the initial stages of the pandemic there was evidence of a reduction in patients presenting to acute cardiovascular services. In this masterclass review, with the aid of 2 exemplar cases, we will focus on the important therapeutic implications of COVID-19 for interventional cardiologists. We summarize the existing evidence base regarding the varied cardiovascular presentations seen in COVID-19 positive patients and the prognostic importance and potential mechanisms of acute myocardial injury in this setting. Importantly, through the use of a systematic review of the literature, we focus our discussion on the observed higher rates of coronary thrombus burden in patients with COVID-19 and acute coronary syndromes.
Collapse
Affiliation(s)
- Matthew Kelham
- Department of Cardiology, 560754Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom
| | - Fizzah A Choudry
- Department of Cardiology, 560754Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom.,Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, 4617Queen Mary University of London, London, United Kingdom
| | - Stephen Hamshere
- Department of Cardiology, 560754Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom
| | - Anne-Marie Beirne
- Department of Cardiology, 560754Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom.,Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, 4617Queen Mary University of London, London, United Kingdom
| | - Krishnaraj S Rathod
- Department of Cardiology, 560754Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom.,Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, 4617Queen Mary University of London, London, United Kingdom
| | - Andreas Baumbach
- Department of Cardiology, 560754Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom.,Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, 4617Queen Mary University of London, London, United Kingdom
| | - Amrita Ahluwalia
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, 4617Queen Mary University of London, London, United Kingdom
| | - Anthony Mathur
- Department of Cardiology, 560754Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom.,Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, 4617Queen Mary University of London, London, United Kingdom
| | - Daniel A Jones
- Department of Cardiology, 560754Barts Heart Centre, St Bartholomew's Hospital, London, United Kingdom.,Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, 4617Queen Mary University of London, London, United Kingdom
| |
Collapse
|
10
|
Evans PC, Rainger GE, Mason JC, Guzik TJ, Osto E, Stamataki Z, Neil D, Hoefer IE, Fragiadaki M, Waltenberger J, Weber C, Bochaton-Piallat ML, Bäck M. Endothelial dysfunction in COVID-19: a position paper of the ESC Working Group for Atherosclerosis and Vascular Biology, and the ESC Council of Basic Cardiovascular Science. Cardiovasc Res 2020; 116:2177-2184. [PMID: 32750108 PMCID: PMC7454368 DOI: 10.1093/cvr/cvaa230] [Citation(s) in RCA: 300] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/30/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
The COVID-19 pandemic is an unprecedented healthcare emergency causing mortality and illness across the world. Although primarily affecting the lungs, the SARS-CoV-2 virus also affects the cardiovascular system. In addition to cardiac effects, e.g. myocarditis, arrhythmias, and myocardial damage, the vasculature is affected in COVID-19, both directly by the SARS-CoV-2 virus, and indirectly as a result of a systemic inflammatory cytokine storm. This includes the role of the vascular endothelium in the recruitment of inflammatory leucocytes where they contribute to tissue damage and cytokine release, which are key drivers of acute respiratory distress syndrome (ARDS), in disseminated intravascular coagulation, and cardiovascular complications in COVID-19. There is also evidence linking endothelial cells (ECs) to SARS-CoV-2 infection including: (i) the expression and function of its receptor angiotensin-converting enzyme 2 (ACE2) in the vasculature; (ii) the prevalence of a Kawasaki disease-like syndrome (vasculitis) in COVID-19; and (iii) evidence of EC infection with SARS-CoV-2 in patients with fatal COVID-19. Here, the Working Group on Atherosclerosis and Vascular Biology together with the Council of Basic Cardiovascular Science of the European Society of Cardiology provide a Position Statement on the importance of the endothelium in the underlying pathophysiology behind the clinical presentation in COVID-19 and identify key questions for future research to address. We propose that endothelial biomarkers and tests of function (e.g. flow-mediated dilatation) should be evaluated for their usefulness in the risk stratification of COVID-19 patients. A better understanding of the effects of SARS-CoV-2 on endothelial biology in both the micro- and macrovasculature is required, and endothelial function testing should be considered in the follow-up of convalescent COVID-19 patients for early detection of long-term cardiovascular complications.
