1
|
Xie X, Yu X, Zhang H, Dai H, Huang Y, Wu F. Irisin alleviates chronic constriction injury-induced hyperalgesia and affective disorders in mice through NF-κB and Nrf2 signaling pathways. IBRO Neurosci Rep 2024; 17:280-289. [PMID: 39323766 PMCID: PMC11422585 DOI: 10.1016/j.ibneur.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/27/2024] Open
Abstract
This research is to explore the impacts of irisin on hyperalgesia and behavioral deficits caused by chronic constriction injury (CCI) and the underlying mechanisms. The CCI mice model was used in this study. The experimental mice were assigned into sham, sham + irisin (3 μg/kg), CCI, CCI + irisin (0.1, 1, and 3 μg/kg), and CCI + irisin (3 μg/kg) + ML385 (30 mg/kg) groups. The results showed that after CCI injury, the mice exhibited hyperalgesia, depression, and anxiety. In addition, the levels of inflammatory cytokines NF-κB, IL-1β, IL-6, TNF-α, and iNOS increased in the mice hippocampus, frontal cortex, and spinal cord. Moreover, oxidative stress relevant factor MDA increased, while GSH and SOD decreased in the mice hippocampus, frontal cortex, and spinal cord. However, irisin treatment ameliorated CCI-induced mechanical allodynia, thermal hyperalgesia, depressive, and anxiety behaviors, and reversed the abnormal expressions of inflammatory and oxidative stress relevant cytokines. Interestingly, these therapeutic effects of irisin were partly abolished by ML385, a specific Nrf2 antagonist. Taken together, irisin may be an effective therapeutic agent for CCI-induced neuralgia and the affective disorders, and the mechanisms may be associated with the anti-neuroinflammation mediated by NF-κB and the anti- oxidative stress function regulated by Nrf2.
Collapse
Affiliation(s)
- Xupei Xie
- Department of Pharmacy, Shaoxing Second Hospital, Shaoxing 312000, China
| | - Xuefeng Yu
- Department of Pharmacy, Zhejiang Pharmaceutical University, Ningbo 315000, China
| | - Hanqin Zhang
- Department of Pharmacy, Zhejiang Pharmaceutical University, Ningbo 315000, China
| | - Huidan Dai
- Department of Pharmacy, Zhejiang Pharmaceutical University, Ningbo 315000, China
| | - Yuyang Huang
- Department of Pharmacy, Zhejiang Pharmaceutical University, Ningbo 315000, China
| | - Fan Wu
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310000, China
| |
Collapse
|
2
|
Zeng J, Liu J, Huang JH, Fu SP, Wang XY, Xi C, Cui YR, Qu F. Aloperine alleviates lipopolysaccharide-induced acute lung injury by inhibiting NLRP3 inflammasome activation. Int Immunopharmacol 2023; 120:110142. [PMID: 37210910 DOI: 10.1016/j.intimp.2023.110142] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 05/23/2023]
Abstract
RATIONALE Excessive activation of the NLRP3 inflammasome is involved in the pathological progression of acute lung injury (ALI). Aloperine (Alo) has anti-inflammatory effects in many inflammatory disease models; however, its role in ALI remains elusive. In this study, we addressed the role of Alo in NLRP3 inflammasome activation in both ALI mice and LPS-treated RAW264.7 cells. METHODS The activation of the NLRP3 inflammasome in LPS-induced ALI lungs was investigated in C57BL/6 mice. Alo was administered in order to study its effect on NLRP3 inflammasome activation in ALI. RAW264.7 cells were used to evaluate the underlying mechanism of Alo in the activation of the NLRP3 inflammasome in vitro. RESULTS The activation of the NLRP3 inflammasome occurs in the lungs and RAW264.7 cells under LPS stress. Alo attenuated the pathological injury of lung tissue as well as downregulates the mRNA expression of NLRP3 and pro-caspase-1 in ALI mice and LPS-stressed RAW264.7 cells. The expression of NLRP3, pro-caspase-1, and caspase-1 p10 were also significantly suppressed by Alo in vivo and in vitro. Furthermore, Alo decreased IL-1β and IL-18 release in ALI mice and LPS-induced RAW264.7 cells. In addition, ML385, a Nrf2 inhibitor, weakened the activity of Alo, which inhibited the activation of the NLRP3 inflammasome in vitro. CONCLUSION Alo reduces NLRP3 inflammasome activation via the Nrf2 pathway in ALI mice.
Collapse
Affiliation(s)
- Jie Zeng
- Department of Physiology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China; Jiangxi Medical College, Shangrao, Jiangxi 334000, China
| | - Jie Liu
- Department of Physiology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Jun-Hao Huang
- Department of Pharmacology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | | | - Xin-Yi Wang
- Department of Physiology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Chao Xi
- Department of Pharmacology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Yan-Ru Cui
- Department of Physiology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China; Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, China.
| | - Fei Qu
- Department of Pharmacology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China.
| |
Collapse
|
3
|
Cui YR, Qu F, Zhong WJ, Yang HH, Zeng J, Huang JH, Liu J, Zhang MY, Zhou Y, Guan CX. Beneficial effects of aloperine on inflammation and oxidative stress by suppressing necroptosis in lipopolysaccharide-induced acute lung injury mouse model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154074. [PMID: 35397283 DOI: 10.1016/j.phymed.2022.154074] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 02/22/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
RATIONALE Alveolar epithelial cell death, inflammation, and oxidative stress are typical features of acute lung injury (ALI). Aloperine (Alo), an alkaloid isolated from Sophora alopecuroides, has been reported to display various biological effects, such as anti-inflammatory, immunoregulatory, and anti-oxidant properties. In this study, we investigated the effects and mechanisms of Alo in treating a lipopolysaccharide (LPS)-induced ALI in a murine model. METHODS The effects of Alo in LPS-induced ALI were investigated in C57BL/6 mice. The RIPK1 inhibitor (Nec-1) and the RIPK3 inhibitor (GSK'872) were used to evaluate the relationship of necroptosis, NF-κB activation, and PDC subunits in LPS-treated mouse alveolar epithelial cells (MLE-12). Then the effects of Alo on necroptosis, inflammation, and oxidative stress of LPS-stimulated MLE-12 cells were evaluated. RESULTS Alo significantly attenuated histopathological lung injuries and reduced lung wet/dry ratio in LPS-induced ALI mice. Alo also remarkedly reduced total protein and neutrophils recruitment in bronchoalveolar lavage fluid of ALI mice. Meanwhile, Alo ameliorated the LPS-induced necroptosis in the lungs of ALI mice. The RIPK3 inhibitor GSK'872, but not the RIPK1 inhibitor Nec-1, reversed LPS-induced p65 phosphorylation and translocation to the nucleus in MLE-12 cells. GSK'872 also reversed the LPS-induced increase in ROS and binding of RIPK3 and PDC subunits in MLE-12 cells. Moreover, Alo down-regulated the levels of p-RIPK1, p-RIPK3, p-MLKL, p-p65, the translocation of p65 to the nucleus, and reduced the expression of IL-6 and IL-8 in LPS-stimulated MLE-12 cells. Alo also inhibited the binding of RIPK3 and PDC-E1α, PDC-E1β, PDC-E2, and PDC-E3 and the ROS production in LPS-treated MLE-12 cells. CONCLUSION The present study validated the beneficial effects of Alo on LPS-induced ALI , suggesting Alo may be a new drug candidate against ALI.
Collapse
Affiliation(s)
- Yan-Ru Cui
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, China; Department of Physiology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Fei Qu
- Department of Pharmacology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Wen-Jing Zhong
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, China
| | - Hui-Hui Yang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, China
| | - Jie Zeng
- Department of Physiology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Jun-Hao Huang
- Department of Pharmacology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Jie Liu
- Department of Physiology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Ming-Yue Zhang
- Department of Pharmacology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Yong Zhou
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, China.
| | - Cha-Xiang Guan
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
4
|
Jiang W, Tang M, Yang L, Zhao X, Gao J, Jiao Y, Li T, Tie C, Gao T, Han Y, Jiang JD. Analgesic Alkaloids Derived From Traditional Chinese Medicine in Pain Management. Front Pharmacol 2022; 13:851508. [PMID: 35620295 PMCID: PMC9127080 DOI: 10.3389/fphar.2022.851508] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic pain is one of the most prevalent health problems. The establishment of chronic pain is complex. Current medication for chronic pain mainly dependent on anticonvulsants, tricyclic antidepressants and opioidergic drugs. However, they have limited therapeutic efficacy, and some even with severe side effects. We turned our interest into alkaloids separated from traditional Chinese medicine (TCM), that usually act on multiple drug targets. In this article, we introduced the best-studied analgesic alkaloids derived from TCM, including tetrahydropalmatine, aloperine, oxysophocarpine, matrine, sinomenine, ligustrazine, evodiamine, brucine, tetrandrine, Stopholidine, and lappaconitine, focusing on their mechanisms and potential clinical applications. To better describe the mechanism of these alkaloids, we adopted the concept of drug-cloud (dCloud) theory. dCloud illustrated the full therapeutic spectrum of multitarget analgesics with two dimensions, which are “direct efficacy”, including inhibition of ion channels, activating γ-Aminobutyric Acid/opioid receptors, to suppress pain signal directly; and “background efficacy”, including reducing neuronal inflammation/oxidative stress, inhibition of glial cell activation, restoring the balance between excitatory and inhibitory neurotransmission, to cure the root causes of chronic pain. Empirical evidence showed drug combination is beneficial to 30–50% chronic pain patients. To promote the discovery of effective analgesic combinations, we introduced an ancient Chinese therapeutic regimen that combines herbal drugs with “Jun”, “Chen”, “Zuo”, and “Shi” properties. In dCloud, “Jun” drug acts directly on the major symptom of the disease; “Chen” drug generates major background effects; “Zuo” drug has salutary and supportive functions; and “Shi” drug facilitates drug delivery to the targeted tissue. Subsequently, using this concept, we interpreted the therapeutic effect of established analgesic compositions containing TCM derived analgesic alkaloids, which may contribute to the establishment of an alternative drug discovery model.
