1
|
Badhani G, Shubham, Biramya VM, Adimurthy S. Lewis Acid-Mediated Isothiocyanation and Chlorination of Quinoxalin-2(1 H)-ones under Visible Light Conditions. J Org Chem 2024; 89:10760-10772. [PMID: 38991520 DOI: 10.1021/acs.joc.4c00995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Lewis acid-mediated selective C3-isothiocyanation of quinoxalin-2(1H)-ones using N-thiocyanatosaccharin as an isothiocyanate source under visible light conditions at room temperature is described. Under similar conditions with N-chlorosaccharin, the C3-chlorination of quinoxalin-2(1H)-ones achieved a 2 h time frame. Good to an excellent yield of products was obtained in both cases with broad functional group tolerance. Control experiments suggest that the reaction proceeds through a radical mechanism. The present procedure demonstrates the applicability at gram-scale reactions and highlights the subsequent conversion of isothiocyanates into representative thiourea derivatives, and one of the chloro derivatives transformed to glycogen phosphorylase inhibitors.
Collapse
Affiliation(s)
- Gaurav Badhani
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Central Salt & Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat 364 002, India
| | - Shubham
- CSIR-Central Salt & Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat 364 002, India
| | - Valvi Mangesh Biramya
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Central Salt & Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat 364 002, India
| | - Subbarayappa Adimurthy
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Central Salt & Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat 364 002, India
| |
Collapse
|
2
|
Chen G, Shen L, Hu H, Feng Y, Wen D, Liu Y, Zhai H, Sun W, Wang M, Lei X, Li P, Xiong Q, Wu C. Sulforaphane Inhibits Oxidative Stress and May Exert Anti-Pyroptotic Effects by Modulating NRF2/NLRP3 Signaling Pathway in Mycobacterium tuberculosis-Infected Macrophages. Microorganisms 2024; 12:1191. [PMID: 38930573 PMCID: PMC11205970 DOI: 10.3390/microorganisms12061191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Sulforaphane (SFN) is a natural isothiocyanate derived from cruciferous vegetables such as broccoli, Brussels sprouts, and cabbage. SFN plays a crucial role in maintaining redox homeostasis by interacting with the active cysteine residues of Keap1, leading to the dissociation and activation of NRF2 in various diseases. In this study, our objective was to investigate the impact of SFN on oxidative stress and pyroptosis in Mycobacterium tuberculosis (Mtb)-infected macrophages. Our findings demonstrated that Mtb infection significantly increased the production of iNOS and ROS, indicating the induction of oxidative stress in macrophages. However, treatment with SFN effectively suppressed the expression of iNOS and COX-2 and reduced MDA and ROS levels, while enhancing GSH content as well as upregulating NRF2, HO-1, and NQO-1 expression in Mtb-infected RAW264.7 macrophages and primary peritoneal macrophages from WT mice. These results suggest that SFN mitigates oxidative stress by activating the NRF2 signaling pathway in Mtb-infected macrophages. Furthermore, excessive ROS production activates the NLRP3 signaling pathway, thereby promoting pyroptosis onset. Further investigations revealed that SFN effectively suppressed the expression of NLRP3, Caspase-1, and GSDMD, IL-1β, and IL-18 levels, as well as the production of LDH, suggesting that it may exhibit anti-pyroptotic effects through activation of the NRF2 signaling pathway and reductions in ROS production during Mtb infection. Moreover, we observed that SFN also inhibited the expression of NLRP3, ASC, Caspase1, and IL-1β along with LDH production in Mtb-infected primary peritoneal macrophages from NFR2-/- mice. This indicates that SFN can directly suppress NLRP3 activation and possibly inhibit pyroptosis initiation in an NRF2-independent manner. In summary, our findings demonstrate that SFN exerts its inhibitory effects on oxidative stress by activating the NRF2 signaling pathway in Mtb-infected macrophages, while it may simultaneously exert anti-pyroptotic properties through both NRF2-dependent and independent mechanisms targeting the NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Guangxin Chen
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (L.S.); (H.H.); (Y.F.); (D.W.); (Y.L.); (H.Z.); (W.S.); (M.W.); (X.L.); (P.L.); (Q.X.)
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Taiyuan 030006, China
| | - Lin Shen
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (L.S.); (H.H.); (Y.F.); (D.W.); (Y.L.); (H.Z.); (W.S.); (M.W.); (X.L.); (P.L.); (Q.X.)
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Taiyuan 030006, China
| | - Hong Hu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (L.S.); (H.H.); (Y.F.); (D.W.); (Y.L.); (H.Z.); (W.S.); (M.W.); (X.L.); (P.L.); (Q.X.)
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Taiyuan 030006, China
| | - Yazhi Feng
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (L.S.); (H.H.); (Y.F.); (D.W.); (Y.L.); (H.Z.); (W.S.); (M.W.); (X.L.); (P.L.); (Q.X.)
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Taiyuan 030006, China
| | - Da Wen
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (L.S.); (H.H.); (Y.F.); (D.W.); (Y.L.); (H.Z.); (W.S.); (M.W.); (X.L.); (P.L.); (Q.X.)
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Taiyuan 030006, China
| | - Yiyao Liu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (L.S.); (H.H.); (Y.F.); (D.W.); (Y.L.); (H.Z.); (W.S.); (M.W.); (X.L.); (P.L.); (Q.X.)
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Taiyuan 030006, China
| | - Huizhe Zhai
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (L.S.); (H.H.); (Y.F.); (D.W.); (Y.L.); (H.Z.); (W.S.); (M.W.); (X.L.); (P.L.); (Q.X.)
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Taiyuan 030006, China
| | - Wei Sun
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (L.S.); (H.H.); (Y.F.); (D.W.); (Y.L.); (H.Z.); (W.S.); (M.W.); (X.L.); (P.L.); (Q.X.)
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Taiyuan 030006, China
| | - Meifen Wang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (L.S.); (H.H.); (Y.F.); (D.W.); (Y.L.); (H.Z.); (W.S.); (M.W.); (X.L.); (P.L.); (Q.X.)
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Taiyuan 030006, China
| | - Xinghua Lei
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (L.S.); (H.H.); (Y.F.); (D.W.); (Y.L.); (H.Z.); (W.S.); (M.W.); (X.L.); (P.L.); (Q.X.)
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Taiyuan 030006, China
| | - Ping Li
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (L.S.); (H.H.); (Y.F.); (D.W.); (Y.L.); (H.Z.); (W.S.); (M.W.); (X.L.); (P.L.); (Q.X.)
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Taiyuan 030006, China
| | - Qiuhong Xiong
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (L.S.); (H.H.); (Y.F.); (D.W.); (Y.L.); (H.Z.); (W.S.); (M.W.); (X.L.); (P.L.); (Q.X.)
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Taiyuan 030006, China
| | - Changxin Wu
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, Taiyuan 030006, China
| |
Collapse
|
3
|
Jiang S, Zhuang D, Liu P, Xu Q, Luo X, Wang T, Zhang C, Yan R. Synthesis of isothiocyanato alkyl sulfides from alkenes using KSCN and DMTSM. Org Biomol Chem 2024; 22:4472-4477. [PMID: 38775306 DOI: 10.1039/d4ob00487f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
A method for the synthesis of isothiocyanato alkyl sulfides from KSCN and DMTSM under metal-free conditions has been developed. The features of this reaction are low-cost, readily accessible starting materials and the use of KSCN as nucleophiles for C-NCS bond formation. Alkenes with various substituted groups react smoothly and the desired products are obtained in moderate to good yields.
