1
|
Singh S, Gupta S, Abhishek R, Sachan M. Regulation of m 6A (N 6-Methyladenosine) methylation modifiers in solid cancers. Funct Integr Genomics 2024; 24:193. [PMID: 39438339 DOI: 10.1007/s10142-024-01467-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Abstract
Solid cancers constitute a tremendous burden on global healthcare, requiring a deeper understanding of the molecular mechanisms underlying cancer development and progression. Epigenetic changes, notably N6-methyladenosine (m6A) RNA methylation, have emerged as important contributors to the biology of solid tumors in recent years. This epigenetic mark dynamically affects gene expression at the post-transcriptional level and modulates a variety of cellular processes, making it a focus of research in the context of solid tumors. m6A modification patterns are dysregulated in a variety of solid cancers, including ovarian, breast, lung, colorectal, pancreatic, and others. This dysregulated m6A landscape has been shown to induce significant changes in the expression of oncogenes, tumor suppressors, and genes involved in cancer stem cells, metastasis, and treatment resistance. In solid tumors, the interaction of m6A "writers" (e.g., METTL3, METTL14, and others), "erasers" (e.g., ALKBH5, FTO), and "readers" (e.g., members of YTHDF proteins and others) delicately changes the m6A methylome. Targeting m6A regulators as a potential therapeutic method to control gene expression and prevent tumor development seems a novel strategy. To enhance treatment results, advances in this area of research have led to the development of targeted treatments aiming at restoring or altering m6A alteration patterns in solid tumors.
Collapse
Affiliation(s)
- Sakshi Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Uttar Pradesh, Prayagraj, 211004, India
| | - Sudha Gupta
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Uttar Pradesh, Prayagraj, 211004, India
| | - Rajul Abhishek
- Deparment of Surgical Oncology, Motilal Nehru Medical College, Uttar Pradesh, Prayagraj, 211002, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Uttar Pradesh, Prayagraj, 211004, India.
| |
Collapse
|
2
|
Hu J, Xu T, Kang H. Crosstalk between RNA m 6A modification and epigenetic factors in plant gene regulation. PLANT COMMUNICATIONS 2024; 5:101037. [PMID: 38971972 DOI: 10.1016/j.xplc.2024.101037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/04/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
N6-methyladenosine (m6A) is the most abundant modification observed in eukaryotic mRNAs. Advances in transcriptome-wide m6A mapping and sequencing technologies have enabled the identification of several conserved motifs in plants, including the RRACH (R = A/G and H = A/C/U) and UGUAW (W = U or A) motifs. However, the mechanisms underlying deposition of m6A marks at specific positions in the conserved motifs of individual transcripts remain to be clarified. Evidence from plant and animal studies suggests that m6A writer or eraser components are recruited to specific genomic loci through interactions with particular transcription factors, 5-methylcytosine DNA methylation marks, and histone marks. In addition, recent studies in animal cells have shown that microRNAs play a role in depositing m6A marks at specific sites in transcripts through a base-pairing mechanism. m6A also affects the biogenesis and function of chromatin-associated regulatory RNAs and long noncoding RNAs. Although we have less of an understanding of the link between m6A modification and epigenetic factors in plants than in animals, recent progress in identifying the proteins that interact with m6A writer or eraser components has provided insights into the crosstalk between m6A modification and epigenetic factors, which plays a crucial role in transcript-specific methylation and regulation of m6A in plants.
Collapse
Affiliation(s)
- Jianzhong Hu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Tao Xu
- Jiangsu Key Laboratory of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China.
| | - Hunseung Kang
- Jiangsu Key Laboratory of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China; Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea.
| |
Collapse
|
3
|
Zhang B, Hao Y, Liu H, Wu J, Lu L, Wang X, Bajpai AK, Yang X. Interplay of RNA m 6A Modification-Related Geneset in Pan-Cancer. Biomedicines 2024; 12:2211. [PMID: 39457524 PMCID: PMC11504890 DOI: 10.3390/biomedicines12102211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 10/28/2024] Open
Abstract
Background: N6-methyladenosine (m6A), is the most common modification found in mRNA and lncRNA in higher organisms and plays an important role in physiology and pathology. However, its role in pan-cancer has not been explored. Results: A total of 31 m6A modification regulators, including 12 writers, 2 erasers, and 17 readers are identified in the current study. The functional analysis of the regulators results in the enrichment of processes, primarily related to RNA modification and metabolism, and the PPI network reveals multiple interactions among the regulators. The mRNA expression analysis reveals a high expression for most of the regulators in pan-cancer. Most of the m6A regulators are found to be mutated across the cancers, with ZC3H13, VIRMA, and PRRC2A having a higher frequency rate. Significant correlations of the regulators with clinicopathological parameters, such as age, gender, tumor stage, and grade are identified in pan-cancer. The m6A regulators' expression is found to have significant positive correlations with the miRNAs in pan-cancer. The expression pattern of the m6A regulators is able to classify the tumors into different subclusters as well as into high- and low-risk groups. These tumor groups show differential patterns in terms of their immune cell infiltration, tumor stemness score, genomic heterogeneity score, expression of immune regulatory/checkpoint genes, and correlations between the regulators and the drugs. Conclusions: Our study provide a comprehensive overview of the functional roles, genetic and epigenetic alterations, and prognostic value of the RNA m6A regulators in pan-cancer.