Collapse
Affiliation(s)
- Wei Jiang
- Zhejiang Zhenyuan Pharmaceutical Co., Ltd., Shaoxing, China
| | - Mingze Tang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China
| | - Limin Yang
- Zhejiang Zhenyuan Pharmaceutical Co., Ltd., Shaoxing, China
| | - Xu Zhao
- First Clinical Division, Peking University Hospital of Stomatology, Beijing, China
| | - Jun Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medicine Sciences & Peking Union Medical College, Beijing, China
| | - Yue Jiao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tao Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cai Tie
- State Key Laboratory of Coal Resources and Safety Mining, China University of Mining and Technology, Beijing, China.,School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, China
| | - Tianle Gao
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China.,Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanxing Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China.,Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Aloperine: A Potent Modulator of Crucial Biological Mechanisms in Multiple Diseases. Biomedicines 2022; 10:biomedicines10040905. [PMID: 35453655 PMCID: PMC9028564 DOI: 10.3390/biomedicines10040905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 01/18/2023] Open
Abstract
Aloperine is an alkaloid found in the seeds and leaves of the medicinal plant Sophora alopecuroides L. It has been used as herbal medicine in China for centuries due to its potent anti-inflammatory, antioxidant, antibacterial, and antiviral properties. Recently, aloperine has been widely investigated for its therapeutic activities. Aloperine is proven to be an effective therapeutic agent against many human pathological conditions, including cancer, viral diseases, and cardiovascular and inflammatory disorders. Aloperine is reported to exert therapeutic effects through triggering various biological processes, including cell cycle arrest, apoptosis, autophagy, suppressing cell migration, and invasion. It has also been found to be associated with the modulation of various signaling pathways in different diseases. In this review, we summarize the most recent knowledge on the modulatory effects of aloperine on various critical biological processes and signaling mechanisms, including the PI3K, Akt, NF-κB, Ras, and Nrf2 pathways. These data demonstrate that aloperine is a promising therapeutic candidate. Being a potent modulator of signaling mechanisms, aloperine can be employed in clinical settings to treat various human disorders in the future.
Collapse
|
6
|
Kim GHJ, Mo H, Liu H, Okorie M, Chen S, Zheng J, Li H, Arkin M, Huang B, Guo S. In Vivo Dopamine Neuron Imaging-Based Small Molecule Screen Identifies Novel Neuroprotective Compounds and Targets. Front Pharmacol 2022; 13:837756. [PMID: 35370735 PMCID: PMC8971663 DOI: 10.3389/fphar.2022.837756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/21/2022] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder with prominent dopamine (DA) neuron degeneration. PD affects millions of people worldwide, but currently available therapies are limited to temporary relief of symptoms. As an effort to discover disease-modifying therapeutics, we have conducted a screen of 1,403 bioactive small molecule compounds using an in vivo whole organism screening assay in transgenic larval zebrafish. The transgenic model expresses the bacterial enzyme nitroreductase (NTR) driven by the tyrosine hydroxylase (th) promotor. NTR converts the commonly used antibiotic pro-drug metronidazole (MTZ) to the toxic nitroso radical form to induce DA neuronal loss. 57 compounds were identified with a brain health score (BHS) that was significantly improved compared to the MTZ treatment alone after FDR adjustment (padj<0.05). Independently, we curated the high throughput screening (HTS) data by annotating each compound with pharmaceutical classification, known mechanism of action, indication, IC50, and target. Using the Reactome database, we performed pathway analysis, which uncovered previously unknown pathways in addition to validating previously known pathways associated with PD. Non-topology-based pathway analysis of the screening data further identified apoptosis, estrogen hormone, dipeptidyl-peptidase 4, and opioid receptor Mu1 to be potentially significant pathways and targets involved in neuroprotection. A total of 12 compounds were examined with a secondary assay that imaged DA neurons before and after compound treatment. The z’-factor of this secondary assay was determined to be 0.58, suggesting it is an excellent assay for screening. Etodolac, nepafenac, aloperine, protionamide, and olmesartan showed significant neuroprotection and was also validated by blinded manual DA neuronal counting. To determine whether these compounds are broadly relevant for neuroprotection, we tested them on a conduritol-b-epoxide (CBE)-induced Gaucher disease (GD) model, in which the activity of glucocerebrosidase (GBA), a commonly known genetic risk factor for PD, was inhibited. Aloperine, olmesartan, and nepafenac showed significant protection of DA neurons in this assay. Together, this work, which combines high content whole organism in vivo imaging-based screen and bioinformatic pathway analysis of the screening dataset, delineates a previously uncharted approach for identifying hit-to-lead candidates and for implicating previously unknown pathways and targets involved in DA neuron protection.
Collapse
Affiliation(s)
- Gha-hyun J. Kim
- Department of Bioengineering and Therapeutic Sciences and Programs in Biological Sciences and Human Genetics, University of California San Francisco, San Francisco, CA, United States
- Graduate Program of Pharmaceutical Sciences and Pharmacogenomics, University of California San Francisco, San Francisco, CA, United States
- *Correspondence: Gha-hyun J. Kim, ; Su Guo,
| | - Han Mo
- Department of Bioengineering and Therapeutic Sciences and Programs in Biological Sciences and Human Genetics, University of California San Francisco, San Francisco, CA, United States
- Tsinghua-Peking Center for Life Sciences, McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Harrison Liu
- Department of Pharmaceutical Chemistry, San Francisco, CA, United States
- Graduate Program of Bioengineering, San Francisco, CA, United States
| | - Meri Okorie
- Department of Bioengineering and Therapeutic Sciences and Programs in Biological Sciences and Human Genetics, University of California San Francisco, San Francisco, CA, United States
- Graduate Program of Pharmaceutical Sciences and Pharmacogenomics, University of California San Francisco, San Francisco, CA, United States
| | - Steven Chen
- Department of Pharmaceutical Chemistry, San Francisco, CA, United States
- Small Molecule Discovery Center, University of California San Francisco, San Francisco, CA, United States
| | - Jiashun Zheng
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, United States
| | - Hao Li
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, United States
| | - Michelle Arkin
- Department of Pharmaceutical Chemistry, San Francisco, CA, United States
- Small Molecule Discovery Center, University of California San Francisco, San Francisco, CA, United States
| | - Bo Huang
- Department of Pharmaceutical Chemistry, San Francisco, CA, United States
- Graduate Program of Bioengineering, San Francisco, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences and Programs in Biological Sciences and Human Genetics, University of California San Francisco, San Francisco, CA, United States
- Graduate Program of Pharmaceutical Sciences and Pharmacogenomics, University of California San Francisco, San Francisco, CA, United States
- *Correspondence: Gha-hyun J. Kim, ; Su Guo,
| |
Collapse
|
7
|
Potential Therapeutic Applications of Plant-Derived Alkaloids against Inflammatory and Neurodegenerative Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7299778. [PMID: 35310033 PMCID: PMC8926539 DOI: 10.1155/2022/7299778] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 12/14/2022]
Abstract
Alkaloids are a type of natural compound possessing different pharmacological activities. Natural products, including alkaloids, which originate from plants, have emerged as potential protective agents against neurodegenerative disorders (NDDs) and chronic inflammations. A wide array of prescription drugs are used against these conditions, however, not free of limitations of potency, side effects, and intolerability. In the context of personalized medicine, further research on alkaloids to unravel novel therapeutic approaches in reducing complications is critical. In this review, a systematic survey was executed to collect the literature on alkaloids and their health complications, from which we found that majority of alkaloids exhibit anti-inflammatory action via nuclear factor-κB and cyclooxygenase-2 (COX-2), and neuroprotective interaction through acetylcholinesterase (AChE), COX, and β-site amyloid precursor protein activity. In silico ADMET and ProTox-II-related descriptors were calculated to predict the pharmacological properties of 280 alkaloids isolated from traditional medicinal plants towards drug development. Out of which, eight alkaloids such as tetrahydropalmatine, berberine, tetrandrine, aloperine, sinomenine, oxymatrine, harmine, and galantamine are found to be optimal within the categorical range when compared to nicotine. These alkaloids could be exploited as starting materials for novel drug synthesis or, to a lesser extent, manage inflammation and neurodegenerative-related complications.
Collapse
|
8
|
He W, Zhou H, He X. Aloperine protects beta-cells against streptozocin-induced injury to attenuate diabetes by targeting NOS1. Eur J Pharmacol 2021; 916:174721. [PMID: 34954231 DOI: 10.1016/j.ejphar.2021.174721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022]
Abstract
Type 1 diabetes (T1D) is a metabolic dysfunction characterized by the selective destruction of islet β-cells, with oxidative stress playing an essential role in the manifestation of this disease state. Aloperine (ALO) represents the main active alkaloid extracted from the traditional Chinese herbal Sophora alopecuroidesL. and features outstanding antioxidative properties. In this study, T1D was induced by a single high dose streptozotocin (STZ, 150 mg/kg, intraperitoneal) in mice. Diabetic animals were intragastrically administered ALO at a dose of 50 mg/kg/day. Notably, treatment of ALO (50 mg/kg/day) for seven consecutive days could observably reverse the onset of diabetes induced by STZ accompanied by weight gain, lower blood glucose levels, and relief of β-cells damage. Our in vitro study further demonstrated that ALO protected β-cells from STZ/hydrogen peroxide-induced oxidative damage as manifested by increased expression of MnSOD and CAT. Furthermore, a network pharmacology study revealed that NOS1 represented the main target of ALO. Mechanistic studies subsequently showed that treatment of ALO increased the expression of NOS1, whereas NOS2 was decreased. Moreover, a docking study carried out suggested that ALO could fit into the binding pocket of human NOS1 and molecular dynamics simulation further validated this docking event. Collectively, the administration of ALO prior to diabetes could be a viable approach to the prevention of β-cell injury. This study may offer a novel potential herbal medicine against T1D and may further help improve the understanding of the underlying molecular mechanisms of ALO-mediated protection against oxidative stress.
Collapse
Affiliation(s)
- Wenxi He
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China; Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Haifeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430043, China; Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Xiaoyu He
- Branch of National Clinical Research Center for Metabolic Diseases, Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China; Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China.
| |
Collapse
|
9
|
Starinets A, Tyrtyshnaia A, Kipryushina Y, Manzhulo I. Analgesic activity of synaptamide in a rat sciatic nerve chronic constriction injury model. Cells Tissues Organs 2021; 211:73-84. [PMID: 34510045 DOI: 10.1159/000519376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/26/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Anna Starinets
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Anna Tyrtyshnaia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Yulia Kipryushina
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Igor Manzhulo
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| |
Collapse
|
10
|
Cheng Y, Rauf A, Pan X. Research Progress on the Natural Product Aloperine and Its Derivatives. Mini Rev Med Chem 2021; 22:729-742. [PMID: 34488611 DOI: 10.2174/1389557521666210831155426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/01/2021] [Accepted: 07/02/2021] [Indexed: 11/22/2022]
Abstract
In this review, an effort towards the presentation of an all-around account of the recent progress on the natural product, aloperine is made, and the antivirus structure-activity relationship of its derivatives is also summarized comprehensively. In addition, the principal pharmacological effects and corresponding molecular mechanisms of aloperine are discussed. Some new modification directions of aloperine are given in the end, which might be brief guidance for further investigations on the natural product aloperine.