Collapse
Affiliation(s)
- Shixuan Jiang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, China.
| | - Daijiao Zhuang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, China.
| | - Peihua Liu
- Research Institute of Oil and Gas Technology of Changqing Oilfield Company, Xian 710018, Shanxi, China
| | - Qiyang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, China.
| | - Xiaofeng Luo
- Chengdu Guibao Science and Technology Co., Ltd, Chengdu 610041, Sichuan, China
| | - Tianqiang Wang
- Chengdu Guibao Science and Technology Co., Ltd, Chengdu 610041, Sichuan, China
| | - Chengcheng Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, China.
| | - Rulong Yan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, China.
| |
Collapse
|
4
|
Men X, Han X, Lee SJ, Park KT, Han JK, Choi SI, Lee OH. Anti-adipogenic Effects of Sulforaphane-rich Ingredient with Broccoli Sprout and Mustard Seed in 3T3-L1 Preadipocytes. PLANTA MEDICA 2023; 89:526-538. [PMID: 35577064 DOI: 10.1055/a-1853-7101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glucoraphanin (GRA) is a precursor of sulforaphane (SFN), which can be synthesized by the enzyme myrosinase. In this study, we developed and validated HPLC analytical methods for the determination of GRA and SFN in mustard seed powder (MSP), broccoli sprout powder (BSP), and the MSP-BSP mixture powder (MBP), and evaluated their anti-adipogenic effects in 3T3-L1 adipocytes. We found that the analysis methods were suitable for the determination of GRA and SFN in MSP, BSP, and MBP. The content of GRA in BSP was 131.11 ± 1.84 µmol/g, and the content of SFN in MBP was 162.29 ± 1.24 µmol/g. In addition, BSP and MBP effectively decreased lipid accumulation content without any cytotoxicity. Both BSP and MBP significantly inhibited the expression of adipogenic proteins and increased the expression of proteins related to lipolysis and lipid metabolism. BSP and MBP inhibited the expression of adipocyte protein 2 (aP2), CCAAT/enhancer-binding protein-α (C/EBP-α), and peroxisome proliferator-activated receptor-γ (PPAR-γ) in 3T3-L1 adipocytes, and inhibited the expression of fatty acid synthase (FAS) through AMP-activated protein kinase (AMPK). Meanwhile, BSP and MBP also increased the expression of the lipolysis-related proteins, uncoupling protein-1 (UCP-1) and carnitine palmitoyltransferase-1 (CPT-1). Moreover, MBP exerted anti-adipogenic to a greater extent than BSP in 3T3-L1 preadipocytes.
Collapse
Affiliation(s)
- Xiao Men
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, Korea
| | - Xionggao Han
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, Korea
| | - Se-Jeong Lee
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, Korea
| | - Keun-Tae Park
- Research and Development Center, Milae Bioresourece Co. Ltd., Seoul, Korea
| | - Jong-Kwon Han
- Research and Development Center, Milae Bioresourece Co. Ltd., Seoul, Korea
| | - Sun-Il Choi
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, Korea
| | - Ok-Hwan Lee
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
5
|
Men X, Han X, Lee SJ, Oh G, Park KT, Han JK, Choi SI, Lee OH. Anti-Obesogenic Effects of Sulforaphane-Rich Broccoli (Brassica oleracea var. italica) Sprouts and Myrosinase-Rich Mustard (Sinapis alba L.) Seeds in Vitro and in Vivo. Nutrients 2022; 14:nu14183814. [PMID: 36145190 PMCID: PMC9505190 DOI: 10.3390/nu14183814] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
Glucoraphanin (GRA), a glucosinolate particularly abundant in broccoli (Brassica oleracea var. italica) sprouts, can be converted to sulforaphane (SFN) by the enzyme myrosinase. Herein, we investigated the anti-obesogenic effects of broccoli sprout powder (BSP), mustard (Sinapis alba L.) seed powder (MSP), and sulforaphane-rich MSP-BSP mixture powder (MBP) in bisphenol A (BPA)-induced 3T3-L1 cells and obese C57BL/6J mice. In vitro experiments showed that MBP, BSP, and MSP have no cytotoxic effects. Moreover, MBP and BSP inhibited the lipid accumulation in BPA-induced 3T3-L1 cells. In BPA-induced obese mice, BSP and MBP treatment inhibited body weight gain and ameliorated dyslipidemia. Furthermore, our results showed that BSP and MBP could activate AMPK, which increases ACC phosphorylation, accompanied by the upregulation of lipolysis-associated proteins (UCP-1 and CPT-1) and downregulation of adipogenesis-related proteins (C/EBP-α, FAS, aP2, PPAR-γ, and SREBP-1c), both in vitro and in vivo. Interestingly, MBP exerted a greater anti-obesogenic effect than BSP. Taken together, these findings indicate that BSP and MBP could inhibit BPA-induced adipocyte differentiation and adipogenesis by increasing the expression of the proteins related to lipid metabolism and lipolysis, effectively treating BPA-induced obesity. Thus, BSP and MBP can be developed as effective anti-obesogenic drugs.
Collapse
Affiliation(s)
- Xiao Men
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea
| | - Xionggao Han
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea
| | - Se-Jeong Lee
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea
| | - Geon Oh
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea
| | - Keun-Tae Park
- Research and Development Center, Milae Bioresourece Co., Ltd., Seoul 05542, Korea
| | - Jong-Kwon Han
- Research and Development Center, Milae Bioresourece Co., Ltd., Seoul 05542, Korea
| | - Sun-Il Choi
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: (S.-I.C.); (O.-H.L.); Tel.: +82-33-250-6454 (S.-I.C.); +82-33-250-6454 (O.-H.L.); Fax: +82-33-259-5561 (S.-I.C.); +82-33-259-5561 (O.-H.L.)
| | - Ok-Hwan Lee
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: (S.-I.C.); (O.-H.L.); Tel.: +82-33-250-6454 (S.-I.C.); +82-33-250-6454 (O.-H.L.); Fax: +82-33-259-5561 (S.-I.C.); +82-33-259-5561 (O.-H.L.)
| |
Collapse
|
6
|
Mansour SZ, Moustafa EM, Moawed FSM. Modulation of endoplasmic reticulum stress via sulforaphane-mediated AMPK upregulation against nonalcoholic fatty liver disease in rats. Cell Stress Chaperones 2022; 27:499-511. [PMID: 35779187 PMCID: PMC9485504 DOI: 10.1007/s12192-022-01286-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 01/24/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major health concern. Endoplasmic reticulum (ER) stress, inflammation, and metabolic dysfunctions may be targeted to prevent the progress of nonalcoholic fatty liver disease. Sulforaphane (SFN), a sulfur-containing compound that is abundant in broccoli florets, seeds, and sprouts, has been reported to have beneficial effects on attenuating metabolic diseases. In light of this, the present study was designed to elucidate the mechanisms by which SFN ameliorated ER stress, inflammation, lipid metabolism, and insulin resistance - induced by a high-fat diet and ionizing radiation (IR) in rats. In our study, the rats were randomly divided into five groups: control, HFD, HFD + SFN, HFD + IR, and HFD + IR + SFN groups. After the last administration of SFN, liver and blood samples were taken. As a result, the lipid profile, liver enzymes, glucose, insulin, IL-1β, adipokines (leptin and resistin), and PI3K/AKT protein levels, as well as the mRNA gene expression of ER stress markers (IRE-1, sXBP-1, PERK, ATF4, and CHOP), fatty acid synthase (FAS), peroxisome proliferator-activated receptor-α (PPAR-α). Interestingly, SFN treatment modulated the levels of proinflammatory cytokine including IL-1β, metabolic indices (lipid profile, glucose, insulin, and adipokines), and ER stress markers in HFD and HFD + IR groups. SFN also increases the expression of PPAR-α and AMPK genes in the livers of HFD and HFD + IR groups. Meanwhile, the gene expression of FAS and CHOP was significantly attenuated in the SFN-treated groups. Our results clearly show that SFN inhibits liver toxicity induced by HFD and IR by ameliorating the ER stress events in the liver tissue through the upregulation of AMPK and PPAR-α accompanied by downregulation of FAS and CHOP gene expression.
