1
|
Li S, Luo X, Sun M, Wang Y, Zhang Z, Jiang J, Hu D, Zhang J, Wu Z, Wang Y, Huang W, Xia L. Context-dependent T-BOX transcription factor family: from biology to targeted therapy. Cell Commun Signal 2024; 22:350. [PMID: 38965548 PMCID: PMC11225425 DOI: 10.1186/s12964-024-01719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024] Open
Abstract
T-BOX factors belong to an evolutionarily conserved family of transcription factors. T-BOX factors not only play key roles in growth and development but are also involved in immunity, cancer initiation, and progression. Moreover, the same T-BOX molecule exhibits different or even opposite effects in various developmental processes and tumor microenvironments. Understanding the multiple roles of context-dependent T-BOX factors in malignancies is vital for uncovering the potential of T-BOX-targeted cancer therapy. We summarize the physiological roles of T-BOX factors in different developmental processes and their pathological roles observed when their expression is dysregulated. We also discuss their regulatory roles in tumor immune microenvironment (TIME) and the newly arising questions that remain unresolved. This review will help in systematically and comprehensively understanding the vital role of the T-BOX transcription factor family in tumor physiology, pathology, and immunity. The intention is to provide valuable information to support the development of T-BOX-targeted therapy.
Collapse
Affiliation(s)
- Siwen Li
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Xiangyuan Luo
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Zerui Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Junqing Jiang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Dian Hu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Jiaqian Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Zhangfan Wu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Wenjie Huang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
2
|
Park JH, Hothi P, de Lomana ALG, Pan M, Calder R, Turkarslan S, Wu WJ, Lee H, Patel AP, Cobbs C, Huang S, Baliga NS. Gene regulatory network topology governs resistance and treatment escape in glioma stem-like cells. SCIENCE ADVANCES 2024; 10:eadj7706. [PMID: 38848360 PMCID: PMC11160475 DOI: 10.1126/sciadv.adj7706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/03/2024] [Indexed: 06/09/2024]
Abstract
Poor prognosis and drug resistance in glioblastoma (GBM) can result from cellular heterogeneity and treatment-induced shifts in phenotypic states of tumor cells, including dedifferentiation into glioma stem-like cells (GSCs). This rare tumorigenic cell subpopulation resists temozolomide, undergoes proneural-to-mesenchymal transition (PMT) to evade therapy, and drives recurrence. Through inference of transcriptional regulatory networks (TRNs) of patient-derived GSCs (PD-GSCs) at single-cell resolution, we demonstrate how the topology of transcription factor interaction networks drives distinct trajectories of cell-state transitions in PD-GSCs resistant or susceptible to cytotoxic drug treatment. By experimentally testing predictions based on TRN simulations, we show that drug treatment drives surviving PD-GSCs along a trajectory of intermediate states, exposing vulnerability to potentiated killing by siRNA or a second drug targeting treatment-induced transcriptional programs governing nongenetic cell plasticity. Our findings demonstrate an approach to uncover TRN topology and use it to rationally predict combinatorial treatments that disrupt acquired resistance in GBM.
Collapse
Affiliation(s)
| | - Parvinder Hothi
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | | | - Min Pan
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | - Wei-Ju Wu
- Institute for Systems Biology, Seattle, WA, USA
| | - Hwahyung Lee
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | - Anoop P. Patel
- Department of Neurosurgery, Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Charles Cobbs
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | - Sui Huang
- Institute for Systems Biology, Seattle, WA, USA
| | - Nitin S. Baliga
- Institute for Systems Biology, Seattle, WA, USA
- Departments of Microbiology, Biology, and Molecular Engineering Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Xue JD, Xiang WF, Cai MQ, Lv XY. Biological functions and therapeutic potential of SRY related high mobility group box 5 in human cancer. Front Oncol 2024; 14:1332148. [PMID: 38835366 PMCID: PMC11148273 DOI: 10.3389/fonc.2024.1332148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/26/2024] [Indexed: 06/06/2024] Open
Abstract
Cancer is a heavy human burden worldwide, with high morbidity and mortality. Identification of novel cancer diagnostic and prognostic biomarkers is important for developing cancer treatment strategies and reducing mortality. Transcription factors, including SRY associated high mobility group box (SOX) proteins, are thought to be involved in the regulation of specific biological processes. There is growing evidence that SOX transcription factors play an important role in cancer progression, including tumorigenesis, changes in the tumor microenvironment, and metastasis. SOX5 is a member of SOX Group D of Sox family. SOX5 is expressed in various tissues of human body and participates in various physiological and pathological processes and various cellular processes. However, the abnormal expression of SOX5 is associated with cancer of various systems, and the abnormal expression of SOX5 acts as a tumor promoter to promote cancer cell viability, proliferation, invasion, migration and EMT through multiple mechanisms. In addition, the expression pattern of SOX5 is closely related to cancer type, stage and adverse clinical outcome. Therefore, SOX5 is considered as a potential biomarker for cancer diagnosis and prognosis. In this review, the expression of SOX5 in various human cancers, the mechanism of action and potential clinical significance of SOX5 in tumor, and the therapeutic significance of Sox5 targeting in cancer were reviewed. In order to provide a new theoretical basis for cancer clinical molecular diagnosis, molecular targeted therapy and scientific research.
Collapse
Affiliation(s)
- Juan-di Xue
- The School of Basic Medicine Sciences of Lanzhou University, Lanzhou, China
| | - Wan-Fang Xiang
- School/Hospital of Stomatology of Lanzhou University, Lanzhou, China
| | - Ming-Qin Cai
- School/Hospital of Stomatology of Lanzhou University, Lanzhou, China
| | - Xiao-Yun Lv
- The School of Basic Medicine Sciences of Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Xu J, Guo P, Hao S, Shangguan S, Shi Q, Volpe G, Huang K, Zuo J, An J, Yuan Y, Cheng M, Deng Q, Zhang X, Lai G, Nan H, Wu B, Shentu X, Wu L, Wei X, Jiang Y, Huang X, Pan F, Song Y, Li R, Wang Z, Liu C, Liu S, Li Y, Yang T, Xu Z, Du W, Li L, Ahmed T, You K, Dai Z, Li L, Qin B, Li Y, Lai L, Qin D, Chen J, Fan R, Li Y, Hou J, Ott M, Sharma AD, Cantz T, Schambach A, Kristiansen K, Hutchins AP, Göttgens B, Maxwell PH, Hui L, Xu X, Liu L, Chen A, Lai Y, Esteban MA. A spatiotemporal atlas of mouse liver homeostasis and regeneration. Nat Genet 2024; 56:953-969. [PMID: 38627598 DOI: 10.1038/s41588-024-01709-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/06/2024] [Indexed: 05/09/2024]
Abstract
The mechanism by which mammalian liver cell responses are coordinated during tissue homeostasis and perturbation is poorly understood, representing a major obstacle in our understanding of many diseases. This knowledge gap is caused by the difficulty involved with studying multiple cell types in different states and locations, particularly when these are transient. We have combined Stereo-seq (spatiotemporal enhanced resolution omics-sequencing) with single-cell transcriptomic profiling of 473,290 cells to generate a high-definition spatiotemporal atlas of mouse liver homeostasis and regeneration at the whole-lobe scale. Our integrative study dissects in detail the molecular gradients controlling liver cell function, systematically defining how gene networks are dynamically modulated through intercellular communication to promote regeneration. Among other important regulators, we identified the transcriptional cofactor TBL1XR1 as a rheostat linking inflammation to Wnt/β-catenin signaling for facilitating hepatocyte proliferation. Our data and analytical pipelines lay the foundation for future high-definition tissue-scale atlases of organ physiology and malfunction.
Collapse
Affiliation(s)
- Jiangshan Xu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Pengcheng Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.
- 3DC STAR, Spatiotemporal Campus at BGI Shenzhen, Shenzhen, China.
| | - Shijie Hao
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuncheng Shangguan
- BGI Research, Shenzhen, China
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health and Guangzhou Medical University, Guangzhou, China
| | - Quan Shi
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Giacomo Volpe
- Hematology and Cell Therapy Unit, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Keke Huang
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jing Zuo
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Juan An
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yue Yuan
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Mengnan Cheng
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Qiuting Deng
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guangyao Lai
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health and Guangzhou Medical University, Guangzhou, China
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Haitao Nan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Baihua Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Xinyi Shentu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Liang Wu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoyu Wei
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Yujia Jiang
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Xin Huang
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fengyu Pan
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Yumo Song
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Ronghai Li
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Zhifeng Wang
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Chuanyu Liu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China
| | - Shiping Liu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | | | - Tao Yang
- China National GeneBank, BGI Research, Shenzhen, China
- Guangdong Provincial Genomics Data Center, BGI Research, Shenzhen, China
| | - Zhicheng Xu
- China National GeneBank, BGI Research, Shenzhen, China
- Guangdong Provincial Genomics Data Center, BGI Research, Shenzhen, China
| | - Wensi Du
- China National GeneBank, BGI Research, Shenzhen, China
- Guangdong Provincial Genomics Data Center, BGI Research, Shenzhen, China
| | - Ling Li
- China National GeneBank, BGI Research, Shenzhen, China
- Guangdong Provincial Genomics Data Center, BGI Research, Shenzhen, China
| | - Tanveer Ahmed
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Kai You
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhen Dai
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Li Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Baoming Qin
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yinxiong Li
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Liangxue Lai
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Dajiang Qin
- The Fifth Affiliated Hospital of Guangzhou Medical University-BGI Research Center for Integrative Biology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Junling Chen
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, China
| | - Rong Fan
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, China
| | - Yongyin Li
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, China
| | - Jinlin Hou
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, China
| | - Michael Ott
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Amar Deep Sharma
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Tobias Cantz
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | - Andrew P Hutchins
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Berthold Göttgens
- Department of Haematology and Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Patrick H Maxwell
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Lijian Hui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Xun Xu
- BGI Research, Hangzhou, China.
- BGI Research, Shenzhen, China.
- BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China.
| | - Longqi Liu
- BGI Research, Hangzhou, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China.
| | - Ao Chen
- BGI Research, Shenzhen, China.
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- BGI Research, Chongqing, China.
- JFL-BGI STOmics Center, BGI-Shenzhen, Chongqing, China.
| | - Yiwei Lai
- BGI Research, Hangzhou, China.
- BGI Research, Shenzhen, China.
- 3DC STAR, Spatiotemporal Campus at BGI Shenzhen, Shenzhen, China.
- BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China.
| | - Miguel A Esteban
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.
- 3DC STAR, Spatiotemporal Campus at BGI Shenzhen, Shenzhen, China.
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- The Fifth Affiliated Hospital of Guangzhou Medical University-BGI Research Center for Integrative Biology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
5
|
Park JH, Hothi P, Lopez Garcia de Lomana A, Pan M, Calder R, Turkarslan S, Wu WJ, Lee H, Patel AP, Cobbs C, Huang S, Baliga NS. Gene regulatory network topology governs resistance and treatment escape in glioma stem-like cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578510. [PMID: 38370784 PMCID: PMC10871280 DOI: 10.1101/2024.02.02.578510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Poor prognosis and drug resistance in glioblastoma (GBM) can result from cellular heterogeneity and treatment-induced shifts in phenotypic states of tumor cells, including dedifferentiation into glioma stem-like cells (GSCs). This rare tumorigenic cell subpopulation resists temozolomide, undergoes proneural-to-mesenchymal transition (PMT) to evade therapy, and drives recurrence. Through inference of transcriptional regulatory networks (TRNs) of patient-derived GSCs (PD-GSCs) at single-cell resolution, we demonstrate how the topology of transcription factor interaction networks drives distinct trajectories of cell state transitions in PD-GSCs resistant or susceptible to cytotoxic drug treatment. By experimentally testing predictions based on TRN simulations, we show that drug treatment drives surviving PD-GSCs along a trajectory of intermediate states, exposing vulnerability to potentiated killing by siRNA or a second drug targeting treatment-induced transcriptional programs governing non-genetic cell plasticity. Our findings demonstrate an approach to uncover TRN topology and use it to rationally predict combinatorial treatments that disrupts acquired resistance in GBM.