Collapse
Affiliation(s)
- Yu Cheng
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050. China
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, KPK. Pakistan
| | - Xiandao Pan
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050. China
| |
Collapse
|
11
|
Shalaby AM, Aboregela AM, Alabiad MA, Tayssir Sadek M. The Effect of Induced Diabetes Mellitus on the Cerebellar Cortex of Adult Male Rat and the Possible Protective Role of Oxymatrine: A Histological, Immunohistochemical and Biochemical Study. Ultrastruct Pathol 2021; 45:182-196. [PMID: 34000959 DOI: 10.1080/01913123.2021.1926610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diabetes mellitus (DM) represents a widespread metabolic disease with a well-known neurotoxicity in both central and peripheral nervous systems. Oxymatrine is a traditional Chinese herbal medicine that has various pharmacological activities including: anti-oxidant, anti-apoptotic and anti-inflammatory potentials. The present work aimed to study the impact of diabetes mellitus on the cerebellar cortex of adult male albino rat and to evaluate the potential protective role of oxymatrine. Fifty-five adult male rats were randomly divided into three groups: group I served as control, group II was given oxymatrine (80 mg/kg/day) orally for 8 weeks and group III was given a single dose of streptozotocin (50 mg/kg) intaperitoneally to induce diabetes. Then diabetic rats were subdivided into two subgroups: subgroup IIIa that received no additional treatment and subgroup IIIb that received oxymatrine similar to group II. The diabetic group revealed numerous changes in the Purkinje cell layer in the form of multilayer arrangement of Purkinje cells, shrunken cells with deeply stained nuclei as well as focal loss of the Purkinje cells. A significant increment in glial fibrillary acidic protein (GFAP) and synaptophysin expression were reported in immunohistochemistry compared with the control group. Transmission electron microscopy showed irregularity and splitting of myelin sheaths in the molecular layer, dark shrunken Purkinje cells with ill-defined nuclei, dilated Golgi saccules and dense granule cells with irregular nuclear outlines in the granular layer. In contrast, these changes were less evident in diabetic rats that received oxymatrine. In conclusion, Oxymatrine could protect the cerebellar cortex against changes induced by DM.
Collapse
Affiliation(s)
- Amany Mohamed Shalaby
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Adel Mohamed Aboregela
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.,Basic Medical Sciences Department, College of Medicine, Bisha University, Kingdom of Saudi Arabia
| | - Mohamed Ali Alabiad
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mona Tayssir Sadek
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
12
|
Zhou H, Li J, Sun F, Wang F, Li M, Dong Y, Fan H, Hu D. A Review on Recent Advances in Aloperine Research: Pharmacological Activities and Underlying Biological Mechanisms. Front Pharmacol 2021; 11:538137. [PMID: 33536900 PMCID: PMC7849205 DOI: 10.3389/fphar.2020.538137] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
Aloperine, a quinolizidine-type alkaloid, was first isolated from the seeds and leaves of herbal plant, Sophora alopecuroides L. Empirically, Sophora alopecuroides L. is appreciated for its anti-dysentry effect, a property that is commonly observed in other Sophora Genus phytomedicines. Following the rationale of reductionism, subsequent biochemical analyses attribute such anti-dysentry effect to the bactericidal activity of aloperine. From then on, the multiple roles of aloperine are gradually revealed. Accumulating evidence suggests that aloperine possesses multiple pharmacological activities and holds a promising potential in clinical conditions including skin hyper-sensitivity, tumor and inflammatory disorders etc.; however, the current knowledge on aloperine is interspersed and needs to be summarized. To facilitate further investigation, herein, we conclude the key pharmacological functions of aloperine, and most importantly, the underlying cellular and molecular mechanisms are clarified in detail to explain the functional mode of aloperine.
Collapse
Affiliation(s)
- Haifeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyi Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Sun
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Faxi Wang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingyue Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yalan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Zhou W, Zhou R, Li N, Chen Y, Pei Y, Han L, Ren J. Vasorelaxation effect of oxysophoridine on isolated thoracicc aorta rings of rats. CHINESE J PHYSIOL 2021; 64:274-280. [DOI: 10.4103/cjp.cjp_60_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
14
|
Zhang J, Zhou H, Chen J, Lv X, Liu H. Aloperine protects human retinal pigment epithelial cells against hydrogen peroxide-induced oxidative stress and apoptosis through activation of Nrf2/HO-1 pathway. J Recept Signal Transduct Res 2020; 42:88-94. [PMID: 33256538 DOI: 10.1080/10799893.2020.1850787] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Age-related macular degeneration (AMD) is a complex multifactorial disease associated with the dysfunction of retinal pigment epithelium (RPE). Aloperine is a quinolizidine alkaloid that has been proven to possess broad pharmacological activities. However, the effects of aloperine on AMD remain unclear. In the present study, we used hydrogen peroxide (H2O2) to induce oxidative injury in human RPE cells (ARPE-19 cells). ARPE-19 cells were pretreated with different concentrations of aloperine for 2 h, followed by H2O2 exposure. Cell cytotoxicity was determined using lactate dehydrogenase (LDH) release assay. Cell viability was measured using Cell Counting Kit-8 (CCK-8) assay. The reactive oxygen species (ROS) generation, malondialdehyde (MDA) level, superoxide dismutase (SOD) activity and glutathione peroxidase (GSH-PX) activity were detected to reflect oxidative status. Western blot was performed to detect the expressions of bcl-2, bax, nuclear factor-erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1). The activity of caspase-3 was also assessed to indicate cell apoptosis. In addition, ARPE-19 cells were transfected with siNrf2 to knock down Nrf2. Our results showed that pretreatment with aloperine elevated the reduced cell viability of H2O2-induced ARPE-19 cells in a dose-dependent manner. Aloperine greatly decreased the production of ROS and MDA, and increased the activities of SOD and GSH-PX in H2O2-stimulated ARPE-19 cells. H2O2-caused a decrease in bcl-2 expression and increases in bax expression and caspase-3 activity were mitigated by aloperine. Moreover, aloperine treatment enhanced the expression levels of Nrf2 in nuclear fraction and the HO-1 expression in lysates. Knockdown of Nrf2 reversed the protective effects of aloperine on H2O2-induced ARPE-19 cells. In conclusion, these findings demonstrated that aloperine protected ARPE-19 cells from H2O2-induced oxidative stress and apoptosis in part via activating the Nrf2/HO-1 signaling pathway. The findings suggested a therapeutic potential of aloperine for the treatment of ADM.
Collapse
Affiliation(s)
- Junhui Zhang
- Department of Ophthalmology, Huzhou Cent Hosp, Affiliated Cent Hosp HuZhou University, Huzhou, China
| | - Haitao Zhou
- Department of Ophthalmology, Huzhou Cent Hosp, Affiliated Cent Hosp HuZhou University, Huzhou, China
| | - Juanli Chen
- Operating room, Huzhou Cent Hosp, Affiliated Cent Hosp HuZhou University, Huzhou, China
| | - Xiaoyan Lv
- Operating room, Huzhou Cent Hosp, Affiliated Cent Hosp HuZhou University, Huzhou, China
| | - Hongsong Liu
- Operating room, Huzhou Cent Hosp, Affiliated Cent Hosp HuZhou University, Huzhou, China
| |
Collapse
|
15
|
Zhang L, Liang J, Liu X, Wu J, Tan D, Hu W. Aloperine Exerts Antitumor Effects on Bladder Cancer in vitro. Onco Targets Ther 2020; 13:10351-10360. [PMID: 33116615 PMCID: PMC7568640 DOI: 10.2147/ott.s260215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022] Open
Abstract
Background Human bladder cancer is the most common malignant tumor of the urinary system and one of the 10 most common tumors of the whole body. Although most patients with bladder cancer exhibit a good prognosis with standard treatment, effective therapies for patients with a recurrent or advanced bladder cancer are unavailable. Therefore, highly effective drugs to treat such patients need to be developed. Aloperine (ALO), a natural compound isolated from Sophora alopecuroides, has antitumor properties. However, the role of ALO in human bladder cancer remains unclear. Methods In the present study, MTT was used to detect the cytotoxic effect of ALO on human BC cell line EJ and human urothelium cell line SV-HUC-1cells. Meanwhile, in order to investigate the effects of ALO on the proliferation, apoptosis, migration, and invasion of BC EJ cells and its mechanism by Cell Counting Kit-8 (CCK-8) assay, immunofluorescence, Hoechst 33342 staining, wound scratch assay, transwell migration and invasion assay, Western blot analysis. Results ALO can inhibit the proliferation and invasion of human bladder cancer EJ cells, and is low-toxic to human urothelium cells. Moreover, it can promote cellular apoptosis in vitro. Further analysis demonstrated the involvement of Caspase-dependent apoptosis following ALO treatment. ALO also downregulated the protein expression levels of Ras, p-Raf1 and p-Erk1/2. Conclusion ALO is a potential drug for human bladder cancer therapy.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Urology, Minda Hospital Affiliated to Hubei Minzu University, Enshi, Hubei Province, People's Republic of China
| | - Jun Liang
- Department of Urology, Minda Hospital Affiliated to Hubei Minzu University, Enshi, Hubei Province, People's Republic of China
| | - Xiaohua Liu
- Department of Urology, Minda Hospital Affiliated to Hubei Minzu University, Enshi, Hubei Province, People's Republic of China
| | - Jianhua Wu
- Department of Urology, Minda Hospital Affiliated to Hubei Minzu University, Enshi, Hubei Province, People's Republic of China
| | - Daqing Tan
- Department of Urology, Minda Hospital Affiliated to Hubei Minzu University, Enshi, Hubei Province, People's Republic of China
| | - Wei Hu
- Department of Urology, The First Affiliated Hospital of University of South of China, Hengyang, Hunan Province, People's Republic of China
| |
Collapse
|
16
|
Wang H, Xia C, Chen L, Zhao J, Tao W, Zhang X, Wang J, Gao X, Yong J, Duan JA. Phytochemical Information and Biological Activities of Quinolizidine Alkaloids in Sophora: A Comprehensive Review. Curr Drug Targets 2020; 20:1572-1586. [PMID: 31215388 DOI: 10.2174/1389450120666190618125816] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 02/06/2023]
Abstract
Quinolizidine alkaloids, a main form of alkaloids found in the genus Sophora, have been shown to have many pharmacological effects. This review aims to summarize the photochemical reports and biological activities of quinolizidine alkaloids in Sophora. The collected information suggested that a total of 99 quinolizidine alkaloids were isolated and detected from different parts of Sophora plants, represented by lupinine-type, cytisine-type, sparteine-type, and matrine-type. However, quality control needs to be monitored because it could provide basic information for the reasonable and efficient use of quinolizidine alkaloids as medicines and raw materials. The nonmedicinal parts may be promising to be used as a source of quinolizidine alkaloid raw materials and to reduce the waste of resources and environmental pollution. In addition, the diversity of chemical compounds based on the alkaloid scaffold to make a biological compound library needs to be extended, which may reduce toxicity and find new bioactivities of quinolizidine alkaloids. The bioactivities most reported are in the fields of antitumor activity along with the effects on the cardiovascular system. However, those studies rely on theoretical research, and novel drugs based on quinolizidine alkaloids are expected.