Collapse
Affiliation(s)
- Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield and Insigneo Institute for In Silico Medicine, Sheffield, UK
| | - G Ed Rainger
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Justin C Mason
- Vascular Science, National Heart and Lung Institute, Imperial College London and Rheumatology Department, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK and Department of Medicine, Jagiellonian University Collegium Medicum, Cracow, Poland
| | - Elena Osto
- University and University Hospital Zurich, Institute of Clinical Chemistry and University Heart Center, Zurich, Switzerland and Swiss Federal Institute of Technology, Laboratory of Translational Nutrition Biology, Zurich, Switzerland
| | - Zania Stamataki
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Desley Neil
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Imo E Hoefer
- Central Diagnostic Laboratory, University Medical Centre Utrecht, The Netherlands
| | - Maria Fragiadaki
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield and Insigneo Institute for In Silico Medicine, Sheffield, UK
| | - Johannes Waltenberger
- Department of Cardiovascular Medicine, Medical Faculty, University of Münster, Münster, Germany and SRH Central Hospital Suhl, Suhl, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillian-Universität (LMU) München, German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich Cluster for Systems Neurology (SyNergy), Munich, Germany and Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | | | - Magnus Bäck
- Center for Molecular Medicine and Department of Cardiology, Karolinska University Hospital, Solna, Stockholm, Sweden and INSERM U1116, Université de Lorraine, Centre Hospitalier Régional Universitaire de Nancy, Vandoeuvre les Nancy, France
| |
Collapse
|
11
|
Alshbool FZ, Karim ZA, Espinosa EVP, Lin OA, Khasawneh FT. Investigation of a Thromboxane A 2 Receptor-Based Vaccine for Managing Thrombogenesis. J Am Heart Assoc 2018; 7:e009139. [PMID: 29936414 PMCID: PMC6064912 DOI: 10.1161/jaha.118.009139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 05/15/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Despite the well-established role for the thromboxane A2 receptor (TPR) in the development of thrombotic disorders, none of the antagonists developed to date has been approved for clinical use. To this end, we have previously shown that an antibody targeted against TPR's ligand-binding domain inhibits platelet activation and thrombus formation, without exerting any effects on hemostasis. Thus, the goal of the present studies is to design a novel TPR-based vaccine, demonstrate its ability to trigger an immune response, and characterize its antiplatelet and antithrombotic activity. METHODS AND RESULTS We used a mouse keyhole limpet hemocyanin/peptide-based vaccination approach rationalized over the TPR ligand-binding domain (ie, the C-terminus of the second extracellular loop). The biological activity of this vaccine was assessed in the context of platelets and thrombotic diseases, and using a host of in vitro and in vivo platelet function experiments. Our results revealed that the TPR C-terminus of the second extracellular loop vaccine, in mice: (1) triggered an immune response, which resulted in the development of a C-terminus of the second extracellular loop antibody; (2) did not affect expression of major platelet integrins (eg, glycoprotein IIb-IIIa); (3) selectively inhibited TPR-mediated platelet aggregation, platelet-leukocyte aggregation, integrin glycoprotein IIb-IIIa activation, as well as dense and α granule release; (4) significantly prolonged thrombus formation; and (5) did so without impairing physiological hemostasis. CONCLUSIONS Collectively, our findings shed light on TPR's structural biological features, and demonstrate that the C-terminus of the second extracellular loop domain may define a new therapeutic target and a TPR vaccine-based approach that should have therapeutic applications.