Collapse
Affiliation(s)
- Somaya Z Mansour
- Radiation Biology Research, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Enas M Moustafa
- Radiation Biology Research, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Fatma S M Moawed
- Health Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
7
|
Gao L, Li H, Li B, Shao H, Yu X, Miao Z, Zhang L, Zhu L, Sheng H. Traditional uses, phytochemistry, transformation of ingredients and pharmacology of the dried seeds of Raphanus sativus L. (Raphani Semen), A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115387. [PMID: 35580770 DOI: 10.1016/j.jep.2022.115387] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/03/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Raphani Semen (Lai Fu-zi in Chinese, RS), the dried seeds of Raphanus sativus L., is a traditional Chinese herbal medicine. RS has long been used for eliminating bloating and digestion, antitussive, expectorant and anti-asthmatic in clinical treatment of traditional Chinese medicine. AIM OF THE STUDY This review provides a critical and comprehensive summary of traditional uses, phytochemistry, transformation of ingredients and pharmacology of RS based on research data that have been reported, aiming at providing a basis for further study on RS. MATERIALS AND METHODS The search terms "Raphani Semen", "the seeds of Raphanus sativus L." and "radish seed" were used to obtain the information from electronic databases such as Web of Science, China National Knowledge Infrastructure, PubMed and other web search instruments. Traditional uses, phytochemistry, transformation of ingredients and pharmacology of RS were summarized. RESULTS RS has been traditionally used to treat food dyspeptic retention, distending pain in the epigastrium and abdomen, constipation, diarrhea and dysentery, panting, and cough with phlegm congestion in the clinical practice. The chemical constituents of RS include glucosinolates and sulfur-containing derivatives, phenylpropanoid sucrosides, small organic acids and derivatives, flavone glycosides, alkaloids, terpenoids, steroids, oligosaccharides and others. Among them, glucosinolates can be transformated to isothiocyanates by plant myrosinase or the intestinal flora, which display a variety of activities, such as anti-tumor, anti-inflammatory, antioxidant, antibacterial, treatment of metabolic diseases, central nervous system protection, anti-osteoporosis. RS has a variety of pharmacological activities, including treatment of metabolic diseases, anti-inflammatory, anti-tumor, antioxidant, antibacterial, antihypertensive, central nervous system protection, anti-osteoporosis, etc. This review will provide useful insight for exploration, further study and precise medication of RS in the future. CONCLUSIONS According to its traditional uses, phytochemistry, transformation of ingredients and pharmacology, RS is regarded as a promising medical plant with various chemical compounds and numerous pharmacological activities. However, the material bases and mechanisms of traditional effect of RS need further study.
Collapse
Affiliation(s)
- Lei Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Huan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Bingqian Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Huili Shao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xinyue Yu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhuang Miao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lizhen Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
8
|
Lezcano V, Morelli S, González-Pardo V. Molecular and cellular outcomes of quercetin actions on healthy and tumor osteoblasts. Biochimie 2022; 199:46-59. [PMID: 35447220 DOI: 10.1016/j.biochi.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/11/2022] [Accepted: 04/11/2022] [Indexed: 11/26/2022]
Abstract
There is a global trend in the use of natural bioactive compounds to complement conventional therapies in bone diseases. In this work, we studied the effects of the phytoestrogen quercetin (QUE) in healthy and tumor osteoblasts. We found that QUE (1 μM, 48 h) significantly increased the cell number and the viability of healthy human osteoblasts (hFOB cells) determined by a trypan blue and a MTS assay, respectively, among other concentrations tested. In addition, wound healing and cellular adhesion assays also demonstrated that 1 μM of QUE significantly stimulated both parameters in osteoblasts. Moreover, osteoblast differentiation was also triggered by QUE in an osteogenic medium by measuring alkaline phosphatase activity, calcium deposition, and collagen levels. Herein, a concentration of 0.01 μM of QUE showed an increment in these differentiation markers and an activation of AKT/GSK3β/β-catenin pathway, determined by a Western blot analysis. In addition, immunocytochemistry and subcellular fraction studies indicated an increase of β-catenin localization in the plasma membrane after QUE treatment. Otherwise, QUE (20-100 μM) decreased the cell number and the viability in tumor osteoblasts (ROS 17/2.8 cells) after 48 h. Furthermore, QUE (100 μM) decreased AKT(Ser473) and the pro-apoptotic protein BAD(Ser136) phosphorylation. In addition, the ERK1/2 phosphorylation increased leading to osteosarcoma cell death since pre-treatment with the MEK inhibitor PD98059 had reverted QUE effect. Altogether, these results indicate that to stimulate the osteoblastogenesis low concentrations of QUE are required; however, these concentrations are not effective in inhibiting the growth of tumor osteoblasts, for which higher concentrations are required.
Collapse
Affiliation(s)
- Virginia Lezcano
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), 8000, Bahía Blanca, Buenos Aires, Argentina; Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Argentina, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000, Bahía Blanca, Buenos Aires, Argentina.
| | - Susana Morelli
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), 8000, Bahía Blanca, Buenos Aires, Argentina; Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Argentina, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000, Bahía Blanca, Buenos Aires, Argentina
| | - Verónica González-Pardo
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), 8000, Bahía Blanca, Buenos Aires, Argentina; Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Argentina, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000, Bahía Blanca, Buenos Aires, Argentina
| |
Collapse
|
9
|
Ortega-Hernández E, Antunes-Ricardo M, Jacobo-Velázquez DA. Improving the Health-Benefits of Kales ( Brassica oleracea L. var. acephala DC) through the Application of Controlled Abiotic Stresses: A Review. PLANTS (BASEL, SWITZERLAND) 2021; 10:2629. [PMID: 34961097 PMCID: PMC8706317 DOI: 10.3390/plants10122629] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 12/16/2022]
Abstract
Kale (Brassica oleracea L. var. acephala DC) is a popular cruciferous vegetable originating from Central Asia, and is well known for its abundant bioactive compounds. This review discusses the main kale phytochemicals and emphasizes molecules of nutraceutical interest, including phenolics, carotenoids, and glucosinolates. The preventive and therapeutic properties of kale against chronic and degenerative diseases are highlighted according to the most recent in vitro, in vivo, and clinical studies reported. Likewise, it is well known that the application of controlled abiotic stresses can be used as an effective tool to increase the content of phytochemicals with health-promoting properties. In this context, the effect of different abiotic stresses (saline, exogenous phytohormones, drought, temperature, and radiation) on the accumulation of secondary metabolites in kale is also presented. The information reviewed in this article can be used as a starting point to further validate through bioassays the effects of abiotically stressed kale on the prevention and treatment of chronic and degenerative diseases.
Collapse
Affiliation(s)
- Erika Ortega-Hernández
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León C.P. 64849, Mexico;
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León C.P. 64849, Mexico;
| | - Daniel A. Jacobo-Velázquez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco C.P. 45138, Mexico
| |
Collapse
|
10
|
PKI-587 enhances radiosensitization of hepatocellular carcinoma by inhibiting the PI3K/AKT/mTOR pathways and DNA damage repair. PLoS One 2021; 16:e0258817. [PMID: 34665844 PMCID: PMC8525768 DOI: 10.1371/journal.pone.0258817] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/05/2021] [Indexed: 12/30/2022] Open
Abstract
Radiation is an important therapeutic strategy for hepatocellular (HCC). In this study, we evaluated the role of the dual PI3K/mTOR inhibitor, PKI-587, on radiosensitization of HCC and its possible mechanism. MTT, colony formation, flow cytometry, and immunofluorescence were used to analyze the proliferation, cell cycle, formation of residual γ-H2AX foci, and apoptosis of HCC cells. A SK-Hep1 xenograft HCC model was used to assess the effects of PKI-587 in combination with ionizing radiation in vivo. The activation levels of PI3K/AKT/mTOR and DNA damage repair pathways and their downstream effector molecules were detected with Western blot. It was found that PKI-587 sensitized HCC cells to radiation by increasing DNA damage, enhancing G0/G1 cell-cycle arrest, and inducing apoptosis. In vivo, the combination of radiation with PKI-587 significantly inhibited tumor growth. These findings suggest the usefulness of PKI-587 on radiosensitization of HCC cells by inhibiting the PI3K/AKT/mTOR and DNA damage repair pathways. The combination of ionizing radiation and PKI-587 may be a strategy to improve the efficacy of treating HCC.
Collapse
|
11
|
Loss of lymphocyte cytosolic protein 1 (LCP1) induces browning in 3T3-L1 adipocytes via β3-AR and the ERK-independent signaling pathway. Int J Biochem Cell Biol 2021; 138:106053. [PMID: 34371171 DOI: 10.1016/j.biocel.2021.106053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/16/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023]
Abstract
Increased browning of white adipocytes (beiging) is considered a promising therapeutic strategy to fight obesity and its associated metabolic complications. However, the molecular mechanism modulating brown and beige fat-mediated thermogenesis is not fully elucidated. Here, we identified the lymphocyte cytosolic protein 1 (LCP1) as a factor that obstructs fat browning in white adipocytes. LCP1 plays a vital role in non-hematopoietic malignancies, and is also a well-known tumor biomarker; however, evidence regarding its function in adipocytes remains to be elucidated. The current study explores the physiological role of LCP1 in cultured 3T3-L1 white adipocytes, by applying the loss-of-function study using siRNA. Induction of fat browning by LCP1 depletion was evidenced by evaluating the gene and protein expression levels of brown fat-associated markers through real-time qRT-PCR and immunoblot analysis, respectively. We observed that deficiency of LCP1 promotes mitochondrial biogenesis, and significantly enhances expressions of the core brown fat-specific genes (Cd137, Cidea, Cited1, Tbx1, and Tmem26) and proteins (PGC-1α, PRDM16, and UCP1). In addition, deficiency of LCP1 promotes lipid catabolism as well as suppresses adipogenesis and lipogenesis. Loss of LCP1 also ameliorates cellular stress by downregulating JNK and c-JUN in adipocytes, and stimulates apoptosis. A mechanistic study revealed that deficiency of LCP1 induces browning in white adipocytes, independently via β3-AR and the ERK signaling pathway. The current data reveals a previously unknown mechanism of LCP1 in browning of white adipocytes, and highlights the potential of LCP1 as a pharmacotherapeutic target for treating obesity and other metabolic disorders.