Collapse
Affiliation(s)
| | - Parvinder Hothi
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA
| | | | - Min Pan
- Institute for Systems Biology, Seattle, WA
| | | | | | - Wei-Ju Wu
- Institute for Systems Biology, Seattle, WA
| | - Hwahyung Lee
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA
| | - Anoop P Patel
- Department of Neurosurgery, Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC
- Center for Advanced Genomic Technologies, Duke University, Durham, NC
| | - Charles Cobbs
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA
| | - Sui Huang
- Institute for Systems Biology, Seattle, WA
| | - Nitin S Baliga
- Institute for Systems Biology, Seattle, WA
- Departments of Microbiology, Biology, and Molecular Engineering Sciences, University of Washington, Seattle, WA
| |
Collapse
|
6
|
Li C, Zhang J, Bi Y. Unveiling the prognostic significance of SOX5 in esophageal squamous cell carcinoma: a comprehensive bioinformatic and experimental analysis. Aging (Albany NY) 2023; 15:7565-7582. [PMID: 37531195 PMCID: PMC10457070 DOI: 10.18632/aging.204924] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND This study aimed to investigate the expression and prognostic significance of SOX5 in esophageal squamous cell carcinoma (ESCC). METHODS Gene Expression Omnibus (GEO) data were analyzed to assess SOX5 expression in ESCC and normal tissues. Survival analysis was performed to evaluate its prognostic significance. Pathway enrichment analysis was conducted to identify pathways associated with low SOX5 expression. Methylation status of CpG sites in ESCC cases was examined, and SOX5 expression was evaluated. Differential expression and ChIP-seq data analyses were used to identify genes significantly correlated with SOX5 and to obtain target genes. A protein-protein interaction (PPI) network was constructed using hub genes, and their association with immune cell infiltration was determined. In vitro ESCC cell experiments validated the findings. RESULTS SOX5 was significantly downregulated in ESCC samples compared to normal samples. Its downregulation was associated with shorter survival in ESCC patients. Pathway enrichment analysis revealed enrichment in regulated necrosis, NLRP3 inflammasome, formation of the cornified envelope, and PD-1 signaling. Methylation status of two CpG sites negatively correlated with SOX5 expression. Differential expression analysis identified 122 genes significantly correlated with SOX5, and 28 target genes were obtained from ChIP-seq analysis. Target genes were enriched in DNA replication, cell cycle, spindle, and ATPase activity. Five hub genes were identified, and the PPI network showed significant associations with immune cell infiltration. In vitro experiments confirmed SOX5 downregulation, upregulation of hub genes, and their functional effects on ESCC cell apoptosis and proliferation. CONCLUSIONS These findings enhance understanding of SOX5 in ESCC and potential therapeutic strategies.
Collapse
Affiliation(s)
- Chenglin Li
- Department of Cardiothoracic Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
- Department of Cardiothoracic Surgery, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian 223300, Jiangsu, China
| | - Jialing Zhang
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian 223300, Jiangsu, China
| | - Yanwen Bi
- Department of Cardiothoracic Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| |
Collapse
|
7
|
Chen J, He Y, Zhong H, Hu F, Li Y, Zhang Y, Zhang X, Lin W, Li Q, Xu F, Chen S, Zhang H, Cai W, Li L. Transcriptome analysis of CD4+ T cells from HIV-infected individuals receiving ART with LLV revealed novel transcription factors regulating HIV-1 promoter activity. Virol Sin 2023:S1995-820X(23)00022-6. [PMID: 36907331 DOI: 10.1016/j.virs.2023.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Some HIV-infected individuals receiving ART develop low-level viremia (LLV), with a plasma viral load of 50-1000 copies/mL. Persistent low-level viremia is associated with subsequent virologic failure. The peripheral blood CD4+ T cell pool is a source of LLV. However, the intrinsic characteristics of CD4+ T cells in LLV which may contribute to low-level viremia are largely unknown. We analyzed the transcriptome profiling of peripheral blood CD4+ T cells from healthy controls (HC) and HIV-infected patients receiving ART with either virologic suppression (VS) or LLV. To identify pathways potentially responding to increasing viral loads from HC to VS and to LLV, KEGG pathways of differentially expressed genes (DEGs) were acquired by comparing VS with HC (VS-HC group) and LLV with VS (LLV-VS group). Characterization of DEGs in key overlapping pathways showed that CD4+ T cells in LLV expressed higher levels of Th1 signature transcription factors (TBX21), toll-like receptors (TLR-4, -6, -7 and -8), anti-HIV entry chemokines (CCL3 and CCL4), and anti-IL-1β factors (ILRN and IL1R2) compared to VS. Our results also indicated activation of the NF-κB and TNF signaling pathways that could promote HIV-1 transcription. Finally, we evaluated the effects of 4 and 17 transcription factors that were upregulated in the VS-HC and LLV-VS groups, respectively, on HIV-1 promoter activity. Functional studies revealed that CXXC5 significantly increased, while SOX5 markedly suppressed HIV-1 transcription. In summary, we found that CD4+ T cells in LLV displayed a distinct mRNA profiling compared to that in VS, which promoted HIV-1 replication and reactivation of viral latency and may eventually contribute to virologic failure in patients with persistent LLV. CXXC5 and SOX5 may serve as targets for the development of latency-reversing agents.
Collapse
Affiliation(s)
- Jingliang Chen
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Yaozu He
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Huolin Zhong
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Fengyu Hu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Yonghong Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Yeyang Zhang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Xia Zhang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Weiyin Lin
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Quanmin Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Feilong Xu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Shaozhen Chen
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Guangzhou Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China.
| | - Weiping Cai
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China.
| | - Linghua Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510440, China.
| |
Collapse
|
8
|
Park JH, Feroze AH, Emerson SN, Mihalas AB, Keene CD, Cimino PJ, de Lomana ALG, Kannan K, Wu WJ, Turkarslan S, Baliga NS, Patel AP. A single-cell based precision medicine approach using glioblastoma patient-specific models. NPJ Precis Oncol 2022; 6:55. [PMID: 35941215 PMCID: PMC9360428 DOI: 10.1038/s41698-022-00294-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/22/2022] [Indexed: 02/08/2023] Open
Abstract
Glioblastoma (GBM) is a heterogeneous tumor made up of cell states that evolve over time. Here, we modeled tumor evolutionary trajectories during standard-of-care treatment using multi-omic single-cell analysis of a primary tumor sample, corresponding mouse xenografts subjected to standard of care therapy, and recurrent tumor at autopsy. We mined the multi-omic data with single-cell SYstems Genetics Network AnaLysis (scSYGNAL) to identify a network of 52 regulators that mediate treatment-induced shifts in xenograft tumor-cell states that were also reflected in recurrence. By integrating scSYGNAL-derived regulatory network information with transcription factor accessibility deviations derived from single-cell ATAC-seq data, we developed consensus networks that modulate cell state transitions across subpopulations of primary and recurrent tumor cells. Finally, by matching targeted therapies to active regulatory networks underlying tumor evolutionary trajectories, we provide a framework for applying single-cell-based precision medicine approaches to an individual patient in a concurrent, adjuvant, or recurrent setting.
Collapse
Affiliation(s)
| | - Abdullah H Feroze
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Samuel N Emerson
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Anca B Mihalas
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Patrick J Cimino
- Department of Pathology, University of Washington, Seattle, WA, USA
| | | | | | - Wei-Ju Wu
- Institute for Systems Biology, Seattle, WA, USA
| | | | - Nitin S Baliga
- Institute for Systems Biology, Seattle, WA, USA.
- Departments of Microbiology, Biology, and Molecular Engineering Sciences, University of Washington, Seattle, WA, USA.
| | - Anoop P Patel
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA.
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Brotman-Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA.
- Department of Neurosurgery, Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA.
| |
Collapse
|
9
|
Vinyals A, Ferreres JR, Calbet-Llopart N, Ramos R, Tell-Martí G, Carrera C, Marcoval J, Puig S, Malvehy J, Puig-Butillé JA, Fabra À. Oncogenic properties via MAPK signaling of the SOX5-RAF1 fusion gene identified in a wild-type NRAS/BRAF giant congenital nevus. Pigment Cell Melanoma Res 2022; 35:450-460. [PMID: 35587097 DOI: 10.1111/pcmr.13044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/07/2022] [Accepted: 05/02/2022] [Indexed: 01/17/2023]
Abstract
We recently reported an RAF rearrangement without NRAS or BRAF mutations in lesions from Giant Congenital Melanocytic Nevi (CMN). The new gene fusion involves the 5'-end of the promoter-containing N terminus of the SOX5 gene fused to exons 7-16 of the 3'-end of RAF1 gene leading to a SOX5-RAF1 fusion transcript which loses the auto-inhibitory CR1 domain but retains the complete in-frame coding sequence for the C-Terminal kinase domain of the RAF1. Stable expression of SOX5-RAF1 fusion induced growth factor-independent cell growth in murine hematopoietic Ba/F3 cells and melan-a immortalized melanocytes. Besides, it led to the transformation of both Ba/F3 and NIH 3T3 cells as revealed by colony formation assays. Furthermore, its expression results in MAPK activation assessed by increased levels of p-ERK protein in the cytosol of transduced cells. Treatment with Sorafenib and UO126 inhibited proliferation of Ba/F3-SOX5-RAF1 cells in the absence of IL3 but not the PLX 4720, a specific inhibitor of BRAF. Moreover, the tumorigenic and metastatic capacities of SOX5-RAF1 were assessed in vivo. These results indicate that SOX5-RAF1, a driver event for CMN development, has oncogenic capacity. Thus, sequencing of CMN transcriptomes may lead to the identification of this druggable fusion and interfere with the progression toward melanoma.
Collapse
Affiliation(s)
- Antònia Vinyals
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Josep R Ferreres
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Dermatology Service, IDIBELL - Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Neus Calbet-Llopart
- Dermatology Department, IDIBAPS, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Raquel Ramos
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Gemma Tell-Martí
- Dermatology Department, IDIBAPS, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Cristina Carrera
- Dermatology Department, IDIBAPS, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Joaquim Marcoval
- Dermatology Service, IDIBELL - Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Susana Puig
- Dermatology Department, IDIBAPS, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Josep Malvehy
- Dermatology Department, IDIBAPS, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Joan Anton Puig-Butillé
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain.,Molecular Biology CORE Laboratory, Melanoma Unit, IDIBAPS, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | - Àngels Fabra
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| |
Collapse
|
10
|
SOX5 promotes cell growth and migration through modulating the DNMT1/p21 pathway in bladder cancer. Acta Biochim Biophys Sin (Shanghai) 2022; 54:987-998. [PMID: 35880568 PMCID: PMC9909322 DOI: 10.3724/abbs.2022075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Bladder cancer (BC) is one of the most prevalent and life-threatening cancers among the male population worldwide. Sex determining region Y-box protein 5 (SOX5) plays important roles in a variety of human cancers. However, little research has been conducted on the function and underlying mechanism of SOX5 in BC. In the present study, we first reveal the increased expression of SOX5 in BC tissues and in vitro cells lines. Second, we discover that inhibition of SOX5 inhibits cell growth and migration but promotes cell apoptosis. Meanwhile, ectopic SOX5 expression stimulates cell growth and migration in BC cells. Then, we show that suppressing SOX5 inhibits the expression of DNA methyltransferase 1 (DNMT1), and that overexpressing DNMT1 alleviates the cell progress of BC cells inhibited by SOX5. Furthermore, we demonstrate that DNMT1 inhibits p21 expression by affecting DNA methylation of the p21 promoter. Collectively, we demonstrate that SOX5 exerts its functions in BC cells by modulating the SOX5/DNMT1/p21 pathway. Finally, we demonstrate that SOX5 knockdown inhibits xenograft tumor growth in vivo. In conclusion, our study elucidates the oncogenic role of SOX5 and its underlying molecular mechanism in BC, and reveals a novel pathway which has the potential to serve as a diagnostic biomarker and therapeutic target for BC.
Collapse
|
11
|
Adham AN, Abdelfatah S, Naqishbandi A, Sugimoto Y, Fleischer E, Efferth T. Transcriptomics, molecular docking, and cross-resistance profiling of nobiletin in cancer cells and synergistic interaction with doxorubicin upon SOX5 transfection. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154064. [PMID: 35344715 DOI: 10.1016/j.phymed.2022.154064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/10/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Nobiletin is a polymethoxylated flavone from citrus fruit peels. Among other bioactivities, it acts antioxidative, anti-inflammatory, neuroprotective, and cardiovascular-protective. Nobiletin exerts profound anticancer activity in vitro and in vivo but the underlying mechanisms are not well understood. PURPOSE The aim was to unravel the multiple modes of action against cancer cells by bioinformatic and transcriptomic techniques and their verification by molecular pharmacological methods. METHODS The in silico methods used were COMPARE analysis of transcriptomic data, signaling pathway analysis, transcription factor binding motif analysis in promoter sequences of target genes, and molecular docking. The in vitro methods used were resazurin assay, isobologram analysis, generation of stably SOX5-tranfected cells, and Western blotting. RESULTS Nobiletin was cytotoxic against a wide range of cell lines from different tumor types, including diverse phenotypes to established anticancer drugs (e.g., P-glycoprotein, ABCB5, p53, EGFR). Cross-resistance profiling with 83 standard anticancer drugs revealed a correlation to antihormonal anticancer drugs, which can be explained by the phytoestrogenic features of nobiletin. Transcriptomic analysis showed that the responsiveness of tumor cells was predictable by their specific mRNA expression profile. Nobiletin bound to the transcription factor SOX5 in silico. SOX5 conferred resistance to the control drug doxorubicin but collateral sensitivity to nobiletin in HEK293 cells transfected with a lentiviral GFP-tagged pLOCORF-SOX5 vector. The combination of nobiletin and doxorubicin synergistically killed HEK293-SOX5 cells in isobologram analyses, implying attractive new treatment options. CONCLUSION Nobiletin represents an interesting candidate for cancer therapy with broad-spectrum activity and multiple modes of action. The identification of novel targets (i.e., SOX5) may allow its use for targeted tumor therapy in individualized treatment protocols.