Collapse
Affiliation(s)
- Fatima Z Alshbool
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas El Paso, TX
| | - Zubair A Karim
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas El Paso, TX
| | | | | | - Fadi T Khasawneh
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas El Paso, TX
| |
Collapse
|
12
|
Schrör K, Hohlfeld T. Antiinflammatory effects of aspirin in ACS: relevant to its cardio coronary actions? Thromb Haemost 2017; 114:469-77. [DOI: 10.1160/th15-03-0191] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/14/2015] [Indexed: 01/04/2023]
Abstract
SummaryVascular injury in acute coronary syndromes (ACS) involves a complex cross-talk between inflammatory mediators, platelets and thrombosis, where the interaction between platelets and coagulation factors (e. g. thrombin) is a central link between thrombosis and inflammation. In ACS, aspirin at antiplatelet doses exhibits anti-inflammatory effects as seen from the decrease in inflammation markers such as CRP, M-CSF, MCP-1 and others. These actions probably occur subsequent to inhibition of platelet COX-1-dependent thromboxane formation and its action as a multipotent autocrine and paracrine agent. This likely involves inhibition of thrombin formation as well as inhibition of secondary pro-inflammatory mediators, such as sphingosine-1-phosphate. Experimental and limited clinical data additionally suggest antiinflammatory effects of aspirin independent of its antiplatelet action. For example, aspirin at antiplatelet doses might acetylate COX-2 in vascular cells, directing the activity of the enzyme into a 15-lipoxygenase which by transcellular metabolism results in the formation of 15-epi-lipoxin (‘aspirin-triggered lipoxin’), an antiinflammatory mediator. Furthermore, aspirin stimulates eNOS via lysine-acetylation, eventually resulting in induction of heme oxygenase (HO-1), which improves the antioxidative potential of vascular cells. All of these effects have been seen at antiplatelet doses of 100–300 mg/day, equivalent to peak plasma levels of 10–30 μM. Many more potentially antiinflammatory mechanisms of aspirin have been described, mostly salicy-late-related, at low to medium millimolar concentrations and, therefore, are of minor clinical interest. Altogether, there is a wealth of data supporting antiiflammatory effects of aspirin in ACS, but studies generating direct evidence for antiinflammatory effects in ACS remain to be done.
Collapse
|
13
|
Daci A, Neziri B, Krasniqi S, Cavolli R, Alaj R, Norata GD, Beretta G. Arctigenin improves vascular tone and decreases inflammation in human saphenous vein. Eur J Pharmacol 2017; 810:51-56. [PMID: 28603045 DOI: 10.1016/j.ejphar.2017.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 01/06/2023]
Abstract
The goal of this study was to test the effects of bioactive phenylpropanoid dibenzylbutyrolactone lignan arctigenin (ATG) in vascular tone. Human bypass graft vessel, from a saphenous vein (SV), were set up in organ bath system and contracted with potassium chloride (KCl, 40mM). Two concentration-response curves of noradrenaline (NE) (10nM-100μM) separated with an incubation period of 30min without (Control) or with ATG (3-100μM) were established. Inhibitors of nitric oxide, prostaglandins, K+ related channels or calcium influx were used to delineate the molecular mechanisms beyond ATG effects. To investigate anti-inflammatory actions, SV were treated with 10μM or 100μM ATG and incubated for 18h in the absence or presence of both interleukin-1beta (IL-1β) and lipopolysaccharide (LPS) to mimic the physiological or inflamed tissue conditions. Proatherogenic and inflammatory mediators İnterleukine-1 beta (IL-1β), Monocyte Chemoattractant Proteine-1 (MCP-1), Tumor Necrosis Factor- α (TNF-α), İnterleukine-6 (IL-6), Prostaglandin E2 (PGE2) and İnterleukine-8 (IL-8) in the supernatant were measured. ATG significantly decreased vascular contractile response to NE. Moreover, it reduced contractions induced by KCl and cumulative addition of CaCl2. The mediators were significantly increased in inflammatory conditions compared to normal conditions, an effect which was inhibited by ATG (10 and 100µM). ATG reduces contractions in SV and decreases the production of proinflammatory-proatherogenic mediators, setting the stage for further evaluating the effect of ATG in cardiovascular diseases.
