1
|
Yu G, Fu X, Gong A, Gu J, Zou H, Yuan Y, Song R, Ma Y, Bian J, Liu Z, Tong X. Oligomeric proanthocyanidins ameliorates osteoclastogenesis through reducing OPG/RANKL ratio in chicken's embryos. Poult Sci 2024; 103:103706. [PMID: 38631227 PMCID: PMC11040129 DOI: 10.1016/j.psj.2024.103706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
Skeletal disorders can seriously threaten the health and the performance of poultry, such as tibial dyschondroplasia (TD) and osteoporosis (OP). Oligomeric proanthocyanidins (OPC) are naturally occurring polyphenolic flavonoid compounds that can be used as potential substances to improve the bone health and the growth performance of poultry. Eighty 7-day-old green-eggshell yellow feather layer chickens were randomly divided into 4 groups: basal diet and basal diet supplementation with 25, 50, and 100 mg/kg OPC. The results have indicated that the growth performance and bone parameters of chickens were significantly improved supplementation with OPC in vivo, including the bone volume (BV), the bone mineral density (BMD) and the activities of antioxidative enzymes, but ratio of osteoprotegerin (OPG)/receptor activator of NF-κB (RANK) ligand (RANKL) was decreased. Furthermore, primary bone marrow mesenchymal stem cells (BMSCs) and bone marrow monocytes/macrophages (BMMs) were successfully isolated from femur and tibia of chickens, and co-cultured to differentiate into osteoclasts in vitro. The osteogenic differentiation derived from BMSCs was promoted treatment with high concentrations of OPC (10, 20, and 40 µmol/L) groups in vitro, but emerging the inhibition of osteoclastogenesis by increasing the ratio of OPG/RANKL. In contrary, the osteogenic differentiation was also promoted treatment with low concentrations of OPC (2.5, 5, and 10 µmol/L) groups, but osteoclastogenesis was enhanced by decreasing the ratio of OPG/RANKL in vitro. In addition, OPG inhibits the differentiation and activity of osteoclasts by increasing the autophagy in vitro. Dietary supplementation of OPC can improve the growth performance of bone and alter the balance of osteoblasts and osteoclasts, thereby improving the bone health of chickens.
Collapse
Affiliation(s)
- Gengsheng Yu
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China
| | - Xiaohui Fu
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China
| | - Anqing Gong
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China
| | - Jianhong Gu
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China
| | - Hui Zou
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China
| | - Yan Yuan
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China
| | - Ruilong Song
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China
| | - Yonggang Ma
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China
| | - Jianchun Bian
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China
| | - Zongping Liu
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China
| | - Xishuai Tong
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China.
| |
Collapse
|
2
|
Shi C, Zhang Y, Chen Q, Wang Y, Zhang D, Guo J, Zhang Q, Zhang W, Gong Z. The acetylation of MDH1 and IDH1 is associated with energy metabolism in acute liver failure. iScience 2024; 27:109678. [PMID: 38660411 PMCID: PMC11039345 DOI: 10.1016/j.isci.2024.109678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/19/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
The liver is the main organ associated with metabolism. In our previous studies, we identified that the metabolic enzymes malate dehydrogenase 1 (MDH1) and isocitrate dehydrogenase 1 (IDH1) were differentially expressed in ALF. The aim of this study was to explore the changes in the acetylation of MDH1 and IDH1 and the therapeutic effect of histone deacetylase (HDAC) inhibitor in acute liver failure (ALF). Decreased levels of many metabolites were observed in ALF patients. MDH1 and IDH1 were decreased in the livers of ALF patients. The HDAC inhibitor ACY1215 improved the expression of MDH1 and IDH1 after treatment with MDH1-siRNA and IDH1-siRNA. Transfection with mutant plasmids and adeno-associated viruses, identified MDH1 K118 acetylation and IDH1 K93 acetylation as two important sites that regulate metabolism in vitro and in vivo.
Collapse
Affiliation(s)
- Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yanqiong Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qian Chen
- Department of Cardiology, Wuhan No.1 Hospital, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan 430022, China
| | - Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Danmei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qingqi Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wenbin Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
3
|
Kim K, Kim JH, Kim I, Seong S, Koh JT, Kim N. Sestrin2 inhibits RANKL-induced osteoclastogenesis through AMPK activation and ROS inhibition. Free Radic Biol Med 2024; 211:77-88. [PMID: 38101586 DOI: 10.1016/j.freeradbiomed.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Sestrins are stress-responsive proteins with antioxidant properties. They participate in cellular redox balance and protect against oxidative damage. This study investigated the effects of Sestrin2 (Sesn2) on osteoclast differentiation and function. Overexpressing Sesn2 in osteoclast precursor cells significantly inhibited receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclastogenesis. This was assessed as reduced expression of various osteoclast markers, including c-Fos, nuclear factor of activated T cells 1 (NFATc1), osteoclast-associated receptor, tartrate-resistant acid phosphatase, and cathepsin K. Conversely, downregulation of Sesn2 produced the opposite effect. Mechanistically, Sesn2 overexpression enhanced AMPK activation and the nuclear translocation of nuclear factor erythroid-derived factor 2-related factor 2 (Nrf2), promoting antioxidant enzymes. Moreover, azithromycin (Azm) induced Sesn2 expression, which suppressed RANKL-induced osteoclast differentiation. Specifically, Azm treatment reduced RANKL-induced production of reactive oxygen species in osteoclasts. Furthermore, intraperitoneal administration of Azm ameliorated RANKL-induced bone loss by reducing osteoclast activity in mice. Taken together, our results suggested that Azm-induced Sesn2 act as a negative regulator of RANKL-induced osteoclast differentiation through the AMPK/NFATc1 signaling pathway. Concisely, targeting Sesn2 can be a potential pharmacological intervention in osteoporosis.
