1
|
Geng S, Yang S, Tang X, Xue S, Li K, Liu D, Chen C, Zhu Z, Zheng H, Wang Y, Yang G, Li L, Yang M. Intestinal NUCB2/nesfatin-1 regulates hepatic glucose production via the MC4R-cAMP-GLP-1 pathway. EMBO J 2025; 44:54-74. [PMID: 39562740 PMCID: PMC11696497 DOI: 10.1038/s44318-024-00300-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024] Open
Abstract
Communication of gut hormones with the central nervous system is important to regulate systemic glucose homeostasis, but the precise underlying mechanism involved remain little understood. Nesfatin-1, encoded by nucleobindin-2 (NUCB2), a potent anorexigenic peptide hormone, was found to be released from the gastrointestinal tract, but its specific function in this context remains unclear. Herein, we found that gut nesfatin-1 can sense nutrients such as glucose and lipids and subsequently decreases hepatic glucose production. Nesfatin-1 infusion in the small intestine of NUCB2-knockout rats reduced hepatic glucose production via a gut - brain - liver circuit. Mechanistically, NUCB2/nesfatin-1 interacted directly with melanocortin 4 receptor (MC4R) through its H-F-R domain and increased cyclic adenosine monophosphate (cAMP) levels and glucagon-like peptide 1 (GLP-1) secretion in the intestinal epithelium, thus inhibiting hepatic glucose production. The intestinal nesfatin-1 -MC4R-cAMP-GLP-1 pathway and systemic gut-brain communication are required for nesfatin-1 - mediated regulation of liver energy metabolism. These findings reveal a novel mechanism of hepatic glucose production control by gut hormones through the central nervous system.
Collapse
Affiliation(s)
- Shan Geng
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shan Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xuejiao Tang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shiyao Xue
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ke Li
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Dongfang Liu
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chen Chen
- Endocrinology, SBMS, Faculty of Medicine, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Hongting Zheng
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yuanqiang Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Gangyi Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Ling Li
- The Key Laboratory of Laboratory Medical Diagnostics in the Ministry of Education and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, Chongqing, China.
| | - Mengliu Yang
- Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Chen X, Dong J, Jiao Q, Du X, Bi M, Jiang H. "Sibling" battle or harmony: crosstalk between nesfatin-1 and ghrelin. Cell Mol Life Sci 2022; 79:169. [PMID: 35239020 PMCID: PMC11072372 DOI: 10.1007/s00018-022-04193-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/17/2022]
Abstract
Ghrelin was first identified as an endogenous ligand of the growth hormone secretagogue receptor (GHSR) in 1999, with the function of stimulating the release of growth hormone (GH), while nesfatin-1 was identified in 2006. Both peptides are secreted by the same kind of endocrine cells, X/A-like cells in the stomach. Compared with ghrelin, nesfatin-1 exerts opposite effects on energy metabolism, glucose metabolism, gastrointestinal functions and regulation of blood pressure, but exerts similar effects on anti-inflammation and neuroprotection. Up to now, nesfatin-1 remains as an orphan ligand because its receptor has not been identified. Several studies have shown the effects of nesfatin-1 are dependent on the receptor of ghrelin. We herein compare the effects of nesfatin-1 and ghrelin in several aspects and explore the possibility of their interactions.
Collapse
Affiliation(s)
- Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Jing Dong
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
3
|
Dotania K, Tripathy M, Rai U. A comparative account of nesfatin-1 in vertebrates. Gen Comp Endocrinol 2021; 312:113874. [PMID: 34331938 DOI: 10.1016/j.ygcen.2021.113874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 07/14/2021] [Accepted: 07/25/2021] [Indexed: 12/17/2022]
Abstract
Nesfatin-1 was discovered as an anorexigenic peptide derived from proteolytic cleavage of the prepropeptide, nucleobindin 2 (NUCB2). It is widely expressed in central as well as peripheral tissues and is known to have pleiotropic effects such as regulation of feeding, reproduction, cardiovascular functions and maintenance of glucose homeostasis. In order to execute its multifaceted role, nesfatin-1 employs diverse signaling pathways though its receptor has not been identified till date. Further, nesfatin-1 is reported to be under the regulatory effect of feeding state, nutritional status as well as several metabolic and reproductive hormones. This peptide has also been associated with variety of human diseases, especially metabolic, reproductive, cardiovascular and mental disorders. The current review is aimed to present a consolidated picture and highlight lacunae for further investigation in order to develop a deeper comprehensive understanding on physiological significance of nesfatin-1 in vertebrates.