Collapse
Affiliation(s)
- Aveen N Adham
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil 44001, Kurdistan Region, Iraq
| | - Sara Abdelfatah
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Alaadin Naqishbandi
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil 44001, Kurdistan Region, Iraq
| | - Yoshikazu Sugimoto
- Division of Chemotherapy, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Edmond Fleischer
- Fischer Analytics, Department Fischer Organics, 55413 Weiler, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
12
|
Dey A, Kundu M, Das S, Jena BC, Mandal M. Understanding the function and regulation of Sox2 for its therapeutic potential in breast cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188692. [PMID: 35122882 DOI: 10.1016/j.bbcan.2022.188692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/11/2022] [Accepted: 01/28/2022] [Indexed: 12/12/2022]
Abstract
Sox family of transcriptional factors play essential functions in development and are implicated in multiple clinical disorders, including cancer. Sox2 being their most prominent member and performing a critical role in reprogramming differentiated adult cells to an embryonic phenotype is frequently upregulated in multiple cancers. High Sox2 levels are detected in breast tumor tissues and correlate with a worse prognosis. In addition, Sox2 expression is connected with resistance to conventional anticancer therapy. Together, it can be said that inhibiting Sox2 expression can reduce the malignant features associated with breast cancer, including invasion, migration, proliferation, stemness, and chemoresistance. This review highlights the critical roles played by the Sox gene family members in initiating or suppressing breast tumor development, while primarily focusing on Sox2 and its role in breast tumor initiation, maintenance, and progression, elucidates the probable mechanisms that control its activity, and puts forward potential therapeutic strategies to inhibit its expression.
Collapse
Affiliation(s)
- Ankita Dey
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur (IIT Kharagpur), Kharagpur, West Bengal, India..
| | - Moumita Kundu
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur (IIT Kharagpur), Kharagpur, West Bengal, India..
| | - Subhayan Das
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur (IIT Kharagpur), Kharagpur, West Bengal, India..
| | - Bikash Chandra Jena
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur (IIT Kharagpur), Kharagpur, West Bengal, India..
| | - Mahitosh Mandal
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur (IIT Kharagpur), Kharagpur, West Bengal, India..
| |
Collapse
|
13
|
Li Q, Wang W, Yang T, Li D, Huang Y, Bai G, Li Q. LINC00520 up-regulates SOX5 to promote cell proliferation and invasion by miR-4516 in human hepatocellular carcinoma. Biol Chem 2022; 403:665-678. [PMID: 35089659 DOI: 10.1515/hsz-2021-0316] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 01/05/2022] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common human cancers. Long non-coding RNA (lncRNA) has been demonstrated to play an important role in regulating tumor development. The current study aims to explore the specific role of LINC00520 during HCC progression. The present study identified that LINC00520 was upregulated in HCC tissues and indicated poor patient survival. Overexpression of LINC00520 promoted HCC cell proliferation, migration and invasion, while LINC00520 downregulation led to the opposite effects. Besides, LINC00520 knockdown was found to inhibit tumor growth in vivo. Furthermore, LINC00520 acted as a sponge of miR-4516 to regulate SRY-related high mobility group box 5 (SOX5). In addition, the inhibition of miR-4516 partly reversed the inhibitory effect of LINC00520 silencing on HCC cell proliferation, migration and invasion. In conclusion, the inhibition of LINC00520 suppressed HCC cell proliferation, migration and invasion through mediating miR-4516/SOX5 axis. Therefore, our study provides a basis for the development of treatment strategies for HCC.
Collapse
Affiliation(s)
- Qing Li
- Department of Internal Medicine, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Wei Wang
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Tao Yang
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Dongsheng Li
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Yinpeng Huang
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Guang Bai
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Qiang Li
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| |
Collapse
|
14
|
Filla MS, Meyer KK, Faralli JA, Peters DM. Overexpression and Activation of αvβ3 Integrin Differentially Affects TGFβ2 Signaling in Human Trabecular Meshwork Cells. Cells 2021; 10:1923. [PMID: 34440692 PMCID: PMC8394542 DOI: 10.3390/cells10081923] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022] Open
Abstract
Studies from our laboratory have suggested that activation of αvβ3 integrin-mediated signaling could contribute to the fibrotic-like changes observed in primary open angle glaucoma (POAG) and glucocorticoid-induced glaucoma. To determine how αvβ3 integrin signaling could be involved in this process, RNA-Seq analysis was used to analyze the transcriptomes of immortalized trabecular meshwork (TM) cell lines overexpressing either a control vector or a wild type (WT) or a constitutively active (CA) αvβ3 integrin. Compared to control cells, hierarchical clustering, PANTHER pathway and protein-protein interaction (PPI) analysis of cells overexpressing WT-αvβ3 integrin or CA-αvβ3 integrin resulted in a significant differential expression of genes encoding for transcription factors, adhesion and cytoskeleton proteins, extracellular matrix (ECM) proteins, cytokines and GTPases. Cells overexpressing a CA-αvβ3 integrin also demonstrated an enrichment for genes encoding proteins found in TGFβ2, Wnt and cadherin signaling pathways all of which have been implicated in POAG pathogenesis. These changes were not observed in cells overexpressing WT-αvβ3 integrin. Our results suggest that activation of αvβ3 integrin signaling in TM cells could have significant impacts on TM function and POAG pathogenesis.
Collapse
Affiliation(s)
- Mark S. Filla
- Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA; (M.S.F.); (K.K.M.); (J.A.F.)
| | - Kristy K. Meyer
- Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA; (M.S.F.); (K.K.M.); (J.A.F.)
| | - Jennifer A. Faralli
- Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA; (M.S.F.); (K.K.M.); (J.A.F.)
| | - Donna M. Peters
- Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA; (M.S.F.); (K.K.M.); (J.A.F.)
- Ophthalmology & Visual Sciences, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
15
|
Murakami F, Tsuboi Y, Takahashi Y, Horimoto Y, Mogushi K, Ito T, Emi M, Matsubara D, Shibata T, Saito M, Murakami Y. Short somatic alterations at the site of copy number variation in breast cancer. Cancer Sci 2021; 112:444-453. [PMID: 32860329 PMCID: PMC7780029 DOI: 10.1111/cas.14630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/09/2020] [Accepted: 08/16/2020] [Indexed: 12/25/2022] Open
Abstract
Copy number variation (CNV) is a polymorphism in the human genome involving DNA fragments larger than 1 kb. Copy number variation sites provide hotspots of somatic alterations in cancers. Herein, we examined somatic alterations at sites of CNV in DNA from 20 invasive breast cancers using a Comparative Genomic Hybridization array specifically designed to detect the genome-wide CNV status of approximately 412 000 sites. Somatic copy number alterations (CNAs) were detected in 39.9% of the CNV probes examined. The most frequently altered regions were gains of 1q21-22 (90%), 8q21-24 (85%), 1q44 (85%), and 3q11 (85%) or losses of 16q22-24 (80%). Gene ontology analyses of genes within the CNA fragments revealed that cascades related to transcription and RNA metabolism correlated significantly with human epidermal growth factor receptor 2 positivity and menopausal status. Thirteen of 20 tumors showed CNAs in more than 35% of sites examined and a high prevalence of CNAs correlated significantly with estrogen receptor (ER) negativity, higher nuclear grade (NG), and higher Ki-67 labeling index. Finally, when CNA fragments were categorized according to their size, CNAs smaller than 10 kb correlated significantly with ER positivity and lower NG, whereas CNAs exceeding 10 Mb correlated with higher NG, ER negativity, and a higher Ki-67 labeling index. Most of these findings were confirmed or supported by quantitative PCR of representative DNA fragments in 72 additional breast cancers. These results suggest that most CNAs are caused by gain or loss of large chromosomal fragments and correlate with NG and several malignant features, whereas solitary CNAs of less than 10 kb could be involved in ER-positive breast carcinogenesis.
Collapse
Affiliation(s)
- Fumi Murakami
- Division of Molecular PathologyThe Institute of Medical Science, The University of TokyoTokyoJapan
- Department of Breast OncologyJuntendo UniversityTokyoJapan
- JuntendoUniversity Graduate School of MedicineTokyoJapan
| | - Yumi Tsuboi
- Division of Molecular PathologyThe Institute of Medical Science, The University of TokyoTokyoJapan
| | - Yuka Takahashi
- Department of Breast OncologyJuntendo UniversityTokyoJapan
| | | | - Kaoru Mogushi
- JuntendoUniversity Graduate School of MedicineTokyoJapan
| | - Takeshi Ito
- Division of Molecular PathologyThe Institute of Medical Science, The University of TokyoTokyoJapan
| | - Mitsuru Emi
- University of Hawaii Cancer CenterHonoluluHIUSA
| | - Daisuke Matsubara
- Division of Molecular PathologyThe Institute of Medical Science, The University of TokyoTokyoJapan
- Department of PathologyJichiMedical UniversityShimotsukeJapan
| | - Tatsuhiro Shibata
- Laboratory of Molecular MedicineThe Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Mitsue Saito
- Department of Breast OncologyJuntendo UniversityTokyoJapan
| | - Yoshinori Murakami
- Division of Molecular PathologyThe Institute of Medical Science, The University of TokyoTokyoJapan
| |
Collapse
|
16
|
Adham AN, Abdelfatah S, Naqishbandi AM, Mahmoud N, Efferth T. Cytotoxicity of apigenin toward multiple myeloma cell lines and suppression of iNOS and COX-2 expression in STAT1-transfected HEK293 cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 80:153371. [PMID: 33070080 DOI: 10.1016/j.phymed.2020.153371] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/04/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Apigenin is one of the most abundant dietary flavonoids that possesses multiple bio-functions. PURPOSE This study was designed to determine the influence of apigenin on gene expressions, cancer cells, as well as STAT1/COX-2/iNOS pathway mediated inflammation and tumorigenesis in HEK293-STAT1 cells. Furthermore, the cytotoxic activity toward multiple myeloma (MM) cell lines was investigated. METHODS Bioinformatic analyses were used to predict the sensitivity and resistance of tumor cells toward apigenin and to determine cellular pathways influenced by this compound. The cytotoxic and ferroptotic activity of apigenin was examined by the resazurin reduction assay. Additionally, we evaluated apoptosis, and cell cycle distribution, induction of reactive oxygen species (ROS) and loss of integrity of mitochondrial membrane (MMP) by using the flow cytometry analysis. DAPI staining was used to detect characteristic apoptotic features. Furthermore, we verified its anti-inflammatory and additional mechanism of cell death by western blotting. RESULTS COMPARE and hierarchical cluster analyses exhibited that 29 of 55 tumor cell lines were sensitive against apigenin (p < 0.001). The Ingenuity Pathway Analysis data showed that important bio-functions affected by apigenin were: gene expression, cancer, hematological system development and function, inflammatory response, and cell cycle. The STAT1 transcription factor was chosen as target protein on the basis of gene promoter binding motif analyses. Apigenin blocked cell proliferation of wild-type HEK293 and STAT1 reporter cells (HEK293-STAT1), promoted STAT1 suppression and subsequent COX-2 and iNOS inhibition. Apigenin also exhibited synergistic activity in combination with doxorubicin toward HEK293-STAT1 cells. Apigenin exerted excellent growth-inhibitory activity against MM cells in a concentration-dependent manner with the greatest activity toward NCI-H929 (IC50 value: 10.73 ± 3.21 μM). Apigenin induced apoptosis, cell cycle arrest, ferroptosis and autophagy in NCI-H929 cells. CONCLUSION Apigenin may be a suitable candidate for MM treatment. The inhibition of the STAT1/COX-2/iNOS signaling pathway by apigenin is an important mechanism not only in the suppression of inflammation but also in induction of apoptosis.
Collapse
Affiliation(s)
- Aveen N Adham
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq; Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Sara Abdelfatah
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Alaadin M Naqishbandi
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq.
| | - Nuha Mahmoud
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
17
|
Yuan WM, Fan YG, Cui M, Luo T, Wang YE, Shu ZJ, Zhao J, Zheng J, Zeng Y. SOX5 Regulates Cell Proliferation, Apoptosis, Migration and Invasion in KSHV-Infected Cells. Virol Sin 2020; 36:449-457. [PMID: 33231856 DOI: 10.1007/s12250-020-00313-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/16/2020] [Indexed: 12/24/2022] Open
Abstract
Kaposi's sarcoma (KS) originates from vascular endothelial cells, with KS-associated herpesvirus (KSHV) as the etiological agent. SRY-box transcription factor 5 (SOX5) plays different roles in various types of cancer, although its role in KS remains poorly understood. In this study, we identified the role of SOX5 in KS tissues and KSHV-infected cells and elucidated the molecular mechanism. Thirty-two KS patients were enrolled in this study. Measurement of SOX5 mRNA and protein levels in human KS tissues and adjacent control tissues revealed lower levels in KS tissues, with KS patients having higher SOX5 level in the early stages of the disease compared to the later stages. And SOX5 mRNA and protein was also lower in KSHV-infected cells (iSLK-219 and iSLK-BAC) than normal cells (iSLK-Puro). Additionally, SOX5 overexpression inhibited cell proliferation and promoted apoptosis and decreased KSHV-infected cell migration and invasion. Moreover, we found that SOX5 overexpression suppressed the epithelial-to-mesenchymal transition of KSHV-infected cells. These results suggest SOX5 is a suppressor factor during KS development and a potential target for KS treatment.