Collapse
Affiliation(s)
- Kabsun Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea; Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Inyoung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Semun Seong
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea; Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jeong-Tae Koh
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea; Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
4
|
Zhang Y, Jia S, Wen G, Xie S, Song Z, Qi M, Liang Y, Bi W, Dong W. Zoledronate Promotes Peri-Implant Osteogenesis in Diabetic Osteoporosis by the AMPK Pathway. Calcif Tissue Int 2023; 113:329-343. [PMID: 37392365 DOI: 10.1007/s00223-023-01112-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
Together with diabetic osteoporosis (DOP), diabetes patients experience poor peri-implant osteogenesis following implantation for dentition defects. Zoledronate (ZOL) is widely used to treat osteoporosis clinically. To evaluate the mechanism of ZOL for the treatment of DOP, experiments with DOP rats and high glucose-grown MC3T3-E1 cells were used. The DOP rats treated with ZOL and/or ZOL implants underwent a 4-week implant-healing interval, and then microcomputed tomography, biomechanical testing, and immunohistochemical staining were performed to elucidate the mechanism. In addition, MC3T3-E1 cells were maintained in an osteogenic medium with or without ZOL to confirm the mechanism. The cell migration, cellular actin content, and osteogenic differentiation were evaluated by a cell activity assay, a cell migration assay, as well as alkaline phosphatase, alizarin red S, and immunofluorescence staining. The mRNA and protein expression of adenosine monophosphate-activated protein kinase (AMPK), phosphorylated AMPK (p-AMPK), osteoprotegerin (OPG), receptor activator of nuclear factor kappa B ligand (RANKL), bone morphogenetic protein 2 (BMP2), and collagen type I (Col-I) were detected using real-time quantitative PCRs and western blot assays, respectively. In the DOP rats, ZOL markedly improved osteogenesis, enhanced bone strength and increased the expression of AMPK, p-AMPK, and Col-I in peri-implant bones. The in vitro findings showed that ZOL reversed the high glucose-induced inhibition of osteogenesis via the AMPK signaling pathway. In conclusion, the ability of ZOL to promote osteogenesis in DOP by targeting AMPK signaling suggests that therapy with ZOL, particularly simultaneous local and systemic administration, may be a unique approach for future implant repair in diabetes patients.
Collapse
Affiliation(s)
- Yan Zhang
- School of Stomatology, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Shunyi Jia
- School of Stomatology, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Guochen Wen
- School of Stomatology, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Shanen Xie
- School of Stomatology, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Zhiqiang Song
- Oral and Maxillofacial Surgery, TangShan BoChuang Stomatology Hospital, Tangshan, 063000, Hebei, China
| | - Mengchun Qi
- School of Stomatology, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Yongqiang Liang
- School of Stomatology, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Wenjuan Bi
- School of Stomatology, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Wei Dong
- School of Stomatology, North China University of Science and Technology, Tangshan, 063210, Hebei, China.
- Institute of Stomatology, Chinese PLA General Hospital, Fuxing Lu 28#, Beijing, 100853, China.
| |
Collapse
|
5
|
Xu J, Yan D, Chen Y, Cai D, Huang F, Zhu L, Zhang X, Luan S, Xiao C, Huang Q. Fungicidal activity of novel quinazolin-6-ylcarboxylates and mode of action on Botrytis cinerea. PEST MANAGEMENT SCIENCE 2023; 79:3022-3032. [PMID: 36966485 DOI: 10.1002/ps.7477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/17/2023] [Accepted: 03/26/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Fungal diseases remain important causes of crop failure and economic losses. As the resistance toward current selective fungicides becomes increasingly problematic, it is necessary to develop efficient fungicides with novel chemotypes. RESULTS A series of novel quinazolin-6-ylcarboxylates which combined the structures of pyridine or heterocyclic motif and the N-(3-chloro-4-fluorophenyl)quinazolin-4-amine moiety, a binding group of ATP-binding site of gefitinib, were evaluated for their fungicidal activity on different phytopathogenic fungi. Most of these compounds showed excellent fungicidal activities against Botrytis cinerea and Exserohilum rostratum, especially compound F17 displayed the highest activity with EC50 values as 3.79 μg mL-1 against B. cinerea and 2.90 μg mL-1 against E. rostratum, which was similar to or even better than those of the commercial fungicides, such as pyraclostrobin (EC50 , 3.68, 17.38 μg mL-1 ) and hymexazol (EC50 , 4.56, 2.13 μg mL-1 ). Moreover, compound F17 significantly arrested the lesion expansion of B. cinerea infection on tomato detached leaves and strongly suppressed grey mold disease on tomato seedlings in greenhouse. The abilities of compound F17 to induce cell apoptosis of the non-germinated spores, to limit oxalic acid production, to reduce malate dehydrogenase (MDH) expression, and to block the active pocket of MDH protein were demonstrated in B. cinerea. CONCLUSION The novel quinazolin-6-ylcarboxylates containing ATP-binding site-directed moiety, especially compound F17, could be developed as a potential fungicidal candidate for further study. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jialin Xu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Dongmei Yan