Collapse
Affiliation(s)
- Boyu Zhang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong 226007, China; (B.Z.); (H.L.); (J.W.); (X.W.)
| | - Yajuan Hao
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai 200072, China;
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai 200072, China
| | - Haiyan Liu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong 226007, China; (B.Z.); (H.L.); (J.W.); (X.W.)
| | - Jiarun Wu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong 226007, China; (B.Z.); (H.L.); (J.W.); (X.W.)
| | - Lu Lu
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, UT 38163, USA;
| | - Xinfeng Wang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong 226007, China; (B.Z.); (H.L.); (J.W.); (X.W.)
| | - Akhilesh K. Bajpai
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, UT 38163, USA;
| | - Xi Yang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong 226007, China; (B.Z.); (H.L.); (J.W.); (X.W.)
| |
Collapse
|
4
|
Liu J, Wang W, Wang K, Liu W, Zhao Y, Han X, Wang L, Jiang BH. HDAC1 and FOXK1 mediate EGFR-TKI resistance of non-small cell lung cancer through miR-33a silencing. J Transl Med 2024; 22:793. [PMID: 39198847 PMCID: PMC11350990 DOI: 10.1186/s12967-024-05563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND The development of acquired EGFR-TKI treatment resistance is still a major clinical challenge in the treatment of non-small cell lung cancer (NSCLC). This study aimed to investigate the role of HDAC1/FOXK1/miR-33a signaling in EGFR-TKI resistance. METHODS The expression levels of miR-33a, HDAC1, and FOXK1 were examined using quantitative polymerase chain reaction (PCR) and bioinformatics analysis. Cell proliferation, migration, and apoptosis were explored by cell number assay, Transwell, and flow cytometry assays, respectively. After overexpression or knockdown of HDAC1, miR-33a expression in the cells, cell functions were tested. Immunoprecipitation and correlation analyses were used to evaluate the interaction between HDAC1 and FOXK1 protein. The tumor-suppressive role of miR-33a was investigated by animal experiments. RESULTS The suppression of miR-33a increased TKI resistance by affecting cell proliferation, migration, and apoptosis in gefitinib-resistant cells. HDAC1 is the key upstream molecule that inhibits miR-33 expression. HDAC1 upregulation increased gefitinib resistance by its binding to FOXK1 in cells to silence miR-33a expression. MiR-33a overexpression exerts tumor-suppressive effects by negatively regulating ABCB7 and p70S6K1 expression. Moreover, overexpression of miR-33a inhibited tumor growth in a xenograft nude mouse model. CONCLUSIONS HDAC1/FOXK1 upregulation and miR-33a silencing are new mechanisms of EGFR-TKI resistance in NSCLC.
Collapse
Affiliation(s)
- Jie Liu
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Wei Wang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Kunkun Wang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Wenjing Liu
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Yanqiu Zhao
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Xiao Han
- Department of Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lin Wang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| | - Bing-Hua Jiang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
5
|
Yang J, Liang F, Zhang F, Zhao H, Gong Q, Gao N. Recent advances in the reciprocal regulation of m 6A modification with non-coding RNAs and its therapeutic application in acute myeloid leukemia. Pharmacol Ther 2024; 259:108671. [PMID: 38830387 DOI: 10.1016/j.pharmthera.2024.108671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
N6-methyladenosine (m6A) is one of the most common modifications of RNA in eukaryotic cells and is involved in mRNA metabolism, including stability, translation, maturation, splicing, and export. m6A also participates in the modification of multiple types of non-coding RNAs, such as microRNAs, long non-coding RNAs, and circular RNAs, thereby affecting their metabolism and functions. Increasing evidence has revealed that m6A regulators, such as writers, erasers, and readers, perform m6A-dependent modification of ncRNAs, thus affecting cancer progression. Moreover, ncRNAs modulate m6A regulators to affect cancer development and progression. In this review, we summarize recent advances in understanding m6A modification and ncRNAs and provide insights into the interaction between m6A modification and ncRNAs in cancer. We also discuss the potential clinical applications of the mechanisms underlying the interplay between m6A modifications and ncRNAs in acute myeloid leukemia (AML). Therefore, clarifying the mutual regulation between m6A modifications and ncRNAs is of great significance to identify novel therapeutic targets for AML and has great clinical application prospects.
