1
|
Ashraf M, Mao Q, Hong J, Shi L, Ran X, Liaquat F, Uzair M, Liang W, Fernie AR, Shi J. HSP70-16 and VDAC3 jointly inhibit seed germination under cold stress in Arabidopsis. PLANT, CELL & ENVIRONMENT 2021; 44:3616-3627. [PMID: 34173257 DOI: 10.1111/pce.14138] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/09/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Abscisic acid (ABA) transport plays a crucial role in seed germination under unfavourable conditions such as cold stress. Both heat shock protein 70 (HSP70) and voltage-dependent anion channel (VDAC) protein are involved in cold stress responses in Arabidopsis. However, their roles in seed germination with regard to ABA signaling remain unknown. Here we demonstrated that Arabidopsis HSP70-16 and VDAC3 jointly suppress seed germination under cold stress conditions. At 4°C, both HSP70-16 and VDAC3 facilitated the efflux of ABA from the endosperm to the embryo and thus inhibited seed germination. HSP70-16 interacted with VDAC3 on the plasma membrane and in the nucleus, and the interplay between HSP70-16 and VDAC3 activated the opening of the VDAC3 ion channel. Our work established a novel function of HSP70-16 in seed germination under cold stress and a possible association of VDAC3 activity with ABA transportation from endosperm to embryo under cold stress conditions. This study reveals that HSP70-16 interacts with VDAC3 and facilitates the opening of the VDAC3 ion channel, which influences ABA efflux from endosperm to embryo, thus negatively regulates seed germination under cold stress.
Collapse
Affiliation(s)
- Muhammad Ashraf
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qionglei Mao
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Hong
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoruo Ran
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fiza Liaquat
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Uzair
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Benz R. Historical Perspective of Pore-Forming Activity Studies of Voltage-Dependent Anion Channel (Eukaryotic or Mitochondrial Porin) Since Its Discovery in the 70th of the Last Century. Front Physiol 2021; 12:734226. [PMID: 35547863 PMCID: PMC9083909 DOI: 10.3389/fphys.2021.734226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/24/2021] [Indexed: 01/07/2023] Open
Abstract
Eukaryotic porin, also known as Voltage-Dependent Anion Channel (VDAC), is the most frequent protein in the outer membrane of mitochondria that are responsible for cellular respiration. Mitochondria are most likely descendants of strictly aerobic Gram-negative bacteria from the α-proteobacterial lineage. In accordance with the presumed ancestor, mitochondria are surrounded by two membranes. The mitochondrial outer membrane contains besides the eukaryotic porins responsible for its major permeability properties a variety of other not fully identified channels. It encloses also the TOM apparatus together with the sorting mechanism SAM, responsible for the uptake and assembly of many mitochondrial proteins that are encoded in the nucleus and synthesized in the cytoplasm at free ribosomes. The recognition and the study of electrophysiological properties of eukaryotic porin or VDAC started in the late seventies of the last century by a study of Schein et al., who reconstituted the pore from crude extracts of Paramecium mitochondria into planar lipid bilayer membranes. Whereas the literature about structure and function of eukaryotic porins was comparatively rare during the first 10years after the first study, the number of publications started to explode with the first sequencing of human Porin 31HL and the recognition of the important function of eukaryotic porins in mitochondrial metabolism. Many genomes contain more than one gene coding for homologs of eukaryotic porins. More than 100 sequences of eukaryotic porins are known to date. Although the sequence identity between them is relatively low, the polypeptide length and in particular, the electrophysiological characteristics are highly preserved. This means that all eukaryotic porins studied to date are anion selective in the open state. They are voltage-dependent and switch into cation-selective substates at voltages in the physiological relevant range. A major breakthrough was also the elucidation of the 3D structure of the eukaryotic pore, which is formed by 19 β-strands similar to those of bacterial porin channels. The function of the presumed gate an α-helical stretch of 20 amino acids allowed further studies with respect to voltage dependence and function, but its exact role in channel gating is still not fully understood.