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yongjun Chen
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Danni Cai
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Fengcheng Huang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Lisong Zhu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xianfei Zhang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Shaorong Luan
- School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Ciying Xiao
- School of Biochemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Qingchun Huang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
6
|
Mai L, He G, Chen J, Zhu J, Chen S, Yang H, Zhang M, Hou X, Ke M, Li X. Profilin1 Promotes Renal Tubular Epithelial Cell Apoptosis in Diabetic Nephropathy Through the Hedgehog Signaling Pathway. Diabetes Metab Syndr Obes 2023; 16:1731-1743. [PMID: 37323855 PMCID: PMC10263159 DOI: 10.2147/dmso.s411781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
Background Profilin-1 (PFN1) regulates the dynamic balance of actin and plays an important role in cell functions as a hub protein in signaling molecule interaction networks. Dysregulation of PFN1 is related to pathologic kidney diseases. Diabetic nephropathy (DN) was recently reported as an inflammatory disorder, however, the molecular mechanisms of PFN1 in DN remain unclear. Therefore, the present study was conducted to explore the molecular and bioinformatic characteristics of PFN1 in DN. Methods Bioinformatics analyses were performed on the chip of database in DN kidney tissues. A cellular model of DN was established in human renal tubular epithelial cells (HK-2) induced by high glucose. The PFN1 gene was overexpressed or knocked-down to investigate its function in DN. Flow cytometry was used to detect cell proliferation and apoptosis. PFN1 and proteins in the related signaling pathways were evaluated by Western blotting. Results The expression of PFN1 was significantly increased in DN kidney tissues (P < 0.001) and was correlated with a high apoptosis-associated score (Pearson's correlation = 0.664) and cellular senescence-associated score (Pearson's correlation = 0.703). PFN1 protein was mainly located in cytoplasm. Overexpression of PFN1 promoted apoptosis and blocked the proliferation of HK-2 cells treated with high levels of glucose. Knockdown of PFN1 led to the opposite effects. Additionally, we found that PFN1 was correlated with the inactivation of the Hedgehog signaling pathway in HK-2 cells treated with high levels of glucose. Conclusion PFN1 might play an integral role in the regulation of cell proliferation and apoptosis during DN development by activating the Hedgehog signaling pathway. This study provided molecular and bioinformatic characterizations of PFN1, and contributed to the understanding of the molecular mechanisms leading to DN.
Collapse
Affiliation(s)
- Liping Mai
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
| | - Guodong He
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
| | - Jing Chen
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
| | - Jiening Zhu
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
| | - Shaoxian Chen
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
| | - Hui Yang
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
| | - Mengzhen Zhang
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
| | - Xinghua Hou
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
| | - Miaola Ke
- Department of Blood Transfusion, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
| | - Xiaohong Li
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People’s Republic of China
| |
Collapse
|
7
|
Sabini E, Arboit L, Khan MP, Lanzolla G, Schipani E. Oxidative phosphorylation in bone cells. Bone Rep 2023; 18:101688. [PMID: 37275785 PMCID: PMC10238578 DOI: 10.1016/j.bonr.2023.101688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023] Open
Abstract
The role of energy metabolism in bone cells is an active field of investigation. Bone cells are metabolically very active and require high levels of energy in the form of adenosine triphosphate (ATP) to support their function. ATP is generated in the cytosol via glycolysis coupled with lactic acid fermentation and in the mitochondria via oxidative phosphorylation (OXPHOS). OXPHOS is the final convergent metabolic pathway for all oxidative steps of dietary nutrients catabolism. The formation of ATP is driven by an electrochemical gradient that forms across the mitochondrial inner membrane through to the activity of the electron transport chain (ETC) complexes and requires the presence of oxygen as the final electron acceptor. The current literature supports a model in which glycolysis is the main source of energy in undifferentiated mesenchymal progenitors and terminally differentiated osteoblasts, whereas OXPHOS appears relevant in an intermediate stage of differentiation of those cells. Conversely, osteoclasts progressively increase OXPHOS during differentiation until they become multinucleated and mitochondrial-rich terminal differentiated cells. Despite the abundance of mitochondria, mature osteoclasts are considered ATP-depleted, and the availability of ATP is a critical factor that regulates the low survival capacity of these cells, which rapidly undergo death by apoptosis. In addition to ATP, bioenergetic metabolism generates reactive oxygen species (ROS) and intermediate metabolites that regulate a variety of cellular functions, including epigenetics changes of genomic DNA and histones. This review will briefly discuss the role of OXPHOS and the cross-talks OXPHOS-glycolysis in the differentiation process of bone cells.