Collapse
Affiliation(s)
| | - Mamta Tripathy
- Department of Zoology, Kalindi College, University of Delhi, Delhi 110008, India
| | - Umesh Rai
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
4
|
Liang C, Zhou XH, Jiao YH, Guo MJ, Meng L, Gong PM, Lyu LZ, Niu HY, Wu YF, Chen SW, Han X, Zhang LW. Ligilactobacillus Salivarius LCK11 Prevents Obesity by Promoting PYY Secretion to Inhibit Appetite and Regulating Gut Microbiota in C57BL/6J Mice. Mol Nutr Food Res 2021; 65:e2100136. [PMID: 34272917 DOI: 10.1002/mnfr.202100136] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/26/2021] [Indexed: 12/17/2022]
Abstract
SCOPE Obesity is a common disease worldwide and there is an urgent need for strategies to preventing obesity. METHODS AND RESULTS The anti-obesity effect and mechanism of Ligilactobacillus salivarius LCK11 (LCK11) is studied using a C57BL/6J male mouse model in which obesity is induced by a high-fat diet (HFD). Results show that LCK11 can prevent HFD-induced obesity, reflected as inhibited body weight gain, abdominal and liver fat accumulation and dyslipidemia. Analysis of its mechanism shows that on the one hand, LCK11 can inhibit food intake through significantly improving the transcriptional and translational levels of peptide YY (PYY) in the rectum, in addition to the eventual serum PYY level; this is attributed to the activation of the toll-like receptor 2/nuclear factor-κB signaling pathway in enteroendocrine L cells by the peptidoglycan of LCK11. On the other hand, LCK11 supplementation effectively reduces the Firmicutes/Bacteroidetes ratio and shifts the overall structure of the HFD-disrupted gut microbiota toward that of mice fed on a low-fat diet; this also contributes to preventing obesity. CONCLUSION LCK11 shows the potential to be used as a novel probiotic for preventing obesity by both promoting PYY secretion to inhibit food intake and regulating gut microbiota.
Collapse
Affiliation(s)
- Cong Liang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | | | - Yue-Hua Jiao
- Drug safety evaluation center, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Mei-Jie Guo
- Department of Adolescent Medical Clinic, Harbin Children's Hospital, Harbin, 150010, China
| | - Li Meng
- Engineering Research Center of Agricultural Microbiology Technology, Heilongjiang University, Harbin, 150500, China
| | - Pi-Min Gong
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Lin-Zheng Lyu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Hai-Yue Niu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Yi-Fan Wu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Shi-Wei Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Xue Han
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Lan-Wei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
5
|
Özdemir-Kumral ZN, Koyuncuoğlu T, Arabacı-Tamer S, Çilingir-Kaya ÖT, Köroğlu AK, Yüksel M, Yeğen BÇ. High-fat Diet Enhances Gastric Contractility, but Abolishes Nesfatin-1-induced Inhibition of Gastric Emptying. J Neurogastroenterol Motil 2021; 27:265-278. [PMID: 33795544 PMCID: PMC8026381 DOI: 10.5056/jnm20206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/30/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND/AIMS Gastrointestinal motility changes contribute to development and maintenance of obesity. Nesfatin-1 (NES-1) is involved in central appetite control. The aim is to elucidate effects of NES-1 and high-fat diet (HFD) on gastrointestinal motility and to explore myenteric neuron expressions of tyrosine hydroxylase (TH), vasoactive intestinal peptide (VIP), and neuronal nitric oxide synthase (nNOS) in HFDinduced oxidative injury. METHODS Sprague-Dawley rats were fed with normal diet (ND) or HFD. Gastric emptying rate was measured following NES-1 (5 pmol/rat, intracerebroventricular) preceded by subcutaneous injections of glucagon-like peptide 1 (GLP-1), cholecystokinin 1 (CCK-1), and gastrin/CCK-2 receptor antagonists. In carbachol-contracted gastric and ileal strips, contractile changes were recorded by adding NES- 1 (0.3 nmol/L), GLP-1, CCK-1, and gastrin/CCK-2 antagonists. RESULTS Neither HFD nor NES-1 changed methylcellulose emptying, but NES-1 delayed saline emptying in cannulated ND-rats. Inhibitory effect of NES-1 on gastric emptying in ND-rats was reversed by all antagonists, and abolished in HFD-rats. In HFD-rats, carbachol-induced contractility was enhanced in gastric, but inhibited in ileal strips. HFD increased body weight, while serum triglycerides, alanine transaminase, aspartate aminotransferase, glucose, and levels of malondialdehyde, glutathione, myeloperoxidase activity, and luminolchemiluminescence in hepatic, ileal, and adipose tissues were similar in ND- and HFD-rats, but only lucigenin-chemiluminescence was increased in HFD-rats. Vasoactive intestinal peptide (VIP) and TH immunoreactivities were depressed and nNOS immunoreactivity was increased in gastric tissues of HFD-rats, while VIP and TH were enhanced, but nNOS was reduced in their intestines. CONCLUSIONS HFD caused mild systemic inflammation, disrupted enteric innervation, enhanced gastric contractility, inhibited ileal contractility, and eliminated inhibitory effect of NES-1 on gastric motility.