Collapse
Affiliation(s)
- Wu-Mei Yuan
- Department of Stomatology, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832000, China.,Key Laboratory of Xinjiang Endemic and Ethnic Disease and Department of Biochemistry, School of Medicine, Shihezi University, Shihezi, 832000, China
| | - Ya-Ge Fan
- Key Laboratory of Xinjiang Endemic and Ethnic Disease and Department of Biochemistry, School of Medicine, Shihezi University, Shihezi, 832000, China
| | - Meng Cui
- Key Laboratory of Xinjiang Endemic and Ethnic Disease and Department of Biochemistry, School of Medicine, Shihezi University, Shihezi, 832000, China
| | - Ting Luo
- Key Laboratory of Xinjiang Endemic and Ethnic Disease and Department of Biochemistry, School of Medicine, Shihezi University, Shihezi, 832000, China
| | - Ya-E Wang
- Department of Stomatology, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832000, China
| | - Zhan-Jun Shu
- AIDS Research Office, National Traditional Chinese Medicine Research Base in Xinjiang and the Sixth People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, 830000, China
| | - Juan Zhao
- Key Laboratory of Xinjiang Endemic and Ethnic Disease and Department of Biochemistry, School of Medicine, Shihezi University, Shihezi, 832000, China
| | - Jun Zheng
- Department of Stomatology, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832000, China. .,Key Laboratory of Xinjiang Endemic and Ethnic Disease and Department of Biochemistry, School of Medicine, Shihezi University, Shihezi, 832000, China.
| | - Yan Zeng
- Key Laboratory of Xinjiang Endemic and Ethnic Disease and Department of Biochemistry, School of Medicine, Shihezi University, Shihezi, 832000, China.
| |
Collapse
|
18
|
Feng M, Fang F, Fang T, Jiao H, You S, Wang X, Zhao W. Sox13 promotes hepatocellular carcinoma metastasis by transcriptionally activating Twist1. J Transl Med 2020; 100:1400-1410. [PMID: 32461589 DOI: 10.1038/s41374-020-0445-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
SRY (sex-determining region Y)-box 13 (Sox13), a member of group D of the SRY-related high mobility group (HMG) box (Sox) family, is a critical regulator of embryonic development and cartilage formation. Few studies have investigated the role of Sox13 in tumorigenesis. The present study reveals the clinical significance and biological function of Sox13 in hepatocellular carcinoma (HCC). First, the expression of Sox13 in HCC samples was evaluated by qRT-PCR and western blotting, and its association with clinicopathological features and prognosis was determined. We found that Sox13 expression was higher in tumor tissue than in paired nontumor tissue. The upregulation of Sox13 was associated with poor differentiation, metastasis, recurrence and poor overall, and tumor-free survival of HCC patients. The function of Sox13 on HCC cell migration and invasion was then assessed by Transwell assay, and the results demonstrated that Sox13 promoted HCC cell invasion, migration, and epithelial-to-mesenchymal transition (EMT). Notably, the invasion, migration, and EMT of HCC cells induced by Sox13 overexpression could be abolished by Twist1 depletion, and Sox13 was positively correlated with Twist1 at both the mRNA and protein levels. Mechanistically, we revealed that Sox13 activated Twist1 transcription and consequently upregulated Twist1 expression. Furthermore, Sox13 formed a heterodimer with Sox5, and this heterodimer functionally cooperated to enhance the transcriptional activity of Twist1. Our findings suggest that Sox13 serves as an oncogene in HCC, and might be a novel prognostic and therapeutic candidate.
Collapse
Affiliation(s)
- Min Feng
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital, Xiamen University, Building 6, No. 209, South Hubin Road, 361004, Xiamen, China
| | - Fei Fang
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital, Xiamen University, Building 6, No. 209, South Hubin Road, 361004, Xiamen, China
| | - Ting Fang
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital, Xiamen University, Building 6, No. 209, South Hubin Road, 361004, Xiamen, China
| | - Hui Jiao
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital, Xiamen University, Building 6, No. 209, South Hubin Road, 361004, Xiamen, China
| | - Song You
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital, Xiamen University, Building 6, No. 209, South Hubin Road, 361004, Xiamen, China
| | - Xiaomin Wang
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital, Xiamen University, Building 6, No. 209, South Hubin Road, 361004, Xiamen, China.
| | - Wenxiu Zhao
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital, Xiamen University, Building 6, No. 209, South Hubin Road, 361004, Xiamen, China.
| |
Collapse
|
19
|
Chen M, Zou S, He C, Zhou J, Li S, Shen M, Cheng R, Wang D, Zou T, Yan X, Huang Y, Shen J. Transactivation of SOX5 by Brachyury promotes breast cancer bone metastasis. Carcinogenesis 2020; 41:551-560. [PMID: 31713604 PMCID: PMC7350557 DOI: 10.1093/carcin/bgz142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/22/2019] [Accepted: 10/17/2019] [Indexed: 12/16/2022] Open
Abstract
The bone marrow has been long known to host a unique environment amenable to colonization by metastasizing tumor cells. Yet, the underlying molecular interactions which give rise to the high incidence of bone metastasis (BM) in breast cancer patients have long remained uncharacterized. In our study, in vitro and in vivo assays demonstrated that Brachyury (Bry) could promote breast cancer BM. Bry drives epithelial–mesenchymal transition (EMT) and promotes breast cancer aggressiveness. As an EMT driver, SOX5 involves in breast cancer metastasis and the specific function in BM. Chromatin immunoprecipitation (ChIP) assays revealed SOX5 is a direct downstream target gene of Bry. ChIP analysis and reporter assays identified two Bry-binding motifs; one consistent with the classic conserved binding sequence and the other a new motif sequence. This study demonstrates for the first time that Bry promotes breast cancer cells BM through activating SOX5. In clinical practice, targeting the Bry-Sox5-EMT pathway is evolving into a promising avenue for the prevention of bone metastatic relapse, therapeutic resistance and other aspects of breast cancer progression. Brachyury directly regulates the expression of SOX5 by binding to two motifs in its promoter region. The Bry-SOX5-EMT pathway may represent a potential target to develop treatments to prevent and treat bone metastasis from breast cancer.
Collapse
Affiliation(s)
- Ming Chen
- Department of Orthopeadic Surgery, Suzhou, Jiangsu, People’s Republic of China
| | - Shitao Zou
- Suzhou Cancer Center Core Laboratory, Suzhou, Jiangsu, People’s Republic of China
| | - Chao He
- Suzhou Cancer Center Core Laboratory, Suzhou, Jiangsu, People’s Republic of China
| | - Jundong Zhou
- Suzhou Cancer Center Core Laboratory, Suzhou, Jiangsu, People’s Republic of China
| | - Suoyuan Li
- Department of Orthopeadic Surgery, Suzhou, Jiangsu, People’s Republic of China
| | - Minghong Shen
- Department of Pathology, the Affiliated Suzhou Hospital of Nanjing Medical University; Suzhou Municipal Hospital, Suzhou, Jiangsu, People’s Republic of China
| | - Rulei Cheng
- Department of Pathology, the Affiliated Suzhou Hospital of Nanjing Medical University; Suzhou Municipal Hospital, Suzhou, Jiangsu, People’s Republic of China
| | - Donglai Wang
- Department of Orthopeadic Surgery, Suzhou, Jiangsu, People’s Republic of China
| | - Tianming Zou
- Department of Orthopeadic Surgery, Suzhou, Jiangsu, People’s Republic of China
| | - Xueqi Yan
- Suzhou Cancer Center Core Laboratory, Suzhou, Jiangsu, People’s Republic of China
| | - Ying Huang
- Department of Ultrasonography, the Fifth People’s Hospital of Suzhou, Suzhou, Jiangsu, People’s Republic of China
| | - Jun Shen
- Department of Orthopeadic Surgery, Suzhou, Jiangsu, People’s Republic of China
- To whom correspondence should be addressed. Tel: 008618112603158; Fax: 008651262362502,
| |
Collapse
|
20
|
SRY-related high-mobility-group box 6 suppresses cell proliferation and is downregulated in breast cancer. Anticancer Drugs 2020; 32:306-313. [PMID: 33038083 DOI: 10.1097/cad.0000000000001004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Breast cancer is one of the most common cancers endangering women's health. SRY-related high-mobility-group box 6 (SOX6) is associated with many cancers, though its role has not been reported in breast cancer. Here, we aimed to explore the expression and function of SOX6 in breast cancer. On the basis of the analysis of SOX6 in The Cancer Genome Atlas, Cancer Cell Line Encyclopedia and Genotype-Tissue Expression databases, we revealed that SOX6 was downregulated in breast cancer, and we verified the results at the cellular level by means of western blotting and quantitative real-time PCR. When SOX6 was overexpressed, the proliferation of breast cancer cells was inhibited, and apoptosis was promoted. Moreover, the methylation level of the SOX6 promoter in breast cancer was significantly higher than that in normal tissues. 5'-Aza-2'-deoxycytidine reversed the high level of methylation that was caused by decreased expression of SOX6. This evidence suggests that SOX6 is a tumor suppressor gene associated with breast cancer. This study could provide a new target for breast cancer treatment.
Collapse
|
21
|
Neuroprotective effects of SOX5 against ischemic stroke by regulating VEGF/PI3K/AKT pathway. Gene 2020; 767:145148. [PMID: 32949698 DOI: 10.1016/j.gene.2020.145148] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 01/28/2023]
Abstract
Ischemic stroke is a common clinical cardiovascular disease and often accompanied by central nervous system injury. It often causes paralysis or loss of motor function after central nervous system injury and significantly reduces the patient's quality of life. At present, there is no effective treatment strategy for nerve damage caused by ischemic stroke. Therefore, it is urgently need to explore effective treatment targets. The protein expression of SOX5, VEGF and apoptosis related proteins were measured by western blot. The mRNA expression of SOX5 and VEGF were detected by RT-qPCR. The concentration of S100B and GFAP which are related to nerve damage were detected using ELISA assay. The transcriptional regulation of SOX5 on VEGF was detected using ChIP-PCR and dual luciferase reporter gene assays. The cell apoptosis was measured by TUNEL assay and cell viability was detected by CCK-8 assay. In our study, we found that the expression of SOX5 was significantly reduced when LPS induced apoptosis in PC-12 cells. Overexpression of SOX5 repaired LPS-induced apoptosis. SOX5 promotes VEGF expression as a transcription factor to activate the PI3K/AKT pathway. VEGF also repairs nerve injury and brain tissue injury caused by ischemic stroke. In conclusion, SOX5 transcription regulates the expression of VEGF to activate the PI3K/AKT pathway, which repaired nerve damage caused by ischemic stroke. Therefore, SOX5 could be a new targetto regulate VEGF which can repair nerve injury induced by ischemic stroke.
Collapse
|
22
|
Chen J, Dang Y, Feng W, Qiao C, Liu D, Zhang T, Wang Y, Tian D, Fan D, Nie Y, Wu K, Xia L. SOX18 promotes gastric cancer metastasis through transactivating MCAM and CCL7. Oncogene 2020; 39:5536-5552. [PMID: 32616889 DOI: 10.1038/s41388-020-1378-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/06/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
The therapeutic strategies for advanced gastric cancer (GC) remain unsatisfying and limited. Therefore, it is still imperative to fully elucidate the mechanisms underlying GC metastasis. Here, we report a novel role of SRY-box transcription factor 18 (SOX18), a member of the SOX family, in promoting GC metastasis. The elevated expression of SOX18 was positively correlated with distant metastasis, higher AJCC stage, and poor prognosis in human GC. SOX18 expression was an independent and significant risk factor for the recurrence and survival in GC patients. Up-regulation of SOX18 promoted GC invasion and metastasis, whereas down-regulation of SOX18 decreased GC invasion and metastasis. Melanoma cell adhesion molecule (MCAM) and C-C motif chemokine ligand 7 (CCL7) are direct transcriptional targets of SOX18. Knockdown of MCAM and CCL7 significantly decreased SOX18-mediated GC invasion and metastasis, while the stable overexpression of MCAM and CCL7 reversed the decrease in cell invasion and metastasis that was induced by the inhibition of SOX18. A mechanistic investigation indicated that the upregulation of SOX18 that was mediated by the CCL7-CCR1 pathway relied on the ERK/ELK1 pathway. SOX18 knockdown significantly reduced CCL7-enhanced GC invasion and metastasis. Furthermore, BX471, a specific CCR1 inhibitor, significantly reduced the SOX18-mediated GC invasion and metastasis. In human GC tissues, SOX18 expression was positively correlated with CCL7 and MCAM expression, and patients with positive coexpression of SOX18/CCL7 or SOX18/MCAM had the worst prognosis. In conclusion, we defined a CCL7-CCR1-SOX18 positive feedback loop that played a pivotal role in GC metastasis, and targeting this pathway may be a promising therapeutic option for the clinical management of GC.