Collapse
Affiliation(s)
- Jiawang Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China; Chinese Phramcological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi 563000, Guizhou, China
| | - Feng Liang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China; Chinese Phramcological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi 563000, Guizhou, China
| | - Fenglin Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China; Chinese Phramcological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi 563000, Guizhou, China
| | - Hailong Zhao
- Department of Pathophysiology, Zunyi Medical University, Zunyi 563000, Guizhou, China.
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China; Chinese Phramcological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi 563000, Guizhou, China.
| | - Ning Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China; Chinese Phramcological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi 563000, Guizhou, China.
| |
Collapse
|
6
|
Mehmood R. Ramifications of m6A Modification on ncRNAs in Cancer. Curr Genomics 2024; 25:158-170. [PMID: 39087001 PMCID: PMC11288162 DOI: 10.2174/0113892029296712240405053201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 08/02/2024] Open
Abstract
N6-methyladenosine (m6A) is an RNA modification wherein the N6-position of adenosine is methylated. It is one of the most prevalent internal modifications of RNA and regulates various aspects of RNA metabolism. M6A is deposited by m6A methyltransferases, removed by m6A demethylases, and recognized by reader proteins, which modulate splicing, export, translation, and stability of the modified mRNA. Recent evidence suggests that various classes of non- coding RNAs (ncRNAs), including microRNAs (miRNAs), circular RNAs (circRNAs), and long con-coding RNAs (lncRNAs), are also targeted by this modification. Depending on the ncRNA species, m6A may affect the processing, stability, or localization of these molecules. The m6A- modified ncRNAs are implicated in a number of diseases, including cancer. In this review, the author summarizes the role of m6A modification in the regulation and functions of ncRNAs in tumor development. Moreover, the potential applications in cancer prognosis and therapeutics are discussed.
Collapse
Affiliation(s)
- Rashid Mehmood
- Department of Life Sciences, College of Science and General Studies, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
7
|
Qian W, Yang L, Li T, Li W, Zhou J, Xie S. RNA modifications in pulmonary diseases. MedComm (Beijing) 2024; 5:e546. [PMID: 38706740 PMCID: PMC11068158 DOI: 10.1002/mco2.546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 02/26/2024] [Accepted: 03/14/2024] [Indexed: 05/07/2024] Open
Abstract
Threatening public health, pulmonary disease (PD) encompasses diverse lung injuries like chronic obstructive PD, pulmonary fibrosis, asthma, pulmonary infections due to pathogen invasion, and fatal lung cancer. The crucial involvement of RNA epigenetic modifications in PD pathogenesis is underscored by robust evidence. These modifications not only shape cell fates but also finely modulate the expression of genes linked to disease progression, suggesting their utility as biomarkers and targets for therapeutic strategies. The critical RNA modifications implicated in PDs are summarized in this review, including N6-methylation of adenosine, N1-methylation of adenosine, 5-methylcytosine, pseudouridine (5-ribosyl uracil), 7-methylguanosine, and adenosine to inosine editing, along with relevant regulatory mechanisms. By shedding light on the pathology of PDs, these summaries could spur the identification of new biomarkers and therapeutic strategies, ultimately paving the way for early PD diagnosis and treatment innovation.