Collapse
Affiliation(s)
| | - Türkan Koyuncuoğlu
- Departments of Physiology, Marmara University School of Medicine, Istanbul, Turkey
| | - Sevil Arabacı-Tamer
- Departments of Physiology, Marmara University School of Medicine, Istanbul, Turkey
| | - Özlem T Çilingir-Kaya
- Departments of Histology and Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - Ayça K Köroğlu
- Departments of Histology and Embryology, Marmara University School of Medicine, Istanbul, Turkey
- Department of Histology and Embryology, Istinye University Faculty of Medicine; Istanbul, Turkey
| | - Meral Yüksel
- Marmara University Vocational School of Health Sciences, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Departments of Physiology, Marmara University School of Medicine, Istanbul, Turkey
| |
Collapse
|
6
|
Schalla MA, Taché Y, Stengel A. Neuroendocrine Peptides of the Gut and Their Role in the Regulation of Food Intake. Compr Physiol 2021; 11:1679-1730. [PMID: 33792904 DOI: 10.1002/cphy.c200007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The regulation of food intake encompasses complex interplays between the gut and the brain. Among them, the gastrointestinal tract releases different peptides that communicate the metabolic state to specific nuclei in the hindbrain and the hypothalamus. The present overview gives emphasis on seven peptides that are produced by and secreted from specialized enteroendocrine cells along the gastrointestinal tract in relation with the nutritional status. These established modulators of feeding are ghrelin and nesfatin-1 secreted from gastric X/A-like cells, cholecystokinin (CCK) secreted from duodenal I-cells, glucagon-like peptide 1 (GLP-1), oxyntomodulin, and peptide YY (PYY) secreted from intestinal L-cells and uroguanylin (UGN) released from enterochromaffin (EC) cells. © 2021 American Physiological Society. Compr Physiol 11:1679-1730, 2021.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Yvette Taché
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Maselli DB, Camilleri M. Effects of GLP-1 and Its Analogs on Gastric Physiology in Diabetes Mellitus and Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1307:171-192. [PMID: 32077010 DOI: 10.1007/5584_2020_496] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The processing of proglucagon in intestinal L cells results in the formation of glucagon, GLP-1, and GLP-2. The GLP-1 molecule becomes active through the effect of proconvertase 1, and it is inactivated by dipeptidyl peptidase IV (DPP-IV), so that the half-life of endogenous GLP-1 is 2-3 min. GLP-1 stimulates insulin secretion from β cells in the islets of Langerhans. Human studies show that infusion of GLP-1 results in slowing of gastric emptying and increased fasting and postprandial gastric volumes. Retardation of gastric emptying reduces postprandial glycemia. Exendin-4 is a peptide agonist of the GLP-1 receptor that promotes insulin secretion. Chemical modifications of exendin-4 and GLP-1 molecules have been accomplished to prolong the half-life of GLP-1 agonists or analogs. This chapter reviews the effects of GLP-1-related drugs used in treatment of diabetes or obesity on gastric motor functions, chiefly gastric emptying. The literature shows that diverse methods have been used to measure effects of the GLP-1-related drugs on gastric emptying, with most studies using the acetaminophen absorption test which essentially measures gastric emptying of liquids during the first hour and capacity to absorb the drug over 4-6 h, expressed as AUC. The most valid measurements by scintigraphy (solids or liquids) and acetaminophen absorption at 30 or 60 min show that GLP-1-related drugs used in diabetes or obesity retard gastric emptying, and this is associated with reduced glycemia and variable effects on food intake and appetite. GLP-1 agonists and analogs are integral to the management of patients with type 2 diabetes mellitus and obesity. The effects on gastric emptying are reduced with long-acting preparations or long-term use of short-acting preparations as a result of tachyphylaxis. The dual agonists targeting GLP-1 and another receptor (GIP) do not retard gastric emptying, based on reports to date. In summary, GLP-1 agonists and analogs are integral to the management of patients with type 2 diabetes mellitus and obesity, and their effects are mediated, at least in part, by retardation of gastric emptying.
Collapse
Affiliation(s)
- Daniel B Maselli
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
8
|
Alterations in Small Intestine and Liver Morphology, Immunolocalization of Leptin, Ghrelin and Nesfatin-1 as Well as Immunoexpression of Tight Junction Proteins in Intestinal Mucosa after Gastrectomy in Rat Model. J Clin Med 2021; 10:jcm10020272. [PMID: 33450994 PMCID: PMC7828391 DOI: 10.3390/jcm10020272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/01/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
The stomach is responsible for the processing of nutrients as well as for the secretion of various hormones which are involved in many activities throughout the gastrointestinal tract. Experimental adult male Wistar rats (n = 6) underwent a modified gastrectomy, while control rats (n = 6) were sham-operated. After six weeks, changes in small intestine (including histomorphometrical parameters of the enteric nervous plexuses) and liver morphology, immunolocalization of leptin, ghrelin and nesfatin-1 as well as proteins forming adherens and tight junctions (E-cadherin, zonula occludens-1, occludin, marvelD3) in intestinal mucosa were evaluated. A number of effects on small intestine morphology, enteric nervous system ganglia, hormones and proteins expression were found, showing intestinal enteroplasticity and neuroplasticity associated with changes in gastrointestinal tract condition. The functional changes in intestinal mucosa and the enteric nervous system could be responsible for the altered intestinal barrier and hormonal responses following gastrectomy. The results suggest that more complicated regulatory mechanisms than that of compensatory mucosal hypertrophy alone are involved.