Collapse
|
12
|
Rong HJ, Chen T, Xu ZG, Su TD, Shang Y, Wang YQ, Yang CF. 4-Dimethylaminopyridine-catalyzed synthesis of isothiocyanates from amines and carbon disulfide. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Tian S, Li X, Wang Y, Lu Y. The protective effect of sulforaphane on type II diabetes induced by high-fat diet and low-dosage streptozotocin. Food Sci Nutr 2021; 9:747-756. [PMID: 33598160 PMCID: PMC7866575 DOI: 10.1002/fsn3.2040] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/26/2022] Open
Abstract
Sulforaphane (SFN) which is abundant in broccoli florets, seeds, and sprouts has been reported to have beneficial effects on attenuating metabolic diseases, such as antiobesity, antidiabetes, and antioxidative activities. However, the effects of SFN on the regulation of type II diabetes through easing nonalcoholic fatty liver (NAFLD) and repairing pancreas tissue are rarely reported. In this study, we found that the administration with different dosages of SFN was able to increase serum insulin level, enhance HOMA-β index, decrease fasting blood glucose and serum total cholesterol, triglyceride, low-density lipoprotein (LDL-C), fibroblast growth factor21 (FGF21) levels, ease NAFLD level, and repair the pancreas tissue. In addition, SFN was able to increase liver antioxidant capacities. In particular, high (10 mg/kg) dosage of SFN exerted a significant beneficial effect for decreasing serum lipopolysaccharide levels. Furthermore, the administration of SFN could also decrease the relative abundance of Allobaculum at the genus level. Low dosage (2 mg/kg) of SFN could increase the relative abundance of Bacteroidetes and decrease the relative abundance of Firmicutes at the phylum level. Overall, our results showed that SFN exerted its antidiabetic effect through easing NAFLD and repairing pancreas tissue in association with modulation of gut microbiota. The ease of NAFLD by SFN was accompanied by enhancing liver antioxidant abilities and improving FGF21 resistance.
Collapse
Affiliation(s)
- Shuhua Tian
- College of Food Science and EngineeringNanjing University of Finance and EconomicsNanjingChina
| | - Xiangfei Li
- College of Food Science and EngineeringNanjing University of Finance and EconomicsNanjingChina
| | - Yunfan Wang
- College of Food Science and EngineeringNanjing University of Finance and EconomicsNanjingChina
| | - Yingjian Lu
- College of Food Science and EngineeringNanjing University of Finance and EconomicsNanjingChina
| |
Collapse
|
14
|
Esteve M. Mechanisms Underlying Biological Effects of Cruciferous Glucosinolate-Derived Isothiocyanates/Indoles: A Focus on Metabolic Syndrome. Front Nutr 2020; 7:111. [PMID: 32984393 PMCID: PMC7492599 DOI: 10.3389/fnut.2020.00111] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
An inverse correlation between vegetable consumption and the incidence of cancer has long been described. This protective effect is stronger when cruciferous vegetables are specifically consumed. The beneficial properties of vegetables are attributed to their bioactive components like fiber, antioxidants vitamins, antioxidants, minerals, and phenolic compounds. Cruciferous vegetables contain all these molecules; however, what makes them different are their sulfurous components, called glucosinolates, responsible for their special smell and taste. Glucosinolates are inactive biologically in the organism but are hydrolyzed by the enzyme myrosinase released as a result of chewing, leading to the formation of active derivatives such as isothiocyanates and indoles. A considerable number of in vitro and in vivo studies have reported that isothiocyanates and indoles elicit chemopreventive potency through multiple mechanisms that include modulation of phases I and II detoxification pathway enzymes, regulation of cell cycle arrest, and control of cell growth, induction of apoptosis, antioxidant activity, anti-angiogenic effects, and epigenetic regulation. Nuclear erythroid 2-related factor 2 (Nrf2) and Nuclear factor-κB (NF-κB) are key and central regulators in all these processes with a main role in oxidative stress and inflammation control. It has been described that isothiocyanates and indoles regulate their activity directly and indirectly. Today, the metabolic syndrome (central obesity, insulin resistance, hyperlipidemia, and hypertension) is responsible for a majority of deaths worldwide. All components of metabolic syndrome are characterized by chronic inflammation with deregulation of the PI3K/AKT/mTOR, MAPK/EKR/JNK, Nrf2, and NF-κB signaling pathways. The effects of GLSs derivatives controlling these pathways have been widely described in relation to cancer. Changes in food consumption patterns observed in the last decades to higher consumption of ultra-processed foods, with elevation in simple sugar and saturated fat contents and lower consumption of vegetables and fruits have been directly correlated with metabolic syndrome prevalence. In this review, it is summarized the knowledge regarding the mechanisms by which cruciferous glucosinolate derivatives (isothiocyanates and indoles) directly and indirectly regulate these pathways. However, the review places a special focus on the knowledge of the effects of glucosinolates derivatives in metabolic syndrome, since this has not been reviewed before.
Collapse
Affiliation(s)
- Montserrat Esteve
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain
- Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
15
|
Rai R, Gong Essel K, Mangiaracina Benbrook D, Garland J, Daniel Zhao Y, Chandra V. Preclinical Efficacy and Involvement of AKT, mTOR, and ERK Kinases in the Mechanism of Sulforaphane against Endometrial Cancer. Cancers (Basel) 2020; 12:E1273. [PMID: 32443471 PMCID: PMC7281543 DOI: 10.3390/cancers12051273] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Sulforaphane exerts anti-cancer activity against multiple cancer types. Our objective was to evaluate utility of sulforaphane for endometrial cancer therapy. Sulforaphane reduced viability of endometrial cancer cell lines in association with the G2/M cell cycle arrest and cell division cycle protein 2 (Cdc2) phosphorylation, and intrinsic apoptosis. Inhibition of anchorage-independent growth, invasion, and migration of the cell lines was associated with sulforaphane-induced alterations in epithelial-to-mesenchymal transition (EMT) markers of increased E-cadherin and decreased N-cadherin and vimentin expression. Proteomic analysis identified alterations in AKT, mTOR, and ERK kinases in the networks of sulforaphane effects in the Ishikawa endometrial cancer cell line. Western blots confirmed sulforaphane inhibition of AKT, mTOR, and induction of ERK with alterations in downstream signaling. AKT and mTOR inhibitors reduced endometrial cancer cell line viability and prevented further reduction by sulforaphane. Accumulation of nuclear phosphorylated ERK was associated with reduced sensitivity to the ERK inhibitor and its interference with sulforaphane activity. Sulforaphane induced apoptosis-associated growth inhibition of Ishikawa xenograft tumors to a greater extent than paclitaxel, with no evidence of toxicity. These results verify sulforaphane's potential as a non-toxic treatment candidate for endometrial cancer and identify AKT, mTOR, and ERK kinases in the mechanism of action with interference in the mechanism by nuclear phosphorylated ERK.
Collapse
Affiliation(s)
- Rajani Rai
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.R.); (D.M.B.); (J.G.)
| | - Kathleen Gong Essel
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Doris Mangiaracina Benbrook
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.R.); (D.M.B.); (J.G.)
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Justin Garland
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.R.); (D.M.B.); (J.G.)
| | - Yan Daniel Zhao
- Biostatistics & Epidemiology, College of Public Health University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Vishal Chandra
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.R.); (D.M.B.); (J.G.)
