1
|
Kawanabe A, Takeshita K, Takata M, Fujiwara Y. ATP modulates the activity of the voltage-gated proton channel through direct binding interaction. J Physiol 2023; 601:4073-4089. [PMID: 37555355 DOI: 10.1113/jp284175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/27/2023] [Indexed: 08/10/2023] Open
Abstract
ATP is an important molecule implicated in diverse biochemical processes, including the modulation of ion channel and transporter activity. The voltage-gated proton channel (Hv1) controls proton flow through the transmembrane pathway in response to membrane potential, and various molecules regulate its activity. Although it is believed that ATP is not essential for Hv1 activity, a report has indicated that cytosolic ATP may modulate Hv1. However, the detailed molecular mechanism underlying the effect of ATP on Hv1 is unknown, and whether ATP is involved in the physiological regulation of Hv1 activity remains unclear. Here, we report that cytosolic ATP is required to maintain Hv1 activity. To gain insight into the underlying mechanism, we analysed the effects of ATP on the mouse Hv1 channel (mHv1) using electrophysiological and microscale thermophoresis (MST) methods. Intracellular ATP accelerated the activation kinetics of mHv1, thereby increasing the amplitude of the proton current within the physiological concentration range. The increase in proton current was reproduced with a non-hydrolysable ATP analogue, indicating that ATP directly influences Hv1 activity without an enzymatic reaction. The direct molecular interaction between the purified mHv1 protein and ATP was analysed and demonstrated through MST. In addition, ATP facilitation was observed for the endogenous proton current flowing through Hv1 in the physiological concentration range of ATP. These results suggest that ATP influences Hv1 activity via direct molecular interactions and is required for the physiological function of Hv1. KEY POINTS: We found that ATP is required to maintain the activity of voltage-gated proton channels (Hv1) and investigated the underlying molecular mechanism. Application of intracellular ATP increased the amplitude of the proton current flowing through Hv1, accompanied by an acceleration of activation kinetics. The direct interaction between purified Hv1 protein and ATP was quantitatively analysed using microscale thermophoresis. ATP enhanced endogenous proton currents in breast cancer cell lines. These results suggest that ATP influences Hv1 activity via direct molecular interactions and that its functional characteristics are required for the physiological activity of Hv1.
Collapse
Affiliation(s)
- Akira Kawanabe
- Laboratory of Molecular Physiology & Biophysics, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| | | | - Maki Takata
- Laboratory of Molecular Physiology & Biophysics, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| | - Yuichiro Fujiwara
- Laboratory of Molecular Physiology & Biophysics, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| |
Collapse
|
2
|
Alvear-Arias JJ, Pena-Pichicoi A, Carrillo C, Fernandez M, Gonzalez T, Garate JA, Gonzalez C. Role of voltage-gated proton channel (Hv1) in cancer biology. Front Pharmacol 2023; 14:1175702. [PMID: 37153807 PMCID: PMC10157179 DOI: 10.3389/fphar.2023.1175702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/11/2023] [Indexed: 05/10/2023] Open
Abstract
The acid-base characteristics of tumor cells and the other elements that compose the tumor microenvironment have been topics of scientific interest in oncological research. There is much evidence confirming that pH conditions are maintained by changes in the patterns of expression of certain proton transporters. In the past decade, the voltage-gated proton channel (Hv1) has been added to this list and is increasingly being recognized as a target with onco-therapeutic potential. The Hv1 channel is key to proton extrusion for maintaining a balanced cytosolic pH. This protein-channel is expressed in a myriad of tissues and cell lineages whose functions vary from producing bioluminescence in dinoflagellates to alkalizing spermatozoa cytoplasm for reproduction, and regulating the respiratory burst for immune system response. It is no wonder that in acidic environments such as the tumor microenvironment, an exacerbated expression and function of this channel has been reported. Indeed, multiple studies have revealed a strong relationship between pH balance, cancer development, and the overexpression of the Hv1 channel, being proposed as a marker for malignancy in cancer. In this review, we present data that supports the idea that the Hv1 channel plays a significant role in cancer by maintaining pH conditions that favor the development of malignancy features in solid tumor models. With the antecedents presented in this bibliographic report, we want to strengthen the idea that the Hv1 proton channel is an excellent therapeutic strategy to counter the development of solid tumors.