Collapse
|
9
|
Schalla MA, Unniappan S, Lambrecht NWG, Mori M, Taché Y, Stengel A. NUCB2/nesfatin-1 - Inhibitory effects on food intake, body weight and metabolism. Peptides 2020; 128:170308. [PMID: 32229144 DOI: 10.1016/j.peptides.2020.170308] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/17/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023]
Abstract
Since its discovery in 2006 by Oh-I and colleagues, NUCB2/nesfatin-1 encoded by nucleobindin-2 (NUCB2) has drawn sustained attention as reflected in over 500 publications. Among those, more than half focused on the alterations of food intake, body weight and metabolism (glucose, fat) induced by nesfatin-1 and/or NUCB2/nesfatin-1. In the current review we discuss the existing literature focusing on NUCB2/nesfatin-1's influence on food intake, body weight and glucose as well as fat metabolism and highlight gaps in knowledge.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Nils W G Lambrecht
- Department of Pathology and Laboratory Medicine, VA Medical Center, Long Beach, California, USA
| | - Masatomo Mori
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yvette Taché
- VA Greater Los Angeles Healthcare System, Los Angeles, California, USA; Department of Medicine, CURE: Digestive Diseases Research Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
10
|
FGF21 Mimics a Fasting-Induced Metabolic State and Increases Appetite in Zebrafish. Sci Rep 2020; 10:6993. [PMID: 32332781 PMCID: PMC7181725 DOI: 10.1038/s41598-020-63726-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/06/2020] [Indexed: 02/06/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a member of the FGF superfamily that acts in an endocrine manner. FGF21 is a key regulator of energy balance and metabolism in mammals, and has emerged as a therapeutic potential for treating obesity and diabetes. Here, we report that mRNAs encoding FGF21 and its receptors are widely distributed within the zebrafish tissues and are importantly modulated by fasting (decreased in brain and liver, and increased in gut). FGF21 stimulates food intake in zebrafish, likely in part by modulating brain npy/agrp and nucb2/nesfatin-1 and gut ghrelin and cck mRNA expression. In accordance with this orexigenic role, the expression of FGF21 and its receptors were observed to increase preprandially and decrease post-feeding in the foregut and/or liver. Finally, we found important evidence in favor of a role for FGF21 in regulating glucose and lipid metabolism in the zebrafish liver in a way that mimics a fasting metabolic state.
Collapse
|
11
|
Calcium ions modulate the structure of the intrinsically disordered Nucleobindin-2 protein. Int J Biol Macromol 2020; 154:1091-1104. [PMID: 32184136 DOI: 10.1016/j.ijbiomac.2020.03.110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 01/05/2023]
Abstract
Nucleobindin-2 (Nucb2) is a widely expressed multi-domain protein. Nucb2 participates in many physiological processes, i.e. calcium level maintenance, feeding regulation in the hypothalamus, emotion and stress regulation, and many others. To date, this protein has not been structurally characterized. We describe the first comparative structural analysis of two homologs, a Gallus gallus and a Homo sapiens Nucb2. The in silico analysis suggested that apo-Nucb2s contain a mosaic-like structure, consisting of intertwined disordered and ordered regions. Surprisingly, the hydrogen-deuterium exchange mass spectrometry results revealed that Nucb2 is divided into two parts: an N-terminal half with a stable mosaic-like structure and a disordered C-terminal half. However, the presence of Ca2+ induces the formation of a mosaic-like structure in the C-terminal half of the Nucb2s. The Ca2+ also affects the tertiary and quaternary structure of Nucb2s. The presence of Ca2+ leads to an overall compaction of the Nucb2 molecule, resulting in structural change that is propagated along the molecule, which in turn affects the quaternary structure of the protein. Intrinsic disorder, and the mosaic-like Ca2+ dependent structure of Nucb2s, might be seen as the molecular factors responsible for their multifunctionality. Thus, Nucb2s might function as the versatile Ca2+ sensor involved in signal transduction.
Collapse
|
12
|
Ciccimarra R, Bussolati S, Grasselli F, Grolli S, Paolucci M, Basini G. Potential physiological involvement of nesfatin-1 in regulating swine granulosa cell functions. Reprod Fertil Dev 2020; 32:274-283. [DOI: 10.1071/rd19134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022] Open
Abstract
Nesfatin-1 has recently been indicated as a pleiotropic molecule that is primarily involved in the metabolic regulation of reproductive functions acting at hypothalamic level. The aim of this study was to explore the local action of nesfatin-1 in swine ovarian follicles. Nucleobindin 2 (NUCB2) was verified using real-time quantitative polymerase chain reaction in swine granulosa cells from different sized follicles and nesfatin-1 was localised by immunohistochemistry in sections of the whole porcine ovary. The effects of different concentrations of nesfatin-1 on cell growth, steroidogenesis and the redox status of granulosa cells were determined invitro. In addition, the effects of nesfatin-1 were evaluated in an angiogenesis bioassay because vessel growth is essential for ovarian follicle function. Immunohistochemistry revealed intense positivity for nesfatin-1 in swine granulosa cells in follicles at all developmental stages. Expression of the gene encoding the precursor protein NUCB2 was higher in granulosa cells from large rather than from medium and small follicles. Further, nesfatin-1 stimulated cell proliferation and progesterone production and interfered with redox status by modifying nitric oxide production and non-enzyme scavenging activity in granulosa cells from large follicles. Moreover, nesfatin-1 exhibited a stimulatory effect on angiogenesis. This study demonstrates, for the first time, that nesfatin-1 is physiologically present in the swine ovarian follicle, where it may impair granulosa cell functions.
Collapse
|
13
|
Goyal RK, Guo Y, Mashimo H. Advances in the physiology of gastric emptying. Neurogastroenterol Motil 2019; 31:e13546. [PMID: 30740834 PMCID: PMC6850045 DOI: 10.1111/nmo.13546] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/29/2018] [Accepted: 12/16/2018] [Indexed: 12/16/2022]
Abstract
There have been many recent advances in the understanding of various aspects of the physiology of gastric motility and gastric emptying. Earlier studies had discovered the remarkable ability of the stomach to regulate the timing and rate of emptying of ingested food constituents and the underlying motor activity. Recent studies have shown that two parallel neural circuits, the gastric inhibitory vagal motor circuit (GIVMC) and the gastric excitatory vagal motor circuit (GEVMC), mediate gastric inhibition and excitation and therefore the rate of gastric emptying. The GIVMC includes preganglionic cholinergic neurons in the DMV and the postganglionic inhibitory neurons in the myenteric plexus that act by releasing nitric oxide, ATP, and peptide VIP. The GEVMC includes distinct gastric excitatory preganglionic cholinergic neurons in the DMV and postganglionic excitatory cholinergic neurons in the myenteric plexus. Smooth muscle is the final target of these circuits. The role of the intramuscular interstitial cells of Cajal in neuromuscular transmission remains debatable. The two motor circuits are differentially regulated by different sets of neurons in the NTS and vagal afferents. In the digestive period, many hormones including cholecystokinin and GLP-1 inhibit gastric emptying via the GIVMC, and in the inter-digestive period, hormones ghrelin and motilin hasten gastric emptying by stimulating the GEVMC. The GIVMC and GEVMC are also connected to anorexigenic and orexigenic neural pathways, respectively. Identification of the control circuits of gastric emptying may provide better delineation of the pathophysiology of abnormal gastric emptying and its relationship to satiety signals and food intake.