Collapse
Affiliation(s)
| | | | | | | | - Ernestina Schipani
- Corresponding author at: Department of Orthopaedic Surgery, University of Pennsylvania, Perelman Medical School, 310A Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Choi EB, Agidigbi TS, Kang IS, Kim C. ERK Inhibition Increases RANKL-Induced Osteoclast Differentiation in RAW 264.7 Cells by Stimulating AMPK Activation and RANK Expression and Inhibiting Anti-Osteoclastogenic Factor Expression. Int J Mol Sci 2022; 23:13512. [PMID: 36362318 PMCID: PMC9656104 DOI: 10.3390/ijms232113512] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/20/2022] [Accepted: 10/30/2022] [Indexed: 08/13/2023] Open
Abstract
Bone absorption is necessary for the maintenance of bone homeostasis. An osteoclast (OC) is a monocyte-macrophage lineage cell that absorbs bone tissue. Extracellular signal-regulated kinases (ERKs) are known to play important roles in regulating OC growth and differentiation. In this study, we examined specific downstream signal pathways affected by ERK inhibition during OC differentiation. Our results showed that the ERK inhibitors PD98059 and U0126 increased receptor activator of NF-κB ligand (RANKL)-induced OC differentiation in RAW 264.7 cells, implying a negative role in OC differentiation. This is supported by the effect of ERK2-specific small interfering RNA on increasing OC differentiation. In contrast to our findings regarding the RAW 264.7 cells, the ERK inhibitors attenuated the differentiation of bone marrow-derived cells into OCs. The ERK inhibitors significantly increased the phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK) but not the activation of p38 MAPK, Lyn, and mTOR. In addition, while the ERK inhibition increased the expression of the RANKL receptor RANK, it decreased the expression of negative mediators of OC differentiation, such as interferon regulatory factor-8, B-cell lymphoma 6, and interferon-γ. These dichotomous effects of ERK inhibition suggest that while ERKs may play positive roles in bone marrow-derived cells, ERKs may also play negative regulatory roles in RAW 264.7 cells. These data provide important information for drug development utilizing ERK inhibitors in OC-related disease treatment.
Collapse
Affiliation(s)
- Eun-Bi Choi
- Laboratory for Leukocyte Signaling Research, Department of Pharmacology and Toxicology, College of Medicine, Inha University, Incheon 22212, Korea
- BK21 Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Korea
| | - Taiwo Samuel Agidigbi
- Laboratory for Leukocyte Signaling Research, Department of Pharmacology and Toxicology, College of Medicine, Inha University, Incheon 22212, Korea
| | - In-Soon Kang
- Laboratory for Leukocyte Signaling Research, Department of Pharmacology and Toxicology, College of Medicine, Inha University, Incheon 22212, Korea
- BK21 Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Korea
| | - Chaekyun Kim
- Laboratory for Leukocyte Signaling Research, Department of Pharmacology and Toxicology, College of Medicine, Inha University, Incheon 22212, Korea
- BK21 Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Korea
- Convergent Research Center for Metabolism and Immunoregulation, Inha University, Incheon 22212, Korea
| |
Collapse
|
9
|
Wang Y, Stancliffe E, Fowle-Grider R, Wang R, Wang C, Schwaiger-Haber M, Shriver LP, Patti GJ. Saturation of the mitochondrial NADH shuttles drives aerobic glycolysis in proliferating cells. Mol Cell 2022; 82:3270-3283.e9. [PMID: 35973426 PMCID: PMC10134440 DOI: 10.1016/j.molcel.2022.07.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 05/12/2022] [Accepted: 07/14/2022] [Indexed: 12/21/2022]
Abstract
Proliferating cells exhibit a metabolic phenotype known as "aerobic glycolysis," which is characterized by an elevated rate of glucose fermentation to lactate irrespective of oxygen availability. Although several theories have been proposed, a rationalization for why proliferating cells seemingly waste glucose carbon by excreting it as lactate remains elusive. Using the NCI-60 cell lines, we determined that lactate excretion is strongly correlated with the activity of mitochondrial NADH shuttles, but not proliferation. Quantifying the fluxes of the malate-aspartate shuttle (MAS), the glycerol 3-phosphate shuttle (G3PS), and lactate dehydrogenase under various conditions demonstrated that proliferating cells primarily transform glucose to lactate when glycolysis outpaces the mitochondrial NADH shuttles. Increasing mitochondrial NADH shuttle fluxes decreased glucose fermentation but did not reduce the proliferation rate. Our results reveal that glucose fermentation, a hallmark of cancer, is a secondary consequence of MAS and G3PS saturation rather than a unique metabolic driver of cellular proliferation.
Collapse
Affiliation(s)
- Yahui Wang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ethan Stancliffe
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ronald Fowle-Grider
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Rencheng Wang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Cheng Wang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Michaela Schwaiger-Haber
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Leah P Shriver
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Gary J Patti
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
10
|
A Review of Signaling Transduction Mechanisms in Osteoclastogenesis Regulation by Autophagy, Inflammation, and Immunity. Int J Mol Sci 2022; 23:ijms23179846. [PMID: 36077242 PMCID: PMC9456406 DOI: 10.3390/ijms23179846] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoclastogenesis is an ongoing rigorous course that includes osteoclast precursors fusion and bone resorption executed by degradative enzymes. Osteoclastogenesis is controlled by endogenous signaling and/or regulators or affected by exogenous conditions and can also be controlled both internally and externally. More evidence indicates that autophagy, inflammation, and immunity are closely related to osteoclastogenesis and involve multiple intracellular organelles (e.g., lysosomes and autophagosomes) and certain inflammatory or immunological factors. Based on the literature on osteoclastogenesis induced by different regulatory aspects, emerging basic cross-studies have reported the emerging disquisitive orientation for osteoclast differentiation and function. In this review, we summarize the partial potential therapeutic targets for osteoclast differentiation and function, including the signaling pathways and various cellular processes.