Collapse
Affiliation(s)
- Juan J. Alvear-Arias
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Antonio Pena-Pichicoi
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Christian Carrillo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Miguel Fernandez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
| | - Tania Gonzalez
- National Center for Minimally Invasive Surgery, La Habana, Cuba
| | - Jose A. Garate
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia y Vida, Santiago, Chile
| | - Carlos Gonzalez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus in NanoBioPhysics, Universidad de Valparaíso, Valparaíso, Chile
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, United States
- *Correspondence: Carlos Gonzalez,
| |
Collapse
|
3
|
Papp F, Toombes GES, Pethő Z, Bagosi A, Feher A, Almássy J, Borrego J, Kuki Á, Kéki S, Panyi G, Varga Z. Multiple mechanisms contribute to fluorometry signals from the voltage-gated proton channel. Commun Biol 2022; 5:1131. [PMID: 36289443 PMCID: PMC9606259 DOI: 10.1038/s42003-022-04065-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/30/2022] [Indexed: 11/30/2022] Open
Abstract
Voltage-clamp fluorometry (VCF) supplies information about the conformational changes of voltage-gated proteins. Changes in the fluorescence intensity of the dye attached to a part of the protein that undergoes a conformational rearrangement upon the alteration of the membrane potential by electrodes constitute the signal. The VCF signal is generated by quenching and dequenching of the fluorescence as the dye traverses various local environments. Here we studied the VCF signal generation, using the Hv1 voltage-gated proton channel as a tool, which shares a similar voltage-sensor structure with voltage-gated ion channels but lacks an ion-conducting pore. Using mutagenesis and lipids added to the extracellular solution we found that the signal is generated by the combined effects of lipids during movement of the dye relative to the plane of the membrane and by quenching amino acids. Our 3-state model recapitulates the VCF signals of the various mutants and is compatible with the accepted model of two major voltage-sensor movements. Fluorometry signals indicating conformational change in an ion channel are generated by quenching amino acids and lipid effects during movement of the dye relative to the plane of the membrane.
Collapse
Affiliation(s)
- Ferenc Papp
- grid.7122.60000 0001 1088 8582Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen, H-4032 Hungary
| | - Gilman E. S. Toombes
- grid.94365.3d0000 0001 2297 5165Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Dr., MSC 3701, Bethesda, MD 20892-3701 USA
| | - Zoltán Pethő
- grid.7122.60000 0001 1088 8582Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen, H-4032 Hungary ,grid.5949.10000 0001 2172 9288Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany
| | - Adrienn Bagosi
- grid.7122.60000 0001 1088 8582Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen, H-4032 Hungary
| | - Adam Feher
- grid.7122.60000 0001 1088 8582Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen, H-4032 Hungary
| | - János Almássy
- grid.7122.60000 0001 1088 8582Department of Physiology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen, H-4032 Hungary
| | - Jesús Borrego
- grid.7122.60000 0001 1088 8582Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen, H-4032 Hungary
| | - Ákos Kuki
- grid.7122.60000 0001 1088 8582Department of Applied Chemistry, University of Debrecen, Egyetem ter 1, Debrecen, H-4032 Hungary
| | - Sándor Kéki
- grid.7122.60000 0001 1088 8582Department of Applied Chemistry, University of Debrecen, Egyetem ter 1, Debrecen, H-4032 Hungary
| | - Gyorgy Panyi
- grid.7122.60000 0001 1088 8582Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen, H-4032 Hungary
| | - Zoltan Varga
- grid.7122.60000 0001 1088 8582Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen, H-4032 Hungary
| |
Collapse
|
4
|
Llanos MA, Ventura C, Martín P, Enrique N, Felice JI, Gavernet L, Milesi V. Novel Dimeric hHv1 Model and Structural Bioinformatic Analysis Reveal an ATP-Binding Site Resulting in a Channel Activating Effect. J Chem Inf Model 2022; 62:3200-3212. [PMID: 35758884 DOI: 10.1021/acs.jcim.1c01396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human voltage-gated proton channel (hHv1) is a highly selective ion channel codified by the HVCN1 gene. It plays a fundamental role in several physiological processes such as innate and adaptive immunity, insulin secretion, and sperm capacitation. Moreover, in humans, a higher hHv1 expression/function has been reported in several types of cancer cells. Here we report a multitemplate homology model of the hHv1 channel, built and refined as a dimer in Rosetta. The model was then subjected to extensive Gaussian accelerated molecular dynamics (GaMD) for enhanced conformational sampling, and representative snapshots were extracted by clustering analysis. Combining different structure- and sequence-based methodologies, we predicted a putative ATP-binding site located on the intracellular portion of the channel. Furthermore, GaMD simulations of the ATP-bound dimeric hHv1 model showed that ATP interacts with a cluster of positively charged residues from the cytoplasmic N and C terminal segments. According to the in silico predictions, we found that 3 mM intracellular ATP significantly increases the H+ current mediated by the hHv1 channel expressed in HEK293 cells and measured by the patch-clamp technique in an inside-out configuration (2.86 ± 0.63 fold over control at +40 mV). When ATP was added on the extracellular side, it was not able to activate the channel supporting the idea that the ATP-binding site resides in the intracellular face of the hHV1 channel. In a physiological and pathophysiological context, this ATP-mediated modulation could integrate the cell metabolic state with the H+ efflux, especially in cells where hHv1 channels are relevant for pH regulation, such as pancreatic β-cells, immune cells, and cancer cells.