Collapse
Affiliation(s)
- Raj K. Goyal
- Department of Medicine, VA Boston Healthcare SystemHarvard Medical SchoolBostonMassachusetts
| | - Yanmei Guo
- Department of Medicine, VA Boston Healthcare SystemHarvard Medical SchoolBostonMassachusetts
| | - Hiroshi Mashimo
- Department of Medicine, VA Boston Healthcare SystemHarvard Medical SchoolBostonMassachusetts
| |
Collapse
|
14
|
Mirakhor Samani S, Ghasemi H, Rezaei Bookani K, Shokouhi B. SERUM NESFATIN-1 LEVEL IN HEALTHY SUBJECTS WITH WEIGHT-RELATED ABNORMALITIES AND NEWLY DIAGNOSED PATIENTS WITH TYPE 2 DIABETES MELLITUS; A CASE-CONTROL STUDY. ACTA ENDOCRINOLOGICA-BUCHAREST 2019; -5:69-73. [PMID: 31149062 DOI: 10.4183/aeb.2019.69] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Context Nesfatin-1 is a novel peptide with both central and peripheral anorexigenic regulatory properties. Besides its effects on food intake, few studies have suggested a possible role for this peptide in the pathogenesis of diabetes mellitus type 2. Objective To compare serum levels of nesfatin-1 between healthy, normal-weight persons and three groups including healthy underweight, healthy obese and diabetic subjects. Design Prospective, case-control study, performed between January 2015 and January 2016. Subjects and Methods Fasting levels in serum nesfatin-1 were measured in 30 healthy, normal-weight individuals (controls), 30 healthy underweight persons, 30 healthy obese persons, and 30 patients with newly diagnosed diabetes type 2 using standard enzyme-linked immunosorbent assay (ELISA) kits. Results The mean serum nesfatin-1 level was significantly higher in controls (2.61 ng/mL) compared to that in obese (1.13 ng/mL) and diabetic (0.99 ng/mL) patients; and significantly lower than that in the underweight group (3.50 ng/mL). The obese and diabetic groups were comparable in this regard. No significant association was found between serum nesfatin-1 level and age, sex, or body mass index. Conclusions Serum nesfatin-1 is possibly associated with weight-related abnormalities in otherwise healthy subjects and diabetes type 2. Obesity and diabetes type 2 may share a common pathologic point in this regard.
Collapse
Affiliation(s)
- S Mirakhor Samani
- Qazvin University of Medical Sciences, Department of Pathology, Qazvin, Tabriz University of Medical Sciences, Tabriz, Iran
| | - H Ghasemi
- Department of Internal Medicine, Tabriz, Iran
| | | | - B Shokouhi
- Urmia University of Medical Sciences, Department of Internal Medicine, Urmia, Iran
| |
Collapse
|
15
|
Zhang X, Qi J, Tang N, Wang S, Wu Y, Chen H, Tian Z, Wang B, Chen D, Li Z. Intraperitoneal injection of nesfatin-1 primarily through the CCK-CCK1R signal pathway affects expression of appetite factors to inhibit the food intake of Siberian sturgeon (Acipenser baerii). Peptides 2018; 109:14-22. [PMID: 30261207 DOI: 10.1016/j.peptides.2018.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022]
Abstract
Nesfatin-1 is an 82-amino acid protein derived from nucleobindin 2 (NUCB2), which could inhibit food intake in fish and mammals. However, the neuroendocrine mechanism of nesfatin-1 in animal appetite regulation is unclear. To explore the feeding mechanism of nesfatin-1 in Siberian sturgeon (Acipenser baerii), intraperitoneal injections of nesfatin-1 and sulfated cholecystokinin octapeptide (CCK8), Lorglumide (CCK1R selective antagonist), or LY 225,910 (CCK2R selective antagonist) were performed. Co-injection of nesfatin-1 and CCK8 synergistically significantly decreased the food intake in 1 h. Lorglumide reversed the anorectic effect of nesfatin-1, but LY 225,910 had no effect. Moreover, Lorglumide could also reverse the expressions of appetite factors including nucb2, cck, unc3, cart, apelin, pyy, and npy induced by nesfatin-1 in the brain, stomach, and liver, while LY 225,910 partially reversed these changes. These results indicate that nesfatin-1 inhibits the appetite of Siberian sturgeon mainly through the CCK-CCK1R signaling pathway.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China; The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, 5# Yushan Road, Qingdao, Shandong, China
| | - Jinwen Qi
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Shuyao Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Yuanbing Wu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Hu Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Zhengzhi Tian
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Bin Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China.