Collapse
Affiliation(s)
- Roland Benz
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| |
Collapse
|
3
|
Tarasenko TA, Klimenko ES, Tarasenko VI, Koulintchenko MV, Dietrich A, Weber-Lotfi F, Konstantinov YM. Plant mitochondria import DNA via alternative membrane complexes involving various VDAC isoforms. Mitochondrion 2021; 60:43-58. [PMID: 34303006 DOI: 10.1016/j.mito.2021.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/17/2021] [Accepted: 07/19/2021] [Indexed: 12/23/2022]
Abstract
Mitochondria possess transport mechanisms for import of RNA and DNA. Based on import into isolated Solanum tuberosum mitochondria in the presence of competitors, inhibitors or effectors, we show that DNA fragments of different size classes are taken up into plant organelles through distinct channels. Alternative channels can also be activated according to the amount of DNA substrate of a given size class. Analyses of Arabidopsis thaliana knockout lines pointed out a differential involvement of individual voltage-dependent anion channel (VDAC) isoforms in the formation of alternative channels. We propose several outer and inner membrane proteins as VDAC partners in these pathways.
Collapse
Affiliation(s)
- Tatiana A Tarasenko
- Siberian Institute of Plant Physiology and Biochemistry, SB RAS, 132 Lermontov St, Irkutsk 664033, Russia
| | - Ekaterina S Klimenko
- Siberian Institute of Plant Physiology and Biochemistry, SB RAS, 132 Lermontov St, Irkutsk 664033, Russia
| | - Vladislav I Tarasenko
- Siberian Institute of Plant Physiology and Biochemistry, SB RAS, 132 Lermontov St, Irkutsk 664033, Russia
| | - Milana V Koulintchenko
- Siberian Institute of Plant Physiology and Biochemistry, SB RAS, 132 Lermontov St, Irkutsk 664033, Russia.
| | - André Dietrich
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 Rue du Général Zimmer, 67084 Strasbourg, France
| | - Frédérique Weber-Lotfi
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 Rue du Général Zimmer, 67084 Strasbourg, France
| | - Yuri M Konstantinov
- Siberian Institute of Plant Physiology and Biochemistry, SB RAS, 132 Lermontov St, Irkutsk 664033, Russia; Irkutsk State University, 1 Karl Marx St, Irkutsk 664003, Russia
| |
Collapse
|
4
|
Canales J, Henriquez-Valencia C, Brauchi S. The Integration of Electrical Signals Originating in the Root of Vascular Plants. FRONTIERS IN PLANT SCIENCE 2018; 8:2173. [PMID: 29375591 PMCID: PMC5767606 DOI: 10.3389/fpls.2017.02173] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/12/2017] [Indexed: 05/07/2023]
Abstract
Plants have developed different signaling systems allowing for the integration of environmental cues to coordinate molecular processes associated to both early development and the physiology of the adult plant. Research on systemic signaling in plants has traditionally focused on the role of phytohormones as long-distance signaling molecules, and more recently the importance of peptides and miRNAs in building up this communication process has also been described. However, it is well-known that plants have the ability to generate different types of long-range electrical signals in response to different stimuli such as light, temperature variations, wounding, salt stress, or gravitropic stimulation. Presently, it is unclear whether short or long-distance electrical communication in plants is linked to nutrient uptake. This review deals with aspects of sensory input in plant roots and the propagation of discrete signals to the plant body. We discuss the physiological role of electrical signaling in nutrient uptake and how nutrient variations may become an electrical signal propagating along the plant.
Collapse
Affiliation(s)
- Javier Canales
- Facultad de Ciencias, Instituto de Bioquimica y Microbiologia, Universidad Austral de Chile, Valdivia, Chile
- Millennium Institute for Integrative Systems and Synthetic Biology, Santiago, Chile
| | - Carlos Henriquez-Valencia
- Facultad de Ciencias, Instituto de Bioquimica y Microbiologia, Universidad Austral de Chile, Valdivia, Chile
| | - Sebastian Brauchi
- Facultad de Medicina, Instituto de Fisiologia, Universidad Austral de Chile, Valdivia, Chile
- Millennium Nucleus of Ion Channels-Associated Diseases, Valdivia, Chile
| |
Collapse
|
5
|
Wege S, Gilliham M, Henderson SW. Chloride: not simply a 'cheap osmoticum', but a beneficial plant macronutrient. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3057-3069. [PMID: 28379459 DOI: 10.1093/jxb/erx050] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
At macronutrient levels, chloride has positive effects on plant growth, which are distinct from its function in photosynthesis..