Collapse
Affiliation(s)
- Manuel A Llanos
- Departamento de Ciencias Biológicas and Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Fac. de Ciencias Exactas, Universidad Nacional de La Plata. La Plata B1900ADU, Buenos Aires, Argentina
| | - Clara Ventura
- Facultad de Ciencias Exactas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado CIC PBA, La Plata B1900BJW, Buenos Aires, Argentina
| | - Pedro Martín
- Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado CIC PBA, La Plata B1900BJW, Buenos Aires, Argentina
| | - Nicolás Enrique
- Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado CIC PBA, La Plata B1900BJW, Buenos Aires, Argentina
| | - Juan I Felice
- Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado CIC PBA, La Plata B1900BJW, Buenos Aires, Argentina
| | - Luciana Gavernet
- Departamento de Ciencias Biológicas and Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Fac. de Ciencias Exactas, Universidad Nacional de La Plata. La Plata B1900ADU, Buenos Aires, Argentina
| | - Verónica Milesi
- Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado CIC PBA, La Plata B1900BJW, Buenos Aires, Argentina
| |
Collapse
|
5
|
Pang H, Li J, Li SJ. Role of the voltage-gated proton channel Hv1 in insulin secretion, glucose homeostasis, and obesity. J Physiol Biochem 2022; 78:593-601. [PMID: 35353324 DOI: 10.1007/s13105-022-00891-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/11/2022] [Indexed: 10/18/2022]
Abstract
Diabetes is characterized by an absolutely inadequate insulin secretion (type 1 diabetes mellitus) or a relative deficit in insulin secretion due to insulin resistance (type 2 diabetes mellitus), both of which result in elevated blood glucose. Understanding the molecular mechanisms underlying the pathophysiology of diabetes could lead to the development of new therapeutic approaches. The voltage-gated proton channel Hv1 is an ion channel with specific selectivity for protons, which is regulated by membrane potential and intracellular pH. Recently, our studies showed that Hv1 is expressed in β cells of the endocrine pancreas. Knockout of Hv1 reduces insulin secretion and results in hyperglycemia and glucose intolerance, but not insulin resistance. Furthermore, knockout of Hv1 leads to diet-induced obesity due to inflammation and hepatic steatosis. Increasing evidence suggests that Hv1 plays a pivotal role in glucose homeostasis and lipid metabolism. This review aims to summarize advances made so far in our understanding of the roles of Hv1 in the regulation of insulin secretion in β cells, glucose homeostasis, and obesity.