| |
Collapse
|
16
|
Zhang X, Wang S, Chen H, Tang N, Qi J, Wu Y, Hao J, Tian Z, Wang B, Chen D, Li Z. The inhibitory effect of NUCB2/nesfatin-1 on appetite regulation of Siberian sturgeon (Acipenser baerii Brandt). Horm Behav 2018; 103:111-120. [PMID: 29940158 DOI: 10.1016/j.yhbeh.2018.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/19/2022]
Abstract
Since NUCB2 was discovered, the information about NUCB2/nesfatin-1 in appetite regulation in both mammals and teleost has been still limited. The present study aims to determine the effects of nesfatin-1 on food intake and to explore the appetite mechanism in Siberian sturgeon. In this study, nucb2 cDNA sequence of 1571 bp was obtained, and the mRNA expression of nucb2 was abundant in brain and liver. Levels of nucb2 were appreciably increased in brain after feeding 1 and 3 h, while significantly decreased within fasting 15 days. Except for fasting 1 day, the expression pattern of nucb2 in the liver was similar to the brain. Acute intraperitoneal (i.p.) injection of nesfatin-1 inhibited the food intake during 0-1 h in a dose-dependent manner and 50 or 100 ng/g BW nesfatin-1 significantly decreased the cumulative food intake during 3 h. The daily food intake and cumulative food intake were remarkably reduced post chronic (7 days) i.p. injection. Moreover, chronic i.p. injection of nesfatin-1 affected the expression of appetite factors including cart, apelin and pyy in the brain, stomach and liver with the consistent pattern of change, while the levels of cck, ucn3 and nucb2 in these have different patterns. This study demonstrates that nesfatin-1 acts as a satiety factor in reducing the short-term and long-term food intake of Siberian sturgeon. Therefore, the data suggesting nesfatin-1 inhibits the appetite through different signal pathways in the central and peripheral endocrine systems of Siberian sturgeon.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China; The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, 5# Yushan Road, Qingdao, Shandong, China
| | - Shuyao Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Hu Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Jinwen Qi
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Yuanbing Wu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Jin Hao
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Zhengzhi Tian
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Bin Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China.
| |
Collapse
|
17
|
Blanco AM, Bertucci JI, Valenciano AI, Delgado MJ, Unniappan S. Ghrelin suppresses cholecystokinin (CCK), peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) in the intestine, and attenuates the anorectic effects of CCK, PYY and GLP-1 in goldfish (Carassius auratus). Horm Behav 2017; 93:62-71. [PMID: 28506816 DOI: 10.1016/j.yhbeh.2017.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 04/27/2017] [Accepted: 05/12/2017] [Indexed: 02/06/2023]
Abstract
Ghrelin is an important gut-derived hormone with an appetite stimulatory role, while most of the intestinal hormones, including cholecystokinin (CCK), peptide YY (PYY) and glucagon-like peptide-1 (GLP-1), are appetite-inhibitors. Whether these important peptides with opposing roles on food intake interact to regulate energy balance in fish is currently unknown. The aim of this study was to characterize the putative crosstalk between ghrelin and CCK, PYY and GLP-1 in goldfish (Carassius auratus). We first determined the localization of CCK, PYY and GLP-1 in relation to ghrelin and its main receptor GHS-R1a (growth hormone secretagogue 1a) in the goldfish intestine by immunohistochemistry. Colocalization of ghrelin/GHS-R1a and CCK/PYY/GLP-1 was found primarily in the luminal border of the intestinal mucosa. In an intestinal explant culture, a significant decrease in prepro-cck, prepro-pyy and proglucagon transcript levels was observed after 60min of incubation with ghrelin, which was abolished by preincubation with the GHS-R1a ghrelin receptor antagonist [D-Lys3]-GHRP-6 (except for proglucagon). The protein expression of PYY and GLP-1 was also downregulated by ghrelin. Finally, intraperitoneal co-administration of CCK, PYY or GLP-1 with ghrelin results in no modification of food intake in goldfish. Overall, results of the present study show for the first time in fish that ghrelin exerts repressive effects on enteric anorexigens. It is likely that these interactions mediate the stimulatory effects of ghrelin on feeding and metabolism in fish.
Collapse
Affiliation(s)
- Ayelén Melisa Blanco
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, José Antonio Nováis 12, 28040 Madrid, Spain; Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N 5B4 Saskatoon, Saskatchewan, Canada.
| | - Juan Ignacio Bertucci
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N 5B4 Saskatoon, Saskatchewan, Canada; Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Avenida Intendente Marinos Km. 8,2, 7130 Chascomús, Buenos Aires, Argentina.
| | - Ana Isabel Valenciano
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, José Antonio Nováis 12, 28040 Madrid, Spain.
| | - María Jesús Delgado
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, José Antonio Nováis 12, 28040 Madrid, Spain.