Collapse
Affiliation(s)
- Stefanie Wege
- Australian Research Council Centre of Excellence in Plant Energy Biology & The University of Adelaide, School of Agriculture, Food and Wine, Waite Research Precinct, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Matthew Gilliham
- Australian Research Council Centre of Excellence in Plant Energy Biology & The University of Adelaide, School of Agriculture, Food and Wine, Waite Research Precinct, PMB1, Glen Osmond, South Australia 5064, Australia
| | - Sam W Henderson
- Australian Research Council Centre of Excellence in Plant Energy Biology & The University of Adelaide, School of Agriculture, Food and Wine, Waite Research Precinct, PMB1, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
6
|
The multiple assemblies of VDAC: from conformational heterogeneity to β-aggregation and amyloid formation. Biochem Soc Trans 2016; 44:1531-1540. [PMID: 27911736 DOI: 10.1042/bst20160114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/22/2016] [Accepted: 06/28/2016] [Indexed: 01/10/2023]
Abstract
From their cellular localisation, to their atomic structure and their involvement in mitochondrial-driven cell death, voltage-dependent anion channels (VDACs) have challenged the scientific community with enigmas and paradoxes for over four decades. VDACs form active monomer channels in lipid bilayers, but they can also organise in multimeric assemblies. What induces, regulates and/or controls the monomer-multimer dynamics at the cellular level is not known. However, these state transitions appear to be relevant for mitochondria in making life or death decisions and for driving developmental processes. This review starts with a general introduction on VDACs and continues by examining VDAC oligomerisation/aggregation in light of recent discussions on VDAC-β-amyloid interactions and their involvement in Alzheimer's disease.
Collapse
|
7
|
VDAC electronics: 3. VDAC-Creatine kinase-dependent generation of the outer membrane potential in respiring mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1411-8. [DOI: 10.1016/j.bbamem.2016.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 01/08/2023]
|
8
|
Carraretto L, Checchetto V, De Bortoli S, Formentin E, Costa A, Szabó I, Teardo E. Calcium Flux across Plant Mitochondrial Membranes: Possible Molecular Players. FRONTIERS IN PLANT SCIENCE 2016; 7:354. [PMID: 27065186 PMCID: PMC4814809 DOI: 10.3389/fpls.2016.00354] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 03/07/2016] [Indexed: 05/24/2023]
Abstract
Plants, being sessile organisms, have evolved the ability to integrate external stimuli into metabolic and developmental signals. A wide variety of signals, including abiotic, biotic, and developmental stimuli, were observed to evoke specific spatio-temporal Ca(2+) transients which are further transduced by Ca(2+) sensor proteins into a transcriptional and metabolic response. Most of the research on Ca(2+) signaling in plants has been focused on the transport mechanisms for Ca(2+) across the plasma- and the vacuolar membranes as well as on the components involved in decoding of cytoplasmic Ca(2+) signals, but how intracellular organelles such as mitochondria are involved in the process of Ca(2+) signaling is just emerging. The combination of the molecular players and the elicitors of Ca(2+) signaling in mitochondria together with newly generated detection systems for measuring organellar Ca(2+) concentrations in plants has started to provide fruitful grounds for further discoveries. In the present review we give an updated overview of the currently identified/hypothesized pathways, such as voltage-dependent anion channels, homologs of the mammalian mitochondrial uniporter (MCU), LETM1, a plant glutamate receptor family member, adenine nucleotide/phosphate carriers and the permeability transition pore (PTP), that may contribute to the transport of Ca(2+) across the outer and inner mitochondrial membranes in plants. We briefly discuss the relevance of the mitochondrial Ca(2+) homeostasis for ensuring optimal bioenergetic performance of this organelle.