Collapse
Affiliation(s)
- Armond Daci
- Department of Pharmacy, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo; Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| | - Burim Neziri
- Institute of Pathophysiology, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| | - Shaip Krasniqi
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo.
| | - Raif Cavolli
- Cardiovascular Surgery Clinic, University Clinical Center of Kosovo, Prishtina, Kosovo
| | - Rame Alaj
- Cardiovascular Surgery Clinic, University Clinical Center of Kosovo, Prishtina, Kosovo
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Science, Curtin University, Perth, Western Australia, Australia
| | - Giangiacomo Beretta
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
14
|
Sukhovershin RA, Toledano Furman NE, Tasciotti E, Trachtenberg BH. Local Inhibition of Macrophage and Smooth Muscle Cell Proliferation to Suppress Plaque Progression. Methodist Debakey Cardiovasc J 2017; 12:141-145. [PMID: 27826367 DOI: 10.14797/mdcj-12-3-141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Atherosclerosis is a complex process responsible for a major burden of cardiovascular morbidity and mortality. Macrophages and smooth muscle cells (SMCs) are abundant within atherosclerotic plaques. This review discusses the role of macrophages and SMCs in plaque progression and provides an overview of nanoparticle-based approaches and other current methods for local targeting of atherosclerotic plaques.
Collapse
Affiliation(s)
| | | | | | - Barry H Trachtenberg
- Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, Texas
| |
Collapse
|
15
|
Prostanoids in the pathophysiology of human coronary artery. Prostaglandins Other Lipid Mediat 2017; 133:20-28. [PMID: 28347710 DOI: 10.1016/j.prostaglandins.2017.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/16/2017] [Accepted: 03/23/2017] [Indexed: 01/16/2023]
Abstract
Coronary artery disease is one of the leading causes of death in wordwide. There is growing evidence that prostanoids are involved in the physiology and pathophysiology of the human coronary artery by controlling vascular tone, remodelling of the vascular wall or angiogenesis. In this review, the production of prostanoids and the expression of prostanoid receptors in human coronary artery in health or disease are described. In addition, the interactions between sex hormones and prostanoids, their participations in the development of coronary artery diseases have been addressed. Globally, most of the studies performed in human coronary artery preparations have shown that prostacyclin (PGI2) has beneficial effects by inducing vasodilatation and promoting angiogenesis while reverse effects are confirmed by thromboxane A2 (TxA2). More studies are needed to determine the roles of the other prostanoids (PGE2, PGD2 and PGF2α) in vascular functions of the human coronary artery. Finally, in addition to the in vitro data about the human coronary artery, myocardial infarction induced by cyclooxygenase-2 (COX-2) inhibitor and the protective effects of aspirin after coronary artery bypass surgery suggest that prostanoids are key mediators in coronary homeostasis.