Collapse
|
11
|
Mohamad Hazir NS, Yahaya NHM, Zawawi MSF, Damanhuri HA, Mohamed N, Alias E. Changes in Metabolism and Mitochondrial Bioenergetics during Polyethylene-Induced Osteoclastogenesis. Int J Mol Sci 2022; 23:ijms23158331. [PMID: 35955464 PMCID: PMC9368566 DOI: 10.3390/ijms23158331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/24/2022] [Accepted: 07/24/2022] [Indexed: 12/10/2022] Open
Abstract
Changes in mitochondrial bioenergetics are believed to take place during osteoclastogenesis. This study aims to assess changes in mitochondrial bioenergetics and reactive oxygen species (ROS) levels during polyethylene (PE)-induced osteoclastogenesis in vitro. For this purpose, RAW264.7 cells were cultured for nine days and allowed to differentiate into osteoclasts in the presence of PE and RANKL. The total TRAP-positive cells, resorption activity, expression of osteoclast marker genes, ROS level, mitochondrial bioenergetics, glycolysis, and substrate utilization were measured. The effect of tocotrienols-rich fraction (TRF) treatment (50 ng/mL) on those parameters during PE-induced osteoclastogenesis was also studied. During PE-induced osteoclastogenesis, as depicted by an increase in TRAP-positive cells and gene expression of osteoclast-related markers, higher proton leak, higher extracellular acidification rate (ECAR), as well as higher levels of ROS and NADPH oxidases (NOXs) were observed in the differentiated cells. The oxidation level of some substrates in the differentiated group was higher than in other groups. TRF treatment significantly reduced the number of TRAP-positive osteoclasts, bone resorption activity, and ROS levels, as well as modulating the gene expression of antioxidant-related genes and mitochondrial function. In conclusion, changes in mitochondrial bioenergetics and substrate utilization were observed during PE-induced osteoclastogenesis, while TRF treatment modulated these changes.
Collapse
Affiliation(s)
- Nur Shukriyah Mohamad Hazir
- Department of Biochemistry, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (N.S.M.H.); (H.A.D.)
- Clinical Laboratory Section, Institute of Medical Science Technology, Universiti Kuala Lumpur, A1-1, Jalan TKS 1, Taman Kajang Sentral, Kajang 43000, Selangor, Malaysia
| | - Nor Hamdan Mohamad Yahaya
- Department of Orthopaedics, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| | - Muhamad Syahrul Fitri Zawawi
- Department of Orthopaedics, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Kelantan, Malaysia;
| | - Hanafi Ahmad Damanhuri
- Department of Biochemistry, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (N.S.M.H.); (H.A.D.)
| | - Norazlina Mohamed
- Department of Pharmacology, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| | - Ekram Alias
- Department of Biochemistry, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (N.S.M.H.); (H.A.D.)
- Correspondence: ; Tel.: +60-3-91459559
| |
Collapse
|
12
|
Song Y, Wu Z, Zhao P. The Function of Metformin in Aging-Related Musculoskeletal Disorders. Front Pharmacol 2022; 13:865524. [PMID: 35392559 PMCID: PMC8982084 DOI: 10.3389/fphar.2022.865524] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/21/2022] [Indexed: 12/22/2022] Open
Abstract
Metformin is a widely accepted first-line hypoglycemic agent in current clinical practice, and it has been applied to the clinic for more than 60 years. Recently, researchers have identified that metformin not only has an efficient capacity to lower glucose but also exerts anti-aging effects by regulating intracellular signaling molecules. With the accelerating aging process and mankind’s desire for a long and healthy life, studies on aging have witnessed an unprecedented boom. Osteoporosis, sarcopenia, degenerative osteoarthropathy, and frailty are age-related diseases of the musculoskeletal system. The decline in motor function is a problem that many elderly people have to face, and in serious cases, they may even fail to self-care, and their quality of life will be seriously reduced. Therefore, exploring potential treatments to effectively prevent or delay the progression of aging-related diseases is essential to promote healthy aging. In this review, we first briefly describe the origin of metformin and the aging of the movement system, and next review the evidence associated with its ability to extend lifespan. Furthermore, we discuss the mechanisms related to the modulation of aging in the musculoskeletal system by metformin, mainly its contribution to bone homeostasis, muscle aging, and joint degeneration. Finally, we analyze the protective benefits of metformin in aging-related diseases of the musculoskeletal system.
Collapse
Affiliation(s)
- Yanhong Song
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ziyi Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Liu C, He Y, Xu X, He B. Phospholipase Cγ Signaling in Bone Marrow Stem Cell and Relevant Natural Compounds Therapy. Curr Stem Cell Res Ther 2021; 15:579-587. [PMID: 31702518 DOI: 10.2174/1574888x14666191107103755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/18/2019] [Accepted: 08/08/2019] [Indexed: 01/07/2023]
Abstract
Excessive bone resorption has been recognized play a major role in the development of bone-related diseases such as osteoporosis, rheumatoid arthritis, Paget's disease of bone, and cancer. Phospholipase Cγ (PLCγ) family members PLCγ1 and PLCγ2 are critical regulators of signaling pathways downstream of growth factor receptors, integrins, and immune complexes and play a crucial role in osteoclast. Ca2+ signaling has been recognized as an essential pathway to the differentiation of osteoclasts. With growing attention and research about natural occurring compounds, the therapeutic use of natural active plant-derived products has been widely recognized in recent years. In this review, we summarized the recent research on PLCγ signaling in bone marrow stem cells and the use of several natural compounds that were proven to inhibit RANKL-mediated osteoclastogenesis via modulating PLCγ signaling pathways.