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| |
Collapse
|
16
|
Bo S, Fadda M, Fedele D, Pellegrini M, Ghigo E, Pellegrini N. A Critical Review on the Role of Food and Nutrition in the Energy Balance. Nutrients 2020; 12:E1161. [PMID: 32331288 PMCID: PMC7231187 DOI: 10.3390/nu12041161] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 02/07/2023] Open
Abstract
The mass media has increasingly frequently suggested to the general population that specific foods or nutritional schemes are able to affect both human metabolism and energy expenditure, thus facilitating weight loss. This critical review is aimed at assessing available evidence on the roles of nutrients, food and dietary regimens in energy intake and energy expenditure. We queried the National Library of Medicine, the Cochrane Library, Excerpta Medica dataBASEand the Cumulative Index to Nursing and Allied Health Literature database, and a search strategy was performed by using database-specific subject headings and keywords. We found that available scientific evidence on these topics is scarce, and that the limited number of available studies often have poor methodological quality. Only a few foods show beneficial effects on metabolism and energy expenditure, as the human energy balance is complex and multifactorial. Finally, microbiota may interfere with the intake, use and expenditure of energy in the human body. Conclusive evidence is still lacking, and, at present, it is not possible to identify a food or a diet with a significant impact on human energy expenditure.
Collapse
Affiliation(s)
- Simona Bo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (M.P.); (E.G.)
| | - Maurizio Fadda
- Dietetic and Clinical Nutrition Unit, S. Giovanni Battista Hospital, Città della Salute e della Scienza, 10126 Turin, Italy; (M.F.); (D.F.)
| | - Debora Fedele
- Dietetic and Clinical Nutrition Unit, S. Giovanni Battista Hospital, Città della Salute e della Scienza, 10126 Turin, Italy; (M.F.); (D.F.)
| | - Marianna Pellegrini
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (M.P.); (E.G.)
| | - Ezio Ghigo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (M.P.); (E.G.)
| | - Nicoletta Pellegrini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy;
| |
Collapse
|
17
|
Fischer M, Schmidtmann M. B(C 6F 5) 3- and HB(C 6F 5) 2-mediated transformations of isothiocyanates. Chem Commun (Camb) 2020; 56:6205-6208. [PMID: 32364554 DOI: 10.1039/d0cc02626c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This contribution reports on the reactivity of isothiocyanates towards the boranes B(C6F5)3 and HB(C6F5)2. The reactions of alkyl-substituted isothiocyanates with B(C6F5)3 were found to result in rearrangement reactions to yield stable thiocyanate-B(C6F5)3 adducts. Treatment of isothiocyanates with HB(C6F5)2 leads to 1,2-hydroboration and thus, B,N,C,S heterocycles are formed, which react further under non-inert conditions. Hydrolysis of the hydroboration products leads to a new access to thioformamides.
Collapse
Affiliation(s)
- Malte Fischer
- Institute of Chemistry, Carl von Ossietzky University Oldenburg, Carl von Ossietzky Straße 9-11, D-26129 Oldenburg, Germany.
| | - Marc Schmidtmann
- Institute of Chemistry, Carl von Ossietzky University Oldenburg, Carl von Ossietzky Straße 9-11, D-26129 Oldenburg, Germany.
| |
Collapse
|
18
|
Wu X, Kong W, Qi X, Wang S, Chen Y, Zhao Z, Wang W, Lin X, Lai J, Yu Z, Lai G. Icariin induces apoptosis of human lung adenocarcinoma cells by activating the mitochondrial apoptotic pathway. Life Sci 2019; 239:116879. [PMID: 31682849 DOI: 10.1016/j.lfs.2019.116879] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/07/2019] [Accepted: 09/15/2019] [Indexed: 12/22/2022]
Abstract
Lung cancer is the largest cause of morbidity and mortality among tumor diseases. Traditional first-line chemotherapeutic drugs are frequently accompanied by serious side effects when used to treat tumors, thus, novel drugs with reduced toxic effects may improve a patients' quality of life. Icariin, an extract of herba epimedii, has been demonstrated to exhibit multiple antitumor effects with low toxicity. In the present study, cell cycle analysis, apoptosis assays, DAPI staining, CCK8 assays, xenograft tumor models, mitochondrial membrane potential analysis, western blotting and reverse transcription-quantitative PCR were performed to determine the molecular mechanism underlying icariin activity in the human lung adenocarcinoma cell lines, A549 and H1975. The results showed that icariin reduced proliferation of A549 and H1975 cells in a time- and dose-dependent manner in vitro to a greater degree than the control BEAS-2B cells, and this was associated with increased apoptosis, but not with cell cycle progression. In vivo experiments showed that icariin treatment significantly decreased proliferation of H1975 cells in a xenograft mouse model. Mechanistically, icariin activated the mitochondrial pathway by inhibiting the activation of the PI3K-Akt pathway-associated kinase, Akt, resulting in the activation of members of the caspase family of proteins, and thus inducing apoptosis of A549 cells. Taken together, the results revealed that icariin has anti-cancer properties in lung cancer in vitro and in vivo without any noticeable toxic effects on normal lung epithelial cells. Icariin in combination with conventional anti-cancer agents may be an effective therapeutic strategy for treatment of lung carcinoma.
Collapse
Affiliation(s)
- Xiaoli Wu
- Department of Medical Oncology, 900 Hospital of the Joint Logistics Team Support Force, Fuzhou, Fujian Province, 350025, PR China
| | - Wencui Kong
- Department of Medical Oncology, 900 Hospital of the Joint Logistics Team Support Force, Fuzhou, Fujian Province, 350025, PR China
| | - Xiaoyan Qi
- Department of Oncology, Zibo Central Hospital, Zibo, Shandong Province, 255020, PR China
| | - Shuiliang Wang
- Department of Urology, 900th Hospital of the Joint Logistics Team Support Force, Fujian Medical University, Fuzhou, Fujian Province, 350025, PR China; Fujian Key Laboratory of Transplant Biology, Affiliated Dongfang Hospital, Xiamen University School of Medicine, Fuzhou, Fujian Province, 350025, PR China
| | - Ying Chen
- Department of Medical Oncology, 900 Hospital of the Joint Logistics Team Support Force, Fuzhou, Fujian Province, 350025, PR China
| | - Zhongquan Zhao
- Department of Medical Oncology, 900 Hospital of the Joint Logistics Team Support Force, Fuzhou, Fujian Province, 350025, PR China
| | - Wenwu Wang
- Department of Medical Oncology, 900 Hospital of the Joint Logistics Team Support Force, Fuzhou, Fujian Province, 350025, PR China
| | - Xiandong Lin
- Laboratory of Radiation Oncology and Radiobiology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian Province, 350014, PR China
| | - Jinhuo Lai
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, PR China
| | - Zongyang Yu
- Department of Medical Oncology, 900 Hospital of the Joint Logistics Team Support Force, Fuzhou, Fujian Province, 350025, PR China; Fujian Medical University Affiliated Dongfang Hospital, Fuzhou, Fujian Province, 350025, PR China; Xiamen University School of Medicine, Xiamen, Fujian Province, 361102, PR China; Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, 350122, PR China.
| | - Guoxiang Lai
- Department of Respiratory and Critical Care Medicine, 900 Hospital of the Joint Logistics Team Support Force, Fuzhou, Fujian Province, 350025, PR China.