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N 5B4 Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
18
|
Casanova-Martí À, Serrano J, Blay MT, Terra X, Ardévol A, Pinent M. Acute selective bioactivity of grape seed proanthocyanidins on enteroendocrine secretions in the gastrointestinal tract. Food Nutr Res 2017; 61:1321347. [PMID: 28659730 PMCID: PMC5475339 DOI: 10.1080/16546628.2017.1321347] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/11/2017] [Indexed: 01/08/2023] Open
Abstract
Background: Enteroendocrine cells respond to food components by secreting an array of hormones that regulate several functions. We have previously shown that grape seed proanthocyanidins (GSPE) modulate GLP-1 levels. Objective: To deepen on the knowledge of the mechanisms used by GSPE to increase GLP-1, and extend it to its role at modulation of other enterohormones. Design: We used an ex vivo system to test direct modulation of enterohormones; STC-1 cells to test pure phenolic compounds; and rats to test the effects at different gastrointestinal segments. Results: GSPE compounds act at several locations along the gastrointestinal tract modulating enterohormone secretion depending on the feeding condition. GSPE directly promotes GLP-1 secretion in the ileum, while unabsorbed/metabolized forms do so in the colon. Such stimulation requires the presence of glucose. GSPE enhanced GIP and reduced CCK secretion; gallic acid could be partly responsible for this effect. Conclusions: The activity of GSPE modulating enterohormone secretion may help to explain its effects on metabolism. GSPE acts through several mechanisms; its compounds and their metabolites are GLP-1 secretagogues in ileum and colon, respectively. In vivo GLP-1 secretion might also be mediated by indirect pathways involving modulation of other enterohormones that in turn regulate GLP-1 release.
Collapse
Affiliation(s)
- Àngela Casanova-Martí
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Joan Serrano
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - M Teresa Blay
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Ximena Terra
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Anna Ardévol
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Montserrat Pinent
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
19
|
Gawli K, Ramesh N, Unniappan S. Nesfatin-1-like peptide is a novel metabolic factor that suppresses feeding, and regulates whole-body energy homeostasis in male Wistar rats. PLoS One 2017; 12:e0178329. [PMID: 28542568 PMCID: PMC5444818 DOI: 10.1371/journal.pone.0178329] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 05/11/2017] [Indexed: 12/26/2022] Open
Abstract
Nucleobindin-1 has high sequence similarity to nucleobindin-2, which encodes the anorectic and metabolic peptide, nesfatin-1. We previously reported a nesfatin-1-like peptide (NLP), anorectic in fish and insulinotropic in mice islet beta-like cells. The main objective of this research was to determine whether NLP is a metabolic regulator in male Wistar rats. A single intraperitoneal (IP) injection of NLP (100 μg/kg BW) decreased food intake and increased ambulatory movement, without causing any change in total activity or energy expenditure when compared to saline-treated rats. Continuous subcutaneous infusion of NLP (100 μg/kg BW) using osmotic mini-pumps for 7 days caused a reduction in food intake on days 3 and 4. Similarly, water intake was also reduced for two days (days 3 and 4) with the effect being observed during the dark phase. This was accompanied by an increased RER and energy expenditure. However, decreased whole-body fat oxidation, and total activity were observed during the long-term treatment (7 days). Body weight gain was not significantly different between control and NLP infused rats. The expression of mRNAs encoding adiponectin, resistin, ghrelin, cholecystokinin and uncoupling protein 1 (UCP1) were significantly upregulated, while leptin and peptide YY mRNA expression was downregulated in NLP-treated rats. These findings indicate that administration of NLP at 100 μg/kg BW reduces food intake and modulates whole body energy balance. In summary, NLP is a novel metabolic peptide in rats.
Collapse
Affiliation(s)
- Kavishankar Gawli
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Naresh Ramesh
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
- * E-mail:
| |
Collapse
|
20
|
Blanco AM, Bertucci JI, Ramesh N, Delgado MJ, Valenciano AI, Unniappan S. Ghrelin Facilitates GLUT2-, SGLT1- and SGLT2-mediated Intestinal Glucose Transport in Goldfish (Carassius auratus). Sci Rep 2017; 7:45024. [PMID: 28338019 PMCID: PMC5364492 DOI: 10.1038/srep45024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/17/2017] [Indexed: 12/13/2022] Open
Abstract
Glucose homeostasis is an important biological process that involves a variety of regulatory mechanisms. This study aimed to determine whether ghrelin, a multifunctional gut-brain hormone, modulates intestinal glucose transport in goldfish (Carassius auratus). Three intestinal glucose transporters, the facilitative glucose transporter 2 (GLUT2), and the sodium/glucose co-transporters 1 (SGLT1) and 2 (SGLT2), were studied. Immunostaining of intestinal sections found colocalization of ghrelin and GLUT2 and SGLT2 in mucosal cells. Some cells containing GLUT2, SGLT1 and SGLT2 coexpressed the ghrelin/growth hormone secretagogue receptor 1a (GHS-R1a). Intraperitoneal glucose administration led to a significant increase in serum ghrelin levels, as well as an upregulation of intestinal preproghrelin, ghrelin O-acyltransferase and ghs-r1 expression. In vivo and in vitro ghrelin treatment caused a concentration- and time-dependent modulation (mainly stimulatory) of GLUT2, SGLT1 and SGLT2. These effects were abolished by the GHS-R1a antagonist [D-Lys3]-GHRP-6 and the phospholipase C inhibitor U73122, suggesting that ghrelin actions on glucose transporters are mediated by GHS-R1a via the PLC/PKC signaling pathway. Finally, ghrelin stimulated the translocation of GLUT2 into the plasma membrane of goldfish primary intestinal cells. Overall, data reported here indicate an important role for ghrelin in the modulation of glucoregulatory machinery and glucose homeostasis in fish.