Collapse
Affiliation(s)
- Chang Liu
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China.,Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Yuan He
- Department of Orthopedics, Fifth Hospital of Xi’an, Xi’an, China
| | - Xiaobing Xu
- Department of Neurosurgery, Shunde Hospital of Southern Medical University, Fo Shan, China
| | - Baorong He
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
14
|
Da W, Tao L, Zhu Y. The Role of Osteoclast Energy Metabolism in the Occurrence and Development of Osteoporosis. Front Endocrinol (Lausanne) 2021; 12:675385. [PMID: 34054735 PMCID: PMC8150001 DOI: 10.3389/fendo.2021.675385] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022] Open
Abstract
In recent decades, the mechanism underlying bone metabolic disorders based on energy metabolism has been heavily researched. Bone resorption by osteoclasts plays an important role in the occurrence and development of osteoporosis. However, the mechanism underlying the osteoclast energy metabolism disorder that interferes with bone homeostasis has not been determined. Bone resorption by osteoclasts is a process that consumes large amounts of adenosine triphosphate (ATP) produced by glycolysis and oxidative phosphorylation. In addition to glucose, fatty acids and amino acids can also be used as substrates to produce energy through oxidative phosphorylation. In this review, we summarize and analyze the energy-based phenotypic changes, epigenetic regulation, and coupling with systemic energy metabolism of osteoclasts during the development and progression of osteoporosis. At the same time, we propose a hypothesis, the compensatory recovery mechanism (involving the balance between osteoclast survival and functional activation), which may provide a new approach for the treatment of osteoporosis.
Collapse
Affiliation(s)
| | - Lin Tao
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Yue Zhu
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
15
|
Three cytosolic NAD-malate dehydrogenase isoforms of Arabidopsis thaliana: on the crossroad between energy fluxes and redox signaling. Biochem J 2021; 477:3673-3693. [PMID: 32897311 PMCID: PMC7538154 DOI: 10.1042/bcj20200240] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 01/08/2023]
Abstract
In yeast and animal cells, mitochondrial disturbances resulting from imbalances in the respiratory chain require malate dehydrogenase (MDH) activities for re-directing fluxes of reducing equivalents. In plants, in addition to mitochondria, plastids use malate valves to counterbalance and maintain redox-homeostasis. Arabidopsis expresses three cytosolic MDH isoforms, namely cyMDH1, cyMDH2, and cyMDH3, the latter possessing an N-terminal extension carrying a unique cysteine residue C2. In this study, redox-effects on activity and structure of all three cyMDH isoforms were analyzed in vitro. cyMDH1 and cyMDH2 were reversibly inactivated by diamide treatment, accompanied by dimerization via disulfide-bridge formation. In contrast, cyMDH3 forms dimers and higher oligomers upon oxidation, but its low specific activity is redox-independent. In the presence of glutathione, cyMDH1 and cyMDH2 are protected from dimerization and inactivation. In contrast, cyMDH3 still dimerizes but does not form oligomers any longer. From analyses of single and double cysteine mutants and structural modeling of cyMDH3, we conclude that the presence of C2 and C336 allows for multiple cross-links in the higher molecular mass complexes comprising disulfides within the dimer as well as between monomers of two different dimers. Furthermore, nuclear localization of cyMDH isoforms was significantly increased under oxidizing conditions in isolated Arabidopsis protoplasts, in particular of isoform cyMDH3. The unique cyMDH3 C2-C2-linked dimer is, therefore, a good candidate as a redox-sensor taking over moonlighting functions upon disturbances of energy metabolism, as shown previously for the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) where oxidative modification of the sensitive catalytic cysteine residues induces nuclear translocation.
Collapse
|
16
|
Tong X, Ganta RR, Liu Z. AMP-activated protein kinase (AMPK) regulates autophagy, inflammation and immunity and contributes to osteoclast differentiation and functionabs. Biol Cell 2020; 112:251-264. [PMID: 32445585 DOI: 10.1111/boc.202000008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 02/06/2023]
Abstract
Osteoclasts are multinucleated giant cells, responsible for bone resorption. Osteoclast differentiation and function requires a series of cytokines to remove the old bone, which coordinates with the induction of bone remodelling by osteoblast-mediated bone formation. Studies have demonstrated that AMP-activated protein kinase (AMPK) play a negative regulatory role in osteoclast differentiation and function. Research involving AMPK, a nutrient and energy sensor, has primarily focused on osteoclast differentiation and function; thus, its role in autophagy, inflammation and immunity remains poorly understood. Autophagy is a conservative homoeostatic mechanism of eukaryotic cells, and response to osteoclast differentiation and function; however, how it interacts with inflammation remains unclear. Additionally, based on the regulatory function of different AMPK subunits for osteoclast differentiation and function, its activation is regulated by upstream factors to perform bone metabolism. This review summarises the critical role of AMPK-mediated autophagy, inflammation and immunity by upstream and downstream signalling during receptor activator of nuclear factor kappa-B ligand-induced osteoclast differentiation and function. This pathway may provide therapeutic targets for bone-related diseases, as well as function as a biomarker for bone homoeostasis.