Collapse
Affiliation(s)
- Hanqing Wang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China.,Ningxia Research Center of Modern Hui Medicine Engineering and Technology, Ningxia Medical University, Yinchuan 750004, China.,Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Changbo Xia
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Li Chen
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Jianjun Zhao
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Weiwei Tao
- Center for Translational Syhstems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xia Zhang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Jianhuan Wang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Xiaojuan Gao
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Jingjiao Yong
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing 210023, China
| |
Collapse
|
17
|
Lv XQ, Zou LL, Tan JL, Li H, Li JR, Liu NN, Dong B, Song DQ, Peng ZG. Aloperine inhibits hepatitis C virus entry into cells by disturbing internalisation from endocytosis to the membrane fusion process. Eur J Pharmacol 2020; 883:173323. [PMID: 32622669 DOI: 10.1016/j.ejphar.2020.173323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/15/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023]
Abstract
Aloperine, a natural alkaloid isolated from the Chinese traditional herb Sophora alopecuroides, is a broad-spectrum antiviral agent with anti-inflammatory activity. Here, we found that aloperine effectively inhibited hepatitis C virus (HCV) propagation in Huh7.5 cells and primary human hepatocytes without cytotoxicity, and it blocked HCV cell-to-cell viral transmission. The antiviral mechanism evidence demonstrated that aloperine inhibits HCV internalisation from endocytosis to the membrane fusion process, and the target may be associated with host factors. Aloperine additively inhibited HCV propagation with direct-acting antivirals (DAAs) and was effective against HCV variants resistant to known DAAs. Therefore, aloperine might be a natural lead compound for the development of innovative antivirals, and the combined use of aloperine with DAAs might contribute to eliminating liver diseases caused by HCV infection.
Collapse
Affiliation(s)
- Xiao-Qin Lv
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Li-Li Zou
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jia-Li Tan
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hu Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jian-Rui Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Nan-Nan Liu
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Biao Dong
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Dan-Qing Song
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zong-Gen Peng
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
18
|
Wang R, Deng X, Gao Q, Wu X, Han L, Gao X, Zhao S, Chen W, Zhou R, Li Z, Bai C. Sophora alopecuroides L.: An ethnopharmacological, phytochemical, and pharmacological review. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112172. [PMID: 31442619 DOI: 10.1016/j.jep.2019.112172] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sophora alopecuroides L., which is called Kudouzi in China, is a medicinal plant distributed in Western and Central Asia, especially in China, and has been used for decades to treat fever, bacterial infection, heart disease, rheumatism, and gastrointestinal diseases. AIM OF THE REVIEW This review aims to provide up-to-date information on S. alopecuroides, including its botanical characterization, medicinal resources, traditional uses, phytochemistry, pharmacological research, and toxicology, in exploring future therapeutic and scientific potentials. MATERIALS AND METHODS The information related to this article was systematically collected from the scientific literature databases including PubMed, Google Scholar, Web of Science, Science Direct, Springer, China National Knowledge Infrastructure, published books, PhD and MS dissertations, and other web sources, such as the official website of Flora of China and Yao Zhi website (https://db.yaozh.com/). RESULTS A total of 128 compounds, such as alkaloids, flavonoids, steroids, and polysaccharides, were isolated from S. alopecuroides. Among these compounds, the effects of alkaloids, such as matrine and oxymatrine, were extensively studied and developed into new drugs. S. alopecuroides and its active components had a wide range of pharmacological activities, such as anticancer, antiviral, anti-inflammatory, antimicrobial, analgesic, and neuroprotective functions, as well as protective properties against pulmonary fibrosis and cardiac fibroblast proliferation. CONCLUSIONS As an important traditional Chinese medicine, modern pharmacological studies have demonstrated that S. alopecuroides has prominent bioactivities, especially on gynecological inflammation and hepatitis B, and anticancer activities. These activities provide prospects for novel drug development for cancer and some chronic diseases. Nevertheless, the comprehensive evaluation, quality control, understanding of the multitarget network pharmacology, long-term in vivo toxicity, and clinical efficacy of S. alopecuroides require further detailed research.
Collapse
Affiliation(s)
- Ruizhou Wang
- Key Laboratory of Hui Medicine Modernization, Ningxia Medical University Pharmacy College, Yinchuan 750004, PR China
| | - Xinxin Deng
- Key Laboratory of Hui Medicine Modernization, Ningxia Medical University Pharmacy College, Yinchuan 750004, PR China
| | - Qixia Gao
- College of Pharmacy, Minzu University of China, Beijing, 100081, PR China
| | - Xiuli Wu
- Key Laboratory of Hui Medicine Modernization, Ningxia Medical University Pharmacy College, Yinchuan 750004, PR China
| | - Lu Han
- Key Laboratory of Hui Medicine Modernization, Ningxia Medical University Pharmacy College, Yinchuan 750004, PR China
| | - Xiaojuan Gao
- Key Laboratory of Hui Medicine Modernization, Ningxia Medical University Pharmacy College, Yinchuan 750004, PR China
| | - Shipeng Zhao
- Key Laboratory of Hui Medicine Modernization, Ningxia Medical University Pharmacy College, Yinchuan 750004, PR China
| | - Weibin Chen
- Ningxia Doushun Biological Technology Co., Ltd., Yanchi, 751500, PR China
| | - Rongrong Zhou
- School of Basic Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030600, PR China
| | - Zhiyong Li
- College of Pharmacy, Minzu University of China, Beijing, 100081, PR China.
| | - Changcai Bai
- Key Laboratory of Hui Medicine Modernization, Ningxia Medical University Pharmacy College, Yinchuan 750004, PR China.
| |
Collapse
|
19
|
Quinolizidine alkaloids derivatives from Sophora alopecuroides Linn: Bioactivities, structure-activity relationships and preliminary molecular mechanisms. Eur J Med Chem 2019; 188:111972. [PMID: 31884408 DOI: 10.1016/j.ejmech.2019.111972] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/24/2019] [Accepted: 12/12/2019] [Indexed: 02/05/2023]
Abstract
Quinolizidine alkaloids, as essential active ingredients extracted from Sophora alopecuroides Linn, have been well concerned in the past several decades owing to the unique structural features and numerous pharmacological activities. Quinolizidine alkaloids consist of matrine, oxymatrine, sophoridine, sophocarpine and aloperine etc. Additionally, quinolizidine alkaloids exert various excellent activities, including anti-cancer, anti-inflammation, anti-fibrosis, anti-virus and anti-arrhythmia regulations. In this review, we comprehensively clarify the pharmacological activities of quinolizidine alkaloids, as well as the relationship between biological function and structure-activity of substituted quinolizidine alkaloids. We believe that biological agents based on the pharmacological functions of quinolizidine alkaloids could be well applied in clinical practice.
Collapse
|
20
|
Zhang G, Liu N, Zhu C, Ma L, Yang J, Du J, Zhang W, Sun T, Niu J, Yu J. Antinociceptive effect of isoorientin against neuropathic pain induced by the chronic constriction injury of the sciatic nerve in mice. Int Immunopharmacol 2019; 75:105753. [DOI: 10.1016/j.intimp.2019.105753] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/21/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023]
|
21
|
Sophocarpine Attenuates Chronic Constriction Sciatic Nerve Injury-induced Neuropathic Pain in Mice by Inhibiting the HMGB1/TLR4/NF-κB Signaling Pathway. IRANIAN RED CRESCENT MEDICAL JOURNAL 2019. [DOI: 10.5812/ircmj.94716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Chang Z, Zhang P, Zhang M, Jun F, Hu Z, Yang J, Wu Y, Zhou R. Aloperine suppresses human pulmonary vascular smooth muscle cell proliferation via inhibiting inflammatory response. CHINESE J PHYSIOL 2019; 62:157-165. [PMID: 31535631 DOI: 10.4103/cjp.cjp_27_19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Abnormal pulmonary arterial vascular smooth muscle cells (PASMCs) proliferation is critical pathological feature of pulmonary vascular remodeling that acts as driving force in the initiation and development of pulmonary arterial hypertension (PAH), ultimately leading to pulmonary hypertension. Aloperine is a main active alkaloid extracted from the traditional Chinese herbal Sophora alopecuroides and possesses outstanding antioxidation and anti-inflammatory effects. Our group found Aloperine has protective effects on monocroline-induced pulmonary hypertension in rats by inhibiting oxidative stress in previous researches. However, the anti-inflammation effects of Aloperine on PAH remain unclear. Therefore, to further explore whether the beneficial role of Aloperine on PAH was connected with its anti-inflammatory effects, we performed experiments in vitro. Aloperine significantly inhibited the proliferation and DNA synthesis of human pulmonary artery smooth muscle cells (HPASMCs) induced by platelet-derived growth factor-BB, blocked progression through G0/G1to S phase of the cell cycle and promoted total ratio of apoptosis. In summary, these results suggested that Aloperine negatively regulated nuclear factor-κB signaling pathway activity to exert protective effects on PAH and suppressed HPASMCs proliferation therefore has a potential value in the treatment of pulmonary hypertension by negatively modulating pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Zhi Chang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Peng Zhang
- General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Min Zhang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Feng Jun
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Zhiqiang Hu
- General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Jiamei Yang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yuhua Wu
- General Hospital of Ningxia Medical University, Yinchuan 750004, PR China
| | - Ru Zhou
- Department of Pharmacology, College of Pharmacy; Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education; Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan 750004, PR China
| |
Collapse
|
23
|
Oxymatrine protects neonatal rat against hypoxic-ischemic brain damage via PI3K/Akt/GSK3β pathway. Life Sci 2019; 254:116444. [PMID: 31102745 DOI: 10.1016/j.lfs.2019.04.070] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 12/22/2022]
Abstract
AIMS In this study we aimed to explore the specific effect and mechanism of oxymatrine on neonatal rats hypoxic-ischemic brain damage. MATERIALS AND METHODS Hypoxia-ischemia damage model was built by ligaturing the left common carotid artery in 7-day-old rat. Rat pups in OMT group received intraperitoneal injection with oxymatrine (120 mg/kg). Oxygen glucose deprivation/reperfusion model was created in hippocampal neurons. Neurological behavioral, histopathological alteration, cell viability, intracellular Ca2+ concentration, MMP and cell apoptosis were used in damage evaluation. KEY FINDINGS The results shown that oxymatrine regulated brain damage and cell apoptosis by controlling NR2B-PI3K/Akt/GSK3β signaling pathway. SIGNIFICANCE Neonatal hypoxic-ischemic brain damage is a destructive injury that leading to death and detrimental neurological deficits. Oxymatrine is a natural alkaloid compound that can alleviate the ischemic cerebral infarction. In the study, 120 mg/kg oxymatrine decreased neuroethology damage and neuronal damage in the cerebral cortex and the hippocampus CA3. Moreover, 0.2, 1, 5 μg/ml oxymatrine improved cell survival, decreased cell apoptosis. The utilization of LY293004 (PI3K signaling pathway inhibitor) also supported that oxymatrine ameliorated neonatal hypoxic-ischemic brain damage and cell injury by controlling NR2B-PI3K/Akt/GSK3β signaling pathway.