Collapse
Affiliation(s)
| | - Vanessa Checchetto
- Department of Biology, University of PadovaPadova, Italy
- Department of Biomedical Sciences, University of PadovaPadova, Italy
| | | | - Elide Formentin
- Department of Biology, University of PadovaPadova, Italy
- Department of Life Science and Biotechnology, University of FerraraFerrara, Italy
| | - Alex Costa
- Department of Biosciences, University of MilanMilan, Italy
- CNR, Institute of Biophysics, Consiglio Nazionale delle RicercheMilan, Italy
| | - Ildikó Szabó
- Department of Biology, University of PadovaPadova, Italy
- CNR, Institute of NeurosciencesPadova, Italy
| | - Enrico Teardo
- Department of Biology, University of PadovaPadova, Italy
- CNR, Institute of NeurosciencesPadova, Italy
| |
Collapse
|
9
|
Carraretto L, Teardo E, Checchetto V, Finazzi G, Uozumi N, Szabo I. Ion Channels in Plant Bioenergetic Organelles, Chloroplasts and Mitochondria: From Molecular Identification to Function. MOLECULAR PLANT 2016; 9:371-395. [PMID: 26751960 DOI: 10.1016/j.molp.2015.12.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/22/2015] [Accepted: 12/01/2015] [Indexed: 06/05/2023]
Abstract
Recent technical advances in electrophysiological measurements, organelle-targeted fluorescence imaging, and organelle proteomics have pushed the research of ion transport a step forward in the case of the plant bioenergetic organelles, chloroplasts and mitochondria, leading to the molecular identification and functional characterization of several ion transport systems in recent years. Here we focus on channels that mediate relatively high-rate ion and water flux and summarize the current knowledge in this field, focusing on targeting mechanisms, proteomics, electrophysiology, and physiological function. In addition, since chloroplasts evolved from a cyanobacterial ancestor, we give an overview of the information available about cyanobacterial ion channels and discuss the evolutionary origin of chloroplast channels. The recent molecular identification of some of these ion channels allowed their physiological functions to be studied using genetically modified Arabidopsis plants and cyanobacteria. The view is emerging that alteration of chloroplast and mitochondrial ion homeostasis leads to organelle dysfunction, which in turn significantly affects the energy metabolism of the whole organism. Clear-cut identification of genes encoding for channels in these organelles, however, remains a major challenge in this rapidly developing field. Multiple strategies including bioinformatics, cell biology, electrophysiology, use of organelle-targeted ion-sensitive probes, genetics, and identification of signals eliciting specific ion fluxes across organelle membranes should provide a better understanding of the physiological role of organellar channels and their contribution to signaling pathways in plants in the future.
Collapse
Affiliation(s)
- Luca Carraretto
- Department of Biology, University of Padova, Padova 35121, Italy
| | - Enrico Teardo
- Department of Biology, University of Padova, Padova 35121, Italy; CNR Institute of Neuroscience, University of Padova, Padova 35121, Italy
| | | | - Giovanni Finazzi
- UMR 5168 Laboratoire de Physiologie Cellulaire Végétale (LPCV) CNRS/ UJF / INRA / CEA, Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV), CEA Grenoble, 38054 Grenoble, France.
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan.
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padova 35121, Italy; CNR Institute of Neuroscience, University of Padova, Padova 35121, Italy.
| |
Collapse
|
10
|
Henrich E, Hein C, Dötsch V, Bernhard F. Membrane protein production in Escherichia coli cell-free lysates. FEBS Lett 2015; 589:1713-22. [PMID: 25937121 DOI: 10.1016/j.febslet.2015.04.045] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/17/2015] [Accepted: 04/21/2015] [Indexed: 01/01/2023]
Abstract
Cell-free protein production has become a core technology in the rapidly spreading field of synthetic biology. In particular the synthesis of membrane proteins, highly problematic proteins in conventional cellular production systems, is an ideal application for cell-free expression. A large variety of artificial as well as natural environments for the optimal co-translational folding and stabilization of membrane proteins can rationally be designed. The high success rate of cell-free membrane protein production allows to focus on individually selected targets and to modulate their functional and structural properties with appropriate supplements. The efficiency and robustness of lysates from Escherichia coli strains allow a wide diversity of applications and we summarize current strategies for the successful production of high quality membrane protein samples.
Collapse
Affiliation(s)
- Erik Henrich
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt-am-Main, Germany
| | - Christopher Hein
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt-am-Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt-am-Main, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt-am-Main, Germany.
| |
Collapse
|