Collapse
Affiliation(s)
- Huimin Pang
- Department of Biophysics, School of Physics, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China
| | - Jinwen Li
- Department of Biophysics, School of Physics, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China
| | - Shu Jie Li
- Department of Biophysics, School of Physics, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
6
|
Pang H, Li J, Wang Y, Su X, Gao Y, Li SJ. Mice lacking the proton channel Hv1 exhibit sex-specific differences in glucose homeostasis. J Biol Chem 2021; 297:101212. [PMID: 34547291 PMCID: PMC8503595 DOI: 10.1016/j.jbc.2021.101212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023] Open
Abstract
Sex as a physiologic factor has a strong association with the features of metabolic syndrome. Our previous study showed that loss of the voltage-gated proton channel Hv1 inhibits insulin secretion and leads to hyperglycemia and glucose intolerance in male mice. However, there are significant differences in blood glucose between male and female Hv1-knockout (KO) mice. Here, we investigated the differences in glucose metabolism and insulin sensitivity between male and female KO mice and how sex steroids contribute to these differences. We found that the fasting blood glucose in female KO mice was visibly lower than that in male KO mice, which was accompanied by hypotestosteronemia. KO mice in both sexes exhibited higher expression of gluconeogenesis-related genes in liver compared with WT mice. Also, the livers from KO males displayed a decrease in glycolysis-related gene expression and an increase in gluconeogenesis-related gene expression compared with KO females. Furthermore, exogenous testosterone supplementation decreased blood glucose levels in male KO mice, as well as enhancing insulin signaling. Taken together, our data demonstrate that knockout of Hv1 results in higher blood glucose levels in male than female mice, despite a decreased insulin secretion in both sexes. This sex-related difference in glucose homeostasis is associated with the glucose metabolism in liver tissue, likely due to the physiological levels of testosterone in KO male mice.
Collapse
Affiliation(s)
- Huimin Pang
- Department of Biophysics, School of Physics Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, PR China
| | - Jinzhi Li
- Biology Laboratory, Tianjin High School, Tianjin, PR China
| | - Yuzhou Wang
- Laboratory Animal Center, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Xiaomin Su
- Laboratory Animal Center, College of Life Sciences, Nankai University, Tianjin, PR China
| | - Yingtang Gao
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Nankai University Affiliated Third Center Hospital, Tianjin, PR China.
| | - Shu Jie Li
- Department of Biophysics, School of Physics Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, PR China; Biomedical Research Center, Qilu Institute of Technology, Shandong, PR China.
| |
Collapse
|
7
|
Pang H, Li J, Du H, Gao Y, Lv J, Liu Y, Li SJ. Loss of voltage-gated proton channel Hv1 leads to diet-induced obesity in mice. BMJ Open Diabetes Res Care 2020; 8:8/1/e000951. [PMID: 32049639 PMCID: PMC7039614 DOI: 10.1136/bmjdrc-2019-000951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/05/2019] [Accepted: 12/13/2019] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE The voltage-gated proton channel Hv1 has been proposed to mediate NADPH oxidase (NOX) function by regulating intracellular pH during respiratory bursts. In our previous work, we showed that Hv1 is expressed in pancreatic β cells and positively regulates insulin secretion. Here, we investigated the role of Hv1 in adipose tissue differentiation, metabolic homeostasis and insulin sensitivity using Hv1 knockout (KO) mice. DESIGN Mice with genetic deletion of Hv1 are treated with high-fat diet (HFD) similar to wild-type (WT) mice. Body weight gain, adiposity, insulin sensitivity and gene expressions in both adipose tissue and liver were analyzed. RESULTS Mice with genetic deletion of Hv1 display overt obesity with higher body weight gain and accumulation of adipose tissue compared with similarly HFD-treated WT. Hv1-deficient mice develop more glucose intolerance than WT, but no significant difference in insulin resistance, after fed with HFD. Deficiency of Hv1 results in a remarkable increase in epididymal adipocyte weight and size, while the gene expressions of proinflammatory factors and cytokines are obviously enhanced in the HFD-fed mice. Furthermore, the gene expression of Hv1 is increased in the HFD-fed mice, which is accompanied by the increase of NOX2 and NOX4. In addition, there is more severely diet-induced steatosis and inflammation in liver in KO mice. CONCLUSION Our data demonstrated that lacking of Hv1 results in diet-induced obesity in mice through inflammation and hepatic steatosis. This study suggested that Hv1 acts as a positive regulator of metabolic homeostasis and a potential target for antiobesity drugs in therapy and may serve as an adaptive mechanism in cooperating with NOX to mediate reactive oxygen species for adipogenesis and insulin sensitivity.