Collapse
|
24
|
Macáková K, Afonso R, Saso L, Mladěnka P. The influence of alkaloids on oxidative stress and related signaling pathways. Free Radic Biol Med 2019; 134:429-444. [PMID: 30703480 DOI: 10.1016/j.freeradbiomed.2019.01.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 12/19/2022]
Abstract
Alkaloids have always attracted scientific interest due to either their positive or negative effects on human beings. This review aims to summarize their antioxidant effects by both classical in vitro scavenging assay and at the cellular level. Since most in vitro studies used the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging assay, the results from those studies are summed up in the first part of the article. In the second part, available data on the effect of alkaloids on NADPH-oxidase, the key enzyme for reactive oxygen species production, at the cellular level, are summarized. More than 130 alkaloids were tested by DPPH assay. However, due to methodological differences, a direct comparison is hardly possible. It can be at least concluded that some of them were either similar to or even more active than standard antioxidants and the number of aromatic hydroxyl groups seems to be the major determinant for the activity. The data on inhibition of NADPH-oxidase activity by alkaloids demonstrated that there is little relationship to the DPPH assay. The mechanism seems to be based on inhibition of synthesis, activation or translocation of NADPH-oxidase subunits. In some alkaloids, activation of the nuclear factor Nrf2 pathway was documented to be the grounds for inhibition of NADPH-oxidase. Interestingly, many alkaloids can behave both as anti-oxidants and pro-oxidants depending on conditions and pro-oxidation might be the reason for activation of Nrf2. Available data on other "antioxidant" transcription factors FOXOs and PPARs are also mentioned.
Collapse
Affiliation(s)
- Kateřina Macáková
- Department of Pharmaceutical Botany, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Rita Afonso
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, Italy.
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| |
Collapse
|
25
|
Jurga AM, Rojewska E, Makuch W, Mika J. Lipopolysaccharide from Rhodobacter sphaeroides (TLR4 antagonist) attenuates hypersensitivity and modulates nociceptive factors. PHARMACEUTICAL BIOLOGY 2018; 56:275-286. [PMID: 29656686 PMCID: PMC6130482 DOI: 10.1080/13880209.2018.1457061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
CONTEXT Accumulating evidence has demonstrated that Toll-like receptors (TLRs), especially TLR4 localized on microglia/macrophages, may play a significant role in nociception. OBJECTIVE We examine the role of TLR4 in a neuropathic pain model. Using behavioural/biochemical methods, we examined the influence of TLR4 antagonist on levels of hypersensitivity and nociceptive factors whose contribution to neuropathy development has been confirmed. MATERIALS AND METHODS Behavioural (von Frey's/cold plate) tests were performed with Wistar male rats after intrathecal administration of a TLR4 antagonist (LPS-RS ULTRAPURE (LPS-RSU), 20 μG: lipopolysaccharide from Rhodobacter sphaeroides, InvivoGen, San Diego, CA) 16 H and 1 h before chronic constriction injury (cci) to the sciatic nerve and then daily for 7 d. three groups were used: an intact group and two cci-exposed groups that received vehicle or LPS-RSU. tissue [spinal cord/dorsal root ganglia (DRG)] for western blot analysis was collected on day 7. RESULTS The pharmacological blockade of TLR4 diminished mechanical (from ca. 40% to 16% that in the INTACT group) and thermal (from ca. 51% to 32% that in the INTACT group) hypersensitivity despite the enhanced activation of IBA-1-positive cells in DRG. Moreover, LPS-RSU changed the ratio between IL-18/IL-18BP and MMP-9/TIMP-1 in favour of the increase of antinociceptive factors IL-18BP (25%-spinal; 96%-DRG) and TIMP-1 (15%-spinal; 50%-DRG) and additionally led to an increased IL-6 (40%-spinal; 161%-DRG), which is known to have analgesic properties in neuropathy. CONCLUSIONS Our results provide evidence that LPS-RSU influences pain through the expression of TLR4. TLR4 blockade has analgesic properties and restores the balance between nociceptive factors, which indicates its engagement in neuropathy development.
Collapse
Affiliation(s)
- Agnieszka M. Jurga
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ewelina Rojewska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
- CONTACT Joanna MikaDepartment of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Str., 31343Krakow, Poland
| |
Collapse
|
26
|
Wang C, Choi YH, Xian Z, Zheng M, Piao H, Yan G. Aloperine suppresses allergic airway inflammation through NF-κB, MAPK, and Nrf2/HO-1 signaling pathways in mice. Int Immunopharmacol 2018; 65:571-579. [PMID: 30415164 DOI: 10.1016/j.intimp.2018.11.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/31/2018] [Accepted: 11/02/2018] [Indexed: 01/29/2023]
Abstract
To explore the effects of aloperine (ALO) on allergic airway inflammation, we investigated whether its mechanism is related with NF-κB, MAPK, and Nrf2/HO-1 signaling pathways. Histochemical staining and inflammatory cell count were used to observe lung histopathological changes in mice. ELISA was used to detect the content of inflammatory cytokines and IgE in the mouse bronchoalveolar lavage fluid (BALF). Airway hyperresponsiveness (AHR) to inhale methacholine was measured by the plethysmography in conscious mice. Immunohistochemical method was used to detect the expression levels of Nrf2 and HO-1 in lung tissues. The key proteins of MAPK, NF-κB, and Nrf2/HO-1 in lung tissues were quantitatively analyzed by Western blot. Finally, the in vitro effect of ALO on the production of pro-inflammatory mediators and cytokines by lipopolysaccharide-stimulated RAW 264.7 cells was also evaluated. In the ovalbumin (OVA)-induced asthma mouse model, ALO reduced the exudation and infiltration of inflammatory cells and suppressed goblet cell hyperplasia. ALO-treated asthmatic mice also decreased the protein levels of interleukin (IL)-4, IL-5, IL-13, IFN-γ, and IgE in BALF and attenuated AHR. Furthermore, ALO inhibited the expression of key proteins of MAPK and NF-κB pathways, and increased the expression of Nrf2/HO-1 in OVA-challenged mice. Additional in vitro study has shown that ALO abrogates the macrophage production of inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor-α, IL-6, and IL-1β. Taken together, ALO attenuated allergic airway inflammation through regulating NF-κB, MAPK, and Nrf2/HO-1 signaling pathways. The results suggest the utility of ALO as an anti-inflammatory agent for the treatment of asthma.
Collapse
Affiliation(s)
- Chongyang Wang
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, PR China
| | - Yun Ho Choi
- Department of Anatomy, Medical School, Institute for Medical Sciences, Chonbuk National University, Jeonju 561-180, Jeonbuk, Republic of Korea
| | - Zhemin Xian
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji 133000, PR China
| | - Mingyu Zheng
- College of Pharmacy, Yanbian University, Yanji 133002, PR China
| | - Hongmei Piao
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji 133000, PR China.
| | - Guanghai Yan
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, PR China.
| |
Collapse
|
27
|
Neuroprotective Effect of Anethole Against Neuropathic Pain Induced by Chronic Constriction Injury of the Sciatic Nerve in Mice. Neurochem Res 2018; 43:2404-2422. [DOI: 10.1007/s11064-018-2668-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/15/2018] [Accepted: 10/19/2018] [Indexed: 12/31/2022]
|
28
|
Singh AK, Kumar S, Vinayak M. Recent development in antihyperalgesic effect of phytochemicals: anti-inflammatory and neuro-modulatory actions. Inflamm Res 2018; 67:633-654. [PMID: 29767332 DOI: 10.1007/s00011-018-1156-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Pain is an unpleasant sensation triggered by noxious stimulation. It is one of the most prevalent conditions, limiting productivity and diminishing quality of life. Non steroidal anti inflammatory drugs (NSAIDs) are widely used as pain relievers in present day practice as pain is mostly initiated due to inflammation. However, due to potentially serious side effects, long term use of these antihyperalgesic drugs raises concern. Therefore there is a demand to search novel medicines with least side effects. Herbal products have been used for centuries to reduce pain and inflammation, and phytochemicals are known to cause fewer side effects. However, identification of active phytochemicals of herbal medicines and clear understanding of the molecular mechanism of their action is needed for clinical acceptance. MATERIALS AND METHODS In this review, we have briefly discussed the cellular and molecular changes during hyperalgesia via inflammatory mediators and neuro-modulatory action involved therein. The review includes 54 recently reported phytochemicals with antihyperalgesic action, as per the literature available with PubMed, Google Scholar and Scopus. CONCLUSION Compounds of high interest as potential antihyperalgesic agents are: curcumin, resveratrol, capsaicin, quercetin, eugenol, naringenin and epigallocatechin gallate (EGCG). Current knowledge about molecular targets of pain and their regulation by these phytochemicals is elaborated and the scope of further research is discussed.
Collapse
Affiliation(s)
- Ajeet Kumar Singh
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.,Department of Zoology, CMP Degree College, University of Allahabad, Allahabad, 211002, India
| | - Sanjay Kumar
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Manjula Vinayak
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
29
|
Aloperine Protects Mice against Bleomycin-induced Pulmonary Fibrosis by Attenuating Fibroblast Proliferation and Differentiation. Sci Rep 2018; 8:6265. [PMID: 29674691 PMCID: PMC5908909 DOI: 10.1038/s41598-018-24565-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 04/06/2018] [Indexed: 02/06/2023] Open
Abstract
Aloperine is a quinolizidine alkaloid extracted from Sophora alopecuroides. It has been proven to alleviate oxidative stress and effectively promote tumor cell apoptosis in mice. Herein, we investigated whether aloperine could also mediate its protective effects on bleomycin (BLM)-induced pulmonary fibrosis. Pathological staining, western blot, RT-PCR and flow cytometry were used to evaluate the impact of aloperine on the development of pulmonary fibrosis. The effect of aloperine on fibroblast proliferation, differentiation and related signaling pathways were next investigated to demonstrate the underlying mechanisms. In the present report, we showed that aloperine provided protection for mice against BLM-induced pulmonary fibrosis as manifested by the attenuated lung injury and reduced fibrosis along with alleviated fibroblast proliferation and differentiation. Additionally, we provided in vitro evidence revealing that aloperine inhibited cellular proliferation in PDGF-BB-stimulated mouse lung fibroblasts by repressed PI3K/AKT/mTOR signaling and fibroblast to myofibroblast differentiation by repressed TGF-β/Smad signaling. Overall, our data showed that aloperine could protect the mice against BLM-induced pulmonary fibrosis by attenuated fibroblast proliferation and differentiation, which indicated that aloperine may be therapeutically beneficial for IPF patients.