Collapse
Affiliation(s)
- Ayelén Melisa Blanco
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain.,Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Juan Ignacio Bertucci
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Buenos Aires, Argentina
| | - Naresh Ramesh
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - María Jesús Delgado
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Isabel Valenciano
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
21
|
Blanco AM, Bertucci JI, Sánchez-Bretaño A, Delgado MJ, Valenciano AI, Unniappan S. Ghrelin modulates gene and protein expression of digestive enzymes in the intestine and hepatopancreas of goldfish (Carassius auratus) via the GHS-R1a: Possible roles of PLC/PKC and AC/PKA intracellular signaling pathways. Mol Cell Endocrinol 2017; 442:165-181. [PMID: 28042022 DOI: 10.1016/j.mce.2016.12.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/28/2016] [Accepted: 12/28/2016] [Indexed: 12/13/2022]
Abstract
Ghrelin, a multifunctional gut-brain hormone, is involved in the regulation of gastric functions in mammals. This study aimed to determine whether ghrelin modulates digestive enzymes in goldfish (Carassius auratus). Immunofluorescence microscopy found colocalization of ghrelin, GHS-R1a and the digestive enzymes sucrase-isomaltase, aminopeptidase A, trypsin and lipoprotein lipase in intestinal and hepatopancreatic cells. In vitro ghrelin treatment in intestinal and hepatopancreas explant culture led to a concentration- and time-dependent modulation (mainly stimulatory) of most of the digestive enzymes tested. The ghrelin-induced upregulations of digestive enzyme expression were all abolished by preincubation with the GHS-R1a ghrelin receptor antagonist [D-Lys3]-GHRP-6, and most of them by the phospholipase C inhibitor U73122 or the protein kinase A inhibitor H89. This indicates that ghrelin effects on digestive enzymes are mediated by GHS-R1a, partly by triggering the PLC/PKC and AC/PKA intracellular signaling pathways. These data suggest a role for ghrelin on digestive processes in fish.
Collapse
Affiliation(s)
- Ayelén Melisa Blanco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N 5B4 Saskatoon, Saskatchewan, Canada; Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, José Antonio Nováis 12, 28040 Madrid, Spain.
| | - Juan Ignacio Bertucci
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N 5B4 Saskatoon, Saskatchewan, Canada; Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Avenida Intendente Marinos Km. 8,2, 7130 Chascomús, Buenos Aires, Argentina.
| | - Aída Sánchez-Bretaño
- Department of Pharmacology and Toxicology, and Neuroscience Institute, Morehouse School of Medicine, 720 Westview Drive, GA 30310 Atlanta, GA, United States.
| | - María Jesús Delgado
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, José Antonio Nováis 12, 28040 Madrid, Spain.
| | - Ana Isabel Valenciano
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, José Antonio Nováis 12, 28040 Madrid, Spain.
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N 5B4 Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
22
|
Dore R, Levata L, Lehnert H, Schulz C. Nesfatin-1: functions and physiology of a novel regulatory peptide. J Endocrinol 2017; 232:R45-R65. [PMID: 27754932 DOI: 10.1530/joe-16-0361] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/17/2016] [Indexed: 12/12/2022]
Abstract
Nesfatin-1 was identified in 2006 as a potent anorexigenic peptide involved in the regulation of homeostatic feeding. It is processed from the precursor-peptide NEFA/nucleobindin 2 (NUCB2), which is expressed both in the central nervous system as well as in the periphery, from where it can access the brain via non-saturable transmembrane diffusion. In hypothalamus and brainstem, nesfatin-1 recruits the oxytocin, the melancortin and other systems to relay its anorexigenic properties. NUCB2/nesfatin-1 peptide expression in reward-related areas suggests that nesfatin-1 might also be involved in hedonic feeding. Besides its initially discovered anorexigenic properties, over the last years, other important functions of nesfatin-1 have been discovered, many of them related to energy homeostasis, e.g. energy expenditure and glucose homeostasis. Nesfatin-1 is not only affecting these physiological processes but also the alterations of the metabolic state (e.g. fat mass, glycemic state) have an impact on the synthesis and release of NUCB2 and/or nesfatin-1. Furthermore, nesfatin-1 exerts pleiotropic actions at the level of cardiovascular and digestive systems, as well as plays a role in stress response, behavior, sleep and reproduction. Despite the recent advances in nesfatin-1 research, a putative receptor has not been identified and furthermore potentially distinct functions of nesfatin-1 and its precursor NUCB2 have not been dissected yet. To tackle these open questions will be the major objectives of future research to broaden our knowledge on NUCB2/nesfatin-1.
Collapse
Affiliation(s)
- Riccardo Dore
- Department of Internal Medicine ICenter of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Luka Levata
- Department of Internal Medicine ICenter of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Hendrik Lehnert
- Department of Internal Medicine ICenter of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Carla Schulz
- Department of Internal Medicine ICenter of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
23
|
Prinz P, Stengel A. Expression and regulation of peripheral NUCB2/nesfatin-1. Curr Opin Pharmacol 2016; 31:25-30. [PMID: 27589697 DOI: 10.1016/j.coph.2016.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/05/2016] [Accepted: 08/12/2016] [Indexed: 12/16/2022]
Abstract
Nesfatin-1, an 82 amino acid peptide was discovered in 2006 in the rat hypothalamus and described as a centrally acting anorexigenic peptide. Besides its central expression and actions, NUCB2/nesfatin-1 has been subsequently described to be predominantly expressed in the periphery and to exert several peripheral effects. The current review focuses on the expression sites of NUCB2/nesfatin-1 in peripheral tissues of different species and its regulation by nutrition, body weight and various other parameters such as fetal development and sex.
Collapse
Affiliation(s)
- Philip Prinz
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|