Collapse
Affiliation(s)
- Jie Chen
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Yunzhi Dang
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Weibo Feng
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Chenyang Qiao
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Danfei Liu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Tongyue Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Dean Tian
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Daiming Fan
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Yongzhan Nie
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Kaichun Wu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| |
Collapse
|
23
|
Hoseinbeyki M, Taha MF, Javeri A. miR-16 enhances miR-302/367-induced reprogramming and tumor suppression in breast cancer cells. IUBMB Life 2020; 72:1075-1086. [PMID: 32057163 DOI: 10.1002/iub.2249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 01/31/2020] [Indexed: 12/24/2022]
Abstract
Overexpression of either miR-302 or miR-302/367 cluster induces reprogramming of cancer cells and exerts tumor-suppressive effects by induction of mesenchymal-to-epithelial transition, apoptosis and a less proliferative capacity. Several reports have described miR-16 as a tumor suppressor microRNA (miRNA). Here, we studied the impact of exogenous induction of miR-16 in MDA-MB-231 and SK-BR-3 breast cancer cells following overexpression of miR-302/367 cluster and investigated whether transfection of these cells by a mature miR-16 mimic could affect the reprogramming state of the cells and their tumorigenicity. miR-16 enhanced the expression levels of OCT4A, SOX2, and NANOG, generally known as transcription or pluripotency factors, and suppressed proliferation and invasiveness of these cells. Meanwhile, inhibition of miR-16 counteracted both the reprogramming effect and the antitumor function of miR-302/367 in the breast cancer cells. Current results indicate that miR-16 can work as an adjuvant to improve both cancer cell reprogramming and tumor-suppressive function of miR-302/367 cluster in MDA-MB-231 and SK-BR-3 cells, while its inhibition counteracts all of these effects. Combined application of miRNAs that share some common targets in cancer cell signaling pathways may provide new approaches for repression of multiple hallmarks of cancer.
Collapse
Affiliation(s)
- Moslem Hoseinbeyki
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Masoumeh F Taha
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Arash Javeri
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
24
|
Mehta GA, Khanna P, Gatza ML. Emerging Role of SOX Proteins in Breast Cancer Development and Maintenance. J Mammary Gland Biol Neoplasia 2019; 24:213-230. [PMID: 31069617 PMCID: PMC6790170 DOI: 10.1007/s10911-019-09430-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/21/2019] [Indexed: 12/26/2022] Open
Abstract
The SOX genes encode a family of more than 20 transcription factors that are critical regulators of embryogenesis and developmental processes and, when aberrantly expressed, have been shown to contribute to tumor development and progression in both an oncogenic and tumor suppressive role. Increasing evidence demonstrates that the SOX proteins play essential roles in multiple cellular processes that mediate or contribute to oncogenic transformation and tumor progression. In the context of breast cancer, SOX proteins function both as oncogenes and tumor suppressors and have been shown to be associated with tumor stage and grade and poor prognosis. Experimental evidence demonstrates that a subset of SOX proteins regulate critical aspects of breast cancer biology including cancer stemness and multiple signaling pathways leading to altered cell proliferation, survival, and tumor development; EMT, cell migration and metastasis; as well as other tumor associated characteristics. This review will summarize the role of SOX family members as important mediators of tumorigenesis in breast cancer, with an emphasis on the triple negative or basal-like subtype of breast cancer, as well as examine the therapeutic potential of these genes and their downstream targets.
Collapse
Affiliation(s)
- Gaurav A Mehta
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, CINJ 4558, New Brunswick, NJ, 08903, USA
- Department of Radiation Oncology, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Pooja Khanna
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, CINJ 4558, New Brunswick, NJ, 08903, USA
- Department of Radiation Oncology, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Michael L Gatza
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, CINJ 4558, New Brunswick, NJ, 08903, USA.
- Department of Radiation Oncology, Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
- Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
25
|
Liang Z, Xu J, Gu C. Novel role of the SRY-related high-mobility-group box D gene in cancer. Semin Cancer Biol 2019; 67:83-90. [PMID: 31356865 DOI: 10.1016/j.semcancer.2019.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/28/2019] [Accepted: 07/16/2019] [Indexed: 12/18/2022]
Abstract
The SRY-related high-mobility-group box (Sox) gene family encodes a set of transcription factors and is defined by the presence of highly conserved domains. The Sox gene can be divided into 10 groups (A-J). The SoxD subpopulation consists of Sox5, Sox6, Sox13 and Sox23, which are involved in the transcriptional regulation of developmental processes, including embryonic development, nerve growth and cartilage formation. Recently, the SoxD gene family was recognized as important transcriptional regulators associated with many types of cancer. In addition, Sox5 and Sox6 are representatives of the D subfamily, and there are many related studies; however, there are few reports on Sox13 and Sox23. In this review, we first introduce the structures of the SoxD genes. Next, we summarize the latest research progress on SoxD in various types of cancer. Finally, we discuss the potential direction of future SoxD research. In general, the information reviewed here may contribute to future experimental design and increase the potential of SoxD as a cancer treatment target.
Collapse
Affiliation(s)
- Zhenxing Liang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou 450052, China.
| | - Jing Xu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou 450052, China
| | - Chunhu Gu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China.
| |
Collapse
|
26
|
Ding S, Zhang Y. MicroRNA‑539 inhibits the proliferation and migration of gastric cancer cells by targeting SRY‑box 5 gene. Mol Med Rep 2019; 20:2533-2540. [PMID: 31322222 PMCID: PMC6691193 DOI: 10.3892/mmr.2019.10486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 10/08/2018] [Indexed: 01/18/2023] Open
Abstract
The aim of the present study was to investigate the effect of microRNA (miR)‑539 on the proliferation and migration of gastric cancer cells, and explore the underlying mechanism. Gastric cancer cell lines with high or low miR‑539 and SRY‑box 5 (SOX5) expression levels were constructed by transfection. The proliferation of gastric cancer cells was then detected by Cell Counting Kit‑8 assay and cell migration was tested by transwell assay. The results revealed low expression of miR‑539 and high expression of SOX5 in gastric cancer tissues and cells as compared with the levels in normal tissues and cells, suggesting that there was a negative correlation between miR‑539 and SOX5. Dual‑luciferase reporter experiments demonstrated that miR‑539 directly targeted SOX5. The proliferation and migration of gastric cancer cells were negatively regulated by the overexpression of miR‑539, while positively regulated by the overexpression of SOX5. Notably, SOX5 overexpression attenuated the inhibitory effect of miR‑539 on gastric cancer cells. The results suggested that SOX5 is a target gene of miR‑539, and that miR‑539 inhibits the proliferation and migration of gastric cancer cells by targeting SOX5.
Collapse
Affiliation(s)
- Shi Ding
- Department of Medicine, Changde Vocational Technical College, Changde, Hunan 415000, P.R. China
| | - Yanping Zhang
- Department of Medicine, Changde Vocational Technical College, Changde, Hunan 415000, P.R. China
| |
Collapse
|
27
|
Chen D, Wang R, Yu C, Cao F, Zhang X, Yan F, Chen L, Zhu H, Yu Z, Feng J. FOX-A1 contributes to acquisition of chemoresistance in human lung adenocarcinoma via transactivation of SOX5. EBioMedicine 2019; 44:150-161. [PMID: 31147293 PMCID: PMC6607090 DOI: 10.1016/j.ebiom.2019.05.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022] Open
Abstract
Background Chemoresistance is a major obstacle for the effective treatment of lung adenocarcinoma (LAD). Forkhead box (FOX) proteins have been demonstrated to play critical roles in promoting epithelial-mesenchymal transition (EMT) and chemoresistance. However, whether FOX proteins contribute to the acquisition of EMT and chemoresistance in LAD remains largely unknown. Methods FOX-A1 expression was measured in LAD cells and tissues by qRT-PCR. The expression levels of EMT markers were detected by western blotting and immunofluorescence assay. The interaction between Sex determining region Y-box protein 5 (SOX5) and FOX-A1 was validated by chromatin immunoprecipitation sequence (ChIP-seq) and Chromatin immunoprecipitation (ChIP) assay. Kaplan-Meier analysis and multivariate Cox regression analysis were performed to analyze the significance of FOX-A1 and SOX5 expression in the prognosis of LAD patients. Findings FOX-A1 was upregulated in docetaxel-resistant LAD cells. High FOX-A1 expression was closely associated with a worse prognosis. Upregulation of FOX-A1 in LAD samples indicated short progression-free survival (PFS) and overall survival (OS). SOX5 is a new and direct target of FOX-A1 and was positively regulated by FOX-A1 in LAD cell lines. Knockdown of FOX-A1 or SOX5 reversed the chemoresistance of docetaxel-resistant LAD cells by suppressing cell proliferation, migration and EMT progress. Interpretation These data elucidated an original FOX-A1/SOX5 pathway that represents a promising therapeutic target for chemosensitizing LAD and provides predictive biomarkers for evaluating the efficacy of chemotherapies.
Collapse
Affiliation(s)
- Dongqin Chen
- Department of Medical Oncology, Jiangsu Cancer Hospital&Jiangsu Institute of Cancer Research&The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China; Department of Medical Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China; Department of Medical Oncology, Nanjing General Hospital of Nanjing Military Command, School of Medicine, Nanjing University, Nanjing, China
| | - Rui Wang
- Department of Medical Oncology, Nanjing General Hospital of Nanjing Military Command, School of Medicine, Nanjing University, Nanjing, China
| | - Chen Yu
- Department of Medical Oncology, Jiangsu Cancer Hospital&Jiangsu Institute of Cancer Research&The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Fei Cao
- Department of Medical Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xuefeng Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem,USA; Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Feng Yan
- Department of Medical Oncology, Jiangsu Cancer Hospital&Jiangsu Institute of Cancer Research&The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Longbang Chen
- Department of Medical Oncology, Nanjing General Hospital of Nanjing Military Command, School of Medicine, Nanjing University, Nanjing, China
| | - Hong Zhu
- Department of Medical Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Zhengyuan Yu
- Department of Medical Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Jifeng Feng
- Department of Medical Oncology, Jiangsu Cancer Hospital&Jiangsu Institute of Cancer Research&The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
28
|
The role of SOX family members in solid tumours and metastasis. Semin Cancer Biol 2019; 67:122-153. [PMID: 30914279 DOI: 10.1016/j.semcancer.2019.03.004] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023]
Abstract
Cancer is a heavy burden for humans across the world with high morbidity and mortality. Transcription factors including sex determining region Y (SRY)-related high-mobility group (HMG) box (SOX) proteins are thought to be involved in the regulation of specific biological processes. The deregulation of gene expression programs can lead to cancer development. Here, we review the role of the SOX family in breast cancer, prostate cancer, renal cell carcinoma, thyroid cancer, brain tumours, gastrointestinal and lung tumours as well as the entailing therapeutic implications. The SOX family consists of more than 20 members that mediate DNA binding by the HMG domain and have regulatory functions in development, cell-fate decision, and differentiation. SOX2, SOX4, SOX5, SOX8, SOX9, and SOX18 are up-regulated in different cancer types and have been found to be associated with poor prognosis, while the up-regulation of SOX11 and SOX30 appears to be favourable for the outcome in other cancer types. SOX2, SOX4, SOX5 and other SOX members are involved in tumorigenesis, e.g. SOX2 is markedly up-regulated in chemotherapy resistant cells. The SoxF family (SOX7, SOX17, SOX18) plays an important role in angio- and lymphangiogenesis, with SOX18 seemingly being an attractive target for anti-angiogenic therapy and the treatment of metastatic disease in cancer. In summary, SOX transcription factors play an important role in cancer progression, including tumorigenesis, changes in the tumour microenvironment, and metastasis. Certain SOX proteins are potential molecular markers for cancer prognosis and putative potential therapeutic targets, but further investigations are required to understand their physiological functions.
Collapse
|
29
|
Sun C, Ban Y, Wang K, Sun Y, Zhao Z. SOX5 promotes breast cancer proliferation and invasion by transactivation of EZH2. Oncol Lett 2019; 17:2754-2762. [PMID: 30854049 PMCID: PMC6365965 DOI: 10.3892/ol.2019.9914] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/15/2018] [Indexed: 11/08/2022] Open
Abstract
Sex determining region Y-box protein 5 (SOX5) is a transcriptional factor and serves important roles in various cancer types; however, the pathological role of SOX5 in patients with breast cancer remains unclear. In the present study, the expression and potential role of SOX5 in patients with breast cancer and in breast cancer cells was investigated. The data indicated that SOX5 was highly expressed in breast cancer tissues compared with adjacent healthy tissues, and overexpression of SOX5 was associated with a reduced overall survival rate in patients with breast cancer. Gain and loss of function studies with MTT, colony formation, wound healing and Matrigel invasion assays demonstrated that SOX5 significantly promoted breast cancer cell proliferation and invasion. The chromatin immunoprecipitation (ChIP) assay sequence, quantitative ChIP and luciferase reporter assays were used to identify enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) as a downstream target gene of SOX5. Furthermore, it was determined that ectopic expression of SOX5 increased EZH2 expression at the mRNA and protein level, while the knockdown of SOX5 decreased EZH2 expression. Additionally, the biological effect of SOX5 was investigated, and it was determined to be dependent on the regulation of EZH2 expression. The present results may provide important insights into the biological significance of SOX5 serving as a candidate therapeutic target in breast cancer progression.