| |
Collapse
|
19
|
Aranaz P, Navarro-Herrera D, Romo-Hualde A, Zabala M, López-Yoldi M, González-Ferrero C, Gil AG, Alfredo Martinez J, Vizmanos JL, Milagro FI, González-Navarro CJ. Broccoli extract improves high fat diet-induced obesity, hepatic steatosis and glucose intolerance in Wistar rats. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
20
|
Exogenous Tetranectin Protects Against 1-Methyl-4-Phenylpyridine–Induced Neurotoxicity by Inhibiting Apoptosis and Autophagy Through Ribosomal Protein S6 Kinase Beta-1. World Neurosurg 2019; 122:e375-e382. [DOI: 10.1016/j.wneu.2018.10.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/07/2018] [Accepted: 10/08/2018] [Indexed: 12/16/2022]
|
21
|
Kim HJ, You MK, Lee YH, Kim HJ, Adhikari D, Kim HA. Red pepper seed water extract inhibits preadipocyte differentiation and induces mature adipocyte apoptosis in 3T3-L1 cells. Nutr Res Pract 2018; 12:494-502. [PMID: 30515277 PMCID: PMC6277307 DOI: 10.4162/nrp.2018.12.6.494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/08/2018] [Accepted: 08/20/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND/OBJECTIVES Reducing the number of adipocytes by inducing apoptosis of mature adipocytes as well as suppressing differentiation of preadipocytes plays an important role in preventing obesity. This study examines the anti-adipogenic and pro-apoptotic effect of red pepper seed water extract (RPS) prepared at 4℃ (RPS4) in 3T3-L1 cells. MATERIALS/METHODS Effect of RPS4 or its fractions on lipid accumulation was determined in 3T3-L1 cells using oil red O (ORO) staining. The expressions of AMP-activated protein kinase (AMPK) and adipogenic associated proteins [peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer-binding proteins α (C/EBP α), sterol regulatory element binding protein-1c (SREBP-1c), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC)] were measured in 3T3-L1 cells treated with RPS4. Apoptosis and the expression of Akt and Bcl-2 family proteins [B-cell lymphoma 2 (Bcl-2), Bcl-2-associated death promoter (Bad), Bcl-2 like protein 4 (Bax), Bal-2 homologous antagonist/killer (Bak)] were measured in mature 3T3-L1 cells treated with RPS4. RESULTS Treatment of RPS4 (0-75 µg/mL) or its fractions (0-50 µg/mL) for 24 h did not have an apparent cytotoxicity on pre and mature 3T3-L1 cells. RPS4 significantly suppressed differentiation and cellular lipid accumulation by increasing the phosphorylation of AMPK and reducing the expression of PPAR-γ, C/EBP α, SREBP-1c, FAS, and ACC. In addition, all fractions except ethyl acetate fraction significantly suppressed cellular lipid accumulation. RPS4 induced the apoptosis of mature adipocytes by hypophosphorylating Akt, increasing the expression of the pro-apoptotic proteins, Bak, Bax, and Bad, and reducing the expression of the anti-apoptotic proteins, Bcl-2 and p-Bad. CONCLUSIONS These finding suggest that RPS4 can reduce the numbers as well as the size of adipocytes and might useful for preventing and treating obesity.
Collapse
Affiliation(s)
| | - Mi-Kyoung You
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Young-Hyun Lee
- Department of Food and Nutrition, Mokpo National University, 1666, Yeongsan-ro, Cheonggye-myeon, Muan-gun, Jeonnam 58554, Korea
| | - Hyun-Jung Kim
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Korea
| | - Deepak Adhikari
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Korea
| | - Hyeon-A Kim
- Department of Food and Nutrition, Mokpo National University, 1666, Yeongsan-ro, Cheonggye-myeon, Muan-gun, Jeonnam 58554, Korea
| |
Collapse
|
22
|
Martins T, Colaço B, Venâncio C, Pires MJ, Oliveira PA, Rosa E, Antunes LM. Potential effects of sulforaphane to fight obesity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:2837-2844. [PMID: 29363750 DOI: 10.1002/jsfa.8898] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/09/2018] [Accepted: 01/16/2018] [Indexed: 06/07/2023]
Abstract
Obesity is linked to the onset of many diseases such as diabetes mellitus, cardiovascular diseases and cancer, among others. The prevalence of obesity nearly doubled worldwide between 1980 and 2014. Simultaneously, in the last decade, the effects of sulforaphane as a potential treatment for obesity have been investigated, with promising results. Fruits and vegetables and their processed agri-food co-products are good sources of natural health-promoting compounds. Brassica crops are among the most produced crops in the world and are a good source of glucoraphanin, which, following hydrolysis, releases sulforaphane. The Brassicaceae family generates large amounts of co-products with no intended use, causing negative economic and environmental impact. Valorization of these co-products could be achieved through their exploitation for the extraction of bioactive compounds such as sulforaphane. However, the extraction process still needs further improvement for its economic feasibility. This article reviews the potential effects of sulforaphane in the treatment of obesity, linked to the relevance of giving Brassica co-products added value, which is of key importance for the competitiveness of farmers and the agri-food industry. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tânia Martins
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Bruno Colaço
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Department of Animal Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Carlos Venâncio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Department of Animal Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Maria J Pires
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Paula A Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Eduardo Rosa
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Luís M Antunes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
- Laboratory Animal Science Group, Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
- Institute for Investigation and Innovation in Health (i3S), University of Porto, Porto, Portugal
| |
Collapse
|
23
|
FoxM1 is an independent poor prognostic marker and therapeutic target for advanced Middle Eastern breast cancer. Oncotarget 2018; 9:17466-17482. [PMID: 29707121 PMCID: PMC5915129 DOI: 10.18632/oncotarget.24739] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/02/2018] [Indexed: 12/18/2022] Open
Abstract
Breast cancer (BC) is the most common cause of cancer-related death in females in Saudi Arabia. BC in Saudi women tend to behave more aggressively than breast cancer in the West. Therefore, identification of new molecular targets and treatment strategies are highly warranted to improve patient outcome. FoxM1 has been shown to play a critical role in pathogenesis of various malignancies. In this study, we explored the prevalence and clinical implication of FoxM1 overexpression in Saudi breast cancer. FoxM1 protein overexpression was seen in 79% (770/975) of BC tissues and was associated with aggressive clinical parameters such as younger age (< 30 yrs) (p = 0.0172), high grade (p < 0.0001), mucinous histology (p < 0.0001) and triple negative phenotype (p < 0.0001). Overexpression of FoxM1 was significantly associated with activated AKT (p < 0.0001), Ki67 expression (p < 0.0001), VEGF (p < 0.0001), MMP-9 (p < 0.0001), XIAP (p < 0.0001) and Bcl-xL (p = 0.0300). Importantly, FoxM1 overexpression is found to be an independent prognostic marker in multivariate analysis in advanced stage (Stage III and IV) breast cancer (p = 0.0298). In vitro data using BC cell lines showed that down-regulation of FoxM1 using specific inhibitor, thiostrepton or siRNA inhibited cell migration, invasion and angiogenesis. In addition, treatment of BC cell lines with thiostrepton resulted in inhibition of proliferation and induction of apoptosis in a dose-dependent manner. In vivo, thiostrepton treatment regressed MDA-MB-231 cells generated xenografts via down-regulation of FoxM1 and its downstream targets. Our results suggest that FoxM1 may be a potential therapeutic target for the treatment of aggressive breast cancers.