Collapse
|
30
|
Song S, Chen Y, Han F, Dong M, Xiang X, Sui J, Li Y, Yang H, Liu J. Aloperine activates the Nrf2-ARE pathway when ameliorating early brain injury in a subarachnoid hemorrhage model. Exp Ther Med 2018; 15:3847-3855. [PMID: 29563984 PMCID: PMC5858125 DOI: 10.3892/etm.2018.5896] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 10/13/2017] [Indexed: 12/14/2022] Open
Abstract
Aloperine (ALO) exhibits neuroprotective effects against oxidative stress in vitro; however, its protective effect in early brain injury (EBI) following experimental subarachnoid hemorrhage (SAH) remains to be elucidated. The aim of the current study was to evaluate the antioxidant activity of ALO in EBI, and its association with nuclear factor erythroid-related factor 2 and the antioxidant responsive element (Nrf2-ARE) survival pathway. In the present study, an experimental SAH model was induced in rats following a prechiasmatic cistern injection. All rats were randomly divided into five groups: Sham, SAH, SAH+ vehicle, and an SAH+ ALO group (including low and high doses). ALO was administrated intraperitoneally at 2 and 24 h following induction of the SAH model. Brain samples were collected from each group at 48 h after SAH induction. Subsequently, western blotting, immunohistochemistry and cell apoptosis assays were performed, along with assessments for brain edema, neurological deficit, and the activity of oxidant/antioxidant factors. It was observed that the expression of Nrf2-ARE pathway-associated agents, including Nrf2, and heme oxygenase-1, were markedly increased in the high concentration ALO group compared with that of the SAH group. In addition, the level of oxidative damage was reduced. Furthermore, early brain damage, including brain edema, neurological deficit and cellular apoptosis were significantly ameliorated. In conclusion, the results of the present study indicate that ALO can ameliorate oxidative damage against EBI following SAH, most likely via the Nrf2-ARE survival pathway.
Collapse
Affiliation(s)
- Shibin Song
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yimin Chen
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Feng Han
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Minghao Dong
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Xin Xiang
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Jianmei Sui
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yuming Li
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Hua Yang
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Jian Liu
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
31
|
Abstract
Itch is an unpleasant sensation that initiates scratching behavior. The itch-scratch reaction is a complex phenomenon that implicates supraspinal structures required for regulation of sensory, emotional, cognitive, and motivational aspects. However, the central mechanisms underlying the processing of itch and the interplay of the supraspinal regions and spinal cord in regulating itch-scratch processes are poorly understood. Here, we have shown that the neural projections from anterior cingulate cortex (ACC) to dorsal medial striatum (DMS) constitute a critical circuit element for regulating itch-related behaviors in the brains of male C57BL/6J mice. Moreover, we demonstrate that ACC-DMS projections selectively modulate histaminergic, but not nonhistaminergic, itch-related behavior. Furthermore, photoactivation of ACC-DMS projections has also no significant effects on pain behavior induced by thermal, mechanical, and chemical stimuli except for a relief on inflammatory pain evoked by formalin and complete Freund's adjuvant. We further demonstrate that the dorsal spinal cord exerts an inhibitory effect on itch signal from ACC-DMS projections through B5-I neurons, which represent a population of spinal inhibitory interneurons that mediate the inhibition of itch. Therefore, this study presents the first evidence that the ACC-DMS projections modulate histaminergic itch-related behavior and reveals an interplay between the supraspinal and spinal levels in histaminergic itch regulation.SIGNIFICANCE STATEMENT This study reveals that the projections from anterior cingulate cortex (ACC) to dorsal medial striatum (DMS) constitute a supraspinal circuit for modulation of histaminergic, but not nonhistaminergic, itch. Manipulation of ACC-DMS projections has no effect on acute pain sensation. Furthermore, the dorsal spinal cord exerts an inhibitory effect on itch signal from ACC-DMS projections through B5-I neurons. Understanding the supraspinal itch circuits is of great significance in the development of new therapies for chronic itch-related intractable diseases.
Collapse
|
32
|
Neuroprotective effect of liquiritin against neuropathic pain induced by chronic constriction injury of the sciatic nerve in mice. Biomed Pharmacother 2017; 95:186-198. [DOI: 10.1016/j.biopha.2017.07.167] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/06/2017] [Accepted: 07/30/2017] [Indexed: 11/21/2022] Open
|
33
|
Aloperine Protects Mice against DSS-Induced Colitis by PP2A-Mediated PI3K/Akt/mTOR Signaling Suppression. Mediators Inflamm 2017; 2017:5706152. [PMID: 29056830 PMCID: PMC5625759 DOI: 10.1155/2017/5706152] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/27/2017] [Accepted: 07/30/2017] [Indexed: 02/06/2023] Open
Abstract
Colitis is a major form of inflammatory bowel disease which involved mucosal immune dysfunction. Aloperine is an alkaloid isolated from the shrub Sophora alopecuroides L. and has been recognized as an effective treatment for inflammatory and allergic diseases. The present study aimed to examine the molecular mechanisms underlying aloperine-mediated colitis protection. We found that aloperine treatment improved colitis induced by dextran sodium sulfate (DSS) based on body weight, disease activity index, colonic length, and spleen index. Aloperine also effectively attenuated DSS-induced intestinal inflammation based on the pathological score and myeloperoxidase expression and activity in colon tissues. In addition, aloperine regulated T-cell proportions and promoted Foxp3 expression in the spleens and mesenteric lymph nodes of DSS-induced colitis mice and in the spleens of the Foxp3GFP mice. Aloperine inhibited Jurkat and mouse naïve T-cell apoptosis. Furthermore, aloperine inhibited PI3K/Akt/mTOR signaling and upregulated PP2A expression in the DSS-induced colitis mice and in Jurkat cells, but LB-100 (PP2A inhibitor) resulted in an elevated Akt activity in Jurkat cells, activated T-cells, and human splenic mononuclear cells. Aloperine inhibited T-cell and lymphocyte proliferation, but LB-100 reverse these effects. In conclusion, aloperine regulates inflammatory responses in colitis by inhibiting the PI3K/Akt/mTOR signaling in a PP2A-dependent manner.
Collapse
|
34
|
Wu F, Yao W, Yang J, Zhang M, Xu Y, Hao Y, Yan L, Niu Y, Sun T, Yu J, Zhou R. Protective effects of aloperin on monocroline-induced pulmonary hypertension via regulation of Rho A/Rho kinsase pathway in rats. Biomed Pharmacother 2017; 95:1161-1168. [PMID: 28926926 DOI: 10.1016/j.biopha.2017.08.126] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/22/2017] [Accepted: 08/29/2017] [Indexed: 12/30/2022] Open
Abstract
Pulmonary hypertension (PH) is fatal disease which closely involves Rho A/ Rho kinsase (ROCK) pathway. Aloperine is a main active alkaloid extracted from Sophora alopecuroides, which is a traditional Chinese herbal medicine that has been used widely. However, the effects of this alkaloid on pulmonary hypertension and its mechanisms remain unclear. Therefore, this study is designed to investigate whether aloperine has protective effects on PH induced by monocrotaline, whether these effects may be related to regulation of RhoA/ROCK pathway in rats. Pulmonary hypertension was induced by monocrotaline (60mg/kg), and subsequently oral administration of aloperine (25, 50, 100mg/kg/day) for 21 days. At the end of the experiment, rats were underwent hemodynamic and morphologic assessments. At same time, the expression of Rho A, ROCK1, ROCK2, as well as activities of ROCK in the lung of rat has been detected. Afterwards, the expression of p27kip1, Bax, Bcl-2, which was the downstream proliferation and apoptosis factors of ROCK, were tested. The result indicted that aloperine treatment showed significantly improvement in hemodynamic and pathomorphologic data. Moreover, the reduction in expression of Rho A, ROCK1, ROCK2, and suppression in activities of ROCK were found in rat lungs after aloperine treatment. Furthermore, aloperine also alleviated the MCT-induced changes of p27kip1, Bax and Bcl-2. In summary, this study indicates that aloperine have protective effects on monocrotaline-induced PH. And these effects may be partially related to RhoA/ROCK pathway. Thus, aloperine could be considered a possible therapeutic strategy for PH.
Collapse
Affiliation(s)
- Fan Wu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, PR China
| | - Wanxia Yao
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, PR China
| | - Jiamei Yang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, PR China
| | - Min Zhang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, PR China
| | - Yanping Xu
- Echocardiogram Room, Heart Center, General Hospital of Ningxia Medical University, Yinchuan, 750004, PR China
| | - Yinju Hao
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, PR China
| | - Lin Yan
- College of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, PR China
| | - Yang Niu
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, PR China
| | - Tao Sun
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, 750004, PR China
| | - Jianqiang Yu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, PR China; Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan, 750004, PR China.
| | - Ru Zhou
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, PR China; Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, PR China; Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan, 750004, PR China.