Collapse
Affiliation(s)
- Chuntao Sun
- Department of Interventional Radiology, Weifang City People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Yunqing Ban
- Imaging Center, The 5th Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Kai Wang
- Department of Breast Surgery, Weifang City People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Yanming Sun
- Department of Interventional Radiology, Weifang City People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Zhihua Zhao
- Department of Nuclear Medicine, Weifang City People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
30
|
Downregulation of miR-139-5p promotes prostate cancer progression through regulation of SOX5. Biomed Pharmacother 2019; 109:2128-2135. [DOI: 10.1016/j.biopha.2018.09.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 12/14/2022] Open
|
31
|
Liu T, Xu Z, Ou D, Liu J, Zhang J. The miR-15a/16 gene cluster in human cancer: A systematic review. J Cell Physiol 2018; 234:5496-5506. [PMID: 30246332 DOI: 10.1002/jcp.27342] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/10/2018] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are an important class of endogenous small noncoding single-stranded RNAs that suppress the expression of their target genes through messenger RNA (mRNA) degradation to inhibit transcription and translation. MiRNAs play a crucial regulatory role in many biological processes including proliferation, metabolism, and cellular malignancy. miR-15a/16 is an important tumor suppressor gene cluster with a variety of factors that regulate its transcriptional activity. It has been discovered that a relative reduction of miR-15a/16 expression in various cancers is closely related to the occurrence and progression of tumors. miR-15a/16 takes part in a wide array of biological processes including tumor cell proliferation, apoptosis, invasion, and chemoresistance by binding to the 3'-untranslated region of its target gene's mRNA. In this review, we will examine the complex regulatory network of miR-15a/16 gene expression and its biological functions in human cancers to further elucidate the molecular mechanisms of its antitumor effects.
Collapse
Affiliation(s)
- Ting Liu
- Department of Rheumatology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Zhenru Xu
- Department of Rheumatology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Daming Ou
- Department of Rheumatology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jing Liu
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Ji Zhang
- Department of Rheumatology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China.,Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
32
|
Chen X, Zheng Q, Li W, Lu Y, Ni Y, Ma L, Fu Y. SOX5 induces lung adenocarcinoma angiogenesis by inducing the expression of VEGF through STAT3 signaling. Onco Targets Ther 2018; 11:5733-5741. [PMID: 30254466 PMCID: PMC6140741 DOI: 10.2147/ott.s176533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background and objectives Angiogenesis is the main cause of lung adenocarcinoma (LAC) poor prognosis. This study aimed to investigate the effect of sex-determining region Y-box protein 5 (SOX5) expression on angiogenesis of LAC and explore its possible mechanism. Patients and methods The effect on angiogenesis was tested by tube formation assays using human umbilical vein endothelial cells cocultured with A549 cells. Lentivirus shRNA of SOX5 and lentivirus of SOX5 overexpression system were used to establish LAC cell lines, which expressed SOX5 of different levels. SOX5 downstream signaling targets were analyzed by real-time qPCR and Western blot. We collected 90 LAC cases and the tissues were examined by immunohistochemistry for SOX5 and vascular endothelial growth factor (VEGF). Results We found that SOX5 overexpression in A549 cells significantly promoted tube formation capacity of the cocultured human umbilical vein endothelial cells. SOX5 increased VEGF expression and signal transducer activator of transcription 3 phosphorylation; however, SOX5 had no effect on extracellular signal-regulated kinase and protein kinase B pathway. Furthermore, the expression of SOX5 and VEGF had a significantly positive correlation (r=0.399, P=0.001) according to the tissue microarray data. Conclusion These findings suggest that SOX5 induces angiogenesis by activating signal transducer activator of transcription 3/VEGF signaling and confer its candidacy as a potential therapeutic target in LAC.
Collapse
Affiliation(s)
- Xin Chen
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China,
| | - Qi Zheng
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China,
| | - Weidong Li
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China,
| | - Yuan Lu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China,
| | - Yiming Ni
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China,
| | - Liang Ma
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China,
| | - Yufei Fu
- Zhejiang Key Laboratory of Gastro-Intestinal Pathophysiology, Zhejiang Hospital of Traditional Chinese Medicine, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P. R. China,
| |
Collapse
|
33
|
Si C, Yu Q, Yao Y. Effect of miR-146a-5p on proliferation and metastasis of triple-negative breast cancer via regulation of SOX5. Exp Ther Med 2018; 15:4515-4521. [PMID: 29731835 DOI: 10.3892/etm.2018.5945] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/25/2017] [Indexed: 12/21/2022] Open
Abstract
MicroRNA (miR)-146a-5p functions as a tumor suppressor in various types of cancer. However, the role of miR-146a-5p in the development of triple-negative breast cancer (TNBC) is unclear. The present study aimed to investigate the role of miR-146a-5p in TNBC. The expression level of miR-146a-5p in TNBC tissues and cell lines was initially detected using reverse transcription-quantitative polymerase chain reaction. To predict the target gene of miR-146a-5p, TargetScan software was used and a dual luciferase assay was performed to verify the prediction. Furthermore, in order to explore the role of miR-146a-5p in TNBC, miR-146a-5p was overexpressed in TNBC cells using miR-146a-5p mimics. An MTT assay was performed to detect cell proliferation, and a Transwell assay was conducted to determine cell migration and invasion. Furthermore, western blotting was performed to measure associated protein expression. It was revealed that miR-146a-5p was downregulated in TNBC tissues and cell lines. SOX5 was indicated to be a target gene of miR-146a-5p and was upregulated in TNBC cells. Additionally, miR-146a-5p could inhibit TNBC cell proliferation, migration and invasion, repress the expression of mesenchymal markers (N-cadherin, vimentin and fibronectin) and increase epithelial marker (E-cadherin) expression. Furthermore, SOX5 overexpression eliminated the effects of miR-146a-5p mimics on TNBC cells. In conclusion, the data of the present study indicated that miR-146a-5p inhibits the proliferation and metastasis of TNBC cells by regulating SOX5.
Collapse
Affiliation(s)
- Chengshuai Si
- Department of General Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Qiao Yu
- Department of General Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Yufeng Yao
- Department of General Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
34
|
Jiang W, Yuan Q, Jiang Y, Huang L, Chen C, Hu G, Wan R, Wang X, Yang L. Identification of Sox6 as a regulator of pancreatic cancer development. J Cell Mol Med 2018; 22:1864-1872. [PMID: 29369542 PMCID: PMC5824410 DOI: 10.1111/jcmm.13470] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 10/26/2017] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer (PC) is an aggressive malignancy associated with a poor prognosis and low responsiveness to chemotherapy and radiotherapy. Most patients with PC have metastatic disease at diagnosis, which partly accounts for the high mortality from this disease. Here, we explored the role of the transcription factor sex‐determining region Y‐box (Sox) 6 in the invasiveness of PC cells. We showed that Sox6 is down‐regulated in patients with PC in association with metastatic disease. Sox6 overexpression suppressed PC cell proliferation and migration in vitro and tumour growth and liver metastasis in vivo. Sox6 inhibited epithelial‐mesenchymal transition (EMT), and Akt signalling. Sox6 was shown to interact with the promoter of Twist1, a helix–loop–helix transcription factor involved in the induction of EMT, and to modulate the expression of Twist1 by recruiting histone deacetylase 1 to the promoter of the Twist1 gene. Twist1 overexpression reversed the effect of Sox6 on inhibiting EMT, confirming that the effect of Sox6 on suppressing tumour invasiveness is mediated by the modulation of Twist1 expression. These results suggest a novel mechanism underlying the aggressive behaviour of PC cells and identify potential therapeutic targets for the treatment of PC.
Collapse
Affiliation(s)
- Weiliang Jiang
- Department of Gastroenterology, School of Medicine, Shanghai General Hospital/First People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, School of Medicine, Institute of Pancreatic Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Qiongying Yuan
- Department of Gastroenterology, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Yuanye Jiang
- Department of Gastroenterology, The Central Hospital of Putuo District, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Huang
- Department of Gastroenterology, School of Medicine, Shanghai General Hospital/First People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, School of Medicine, Institute of Pancreatic Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Congying Chen
- Department of Gastroenterology, School of Medicine, Shanghai General Hospital/First People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, School of Medicine, Institute of Pancreatic Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Guoyong Hu
- Department of Gastroenterology, School of Medicine, Shanghai General Hospital/First People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, School of Medicine, Institute of Pancreatic Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Rong Wan
- Department of Gastroenterology, School of Medicine, Shanghai General Hospital/First People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, School of Medicine, Institute of Pancreatic Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Xingpeng Wang
- Department of Gastroenterology, School of Medicine, Shanghai General Hospital/First People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, School of Medicine, Institute of Pancreatic Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Lijuan Yang
- Department of Gastroenterology, School of Medicine, Shanghai General Hospital/First People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pancreatic Disease, School of Medicine, Institute of Pancreatic Disease, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
35
|
Herrero MJ, Gitton Y. The untold stories of the speech gene, the FOXP2 cancer gene. Genes Cancer 2018; 9:11-38. [PMID: 29725501 PMCID: PMC5931254 DOI: 10.18632/genesandcancer.169] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/02/2018] [Indexed: 12/11/2022] Open
Abstract
FOXP2 encodes a transcription factor involved in speech and language acquisition. Growing evidence now suggests that dysregulated FOXP2 activity may also be instrumental in human oncogenesis, along the lines of other cardinal developmental transcription factors such as DLX5 and DLX6 [1-4]. Several FOXP familymembers are directly involved during cancer initiation, maintenance and progression in the adult [5-8]. This may comprise either a pro-oncogenic activity or a deficient tumor-suppressor role, depending upon cell types and associated signaling pathways. While FOXP2 is expressed in numerous cell types, its expression has been found to be down-regulated in breast cancer [9], hepatocellular carcinoma [8] and gastric cancer biopsies [10]. Conversely, overexpressed FOXP2 has been reported in multiple myelomas, MGUS (Monoclonal Gammopathy of Undetermined Significance), several subtypes of lymphomas [5,11], as well as in neuroblastomas [12] and ERG fusion-negative prostate cancers [13]. According to functional evidences reported in breast cancer [9] and survey of recent transcriptomic and proteomic analyses of different tumor biopsies, we postulate that FOXP2 dysregulation may play a main role throughout cancer initiation and progression. In some cancer conditions, FOXP2 levels are now considered as a critical diagnostic marker of neoplastic cells, and in many situations, they even bear strong prognostic value [5]. Whether FOXP2 may further become a therapeutic target is an actively explored lead. Knowledge reviewed here may help improve our understanding of FOXP2 roles during oncogenesis and provide cues for diagnostic, prognostic and therapeutic analyses.
Collapse
Affiliation(s)
- Maria Jesus Herrero
- Center for Neuroscience Research, Children's National Medical Center, NW, Washington, DC, USA
| | - Yorick Gitton
- Sorbonne University, INSERM, CNRS, Vision Institute Research Center, Paris, France
| |
Collapse
|
36
|
Wierinckx A, Roche M, Legras-Lachuer C, Trouillas J, Raverot G, Lachuer J. MicroRNAs in pituitary tumors. Mol Cell Endocrinol 2017; 456:51-61. [PMID: 28089822 DOI: 10.1016/j.mce.2017.01.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/14/2016] [Accepted: 01/12/2017] [Indexed: 01/01/2023]
Abstract
Since the presence of microRNAs was first observed in normal pituitary, the majority of scientific publications addressing their role and the function of microRNAs in the pituitary have been based on pituitary tumor studies. In this review, we briefly describe the involvement of microRNAs in the synthesis of pituitary hormones and we present a comprehensive inventory of microRNA suppressors and inducers of pituitary tumors. Finally, we summarize the functional role of microRNAs in tumorigenesis, progression and aggressiveness of pituitary tumors, mechanisms contributing to the regulation (transcription factors, genomic modifications or epigenetic) or modulation (pharmacological treatment) of microRNAs in these tumors, and the interest of thoroughly studying the expression of miRNAs in body fluids.