Collapse
Affiliation(s)
- Huimin Pang
- Department of Biophysics, School of Physics Science,The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, P. R. China
| | - Jinwen Li
- Department of Biophysics, School of Physics Science,The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, P. R. China
| | - Hongyan Du
- Department of Biophysics, School of Physics Science,The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, P. R. China
| | - Yingtang Gao
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Tianjin Third Central Hospital affiliated to Nankai University, 83 Jintang Road, Hedong District, Tianjin 300170, China
| | - Jili Lv
- Department of Biophysics, School of Physics Science,The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, P. R. China
| | - Yanxia Liu
- Department of Biophysics, School of Physics Science,The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, P. R. China
| | - Shu Jie Li
- Department of Biophysics, School of Physics Science,The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
8
|
Pang H, Wang X, Zhao S, Xi W, Lv J, Qin J, Zhao Q, Che Y, Chen L, Li SJ. Loss of the voltage-gated proton channel Hv1 decreases insulin secretion and leads to hyperglycemia and glucose intolerance in mice. J Biol Chem 2020; 295:3601-3613. [PMID: 31949049 DOI: 10.1074/jbc.ra119.010489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/16/2020] [Indexed: 11/06/2022] Open
Abstract
Insulin secretion by pancreatic islet β-cells is regulated by glucose levels and is accompanied by proton generation. The voltage-gated proton channel Hv1 is present in pancreatic β-cells and extremely selective for protons. However, whether Hv1 is involved in insulin secretion is unclear. Here we demonstrate that Hv1 promotes insulin secretion of pancreatic β-cells and glucose homeostasis. Hv1-deficient mice displayed hyperglycemia and glucose intolerance because of reduced insulin secretion but retained normal peripheral insulin sensitivity. Moreover, Hv1 loss contributed much more to severe glucose intolerance as the mice got older. Islets of Hv1-deficient and heterozygous mice were markedly deficient in glucose- and K+-induced insulin secretion. In perifusion assays, Hv1 deletion dramatically reduced the first and second phase of glucose-stimulated insulin secretion. Islet insulin and proinsulin content was reduced, and histological analysis of pancreas slices revealed an accompanying modest reduction of β-cell mass in Hv1 knockout mice. EM observations also indicated a reduction in insulin granule size, but not granule number or granule docking, in Hv1-deficient mice. Mechanistically, Hv1 loss limited the capacity for glucose-induced membrane depolarization, accompanied by a reduced ability of glucose to raise Ca2+ levels in islets, as evidenced by decreased durations of individual calcium oscillations. Moreover, Hv1 expression was significantly reduced in pancreatic β-cells from streptozotocin-induced diabetic mice, indicating that Hv1 deficiency is associated with β-cell dysfunction and diabetes. We conclude that Hv1 regulates insulin secretion and glucose homeostasis through a mechanism that depends on intracellular Ca2+ levels and membrane depolarization.
Collapse
Affiliation(s)
- Huimin Pang
- Department of Biophysics, School of Physics Science, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Xudong Wang
- Department of Biophysics, School of Physics Science, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Shiqun Zhao
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Wang Xi
- Department of Biophysics, School of Physics Science, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Jili Lv
- Department of Biophysics, School of Physics Science, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Jiwei Qin
- Department of Biophysics, School of Physics Science, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Qing Zhao
- Department of Biophysics, School of Physics Science, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yongzhe Che
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Liangyi Chen
- Institute of Molecular Medicine, Peking University, Beijing 100871, China.
| | - Shu Jie Li
- Department of Biophysics, School of Physics Science, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
9
|
Wang X, Gao YT, Jiang D, Wang Y, Du H, Lv J, Li SJ. Hv1-deficiency protects β cells from glucotoxicity through regulation of NOX4 level. Biochem Biophys Res Commun 2019; 513:434-438. [PMID: 30967259 DOI: 10.1016/j.bbrc.2019.03.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 03/29/2019] [Indexed: 11/27/2022]
Abstract
High glucose (HG)-induced oxidative stress contributes to the dysfunction of pancreatic β cells in diabetes. The voltage-gated proton channel Hv1 has been proposed to support reactive oxygen species (ROS) production during respiratory bursts. However, the effect of Hv1 on glucotoxicity in pancreatic β cells is not clear yet. In this study, we examined the protective effects of Hv1-deficiency in HG cultured β cells. Following 48 h of treatment with 30 mM high glucose, Hv1 KO β cells showed higher cell viability, lower cell apoptosis and a more stable insulin gene expression level compared to WT β cells. In both control and HG cultured β cells, deficiency of Hv1 decreased the glucose- and PMA-induced ROS production. Finally, HG incubation led to NOX4 upregulation in WT β cells, which could be inhibited by HV1 deficiency. In conclusion, Hv1-deficiency prevents the HG treatment-induced NOX4 upregulation and protects β cells from glucotoxicity.