| |
Collapse
|
35
|
Silencing of FKBP51 alleviates the mechanical pain threshold, inhibits DRG inflammatory factors and pain mediators through the NF-kappaB signaling pathway. Gene 2017. [DOI: 10.1016/j.gene.2017.06.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
36
|
Protective effects of aloperine on monocrotaline-induced pulmonary hypertension in rats. Biomed Pharmacother 2017; 89:632-641. [DOI: 10.1016/j.biopha.2017.02.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/05/2017] [Accepted: 02/10/2017] [Indexed: 01/10/2023] Open
|
37
|
Ren D, Ma W, Guo B, Wang S. Aloperine attenuates hydrogen peroxide-induced injury via anti-apoptotic activity and suppression of the nuclear factor-κB signaling pathway. Exp Ther Med 2016; 13:315-320. [PMID: 28123508 DOI: 10.3892/etm.2016.3962] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/26/2016] [Indexed: 11/06/2022] Open
Abstract
Aloperine is an alkaloid that exerts significant inhibitive effects on acute inflammation and Type III and IV hypersensitivity caused by a variety of inflammatory agents. The aims of the present study were to investigate whether the protective effect of aloperine attenuates hydrogen peroxide (H2O2)-induced injury, and to identify the underlying mechanisms involved. Nucleus pulposus cells were extracted from adult male Sprague-Dawley rats, and incubated with fresh medium containing 200 µM H2O2 for 24 h. In the study, treatment with aloperine significantly increased cell viability and suppressed apoptosis in H2O2-treated nucleus pulposus cells in a dose-dependent manner. In addition, 10 and 100 nM aloperine significantly inhibited H2O2-induced tumor necrosis factor-α and interleukin-6 activities, and significantly increased the H2O2-reduced superoxide dismutase and glutathione peroxidase activities in nucleus pulposus cells (all P<0.01). However, aloperine treatment (10 and 100 nM) significantly reduced the H2O2-induced caspase-9 activity in nucleus pulposus cells. Furthermore, addition of 10 and 100 nM aloperine significantly suppressed nuclear factor-κB (NF-κB) and phosphorylated-protein kinase B expression levels in H2O2-treated nucleus pulposus cells. In conclusion, the protective effect of aloperine attenuated H2O2-induced injury via hyperproliferation, its anti-apoptotic activity and suppression of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Dongliang Ren
- Department of Orthopedics, The First Central Hospital of Baoding, Baoding, Hebei 071000, P.R. China
| | - Weisong Ma
- Department of Orthopedics, The First Central Hospital of Baoding, Baoding, Hebei 071000, P.R. China
| | - Baozhen Guo
- Department of Orthopedics, The First Central Hospital of Baoding, Baoding, Hebei 071000, P.R. China
| | - Shunyi Wang
- Department of Orthopedics, The First Central Hospital of Baoding, Baoding, Hebei 071000, P.R. China
| |
Collapse
|
38
|
Gong SS, Li YX, Zhang MT, Du J, Ma PS, Yao WX, Zhou R, Niu Y, Sun T, Yu JQ. Neuroprotective Effect of Matrine in Mouse Model of Vincristine-Induced Neuropathic Pain. Neurochem Res 2016; 41:3147-3159. [PMID: 27561290 DOI: 10.1007/s11064-016-2040-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/17/2016] [Accepted: 08/19/2016] [Indexed: 12/18/2022]
Abstract
Chemotherapy drugs such as vincristine (VCR) can cause neuropathic pain, and there is still lack of ideal strategy to treat it. The current study was designed to investigate effect of matrine (MT) on VCR-induced neuropathic pain in animal model. VCR (75 μg/kg, i.p. for 10 consecutive days) was administered to induce painful neuropathy model in mice. MT (15, 30 and 60 mg/kg, i.p.) and pregabalin (10 mg/kg, i.p.) were administered for 11 consecutive days. Various tests were performed to assess the degree of pain at different days (1, 6, 11, 16, and 21). Von Frey hair, hot plate, cold-plate and paw pressure tests were conducted to assess the degree of mechanical allodynia, thermal hyperalgesia, cold allodynia and mechanical hyperalgesia in the hind paw respectively. The electrophysiological and histopathological changes were also analyzed. Furthermore, tissue malondialdehyde (MDA), total antioxidant capacity (T-AOC),superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), total calcium (TCA), myeloperoxidase (MPO), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-10 (IL-10) were measured to investigate possible involvement of MT in inflammation and oxidative stress. Administration of MT attenuated the VCR-induced behavioral alterations as well as electrophysiological and histopathological changes in a dose dependent manner. Further, MT also attenuated the VCR-induced oxidative stress (MDA, T-AOC, GSH-Px, SOD and TCA) and inflammation (MPO, TNF-α, IL-6 and IL-10). Taken together, MT ameliorated VCR-induced painful neuropathy, which might be attributed to neuroprotective effects by subsequent reduction in oxidative stress and anti-inflammatory actions.
Collapse
Affiliation(s)
- Shuai-Shuai Gong
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Xingqing, Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Yu-Xiang Li
- College of Nursing, Ningxia Medical University, Yinchuan, 750004, China
| | - Meng-Ting Zhang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Xingqing, Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Juan Du
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Xingqing, Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Peng-Sheng Ma
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Xingqing, Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Wan-Xia Yao
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Xingqing, Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Ru Zhou
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Xingqing, Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Yang Niu
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China
| | - Tao Sun
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, 750004, China
| | - Jian-Qiang Yu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Xingqing, Ningxia Hui Autonomous Region, Yinchuan, 750004, China. .,Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
39
|
Wang HL, Li YX, Niu YT, Zheng J, Wu J, Shi GJ, Ma L, Niu Y, Sun T, Yu JQ. Observing Anti-inflammatory and Anti-nociceptive Activities of Glycyrrhizin Through Regulating COX-2 and Pro-inflammatory Cytokines Expressions in Mice. Inflammation 2016; 38:2269-78. [PMID: 26178479 DOI: 10.1007/s10753-015-0212-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The present study aimed to investigate the potential anti-inflammatory and anti-nociceptive activities of glycyrrhizin (GL) in mice and to explore the possible related mechanisms. Xylene-induced ear edema, carrageenan-induced paw edema and acetic acid-induced vascular permeability test were used to investigate the anti-inflammatory activities of GL in mice. Anti-nociceptive effects of GL were assessed by using acetic acid-induced writhing, hot plate test and formalin test, as well as evaluation of spontaneous locomotor activity and motor performance. The mRNA expression of pro-inflammatory cytokines (such as TNF-α, IL-6 and iNOS) and the protein expression of cyclooxygenase-2 (COX-2) were explored by using real-time fluorogenic PCR and Western blot, respectively. The results showed that GL significantly reduced xylene-induced ear edema, carrageenan-induced paw edema, and acetic acid-induced vascular permeation. Additionally, GL significantly inhibited the nociceptions induced by acetic acid and formalin. However, the nociceptions could not be decreased by GL in the hot plate test, and GL did not affect spontaneous locomotor activity and motor performance. The expression levels of TNF-α, IL-6, iNOS and COX-2 were significantly downregulated by GL. In conclusion, GL exerts significant anti-inflammatory and analgesic activities by attenuating the expression levels of TNF-α, IL-6, iNOS and COX-2.
Collapse
Affiliation(s)
- Hong-Ling Wang
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Yu-Xiang Li
- College of Nursing, Ningxia Medical University, Yinchuan, 750004, China
| | - Ya-Ting Niu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Jie Zheng
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Jing Wu
- Laboratory Animal Center, Ningxia Medical University, Yinchuan, 750004, China
| | - Guang-Jiang Shi
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Lin Ma
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, 750004, China
| | - Yang Niu
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China
| | - Tao Sun
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, 750004, China
| | - Jian-Qiang Yu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China. .,Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
40
|
Xiang Q, Yu C, Zhu YF, Li CY, Tian RB, Li XH. Nuclear factor erythroid 2-related factor 2 antibody attenuates thermal hyperalgesia in the dorsal root ganglion: Neurochemical changes and behavioral studies after sciatic nerve-pinch injury. Injury 2016; 47:1647-54. [PMID: 27316447 DOI: 10.1016/j.injury.2016.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/30/2016] [Accepted: 06/02/2016] [Indexed: 02/02/2023]
Abstract
Oxidative stress is generated in several peripheral nerve injury models.Nuclear factor erythroid 2-related factor 2 (Nrf2) is activated to have a role in antioxidant effect. After nerve injury, the severely painful behavior is also performed. However, little has been explored regarding the function of Nrf2 in this painful process. Therefore, in this study, we compared the effects of Nrf2 antibody administration following sciatic nerve-pinch injury on painful behavior induced in young mice and neurochemical changes in dorsal root ganglion neurons. After pinch nerve injury, we found that the magnitude of the thermal allodynia was significantly decreased after application of Nrf2 antibody (5ul, 1mg/ml) in such injured animals and phosphorylated ERK(p-ERK) as well as the apoptotic protein (i.e., Bcl-6) in DRG neurons were also down-regulated in the anti-Nrf2-treated injured groups compared to the saline-treated groups. Taken collectively, these data suggested that the Nrf2 antibody reduced thermal hyperalgesia via ERK pathway and the down regulation of Bcl-6 protein from the apoptosis pathway might be protecting against the protein deletions caused by anti-Nrf2 effect and suggested the new therapeutic strategy with Nrf2 inhibitor following nerve injury.
Collapse
Affiliation(s)
- Qiong Xiang
- Institute of Medicine, Medical Research Center, Jishou University, Hunan, 416000, China
| | - Chao Yu
- Institute of Medicine, Medical Research Center, Jishou University, Hunan, 416000, China
| | - Yao-Feng Zhu
- Institute of Medicine, Medical Research Center, Jishou University, Hunan, 416000, China
| | - Chun-Yan Li
- Institute of Medicine, Medical Research Center, Jishou University, Hunan, 416000, China
| | - Rong-Bo Tian
- Institute of Medicine, Medical Research Center, Jishou University, Hunan, 416000, China
| | - Xian-Hui Li
- Institute of Medicine, Medical Research Center, Jishou University, Hunan, 416000, China.
| |
Collapse
|
41
|
Komirishetty P, Areti A, Sistla R, Kumar A. Morin Mitigates Chronic Constriction Injury (CCI)-Induced Peripheral Neuropathy by Inhibiting Oxidative Stress Induced PARP Over-Activation and Neuroinflammation. Neurochem Res 2016; 41:2029-42. [PMID: 27084773 DOI: 10.1007/s11064-016-1914-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/06/2016] [Accepted: 04/08/2016] [Indexed: 01/03/2023]
Abstract
Neuropathic pain is initiated or caused due to the primary lesion or dysfunction in the nervous system and is proposed to be linked to a cascade of events including excitotoxicity, oxidative stress, neuroinflammation and apoptosis. Oxidative/nitrosative stress aggravates the neuroinflammation and neurodegeneration through poly (ADP) ribose polymerase (PARP) overactivation. Hence, the present study investigated the antioxidant and anti-inflammatory effects of the phytoconstituent; morin in chronic constriction injury (CCI) induced neuropathy. Neuropathic pain was induced by chronic constriction of the left sciatic nerve in rats, and the effect of morin (15 and 30 mg/kg, p.o.) was evaluated by measuring behavioural and biochemical changes. Mechanical, chemical and thermal stimuli confirmed the CCI-induced neuropathic pain and treatment with morin significantly improved these behavioural deficits and improved the sciatic functional index by the 14th day after CCI induction. After 14 days of CCI induction, oxidative/nitrosative stress and inflammatory markers were elevated in rat lumbar spinal cord. Oxidative stress induced PARP overactivation resulted in depleted levels of ATP and elevated levels of poly (ADP) ribose (PAR). Treatment with morin reduced the levels of nitrites, restored glutathione levels and abrogated the oxidant induced DNA damage. It also mitigated the increased levels of TNF-α and IL-6. Protein expression studies confirmed the PARP inhibition and anti-inflammatory activity of morin. Findings of this study suggest that morin, by virtue of its antioxidant properties, limited PARP overactivation and neuroinflammation and protected against CCI induced functional, behavioural and biochemical deficits.