Collapse
Affiliation(s)
- Anne Wierinckx
- Université Lyon 1, Université de Lyon, Lyon, France; Institut Universitaire de Technologie Lyon1, Université de Lyon, F-69622 Villeurbanne Cedex, France; INSERM U1052, Cancer Research Center of Lyon, F-69373 Lyon Cedex 08, France; CNRS UMR 5286, Cancer Research Center of Lyon, F-69373 Lyon Cedex 08, France; ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, F-69373 Lyon Cedex 08, France.
| | | | - Catherine Legras-Lachuer
- Université Lyon 1, Université de Lyon, Lyon, France; ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, F-69373 Lyon Cedex 08, France; ViroScan3D, F-01600 Trévoux, France; UMR CNRS 5557 UCBL USC INRA 1193 ENVL, Dynamique Microbienne et Transmission Virale, F-69100 Villeurbanne Cedex, France
| | - Jacqueline Trouillas
- Université Lyon 1, Université de Lyon, Lyon, France; Centre de Pathologie Est, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron F-69677, France
| | - Gérald Raverot
- Université Lyon 1, Université de Lyon, Lyon, France; INSERM U1052, Cancer Research Center of Lyon, F-69373 Lyon Cedex 08, France; CNRS UMR 5286, Cancer Research Center of Lyon, F-69373 Lyon Cedex 08, France; Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, F-69677, France Université Lyon 1, Université de Lyon, Lyon, France
| | - Joël Lachuer
- Université Lyon 1, Université de Lyon, Lyon, France; Institut Universitaire de Technologie Lyon1, Université de Lyon, F-69622 Villeurbanne Cedex, France; INSERM U1052, Cancer Research Center of Lyon, F-69373 Lyon Cedex 08, France; CNRS UMR 5286, Cancer Research Center of Lyon, F-69373 Lyon Cedex 08, France; ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, F-69373 Lyon Cedex 08, France
| |
Collapse
|
37
|
Hu J, Tian J, Zhu S, Sun L, Yu J, Tian H, Dong Q, Luo Q, Jiang N, Niu Y, Shang Z. Sox5 contributes to prostate cancer metastasis and is a master regulator of TGF-β-induced epithelial mesenchymal transition through controlling Twist1 expression. Br J Cancer 2017; 118:88-97. [PMID: 29123266 PMCID: PMC5765224 DOI: 10.1038/bjc.2017.372] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/12/2017] [Accepted: 09/26/2017] [Indexed: 12/16/2022] Open
Abstract
Background: Metastatic castration-resistant prostate cancer (mCRPC) is one of the main contributors to the death of prostate cancer patients. To date, the detailed molecular mechanisms underlying mCRPC are unclear. Given the crucial role of epithelial–mesenchymal transition (EMT) in cancer metastasis, we aimed to analyse the expression and function of Transforming growth factor-beta (TGF-β) signal-associated protein named Sox5 in mCRPC. Methods: The protein expression levels were analysed by western blot, immunohistochemistry and immunofluorescence. Luciferase reporter assays and chromatin immunoprecipitation were employed to validate the target of Sox5. The effect of Smad3/Sox5/Twist1 on PCa progression was investigated in vitro and in vivo. Results: Here, we found that TGF-β-induced EMT was accompanied by increased Sox5 expression. Interestingly, knockdown of Sox5 expression attenuated EMT induced by TGF-β signalling. Furthermore, we demonstrated that Smad3 could bind to the promoter of Sox5 and regulate its expression. Mechanistically, Sox5 could bind to Twist1 promoter and active Twist1, which initiated EMT. Importantly, knockdown of Sox5 in prostate cancer cells resulted in less of the mesenchymal phenotype and cell migration ability. Furthermore, targeting Sox5 could inhibit prostate cancer progression in a xenograft mouse model. In clinic, patients with high Sox5 expression were more likely to suffer from metastases, and high Sox5 expression also has a lower progression-free survival and cancer specific-survival in clinic database. Conclusions: Therefore, we propose a new mechanism in which Smad3/Sox5/Twist1 promotes EMT and contributes to PCa progression.
Collapse
Affiliation(s)
- Jieping Hu
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Pingjiang Rd 23#, Hexi District, Tianjin 300211, China.,Department of Urology, the First Affiliated Hospital of Nanchang University, Jiangxi 330000, China
| | - Jing Tian
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Pingjiang Rd 23#, Hexi District, Tianjin 300211, China
| | - Shimiao Zhu
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Pingjiang Rd 23#, Hexi District, Tianjin 300211, China
| | - Libin Sun
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Pingjiang Rd 23#, Hexi District, Tianjin 300211, China.,Department of Urology, First Affiliated Hospital, Shanxi Medical University, Shanxi 030001, China
| | - Jianpeng Yu
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Pingjiang Rd 23#, Hexi District, Tianjin 300211, China
| | - Hao Tian
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Pingjiang Rd 23#, Hexi District, Tianjin 300211, China
| | - Qian Dong
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Pingjiang Rd 23#, Hexi District, Tianjin 300211, China
| | - Qiang Luo
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Pingjiang Rd 23#, Hexi District, Tianjin 300211, China
| | - Ning Jiang
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Pingjiang Rd 23#, Hexi District, Tianjin 300211, China
| | - Yuanjie Niu
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Pingjiang Rd 23#, Hexi District, Tianjin 300211, China
| | - Zhiqun Shang
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Pingjiang Rd 23#, Hexi District, Tianjin 300211, China
| |
Collapse
|
38
|
SOX5 predicts poor prognosis in lung adenocarcinoma and promotes tumor metastasis through epithelial-mesenchymal transition. Oncotarget 2017. [PMID: 29541384 PMCID: PMC5834284 DOI: 10.18632/oncotarget.22443] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Epithelial-mesenchymal transition (EMT) promotes lung cancer progression and metastasis, especially in lung adenocarcinoma. Sex determining region Y-box protein 5 (SOX5) is known to stimulate the progression of various cancers. Here, we used immunohistochemical analysis to reveal that SOX5 levels were increased in 90 lung adenocarcinoma patients. The high SOX5 expression in lung adenocarcinoma and non-tumor counterparts correlated with the patients’ poor prognosis. Inhibiting SOX5 expression attenuated metastasis and progression in lung cancer cells, while over-expressing SOX5 accelerated lung adenocarcinoma progression and metastasis via EMT. An in vivo zebrafish xenograft cancer model also showed SOX5 knockdown was followed by reduced lung cancer cell proliferation and metastasis. Our results indicate SOX5 promotes lung adenocarcinoma tumorigenicity and can be a novel diagnosis and prognosis marker of the disease.
Collapse
|
39
|
Yoshida E, Terao Y, Hayashi N, Mogushi K, Arakawa A, Tanaka Y, Ito Y, Ohmiya H, Hayashizaki Y, Takeda S, Itoh M, Kawaji H. Promoter-level transcriptome in primary lesions of endometrial cancer identified biomarkers associated with lymph node metastasis. Sci Rep 2017; 7:14160. [PMID: 29074988 PMCID: PMC5658375 DOI: 10.1038/s41598-017-14418-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 10/11/2017] [Indexed: 12/21/2022] Open
Abstract
For endometrial cancer patients, lymphadenectomy is recommended to exclude rarely metastasized cancer cells. This procedure is performed even in patients with low risk of recurrence despite the risk of complications such as lymphedema. A method to accurately identify cases with no lymph node metastases (LN-) before lymphadenectomy is therefore highly required. We approached this clinical problem by examining primary lesions of endometrial cancers with CAGE (Cap Analysis Gene Expression), which quantifies promoter-level expression across the genome. Fourteen profiles delineated distinct transcriptional networks between LN + and LN- cases, within those classified as having the low or intermediate risk of recurrence. Subsequent quantitative reverse transcription polymerase chain reaction (qRT-PCR) analyses of 115 primary tumors showed SEMA3D mRNA and TACC2 isoforms expressed through a novel promoter as promising biomarkers with high accuracy (area under the receiver operating characteristic curve, 0.929) when used in combination. Our high-resolution transcriptome provided evidence of distinct molecular profiles underlying LN + /LN- status in endometrial cancers, raising the possibility of preoperative diagnosis to reduce unnecessary operations in patients with minimum recurrence risk.
Collapse
Affiliation(s)
- Emiko Yoshida
- Department of Obstetrics & Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Yasuhisa Terao
- Department of Obstetrics & Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan.
| | - Noriko Hayashi
- Department of Obstetrics & Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Kaoru Mogushi
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Atsushi Arakawa
- Department of Human Pathology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yuji Tanaka
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
- Preventive Medicine and Applied Genomics Unit, RIKEN Advanced Center for Computing and Communication, Yokohama, Japan
| | - Yosuke Ito
- Department of Obstetrics & Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Preventive Medicine and Applied Genomics Unit, RIKEN Advanced Center for Computing and Communication, Yokohama, Japan
| | - Hiroko Ohmiya
- Preventive Medicine and Applied Genomics Unit, RIKEN Advanced Center for Computing and Communication, Yokohama, Japan
| | | | - Satoru Takeda
- Department of Obstetrics & Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Masayoshi Itoh
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Japan
| | - Hideya Kawaji
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
- Preventive Medicine and Applied Genomics Unit, RIKEN Advanced Center for Computing and Communication, Yokohama, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Japan
| |
Collapse
|
40
|
Guo J, Cai H, Zheng J, Liu X, Liu Y, Ma J, Que Z, Gong W, Gao Y, Tao W, Xue Y. Long non-coding RNA NEAT1 regulates permeability of the blood-tumor barrier via miR-181d-5p-mediated expression changes in ZO-1, occludin, and claudin-5. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2240-2254. [DOI: 10.1016/j.bbadis.2017.02.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/17/2017] [Accepted: 02/02/2017] [Indexed: 01/01/2023]
|
41
|
Qiu M, Chen D, Shen C, Shen J, Zhao H, He Y. Sex-determining region Y-box protein 3 induces epithelial-mesenchymal transition in osteosarcoma cells via transcriptional activation of Snail1. J Exp Clin Cancer Res 2017; 36:46. [PMID: 28335789 PMCID: PMC5364714 DOI: 10.1186/s13046-017-0515-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/11/2017] [Indexed: 02/05/2023] Open
Abstract
Background The transcription factor sex-determining region Y-box protein 3 (SOX3) plays important roles in various types of cancer. However, its expression and function have not yet been elucidated in osteosarcoma (OS). Methods The expression levels of SOX3 in OS tissues and OS cell lines were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis. The effects of SOX3 expression on OS cell biological traits were investigated by overexpressing and downregulating SOX3 protein. The expression of epithelial-mesenchymal transition (EMT) markers and transcription factors associated with EMT (EMT-TFs), were detected simultaneously. The mechanism underlying SOX3-mediated Snail1 expression was further investigated. Results SOX3 was upregulated in human OS tissues. SOX3 overexpression promoted the EMT, migration and invasion in OS cells. The downregulation of SOX3 resulted in opposing effects. Furthermore, SOX3 upregulation enhanced the expression of the transcriptional repressor Snail1 by binding to its promoter region. Additionally, a positive correlation among the expression of SOX3, Snail1, and E-cadherin was demonstrated in human OS tissues. Conclusions SOX3 promotes migration, invasiveness, and EMT in OS cells via transcriptional activation of Snail1 expression, suggesting that SOX3 is a novel regulator of EMT in OS and may serve as a therapeutic target for the treatment of OS metastasis.
Collapse
Affiliation(s)
- Manle Qiu
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Daoyun Chen
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Chaoyong Shen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ji Shen
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Huakun Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yaohua He
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
42
|
Silencing of SOX12 by shRNA suppresses migration, invasion and proliferation of breast cancer cells. Biosci Rep 2016; 36:BSR20160053. [PMID: 27582508 PMCID: PMC5052717 DOI: 10.1042/bsr20160053] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 08/26/2016] [Indexed: 01/20/2023] Open
Abstract
Sex determining region Y-box protein 12 (SOX12) is essential for embryonic development and cell fate determination. The role of SOX12 in tumorigenesis of breast cancer is not well-understood. Here, we found that SOX12 mRNA expression was up-regulated in human breast cancer tissues. To clarify the roles of SOX12 in breast cancer, we used lentiviral small hairpin RNAs (shRNAs) to suppress its expression in two breast cancer cells with relatively higher expression of SOX12 (BT474 and MCF-7). Our findings strongly suggested that SOX12 was critical for cell migration and invasion of breast cancer cells. We found that silencing of SOX12 significantly decreased the mRNA and protein levels of MMP9 and Twist, while notably increased E-cadherin. Moreover, SOX12 knockdown significantly inhibited the proliferation of breast cancer cells in vitro and the growth of xenograft tumors in vivo Flow cytometry analysis revealed that breast cancer cells with SOX12 knockdown showed cell cycle arrest and decreased mRNA and protein levels of PCNA, CDK2 and Cyclin D1. Taken together, SOX12 plays an important role in growth inhibition through cell-cycle arrest, as well as migration and invasion of breast cancer cells.