Collapse
Affiliation(s)
- Xudong Wang
- Department of Biophysics, School of Physics Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, PR China
| | - Ying-Tang Gao
- Key Laboratory of Artificial Cell, Third Central Clinical College of Tianjin Medical University, Tianjin, 300170, PR China
| | - Dan Jiang
- Department of Biophysics, School of Physics Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, PR China
| | - Yuzhou Wang
- Laboratory Animal Center, College of Life Sciences, Nankai University, Tianjin, 300071, PR China
| | - Hongyan Du
- Department of Biophysics, School of Physics Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, PR China
| | - Jili Lv
- Department of Biophysics, School of Physics Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, PR China
| | - Shu Jie Li
- Department of Biophysics, School of Physics Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, PR China.
| |
Collapse
|
10
|
Mice harboring the human SLC30A8 R138X loss-of-function mutation have increased insulin secretory capacity. Proc Natl Acad Sci U S A 2018; 115:E7642-E7649. [PMID: 30038024 PMCID: PMC6094147 DOI: 10.1073/pnas.1721418115] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
SLC30A8 encodes a zinc transporter that is primarily expressed in the pancreatic islets of Langerhans. In β-cells it transports zinc into insulin-containing secretory granules. Loss-of-function (LOF) mutations in SLC30A8 protect against type 2 diabetes in humans. In this study, we generated a knockin mouse model carrying one of the most common human LOF mutations for SLC30A8, R138X. The R138X mice had normal body weight, glucose tolerance, and pancreatic β-cell mass. Interestingly, in hyperglycemic conditions induced by the insulin receptor antagonist S961, the R138X mice showed a 50% increase in insulin secretion. This effect was not associated with enhanced β-cell proliferation or mass. Our data suggest that the SLC30A8 R138X LOF mutation may exert beneficial effects on glucose metabolism by increasing the capacity of β-cells to secrete insulin under hyperglycemic conditions.
Collapse
|
11
|
Wang X, Xi W, Qin J, Lv J, Wang Y, Zhang T, Li SJ. Deficiency of voltage-gated proton channel Hv1 attenuates streptozotocin-induced β-cell damage. Biochem Biophys Res Commun 2018; 498:975-980. [DOI: 10.1016/j.bbrc.2018.03.092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
|
12
|
Kim J, Song JH. Inhibitory effects of antihistamines, diphenhydramine and chlorpheniramine, on proton currents in BV2 microglial cells. Eur J Pharmacol 2017; 798:122-128. [PMID: 28131782 DOI: 10.1016/j.ejphar.2017.01.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/02/2017] [Accepted: 01/25/2017] [Indexed: 02/08/2023]
Abstract
Microglial NADPH oxidase is a major source of toxic reactive oxygen species produced during chronic neuroinflammation. Voltage-gated proton channel (HV1) functions to maintain the intense activity of NADPH oxidase, and channel inhibition alleviates the pathology of neurodegenerative diseases such as ischemic stroke and multiple sclerosis associated with oxidative neuroinflammation. Antagonists of histamine H1 receptors have beneficial effects against microglia-mediated oxidative stress and neurotoxicity. We examined the effects of the H1 antihistamines, diphenhydramine and chlorpheniramine, on proton currents in BV2 microglial cells recorded using the whole-cell patch clamp technique. Diphenhydramine and chlorpheniramine reduced the proton currents with almost the same potency, yielding IC50 values of 42 and 43μM, respectively. Histamine did not affect proton currents, excluding the involvement of histamine receptors in their action. Neither drug shifted the voltage-dependence of activation or the reversal potential of the proton currents, even though diphenhydramine slowed the activation and deactivation kinetics. The inhibitory effects of the two antihistamines on proton currents could be utilized to develop therapeutic agents for neurodegenerative diseases and other diseases associated with HV1 proton channel abnormalities.
Collapse
Affiliation(s)
- Jiwon Kim
- Department of Pharmacology, College of Medicine, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 06974, Republic of Korea
| | - Jin-Ho Song
- Department of Pharmacology, College of Medicine, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 06974, Republic of Korea.
| |
Collapse
|