Collapse
|
24
|
Zhou Y, Yang G, Tian H, Hu Y, Wu S, Geng Y, Lin K, Wu W. Sulforaphane metabolites cause apoptosis via microtubule disruption in cancer. Endocr Relat Cancer 2018; 25:255-268. [PMID: 29431641 DOI: 10.1530/erc-17-0483] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 12/19/2017] [Indexed: 12/17/2022]
Abstract
Sulforaphane (SFN) inhibited growth in many cancers, but its half-life is 2 h in circulation. However, its metabolites, sulforaphane-cysteine (SFN-Cys) and sulforaphane-N-acetyl-cysteine (SFN-NAC) had longer half-lives and decreased the cell viability in both dose- and time-dependent manners in human prostate cancer. Flow cytometry assay revealed that these two SFN metabolites induced apoptosis with the features such as vacuolization, disappeared nuclear envelope, nuclear agglutination and fragmentation via transmission electron microscopy observation. Western blot showed that the sustained phosphorylation of ERK1/2 mediated by SFN metabolites caused activation and upregulation of cleaved Caspase 3 and downregulation of α-tubulin. High expression of α-tubulin was demonstrated to be positively correlated with cancer pathological grading. Both co-immunoprecipitation and immunofluorescence staining implicated the interaction between SFN metabolite-induced phosphorylated ERK1/2 and α-tubulin, and Caspase 3 cleavage assay showed that α-tubulin might be the substrate for cleaved Caspase 3. More, the SFN metabolite-mediated reduction of α-tubulin increased the depolymerization and instability of microtubules by microtubule polymerization assay. Reversely, microtubule-associated protein Stathmin-1 phosphorylation was increased via phosphorylated ERK1/2 and total Stathmin-1 was reduced, which might promote over-stability of microtubules. Immunofluorescence staining also showed that SFN metabolites induced the 'nest-like' structures of microtubule distribution resulting from the disrupted and aggregated microtubules, and abnormal nuclear division, suggesting that the disturbance of spindle formation and mitosis turned up. Thus, SFN-Cys and SFN-NAC triggered the dynamic imbalance of microtubules, microtubule disruption leading to cell apoptosis. These findings provided a novel insight into the chemotherapy of human prostate cancer.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Biochemistry and Molecular BiologySchool of Basic Medical Sciences, Beijing Key Laboratory of Tumor Invasion and Metastasis Research, Institute of Cancer Research, Capital Medical University, Beijing, China
| | - Gaoxiang Yang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical Sciences, Beijing Key Laboratory of Tumor Invasion and Metastasis Research, Institute of Cancer Research, Capital Medical University, Beijing, China
| | - Hua Tian
- Department of Biochemistry and Molecular BiologySchool of Basic Medical Sciences, Beijing Key Laboratory of Tumor Invasion and Metastasis Research, Institute of Cancer Research, Capital Medical University, Beijing, China
| | - Yabin Hu
- Department of Biochemistry and Molecular BiologySchool of Basic Medical Sciences, Beijing Key Laboratory of Tumor Invasion and Metastasis Research, Institute of Cancer Research, Capital Medical University, Beijing, China
| | - Sai Wu
- Department of Biochemistry and Molecular BiologySchool of Basic Medical Sciences, Beijing Key Laboratory of Tumor Invasion and Metastasis Research, Institute of Cancer Research, Capital Medical University, Beijing, China
| | - Yang Geng
- Department of Biochemistry and Molecular BiologySchool of Basic Medical Sciences, Beijing Key Laboratory of Tumor Invasion and Metastasis Research, Institute of Cancer Research, Capital Medical University, Beijing, China
| | - Kai Lin
- Department of Biochemistry and Molecular BiologySchool of Basic Medical Sciences, Beijing Key Laboratory of Tumor Invasion and Metastasis Research, Institute of Cancer Research, Capital Medical University, Beijing, China
| | - Wei Wu
- Department of Biochemistry and Molecular BiologySchool of Basic Medical Sciences, Beijing Key Laboratory of Tumor Invasion and Metastasis Research, Institute of Cancer Research, Capital Medical University, Beijing, China
- Institute of Brain TumorBeijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
25
|
Choi SJ, Kim HS. Deregulation of Nrf2/ARE signaling pathway causes susceptibility of dystrophin-deficient myotubes to menadione-induced oxidative stress. Exp Cell Res 2018; 364:224-233. [PMID: 29458173 DOI: 10.1016/j.yexcr.2018.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/30/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an X chromosome-linked disorder caused by a mutation in the dystrophin gene. Many previous studies reported that the skeletal muscles of DMD patients were more susceptible to oxidative stress than those of healthy people. However, not much has been known about the responsible mechanism of the differential susceptibility. In this study, we established dystrophin knock-down (DysKD) cell lines by transfection of dystrophin shRNA lentiviral particles into C2 cells and found that DysKD myotubes are more vulnerable to menadione-induced oxidative stress than control myotubes. We focused on the nuclear erythroid 2-related factor 2 (Nrf2) which is a transcription factor that regulates the expression of phase II antioxidant enzymes by binding to the antioxidant response element (ARE). Under menadione-induced oxidative stress, the translocation of Nrf2 to the nucleus is significantly decreased in the DysKD myotubes. In addition, the binding of Nrf2 to ARE site of Bcl-2 gene as well as protein expression of Bcl-2 is decreased compared to the control cells. Interestingly, sulforaphane increased Akt activation and Nrf2 translocation to the nucleus in the DysKD myotubes. These results suggest that the Nrf2 pathway might be the responsible pathway to the oxidative stress-induced muscle damage in DMD.
Collapse
Affiliation(s)
- Su Jin Choi
- Department of Biological Science, College of Natural Sciences, Ajou University, Suwon 16499, Republic of Korea
| | - Hye Sun Kim
- Department of Biological Science, College of Natural Sciences, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
26
|
Yao A, Shen Y, Zhang Z, Zou Z, Wang A, Chen S, Zhang H, Chen F, Zhao J, Chen Z, Shan Y, Zhang X. Sulforaphane and myricetin act synergistically to induce apoptosis in 3T3‑L1 adipocytes. Mol Med Rep 2017; 17:2945-2951. [PMID: 29257275 PMCID: PMC5783510 DOI: 10.3892/mmr.2017.8235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 03/09/2017] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to investigate whether sulforaphane (SFN) and myricetin (Myr) synergistically induce apoptosis in adipocytes. The viability of mature 3T3-L1 adipocytes treated with 40 µM SFN and/or 100 µM Myr was assessed using an MTT assay. Apoptosis was assessed by Hoechst 33258 nuclear staining, and by detection of single-stranded DNA using an enzyme-linked immunosorbent assay. Compared with the effects of each compound alone, the combination of SFN and Myr synergistically reduced cell viability, induced apoptosis, increased pro-apoptotic Bcl-2 associated X protein expression, decreased anti-apoptotic B-cell lymphoma-2 expression, enhanced Bcl-2-associated death promoter (Bad) translocation from the cytoplasm to the mitochondria, and reduced Bad phosphorylation at Ser112. These effects were accompanied by increased cleavage of caspase 3 and poly-ADP-ribose-polymerase. In addition, combined SFN and Myr treatment significantly decreased the protein expression levels of phosphorylated AKT serine/threonine kinase 1 (Akt) at Ser473, as well as the phosphorylation of the downstream protein ribosomal protein, S6 kinase β-1. Therefore, SFN plus Myr was a more potent inducer of apoptosis in 3T3-L1 adipocytes than either compound alone. The results of the present study suggest that the mechanism of SNF/Myr-induced apoptosis involved activation of the Akt-mediated mitochondrial apoptotic pathway. This may aid treatment of animal models of obesity and preclinical testing.
Collapse
Affiliation(s)
- Anjun Yao
- Institute of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yingzhuo Shen
- Institute of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Zhuangwei Zhang
- Institute of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Zuquan Zou
- Institute of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Anshi Wang
- Institute of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Shiyong Chen
- Institute of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Huiqin Zhang
- Institute of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Fen Chen
- The Affiliated Hospital of School of Medicine of Ningbo University, Ningbo, Zhejiang 315210, P.R. China
| | - Jinshun Zhao
- Institute of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Zhongming Chen
- Ningbo Kangning Hospital, Ningbo, Zhejiang 315210, P.R. China
| | - Yujuan Shan
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, P.R. China
| | - Xiaohong Zhang
- Institute of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
27
|
Lone J, Yun JW. Honokiol exerts dual effects on browning and apoptosis of adipocytes. Pharmacol Rep 2017; 69:1357-1365. [DOI: 10.1016/j.pharep.2017.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 05/06/2017] [Accepted: 06/13/2017] [Indexed: 12/11/2022]
|
28
|
Zheng HC, Zhao S, Song Y, Ding XQ. The roles of ING5 expression in ovarian carcinogenesis and subsequent progression: a target of gene therapy. Oncotarget 2017; 8:103449-103464. [PMID: 29262575 PMCID: PMC5732741 DOI: 10.18632/oncotarget.21968] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/21/2017] [Indexed: 12/28/2022] Open
Abstract
Here, we found that ING5 overexpression suppressed cell viability, glucose metabolism, migration, invasion and epithelial-mesenchymal transition, and induced cell arrest, apoptosis, senescence, autophagy and fat accumulation in ovarian cancer cells. ING5-mediated chemoresistance was positively linked to apoptotic resistance and chemoresistance-related gene expression. ING5 overexpression suppressed tumor growth of ovarian cancer by decreasing proliferation, and inducing apoptosis and autophagy. ING5 mRNA level was lower in ovarian cancer than normal ovary, and borderline than benign tumors (p < 0.05), and negatively correlated with vascular invasion, lymphatic invasion and FIGO staging of ovarian cancer (p < 0.05). ING5 protein was less expressed in primary cancer than normal ovary (p < 0.05). There was a negative correlation between ING5 mRNA expression and the overall or progression-free survival time of the cancer patients with Grade 2, Grade 3, and stage I cancer (p < 0.05). Immunohistochemically, ING5 was less expressed in serous and mucinous adenocarcinoma than miscellaneous subtypes, and positively correlated with dedifferentiation and ki-67 expression of ovarian cancer (p < 0.05). These data suggested that down-regulated ING5 expression might be involved in ovarian carcinogenesis possibly by suppressing aggressive phenotypes, including proliferation, tumor growth, migration, invasion, and anti-apoptosis.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Shuang Zhao