Collapse
|
43
|
Role of Epithelial-Mesenchyme Transition in Chlamydia Pathogenesis. PLoS One 2015; 10:e0145198. [PMID: 26681200 PMCID: PMC4683008 DOI: 10.1371/journal.pone.0145198] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/01/2015] [Indexed: 12/15/2022] Open
Abstract
Chlamydia trachomatis genital infection in women causes serious adverse reproductive complications, and is a strong co-factor for human papilloma virus (HPV)-associated cervical epithelial carcinoma. We tested the hypothesis that Chlamydia induces epithelial-mesenchyme transition (EMT) involving T cell-derived TNF-alpha signaling, caspase activation, cleavage inactivation of dicer and dysregulation of micro-RNA (miRNA) in the reproductive epithelium; the pathologic process of EMT causes fibrosis and fertility-related epithelial dysfunction, and also provides the co-factor function for HPV-related cervical epithelial carcinoma. Using a combination of microarrays, immunohistochemistry and proteomics, we showed that chlamydia altered the expression of crucial miRNAs that control EMT, fibrosis and tumorigenesis; specifically, miR-15a, miR-29b, miR-382 and MiR-429 that maintain epithelial integrity were down-regulated, while miR-9, mi-R-19a, miR-22 and miR-205 that promote EMT, fibrosis and tumorigenesis were up-regulated. Chlamydia induced EMT in vitro and in vivo, marked by the suppression of normal epithelial cell markers especially E-cadherin but up-regulation of mesenchymal markers of pathological EMT, including T-cadherin, MMP9, and fibronectin. Also, Chlamydia upregulated pro-EMT regulators, including the zinc finger E-box binding homeobox protein, ZEB1, Snail1/2, and thrombospondin1 (Thbs1), but down-regulated anti-EMT and fertility promoting proteins (i.e., the major gap junction protein connexin 43 (Cx43), Mets1, Add1Scarb1 and MARCKSL1). T cell-derived TNF-alpha signaling was required for chlamydial-induced infertility and caspase inhibitors prevented both infertility and EMT. Thus, chlamydial-induced T cell-derived TNF-alpha activated caspases that inactivated dicer, causing alteration in the expression of reproductive epithelial miRNAs and induction of EMT. EMT causes epithelial malfunction, fibrosis, infertility, and the enhancement of tumorigenesis of HPV oncogene-transformed epithelial cells. These findings provide a novel understanding of the molecular pathogenesis of chlamydia-associated diseases, which may guide a rational prevention strategy.
Collapse
|
44
|
Ding Z, Yang HW, Xia TS, Wang B, Ding Q. Integrative genomic analyses of the RNA-binding protein, RNPC1, and its potential role in cancer prediction. Int J Mol Med 2015; 36:473-84. [PMID: 26046131 DOI: 10.3892/ijmm.2015.2237] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/26/2015] [Indexed: 01/30/2023] Open
Abstract
The RNA binding motif protein 38 (RBM38, also known as RNPC1) plays a pivotal role in regulating a wide range of biological processes, from cell proliferation and cell cycle arrest to cell myogenic differentiation. It was originally recognized as an oncogene, and was frequently found to be amplified in prostate, ovarian and colorectal cancer, chronic lymphocytic leukemia, colon carcinoma, esophageal cancer, dog lymphomas and breast cancer. In the present study, the complete RNPC1 gene was identified in a number of vertebrate genomes, suggesting that RNPC1 exists in all types of vertebrates, including fish, amphibians, birds and mammals. In the different genomes, the gene had a similar 4 exon/3 intron organization, and all the genetic loci were syntenically conserved. The phylogenetic tree demonstrated that the RNPC1 gene from the mammalian, bird, reptile and teleost lineage formed a species-specific cluster. A total of 34 functionally relevant single nucleotide polymorphisms (SNPs), including 14 SNPs causing missense mutations, 8 exonic splicing enhancer SNPs and 12 SNPs causing nonsense mutations, were identified in the human RNPC1 gene. RNPC1 was found to be expressed in bladder, blood, brain, breast, colorectal, eye, head and neck, lung, ovarian, skin and soft tissue cancer. In 14 of the 94 tests, an association between RNPC1 gene expression and cancer prognosis was observed. We found that the association between the expression of RNPC1 and prognosis varied in different types of cancer, and even in the same type of cancer from the different databases used. This suggests that the function of RNPC1 in these tumors may be multidimensional. The sex determining region Y (SRY)-box 5 (Sox5), runt-related transcription factor 3 (RUNX3), CCAAT displacement protein 1 (CUTL1), v-rel avian reticuloendotheliosis viral oncogene homolog (Rel)A, peroxisome proliferator-activated receptor γ isoform 2 (PPARγ2) and activating transcription factor 6 (ATF6) regulatory transcription factor binding sites were identified in the upstream (promoter) region of the RNPC1 gene, and may thus be involved in the effects of RNPC1 in tumors.
Collapse
Affiliation(s)
- Zhiming Ding
- Department of Neurosurgery, The Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510700, P.R. China
| | - Hai-Wei Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Tian-Song Xia
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Bo Wang
- Department of Medical Oncology, The Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510700, P.R. China
| | - Qiang Ding
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
45
|
Kaakoush NO, Castaño-Rodríguez N, Man SM, Mitchell HM. Is Campylobacter to esophageal adenocarcinoma as Helicobacter is to gastric adenocarcinoma? Trends Microbiol 2015; 23:455-62. [PMID: 25937501 DOI: 10.1016/j.tim.2015.03.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 03/19/2015] [Accepted: 03/26/2015] [Indexed: 02/08/2023]
Abstract
Esophageal adenocarcinoma develops through a cascade of cellular changes that shares similarities to the etiology of Helicobacter pylori-associated intestinal-type gastric adenocarcinoma. While host genetics and immune response have been implicated in the progression to esophageal adenocarcinoma, studies investigating esophageal microbial communities suggest that bacteria may also play an important role in driving the inflammation that leads to disease. Of these, emerging Campylobacter species have been found to be more prevalent and abundant in patients progressing through the esophageal adenocarcinoma cascade compared to controls. Given that these bacteria possess several virulence mechanisms such as toxin production, cellular invasion, and intracellular survival, emerging Campylobacter species should be investigated as etiological agents of the chronic esophageal inflammation that leads to cancer.
Collapse
Affiliation(s)
- Nadeem O Kaakoush
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia.
| | - Natalia Castaño-Rodríguez
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia
| | - Si Ming Man
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia; Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hazel M Mitchell
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, NSW, Australia
| |
Collapse
|
46
|
The role of adipose-derived stem cells in breast cancer progression and metastasis. Stem Cells Int 2015; 2015:120949. [PMID: 26000019 PMCID: PMC4427098 DOI: 10.1155/2015/120949] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/26/2014] [Indexed: 12/15/2022] Open
Abstract
Conventional breast cancer extirpation involves resection of parts of or the whole gland, resulting in asymmetry and disfiguration. Given the unsatisfactory aesthetic outcomes, patients often desire postmastectomy reconstructive procedures. Autologous fat grafting has been proposed for reconstructive purposes for decades to restore form and anatomy after mastectomy. Fat has the inherent advantage of being autologous tissue and the most natural-appearing filler, but given its inconsistent engraftment and retention rates, it lacks reliability. Implementation of autologous fat grafts with cellular adjuncts, such as multipotent adipose-derived stem cells (ADSCs), has shown promising results. However, it is pertinent and critical to question whether these cells could promote any residual tumor cells to proliferate, differentiate, or metastasize or even induce de novo carcinogenesis. Thus far, preclinical and clinical study findings are discordant. A trend towards potential promotion of both breast cancer growth and invasion by ADSCs found in basic science studies was indeed not confirmed in clinical trials. Whether experimental findings eventually correlate with or will be predictive of clinical outcomes remains unclear. Herein, we aimed to concisely review current experimental findings on the interaction of mesenchymal stem cells and breast cancer, mainly focusing on ADSCs as a promising tool for regenerative medicine, and discuss the implications in clinical translation.
Collapse
|
47
|
Foley JM, Scholten DJ, Monks NR, Cherba D, Monsma DJ, Davidson P, Dylewski D, Dykema K, Winn ME, Steensma MR. Anoikis-resistant subpopulations of human osteosarcoma display significant chemoresistance and are sensitive to targeted epigenetic therapies predicted by expression profiling. J Transl Med 2015; 13:110. [PMID: 25889105 PMCID: PMC4419490 DOI: 10.1186/s12967-015-0466-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/17/2015] [Indexed: 01/27/2023] Open
Abstract
Background Osteosarcoma (OS) is the most common type of solid bone cancer, with latent metastasis being a typical mode of disease progression and a major contributor to poor prognosis. For this to occur, cells must resist anoikis and be able to recapitulate tumorigenesis in a foreign microenvironment. Finding novel approaches to treat osteosarcoma and target those cell subpopulations that possess the ability to resist anoikis and contribute to metastatic disease is imperative. Here we investigate anchorage-independent (AI) cell growth as a model to better characterize anoikis resistance in human osteosarcoma while using an expression profiling approach to identify and test targetable signaling pathways. Methods Established human OS cell lines and patient-derived human OS cell isolates were subjected to growth in either adherent or AI conditions using Ultra-Low Attachment plates in identical media conditions. Growth rate was assessed using cell doubling times and chemoresistance was assessed by determining cell viability in response to a serial dilution of either doxorubicin or cisplatin. Gene expression differences were examined using quantitative reverse-transcription PCR and microarray with principal component and pathway analysis. In-vivo OS xenografts were generated by either subcutaneous or intratibial injection of adherent or AI human OS cells into athymic nude mice. Statistical significance was determined using student’s t-tests with significance set at α = 0.05. Results We show that AI growth results in a global gene expression profile change accompanied by significant chemoresistance (up to 75 fold, p < 0.05). AI cells demonstrate alteration of key mediators of mesenchymal differentiation (β-catenin, Runx2), stemness (Sox2), proliferation (c-myc, Akt), and epigenetic regulation (HDAC class 1). AI cells were equally tumorigenic as their adherent counterparts, but showed a significantly decreased rate of growth in-vitro and in-vivo (p < 0.05). Treatment with the pan-histone deacetylase inhibitor vorinostat and the DNA methyltransferase inhibitor 5-azacytidine mitigated AI growth, while 5-azacytidine sensitized anoikis-resistant cells to doxorubicin (p < 0.05). Conclusions These data demonstrate remarkable plasticity in anoikis-resistant human osteosarcoma subpopulations accompanied by a rapid development of chemoresistance and altered growth rates mirroring the early stages of latent metastasis. Targeting epigenetic regulation of this process may be a viable therapeutic strategy. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0466-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jessica M Foley
- Helen DeVos Children's Hospital, Spectrum Health System, Grand Rapids, MI, USA.
| | - Donald J Scholten
- Van Andel Research Institute, Grand Rapids, MI, USA. .,Michigan State University College of Human Medicine, Grand Rapids, MI, USA.
| | - Noel R Monks
- Van Andel Research Institute, Grand Rapids, MI, USA.
| | - David Cherba
- Van Andel Research Institute, Grand Rapids, MI, USA.
| | | | | | | | - Karl Dykema
- Van Andel Research Institute, Grand Rapids, MI, USA.
| | - Mary E Winn
- Van Andel Research Institute, Grand Rapids, MI, USA.
| | - Matthew R Steensma
- Helen DeVos Children's Hospital, Spectrum Health System, Grand Rapids, MI, USA. .,Van Andel Research Institute, Grand Rapids, MI, USA. .,Michigan State University College of Human Medicine, Grand Rapids, MI, USA.
| |
Collapse
|
48
|
SOX5 promotes epithelial–mesenchymal transition and cell invasion via regulation of Twist1 in hepatocellular carcinoma. Med Oncol 2015; 32:461. [DOI: 10.1007/s12032-014-0461-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 12/12/2022]
|
49
|
Renjie W, Haiqian L. MiR-132, miR-15a and miR-16 synergistically inhibit pituitary tumor cell proliferation, invasion and migration by targeting Sox5. Cancer Lett 2014; 356:568-78. [PMID: 25305447 DOI: 10.1016/j.canlet.2014.10.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/01/2014] [Accepted: 10/03/2014] [Indexed: 12/13/2022]
Abstract
MiR-132, miR-15a and miR-16 have been implicated in the pathogenesis of many types of cancer, including pituitary tumors. However, the molecular mechanism of these miRNAs in pituitary tumor growth and metastasis is still unclear. Here, we showed that miR-132 and miR-15a/16 were less expressed in pituitary tumor cell lines, as well as in invasive pituitary tumor tissues, compared to non-invasive tumor tissues. We described that overexpression of miR-132 and miR-15a/16 resulted in the suppression of pituitary tumor cell proliferation, migration and invasion, respectively, and also inhibits the expression of proteins involved in Epithelial to Mesenchymal Transition (EMT). Then, we show that these miRNAs synergistically target Sox5 in pituitary tumor. Moreover, we found that Sox5 overexpression partially rescued miR-132, miR-15a and miR-16-mediated inhibition of cell migration, invasion and cell growth. Finally, we confirmed that Sox5 was upregulated in invasive pituitary tumor tissues, compared to non-invasion tissues. In conclusion, our data indicate that miR-132 and miR-15a/16 act as tumor suppressor genes in pituitary tumor by directly targetting Sox5, and imply that these miRNAs have potential as therapeutic targets for invasive pituitary tumor.
Collapse
Affiliation(s)
- Wang Renjie
- Department of Clinical Laboratory, Pingjing Hosipital, Logistics College of Armed Police Forces, Tianjin, China
| | - Liang Haiqian
- Department of Neurosurgery, Pingjing Hosipital, Logistics College of Armed Police Forces, No220, Chenglin Road, Tianjin 300162, China.
| |
Collapse
|