Collapse
|
16
|
Romero M, Leon-Gomez E, Lobysheva I, Rath G, Dogné JM, Feron O, Dessy C. Effects of BM-573 on Endothelial Dependent Relaxation and Increased Blood Pressure at Early Stages of Atherosclerosis. PLoS One 2016; 11:e0152579. [PMID: 27019366 PMCID: PMC4809599 DOI: 10.1371/journal.pone.0152579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 03/16/2016] [Indexed: 12/19/2022] Open
Abstract
Endothelial dysfunction is considered to be an early event in atherosclerosis and plays a pivotal role in the development, progression and clinical complications of atherosclerosis. Previous studies have shown the beneficial effects of combined inhibition of thromboxane synthase and antagonism of thromboxane receptors by BM-573 on atherosclerosis; however our knowledge about the beneficial effects of BM-573 on endothelial function and increased blood pressure related to early stage of atherosclerosis is limited. In the present study, we investigated the effects of short-term (3 μM, 1 hour) and chronic (10 mg/L, 8 weeks) treatments with BM-573 on vasodilatory function, nitric oxide (NO) bioavailability, oxidative stress and systolic blood pressure in 15 weeks old apolipoprotein E-deficient (ApoE-KO) mice. ApoE-KO mice showed a reduced endothelium-derived relaxation. In addition, NO bioavailability was reduced and oxidative stress and blood pressure were increased in ApoE-KO mice versus wild-type mice. BM-573 treatments were able to improve the relaxation profile in ApoE-KO mice. Short-term effects of BM-573 were mainly mediated by an increased phosphorylation of both eNOS and Akt, whereas BM-573 in vivo treatment also reduced oxidative stress and restored NO bioavailability. In addition, chronic administration of BM-573 reduced systolic blood pressure in ApoE-KO mice. In conclusion, pharmacological modulation of TxA2 biosynthesis and biological activities by dual TP antagonism/TxAS inhibition with BM-573, already known to prevent plaque formation, has the potential to correct vasodilatory dysfunction at the early stages of atherosclerosis.
Collapse
Affiliation(s)
- Miguel Romero
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental & Clinical Research (IREC), Université Catholique de Louvain (UCL) Medical School, Brussels, Belgium
- * E-mail: (MR); (CD)
| | - Elvira Leon-Gomez
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental & Clinical Research (IREC), Université Catholique de Louvain (UCL) Medical School, Brussels, Belgium
| | - Irina Lobysheva
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental & Clinical Research (IREC), Université Catholique de Louvain (UCL) Medical School, Brussels, Belgium
| | - Géraldine Rath
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental & Clinical Research (IREC), Université Catholique de Louvain (UCL) Medical School, Brussels, Belgium
| | | | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental & Clinical Research (IREC), Université Catholique de Louvain (UCL) Medical School, Brussels, Belgium
| | - Chantal Dessy
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental & Clinical Research (IREC), Université Catholique de Louvain (UCL) Medical School, Brussels, Belgium
- * E-mail: (MR); (CD)
| |
Collapse
|
17
|
Saito MS, Lourenço AL, Dias LRS, Freitas ACC, Vitorino MI, Albuquerque MG, Rodrigues CR, Cabral LM, Dias EP, Castro HC, Satlher PC. Antiplatelet pyrazolopyridines derivatives: pharmacological, biochemical and toxicological characterization. J Enzyme Inhib Med Chem 2016; 31:1591-601. [DOI: 10.3109/14756366.2016.1158712] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Max Seidy Saito
- Laboratório de Antibióticos, Bioquímica, Ensino e Modelagem Molecular (LABiEMol) – Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil,
- Programa de Pós-Graduação em Patologia (PPG-UFF) – Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói, Brazil,
| | - André Luiz Lourenço
- Laboratório de Antibióticos, Bioquímica, Ensino e Modelagem Molecular (LABiEMol) – Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil,
- Programa de Pós-Graduação em Patologia (PPG-UFF) – Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói, Brazil,
| | - Luiza Rosaria Sousa Dias
- Laboratório de Química Medicinal (LQMed) – Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, Brazil,
| | | | - Maíra Ingrid Vitorino
- Laboratório de Antibióticos, Bioquímica, Ensino e Modelagem Molecular (LABiEMol) – Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil,
| | | | | | - Lúcio Mendes Cabral
- Laboratório de Tecnologia Industrial Farmacêutica (LabTIF) – Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliane Pedra Dias
- Programa de Pós-Graduação em Patologia (PPG-UFF) – Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói, Brazil,
| | - Helena Carla Castro
- Laboratório de Antibióticos, Bioquímica, Ensino e Modelagem Molecular (LABiEMol) – Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil,