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yang Song
- Department of Pathology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Xiao-Qing Ding
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
29
|
Arcidiacono P, Ragonese F, Stabile A, Pistilli A, Kuligina E, Rende M, Bottoni U, Calvieri S, Crisanti A, Spaccapelo R. Antitumor activity and expression profiles of genes induced by sulforaphane in human melanoma cells. Eur J Nutr 2017; 57:2547-2569. [PMID: 28864908 PMCID: PMC6182666 DOI: 10.1007/s00394-017-1527-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/11/2017] [Indexed: 01/02/2023]
Abstract
Purpose Human melanoma is a highly aggressive incurable cancer due to intrinsic cellular resistance to apoptosis, reprogramming, proliferation and survival during tumour progression. Sulforaphane (SFN), an isothiocyanate found in cruciferous vegetables, plays a role in carcinogenesis in many cancer types. However, the cytotoxic molecular mechanisms and gene expression profiles promoted by SFN in human melanoma remain unknown. Methods Three different cell lines were used: two human melanoma A375 and 501MEL and human epidermal melanocytes (HEMa). Cell viability and proliferation, cell cycle analysis, cell migration and invasion and protein expression and phosphorylation status of Akt and p53 upon SFN treatment were determined. RNA-seq of A375 was performed at different time points after SFN treatment. Results We demonstrated that SFN strongly decreased cell viability and proliferation, induced G2/M cell cycle arrest, promoted apoptosis through the activation of caspases 3, 8, 9 and hampered migration and invasion abilities in the melanoma cell lines. Remarkably, HEMa cells were not affected by SFN treatment. Transcriptomic analysis revealed regulation of genes involved in response to stress, apoptosis/cell death and metabolic processes. SFN upregulated the expression of pro-apoptotic genes, such as p53, BAX, PUMA, FAS and MDM2; promoted cell cycle inhibition and growth arrest by upregulating EGR1, GADD45B, ATF3 and CDKN1A; and simultaneously acted as a potent inhibitor of genotoxicity by launching the stress-inducible protein network (HMOX1, HSPA1A, HSPA6, SOD1). Conclusion Overall, the data show that SFN cytotoxicity in melanoma derives from complex and concurrent mechanisms during carcinogenesis, which makes it a promising cancer prevention agent. Electronic supplementary material The online version of this article (doi:10.1007/s00394-017-1527-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paola Arcidiacono
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United KingdomDepartment of Experimental Medicine, University of Perugia, Piazza Lucio Severi, 06132, Perugia, Italy.,Dermatology Clinic, Department of Internal Medicine and Medical Specialties, University of Rome, Rome, Italy
| | - Francesco Ragonese
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United KingdomDepartment of Experimental Medicine, University of Perugia, Piazza Lucio Severi, 06132, Perugia, Italy
| | - Anna Stabile
- Department of Surgery and Biomedical Sciences, University of Perugia, 06132, Perugia, Italy
| | - Alessandra Pistilli
- Department of Surgery and Biomedical Sciences, University of Perugia, 06132, Perugia, Italy
| | - Ekaterina Kuligina
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United KingdomDepartment of Experimental Medicine, University of Perugia, Piazza Lucio Severi, 06132, Perugia, Italy.,N.N. Petrov Institute of Oncology, Saint Petersburg, 197758, Russia
| | - Mario Rende
- Department of Surgery and Biomedical Sciences, University of Perugia, 06132, Perugia, Italy
| | - Ugo Bottoni
- Dermatology Clinic, Department of Internal Medicine and Medical Specialties, University of Rome, Rome, Italy.,University Magna Graecia, Catanzaro, Italy
| | - Stefano Calvieri
- Dermatology Clinic, Department of Internal Medicine and Medical Specialties, University of Rome, Rome, Italy
| | - Andrea Crisanti
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Roberta Spaccapelo
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United KingdomDepartment of Experimental Medicine, University of Perugia, Piazza Lucio Severi, 06132, Perugia, Italy.
| |
Collapse
|
30
|
Wu S, Zhou Y, Yang G, Tian H, Geng Y, Hu Y, Lin K, Wu W. Sulforaphane-cysteine induces apoptosis by sustained activation of ERK1/2 and caspase 3 in human glioblastoma U373MG and U87MG cells. Oncol Rep 2017; 37:2829-2838. [PMID: 28393231 DOI: 10.3892/or.2017.5562] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/22/2017] [Indexed: 11/05/2022] Open
Abstract
We previously demonstrated that sulforaphane (SFN) inhibited invasion via sustained activation of ERK1/2 in human glioblastoma cells. However, sulforaphane-cysteine (SFN-Cys), an analog of SFN, enriched in plasma with longer half-life, had more potentiality to induce apoptosis. Here we investigated the molecular mechanisms of SFN-Cys-induced apoptosis in human glioblastoma U373MG and U87MG cells. Cell viability assay showed that SFN-Cys inhibited cell viability in a dose-dependent manner. Cell morphology observation also showed SFN-Cys increased the phenotype of cell death in a dose-dependent manner. Furthermore, flow cytometry assay showed that SFN-Cys induced apoptosis significantly in a dose-dependent manner in both cell lines. Furthermore, western blot analysis demonstrated that SFN-Cys induced activation of ERK1/2 in a sustained manner and the activation contributed to upregulation of Bax/Bcl-2 ratio and cleaved caspase 3, and these results can be reversed by the ERK1/2 blocker PD98059. Our results showed that SFN-Cys induced cell apoptosis via sustained activation of ERK1/2 and the ERK1/2 mediated signaling pathways such as activation of caspase 3 and apoptosis-related proteins, thus indicating that SFN-Cys might be a more promising therapeutic agent versus SFN to resist glioblastoma cells, especially in Taxol-resistant cancer cells.
Collapse
Affiliation(s)
- Sai Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Yan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Gaoxiang Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Hua Tian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Yang Geng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Yabin Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Kai Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Wei Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
31
|
Choi HE, Shin JS, Leem DG, Kim SD, Cho WJ, Lee KT. 6-(3,4-Dihydro-1H-isoquinoline-2-yl)-N-(6-methoxypyridine-2-yl) nicotinamide-26 (DIMN-26) decreases cell proliferation by induction of apoptosis and downregulation of androgen receptor signaling in human prostate cancer cells. Chem Biol Interact 2016; 260:196-207. [DOI: 10.1016/j.cbi.2016.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 08/23/2016] [Accepted: 10/04/2016] [Indexed: 01/11/2023]
|
32
|
Zhang HQ, Chen SY, Wang AS, Yao AJ, Fu JF, Zhao JS, Chen F, Zou ZQ, Zhang XH, Shan YJ, Bao YP. Sulforaphane induces adipocyte browning and promotes glucose and lipid utilization. Mol Nutr Food Res 2016; 60:2185-2197. [PMID: 27218607 PMCID: PMC5111775 DOI: 10.1002/mnfr.201500915] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 12/18/2022]
Abstract
SCOPE Obesity is closely related to the imbalance of white adipose tissue storing excess calories, and brown adipose tissue dissipating energy to produce heat in mammals. Recent studies revealed that acquisition of brown characteristics by white adipocytes, termed "browning," may positively contribute to cellular bioenergetics and metabolism homeostasis. The goal was to investigate the putative effects of natural antioxidant sulforaphane (1-isothiocyanate-4-methyl-sulfonyl butane; SFN) on browning of white adipocytes. METHODS AND RESULTS 3T3-L1 mature white adipocytes were treated with SFN for 48 h, and then the mitochondrial content, function, and energy utilization were assessed. SFN was found to induce 3T3-L1 adipocytes browning based on the increased mitochondrial content and activity of respiratory chain enzymes, whereas the mechanism involved the upregulation of nuclear factor E2-related factor 2/sirtuin1/peroxisome proliferator activated receptor gamma coactivator 1 alpha signaling. SFN enhanced uncoupling protein 1 expression, a marker for brown adipocyte, leading to the decrease in cellular ATP. SFN also enhanced glucose uptake and oxidative utilization, lipolysis, and fatty acid oxidation in 3T3-L1 adipocytes. CONCLUSION SFN-induced browning of white adipocytes enhanced the utilization of cellular fuel, and application of SFN is a promising strategy to combat obesity and obesity-related metabolic disorder.
Collapse
Affiliation(s)
- Hui Q Zhang
- Institute of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.,Department of Clinical Nutrition, Ningbo Second Hospital, Ningbo, Zhejiang, China
| | - Shi Y Chen
- Institute of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.,Hospital Infection-Control Department, Ningbo Medical Treatment Center, Lihuili Hospital, Ningbo, Zhejiang, China
| | - An S Wang
- Institute of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - An J Yao
- Institute of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Jian F Fu
- Institute of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Jin S Zhao
- Institute of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Fen Chen
- The Affiliated Hospital of the School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Zu Q Zou
- Institute of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Xiao H Zhang
- Institute of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.
| | - Yu J Shan
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yong P Bao
- Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|