Collapse
Affiliation(s)
- Xishuai Tong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.,Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, 66502, USA.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Roman R Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, 66502, USA
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| |
Collapse
|
17
|
Tong X, Zhang C, Wang D, Song R, Ma Y, Cao Y, Zhao H, Bian J, Gu J, Liu Z. Suppression of AMP-activated protein kinase reverses osteoprotegerin-induced inhibition of osteoclast differentiation by reducing autophagy. Cell Prolif 2019; 53:e12714. [PMID: 31696568 PMCID: PMC6985670 DOI: 10.1111/cpr.12714] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/25/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022] Open
Abstract
Objectives Osteoclasts (OC) are unique terminally differentiated cells whose primary function is bone resorption. We previously showed that osteoprotegerin (OPG) inhibits OC differentiation in vitro by enhancing autophagy via the adenosine monophosphate‐activated protein kinase (AMPK)/mTOR/p70S6K signalling pathway in vitro. Here, we aimed to elucidate the mechanism of AMPK mediated autophagy to regulate OPG‐mediated inhibition of OC differentiation and identify potential therapeutic targets associated with bone loss. Materials and Methods We used the AMPK activator AICAR to determine the relationship between AMPK activation and OC differentiation, and studied the role of AMPK‐mediated autophagy in OPG‐mediated inhibition of OC differentiation by using autophagy inhibitors or AMPK knockdown. Results AMP‐activated protein kinase activation caused LC3II accumulation and weakened OC differentiation activity. In contrast, inactivation of autophagy by 3‐methyladenine or Bafilomycin A1 could attenuate OPG‐mediated inhibition of OC differentiation via the AMPK/mTOR/p70S6K signalling pathway. Furthermore, the AMPK inhibitor compound C and knockdown of AMPK impaired OPG‐mediated inhibition of OC differentiation by inducing autophagy. Conclusions These results demonstrated that the AMPK signalling pathway functions as a critical regulator in the OPG‐mediated inhibition of OC differentiation, by inducing autophagy. Our results provide a basis for future bone‐related studies on the AMPK signalling pathway.
Collapse
Affiliation(s)
- Xishuai Tong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chuang Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Dong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Key Laboratory of Neurodegeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neurodegeneration, Nantong University, Nantong, Jiangsu, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Cao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
18
|
Jin SH, Kim H, Gu DR, Park KH, Lee YR, Choi Y, Lee SH. Actin-binding LIM protein 1 regulates receptor activator of NF-κB ligand-mediated osteoclast differentiation and motility. BMB Rep 2018; 51:356-361. [PMID: 29921413 PMCID: PMC6089868 DOI: 10.5483/bmbrep.2018.51.7.106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Indexed: 01/15/2023] Open
Abstract
Actin-binding LIM protein 1 (ABLIM1), a member of the LIM-domain protein family, mediates interactions between actin filaments and cytoplasmic targets. However, the role of ABLIM1 in osteoclast and bone metabolism has not been reported. In the present study, we investigated the role of ABLIM1 in the receptor activator of NF-κB ligand (RANKL)-mediated osteoclastogenesis. ABLIM1 expression was induced by RANKL treatment and knockdown of ABLIM1 by retrovirus infection containing Ablim1-specific short hairpin RNA (shAblim1) decreased mature osteoclast formation and bone resorption activity in a RANKL-dose dependent manner. Coincident with the downregulated expression of osteoclast differentiation marker genes, the expression levels of c-Fos and the nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), critical transcription factors of osteoclastogenesis, were also decreased in shAblim1-infected osteoclasts during RANKL-mediated osteoclast differentiation. In addition, the motility of preosteoclast was reduced by ABLIM1 knockdown via modulation of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt/Rac1 signaling pathway, suggesting another regulatory mechanism of ABLIM1 in osteoclast formation. These data demonstrated that ABLIM1 is a positive regulator of RANKL-mediated osteoclast formation via the modulation of the differentiation and PI3K/Akt/Rac1-dependent motility.
Collapse
Affiliation(s)
- Su Hyun Jin
- Center for Metabolic Function Regulation (CMFR), Wonkwang University School of Medicine, Iksan 54538, Korea
| | - Hyunsoo Kim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Dong Ryun Gu
- Center for Metabolic Function Regulation (CMFR), Wonkwang University School of Medicine, Iksan 54538, Korea; Department of Oral Microbiology and Immunology, Wonkwang University, Iksan 54538, Korea
| | - Keun Ha Park
- Center for Metabolic Function Regulation (CMFR), Wonkwang University School of Medicine, Iksan 54538, Korea; Department of Oral Microbiology and Immunology, Wonkwang University, Iksan 54538, Korea
| | - Young Rae Lee
- Center for Metabolic Function Regulation (CMFR), Wonkwang University School of Medicine, Iksan 54538, Korea; Department of Oral Biochemistry, and Institute of BiomaterialsㆍImplant, College of Dentistry, Wonkwang University, Iksan 54538, Korea
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Seoung Hoon Lee
- Center for Metabolic Function Regulation (CMFR), Wonkwang University School of Medicine, Iksan 54538, Korea; Department of Oral Microbiology and Immunology, Wonkwang University, Iksan 54538, Korea; Institute of BiomaterialsㆍImplant, College of Dentistry, Wonkwang University, Iksan 54538, Korea
| |
Collapse
|
19
|
Tang H, Teng R, Zhao X, Wang X, Xu L, Deng H, Liu X. Isotope tracing assisted metabolic profiling: Application to understanding HSP60 silencing mediated tumor progression. Anal Chim Acta 2018; 1047:93-103. [PMID: 30567669 DOI: 10.1016/j.aca.2018.09.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 01/01/2023]
Abstract
Isotope-tracing facilitates the understanding of metabolic regulation in biological systems. Depending on the selection of tracers, some essential metabolites cannot be traced. A comprehensive understanding of the regulated pathways can only be achieved with focus beyond labeled metabolites. The isotope tracing assisted metabolic profiling described here is a platform for high throughput mapping of isotope labeled metabolites with simultaneous metabolomics profiling. This approach incorporates an in-house MS/MS library for metabolite identification and ID-based quantitation. An "Isotopic" software was developed to generate potential labeled isotopomers. Using this platform, a total of 394 metabolites were reliably identified based on MS/MS confirmation in 3 million 293 T cells, among which 54 and 43 metabolites were discovered to carry extensive labels (>2%) from 13C6-glucose and 13C5-glutamine respectively. Citrate flowing into malate shuttle was also observed. More interestingly, the rate-limiting step in NAD and UDP-GlcNAc biosynthesis was clearly observed according to time course labeling. In HSP60 knockdown cell lines, enhanced purine and pyrimidine biosynthesis were confirmed by the abundance and labeling percentages of intermediate metabolites.