- Programa de Pós-Graduação em Patologia (PPG-UFF) – Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói, Brazil,
| | - Plínio Cunha Satlher
- Laboratório de Antibióticos, Bioquímica, Ensino e Modelagem Molecular (LABiEMol) – Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil,
- Laboratório de Tecnologia Industrial Farmacêutica (LabTIF) – Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Abstract
The view of atherosclerosis as an inflammatory disease has emerged from observations of immune activation and inflammatory signalling in human atherosclerotic lesions, from the definition of inflammatory biomarkers as independent risk factors for cardiovascular events, and from evidence of low-density lipoprotein-induced immune activation. Studies in animal models of hyperlipidaemia have also supported the beneficial effects of countering inflammation to delay atherosclerosis progression. Specific inflammatory pathways with relevance to human diseases have been identified, and inhibitors of these pathways are either already in use for the treatment of other diseases, or are under development and evaluation. These include 'classic' drugs (such as allopurinol, colchicine, and methotrexate), biologic therapies (for example tumour necrosis factor inhibitors and IL-1 neutralization), as well as targeting of lipid mediators (such as phospholipase inhibitors and antileukotrienes) or intracellular pathways (inhibition of NADPH oxidase, p38 mitogen-activated protein kinase, or phosphodiesterase). The evidence supporting the use of anti-inflammatory therapies for atherosclerosis is mainly based on either observational or small interventional studies evaluating surrogate markers of disease activity. Nevertheless, these data are crucial to understand the role of inflammation in atherosclerosis, and to design randomized controlled studies to evaluate the effect of specific anti-inflammatory strategies on cardiovascular outcomes.
Collapse
Affiliation(s)
- Magnus Bäck
- Experimental Cardiovascular Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, L8:03, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Göran K Hansson
- Experimental Cardiovascular Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, L8:03, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
19
|
Petri MH, Laguna-Fernandez A, Tseng CN, Hedin U, Perretti M, Bäck M. Aspirin-triggered 15-epi-lipoxin A₄ signals through FPR2/ALX in vascular smooth muscle cells and protects against intimal hyperplasia after carotid ligation. Int J Cardiol 2014; 179:370-2. [PMID: 25464488 PMCID: PMC4274317 DOI: 10.1016/j.ijcard.2014.11.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Marcelo H Petri
- Translational Cardiology, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Andrés Laguna-Fernandez
- Translational Cardiology, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Chi-Nan Tseng
- Vascular Surgery, Center for Molecular Medicine, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hedin
- Vascular Surgery, Center for Molecular Medicine, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Magnus Bäck
- Translational Cardiology, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
20
|
Capra V, Bäck M, Angiolillo DJ, Cattaneo M, Sakariassen KS. Impact of vascular thromboxane prostanoid receptor activation on hemostasis, thrombosis, oxidative stress, and inflammation. J Thromb Haemost 2014; 12:126-37. [PMID: 24298905 DOI: 10.1111/jth.12472] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Indexed: 12/13/2022]
Abstract
The activation of thromboxane prostanoid (TP) receptor on platelets, monocytes/macrophages, endothelial cells, and vascular smooth muscle cells (SMC) plays important roles in regulating platelet activation and vascular tone and in the pathogenesis of thrombosis and vascular inflammation. Oxidative stress and vascular inflammation increase the formation of TP receptor agonists, which promote initiation and progression of atherogenesis and thrombosis. Furthermore, TP receptor activation promotes angiogenesis and vessel wall constriction. Besides thromboxane A₂ and its endoperoxide precursors, prostaglandin G₂ and H₂, isoprostanes, and 20-hydroxyeicosatetraenoic acid also activate TP receptor as autocrine or paracrine ligands. These additional TP activators play a role in pathological conditions such as diabetes, obesity, and hypertension, and their biosynthesis is not inhibited by aspirin, at variance with that of thromboxane A₂. The understanding of TP receptor function increased our current knowledge of the pathogenesis of atherosclerosis and thrombosis, highlighting the great impact that this receptor has in cardiovascular disorders.
Collapse
Affiliation(s)
- V Capra
- Department of Pharmacology and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | |
Collapse
|