Collapse
Affiliation(s)
- Prashanth Komirishetty
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana State, 500037, India
| | - Aparna Areti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana State, 500037, India
| | - Ramakrishna Sistla
- Medicinal Chemistry and Pharmacology Division, Indian Institute of Chemical Technology (IICT), Hyderabad, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana State, 500037, India.
| |
Collapse
|
42
|
Liu N, Li YX, Gong SS, Du J, Liu G, Jin SJ, Zhao CJ, Niu Y, Sun T, Yu JQ. Antinociceptive effects of gentiopicroside on neuropathic pain induced by chronic constriction injury in mice: a behavioral and electrophysiological study. Can J Physiol Pharmacol 2016; 94:769-78. [PMID: 27175624 DOI: 10.1139/cjpp-2015-0462] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gentiopicroside (Gent) is promising as an important protective secoiridoid compound against pain. The present study was designed to investigate whether administration of Gent would alleviate the expression of nociceptive behaviors and whether it would cause the relevant electrophysiological changes in a chronic constriction injury (CCI) model of neuropathic pain in mice. Gent was administered from the seventh day after surgery for 8 consecutive days. Behavioral parameters and sciatic functional index were assessed immediately before surgery and on days 7, 8, 10, 12, and 14 post-CCI, and electrophysiological activities of sciatic nerve were recorded immediately after the behavioral test on the last day. The present study has shown that administration of Gent (at a dose of 50 and 100 mg/kg) increased behavioral parameters from day 8 compared with the CCI-NS group. Electrophysiological data indicated that CCI caused a significant reduction in nerve conduction velocities in the sciatic nerves and the amplitudes of compound action potential, while Gent at a dose of 50 or 100 mg/kg caused a significant recovery of electrophysiological changes induced by CCI. Our data indicated that Gent has antinociceptive effects on neuropathic pain induced by CCI.
Collapse
Affiliation(s)
- Ning Liu
- a Department of Pharmacology, Ningxia Medical University, Yinchuan 750000, People's Republic of China
| | - Yu-Xiang Li
- b College of Nursing, Ningxia Medical University, Yinchuan 750004, People's Republic of China
| | - Shuai-Shuai Gong
- a Department of Pharmacology, Ningxia Medical University, Yinchuan 750000, People's Republic of China
| | - Juan Du
- a Department of Pharmacology, Ningxia Medical University, Yinchuan 750000, People's Republic of China
| | - Gang Liu
- a Department of Pharmacology, Ningxia Medical University, Yinchuan 750000, People's Republic of China
| | - Shao-Ju Jin
- c Luohe Medical College, Luohe 462002, Henan Province, People's Republic of China
| | - Cheng-Jun Zhao
- d Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750000, People's Republic of China
| | - Yang Niu
- e Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, People's Republic of China
| | - Tao Sun
- f Ningxia Key Lab of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, People's Republic of China
| | - Jian-Qiang Yu
- a Department of Pharmacology, Ningxia Medical University, Yinchuan 750000, People's Republic of China
| |
Collapse
|
43
|
Chen Y, Chen X, Yu J, Xu X, Wei X, Gu X, Liu C, Zhang D, Xu Z. JAB1 is Involved in Neuropathic Pain by Regulating JNK and NF-κB Activation After Chronic Constriction Injury. Neurochem Res 2015; 41:1119-29. [DOI: 10.1007/s11064-015-1802-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 12/14/2022]
|
44
|
Hu S, Zhang Y, Zhang M, Guo Y, Yang P, Zhang S, Simsekyilmaz S, Xu JF, Li J, Xiang X, Yu Q, Wang CY. Aloperine Protects Mice against Ischemia-Reperfusion (IR)-Induced Renal Injury by Regulating PI3K/AKT/mTOR Signaling and AP-1 Activity. Mol Med 2015; 21:912-923. [PMID: 26552059 DOI: 10.2119/molmed.2015.00056] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 10/27/2015] [Indexed: 01/03/2023] Open
Abstract
Aloperine is a quinolizidine alkaloid extracted from the leaves of Sophora plants. It has been recognized with the potential to treat inflammatory and allergic diseases as well as tumors. In this report, we demonstrate that pretreatment with aloperine provided protection for mice against ischemia-reperfusion (IR)-induced acute renal injury as manifested by the attenuated inflammatory infiltration, reduced tubular apoptosis, and well-preserved renal function. Mechanistic studies revealed that aloperine selectively repressed IL-1β and IFN-γ expression by regulating PI3K/Akt/mTOR signaling and NF-κB transcriptional activity. However, aloperine did not show a perceptible impact on IL-6 and TGF-β expression and the related Jak2/Stat3 signaling. It was also noted that aloperine regulates AP-1 activity, through which it not only enhances SOD expression to increase reactive oxygen species (ROS) detoxification but also promotes the expression of antiapoptotic Bcl-2, thereby preventing tubular cells from IR-induced apoptosis. Collectively, our data suggest that administration of aloperine prior to IR insults, such as renal transplantation, could be a viable approach to prevent IR-induced injuries.
Collapse
Affiliation(s)
- Shuang Hu
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxing Zhang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Zhang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanchao Guo
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Yang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu Zhang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sakine Simsekyilmaz
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun-Fa Xu
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical College, Dongguan, China
| | - Jinxiu Li
- Department of Emergency Medicine, Institute of Emergency Medicine and Rare Diseases, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Xudong Xiang
- Department of Emergency Medicine, Institute of Emergency Medicine and Rare Diseases, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Qilin Yu
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong-Yi Wang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical College, Dongguan, China.,Department of Emergency Medicine, Institute of Emergency Medicine and Rare Diseases, the Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
45
|
Protective effects of aloperine on neonatal rat primary cultured hippocampal neurons injured by oxygen–glucose deprivation and reperfusion. J Nat Med 2015; 69:575-83. [DOI: 10.1007/s11418-015-0928-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/25/2015] [Indexed: 01/10/2023]
|
46
|
The anti-inflammatory alkaloid aloperine in Chinese herbal medicine is potentially useful for management of pain and itch. Scand J Pain 2015; 8:25-26. [DOI: 10.1016/j.sjpain.2015.04.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
47
|
Effects of aloperine on acute and inflammatory pain models in mice. Scand J Pain 2015; 8:28-34. [DOI: 10.1016/j.sjpain.2015.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 04/10/2015] [Indexed: 11/19/2022]
Abstract
Graphical Abstract
Collapse
|
48
|
Zhao P, Zhou R, Li HN, Yao WX, Qiao HQ, Wang SJ, Niu Y, Sun T, Li YX, Yu JQ. Oxymatrine attenuated hypoxic-ischemic brain damage in neonatal rats via improving antioxidant enzyme activities and inhibiting cell death. Neurochem Int 2015; 89:17-27. [PMID: 26120022 DOI: 10.1016/j.neuint.2015.06.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 01/02/2023]
Abstract
Oxymatrine (OMT), an active constituent of Chinese herb Sophora flavescens Ait, has been proved to possess anti-tumor, anti-oxidant, anti-inflammatory, and anti-apoptotic activities. Previous study has demonstrated that OMT had protective roles on multiple in vitro and in vivo brain injury models including regulation of apoptosis-related proteins caspase-3, Bax and Bcl-2. In this study, we investigated whether this protective effect could apply to neonatal hypoxic-ischemic brain damage. Seven-day-old Sprague-Dawley rats were treated with the left carotid artery ligation followed by exposure to 8% oxygen (balanced with nitrogen) for 2.5 h at 37 °C. In sham group rats, neither ligation nor hypoxia was performed. After two successive days intraperitoneal injection with OMT (30, 60 and 120 mg/kg), Nimodipine (1 mg/kg), and saline, brain infarct volume was estimated, histomorphology changes were performed by hematoxylin-eosin (HE) staining as well as electron microscopy. In addition, the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and total antioxidant capacity (T-AOC), as well as production of malondialdehyde (MDA) were assayed in ipsilateral hemisphere homogenates to evaluate the redox status after hypoxic-ischemic. Expression of apoptosis-related proteins Caspase-3, Bax and Bcl-2 in brain were analyzed by western-blot analysis and immunofluorescence. Administration of OMT significantly decreased brain infarct volume and the percentage of injured cells, and ameliorated histopathology and morphological injury as well. Furthermore, OMT obviously increased the activities of SOD, GSH-Px, CAT and T-AOC, and decreased MDA content. Western-blot analysis showed a marked decrease in Caspase-3 expression and increase in the ratio of Bcl-2/Bax after OMT (120 mg/kg) post-treatment as compared with hypoxic-ischemic group. These results suggest that OMT exerts a neuroprotective effect against hypoxic-ischemic brain damage in neonatal rats, which is likely to be mediated through increasing anti-oxidant enzyme activities and inhibiting cell death.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Ru Zhou
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Hai-Ning Li
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Wan-Xia Yao
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Hai-Qi Qiao
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Shu-Jing Wang
- Medical Sci-tech Research Center, Ningxia Medical University, Yinchuan 750004, China
| | - Yang Niu
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Tao Sun
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China
| | - Yu-Xiang Li
- College of Nursing, Ningxia Medical University, Yinchuan 750004, China
| | - Jian-Qiang Yu
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China; Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
49
|
Zhao P, Zhou R, Zhu XY, Hao YJ, Li N, Wang J, Niu Y, Sun T, Li YX, Yu JQ. Matrine attenuates focal cerebral ischemic injury by improving antioxidant activity and inhibiting apoptosis in mice. Int J Mol Med 2015; 36:633-44. [PMID: 26135032 PMCID: PMC4533779 DOI: 10.3892/ijmm.2015.2260] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 06/19/2015] [Indexed: 12/13/2022] Open
Abstract
Matrine, an active constituent of the Chinese herb, Sophora flavescens Ait., and it is known for its antioxidant, anti-inflammatory and antitumor activities. It has been demonstrated that matrine exerts protective effects against heart failure by decreasing the expression of caspase-3 and Bax, and increasing Bcl-2 levels. In this study, we aimed to determine whether these protective effects of matrine can be applied to cerebral ischemia. Following 7 successive days of treatment with matrine (7.5, 15 and 30 mg/kg) and nimodipine (1 mg/kg) by intraperitoneal injection, male Institute of Cancer Research (ICR) mice were subjected to middle cerebral artery occlusion (MCAO). Following reperfusion, the neurobehavioral score and brain infarct volume were estimated, and morphological changes were analyzed by hematoxylin and eosin (H&E) staining and electron microscopy. The percentage of apoptotic neurons was determined by flow cytometry. The levels of oxidative stress were assessed by measuring the levels of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT), and the total antioxidant capacity (T-AOC). Western blot analysis and immunofluorescence staining were used to examine the expression of the apoptosis-related proteins, caspase-3, Bax and Bcl-2. Our results revealed that pre-treatment with matrine significantly decreased the infarct volume and improved the neurological scores. Matrine also reduced the percentage of apoptotic neurons and relieved neuronal morphological damage. Furthermore, matrine markedly decreased the MDA levels, and increased SOD, GSH-Px and CAT activity, and T-AOC. Western blot analysis and immunofluorescence staining revealed a marked decrease in caspase-3 expression and an increase in the Bcl-2/Bax ratio in the group pre-treated with matrine (30 mg/kg) as compared with the vehicle-treated group. The findings of the present study demonstrate that matrine exerts neuroprotective effects against cerebral ischemic injury and that these effects are associated with its antioxidant and anti-apoptotic properties.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Ru Zhou
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Xiao-Yun Zhu
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yin-Ju Hao
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Nan Li
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Jie Wang
- Medical Sci-tech Research Center, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yang Niu
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Tao Sun
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yu-Xiang Li
- College of Nursing, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Jian-Qiang Yu
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|