Collapse
Affiliation(s)
- Haiping Tang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ruifang Teng
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xinyuan Zhao
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xueying Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; National Protein Science Technology Center, Tsinghua University, Beijing, 100084, China
| | - Lina Xu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; National Protein Science Technology Center, Tsinghua University, Beijing, 100084, China
| | - Haiteng Deng
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; MOE Key Laboratory of Bioinformatics and the Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xiaohui Liu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; National Protein Science Technology Center, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
20
|
Effect of green tea extract on bone mass and body composition in individuals with diabetes. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.11.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
21
|
Abstract
Three neurodegenerative diseases [Amyotrophic Lateral Sclerosis (ALS), Parkinson's disease (PD) and Alzheimer's disease (AD)] have many characteristics like pathological mechanisms and genes. In this sense some researchers postulate that these diseases share the same alterations and that one alteration in a specific protein triggers one of these diseases. Analyses of gene expression may shed more light on how to discover pathways, pathologic mechanisms associated with the disease, biomarkers and potential therapeutic targets. In this review, we analyze four microarrays related to three neurodegenerative diseases. We will systematically examine seven genes (CHN1, MDH1, PCP4, RTN1, SLC14A1, SNAP25 and VSNL1) that are altered in the three neurodegenerative diseases. A network was built and used to identify pathways, miRNA and drugs associated with ALS, AD and PD using Cytoscape software an interaction network based on the protein interactions of these genes. The most important affected pathway is PI3K-Akt signalling. Thirteen microRNAs (miRNA-19B1, miRNA-107, miRNA-124-1, miRNA-124-2, miRNA-9-2, miRNA-29A, miRNA-9-3, miRNA-328, miRNA-19B2, miRNA-29B2, miRNA-124-3, miRNA-15A and miRNA-9-1) and four drugs (Estradiol, Acetaminophen, Resveratrol and Progesterone) for new possible treatments were identified.
Collapse
Affiliation(s)
| | - Marcelo Alarcón
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile; Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca 3460000, Chile.
| |
Collapse
|
22
|
Gu DR, Lee JN, Oh GS, Kim HJ, Kim MS, Lee SH. The inhibitory effect of beta-lapachone on RANKL-induced osteoclastogenesis. Biochem Biophys Res Commun 2016; 482:1073-1079. [PMID: 27913299 DOI: 10.1016/j.bbrc.2016.11.160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 11/28/2016] [Indexed: 01/08/2023]
Abstract
β-lapachone (β-L) is a substrate of reduced nicotinamide adenine dinucleotide (NADH): quinone oxidoreductase 1 (NQO1). NQO1 reduces quinones to hydroquinones using NADH as an electron donor and consequently increases the intracellular NAD+/NADH ratio. The activation of NQO1 by β-L has beneficial effects on several metabolic syndromes, such as obesity, hypertension, and renal injury. However, the effect of β-L on bone metabolism remains unclear. Here, we show that β-L might be a potent inhibitor of receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis. β-L inhibited osteoclast formation in a dose-dependent manner and also reduced the expression of osteoclast differentiation marker genes, such as tartrate-resistant acid phosphatase (Acp5 or TRAP), cathepsin K (CtsK), the d2 isoform of vacuolar ATPase V0 domain (Atp6v0d2), osteoclast-associated receptor (Oscar), and dendritic cell-specific transmembrane protein (Dc-stamp). β-L treatment of RANKL-induced osteoclastogenesis significantly increased the cellular NAD+/NADH ratio and resulted in the activation of 5' AMP-activated protein kinase (AMPK), a negative regulator of osteoclast differentiation. In addition, β-L treatment led to significant suppression of the expression of peroxisome proliferator-activated receptor gamma (PPARγ) and peroxisome proliferator-activated receptor gamma coactivator 1β (PGC1β), which can stimulate osteoclastogenesis. β-L treatment downregulated c-Fos and nuclear factor of activated T-cells 1 (NFATc1), which are master transcription factors for osteoclastogenesis. Taken together, the results demonstrated that β-L inhibits RANKL-induced osteoclastogenesis and could be considered a potent inhibitor of RANKL-mediated bone diseases, such as postmenopausal osteoporosis, rheumatoid arthritis, and periodontitis.
Collapse
Affiliation(s)
- Dong Ryun Gu
- Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Republic of Korea; Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Republic of Korea
| | - Joon No Lee
- Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Republic of Korea
| | - Gi-Su Oh
- Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Republic of Korea
| | - Hyung Jin Kim
- Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Republic of Korea
| | - Min Seuk Kim
- Department of Oral Physiology, College of Dentistry, Wonkwang University, Republic of Korea; Institute of Biomaterials Implant, Wonkwang University, Republic of Korea
| | - Seoung Hoon Lee
- Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Republic of Korea; Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Republic of Korea; Institute of Biomaterials Implant, Wonkwang University, Republic of Korea; Integrated Omics Institute, Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea.
| |
Collapse
|