Collapse
Affiliation(s)
- Weiwei Qian
- Emergency Department of Emergency MedicineLaboratory of Emergency Medicine, West China Hospital, And Disaster Medical, Sichuan UniversityChengduSichuanChina
- Emergency DepartmentShangjinnanfu Hospital, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Lvying Yang
- The Department of Respiratory and Critical Care MedicineThe First Veterans Hospital of Sichuan ProvinceChengduSichuanChina
| | - Tianlong Li
- Department of Critical Care Medicine Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Wanlin Li
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's HospitalShenzhenGuangdongChina
| | - Jian Zhou
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National‐Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical SchoolShenzhenChina
- Department of ImmunologyInternational Cancer Center, Shenzhen University Health Science CenterShenzhenGuangdongChina
| | - Shenglong Xie
- Department of Thoracic SurgerySichuan Provincial People's Hospital, University of Electronic Science and Technology of ChinaChengduSichuanChina
| |
Collapse
|
8
|
Hashemi M, Daneii P, Zandieh MA, Raesi R, Zahmatkesh N, Bayat M, Abuelrub A, Khazaei Koohpar Z, Aref AR, Zarrabi A, Rashidi M, Salimimoghadam S, Entezari M, Taheriazam A, Khorrami R. Non-coding RNA-Mediated N6-Methyladenosine (m 6A) deposition: A pivotal regulator of cancer, impacting key signaling pathways in carcinogenesis and therapy response. Noncoding RNA Res 2024; 9:84-104. [PMID: 38075202 PMCID: PMC10700483 DOI: 10.1016/j.ncrna.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 06/20/2024] Open
Abstract
The emergence of RNA modifications has recently been considered as critical post-transcriptional regulations which governed gene expression. N6-methyladenosine (m6A) modification is the most abundant type of RNA modification which is mediated by three distinct classes of proteins called m6A writers, readers, and erasers. Accumulating evidence has been made in understanding the role of m6A modification of non-coding RNAs (ncRNAs) in cancer. Importantly, aberrant expression of ncRNAs and m6A regulators has been elucidated in various cancers. As the key role of ncRNAs in regulation of cancer hallmarks is well accepted now, it could be accepted that m6A modification of ncRNAs could affect cancer progression. The present review intended to discuss the latest knowledge and importance of m6A epigenetic regulation of ncRNAs including mircoRNAs, long non-coding RNAs, and circular RNAs, and their interaction in the context of cancer. Moreover, the current insight into the underlying mechanisms of therapy resistance and also immune response and escape mediated by m6A regulators and ncRNAs are discussed.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Zahmatkesh
- Department of Genetics, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Mehrsa Bayat
- Department of Health Sciences, Bahcesehir University, Istanbul, Turkey
| | - Anwar Abuelrub
- Neuroscience Laboratory, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
9
|
Wang D, Wang D, Jin Q, Wang X. Suxiao Jiuxin Pill alleviates myocardial ischemia/reperfusion-induced autophagy via miR-193a-3p/ALKBH5 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155359. [PMID: 38301300 DOI: 10.1016/j.phymed.2024.155359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Myocardial ischemia/reperfusion injury (MIRI) poses a formidable challenge to cardiac reperfusion therapy due to the absence of effective clinical interventions. Methylation of N6-methyladenosine (m6A), which is the most common post-transcriptional modifications occurring within mammalian mRNA, is believed to be involved in MIRI by modulating autophagy. MicroRNAs (miRNAs) play a crucial role in regulating gene expression at the post-transcriptional level and have been implicated in the regulation of m6A methylation. Suxiao Jiuxin Pill (SJP) is extensively used in China for the clinical treatment of angina pectoris and confers benefits to patients with acute coronary syndrome who have received percutaneous coronary intervention. However, the precise mechanisms underlying SJP intervention in MIRI remain unclear. PURPOSE This study aimed to demonstrate, both in vivo and in vitro, that SJP could alleviate autophagy in MIRI by regulating miR-193a-3p to target and upregulate the demethylase ALKBH5. METHODS An in vitro hypoxia/reoxygenation model was established using H9c2 cells, while an in vivo MIRI model was established using Wistar rats. A lentivirus harboring the precursor sequence of miR-193a-3p was employed for its overexpression. Adeno-associated viruses were used to silence both miR-193a-3p and ALKBH5 expressions. Cardiac function, infarct size, and tissue structure in rats were assessed using echocardiography, triphenyl tetrazolium chloride (TTC) staining, and HE staining, respectively. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) was employed to detect the levels of apoptosis in rat cardiac tissue. m6A methylation levels were assessed using colorimetry. GFP-RFP-LC3B was used to monitor autophagic flux and transmission electron microscopy was used to evaluate the development of autophagosomes. Western Blot and qRT-PCR were respectively employed to assess the levels of autophagy-related proteins and miR-193a-3p. RESULTS SJP alleviated autophagy, preserved cardiac function, and minimized myocardial damage in the hearts of MIRI rats. SJP attenuated autophagy in H/R H9C2 cells. Elevated levels of miR-193a-3p were observed in the cardiac tissues of MIRI rats and H/R H9C2 cells, whereas SJP downregulated miR-193a-3p levels in these models. ALKBH5, a target gene of miR-193, is negatively regulated by miR-193a-3p. Upon overexpression of miR-193a-3p or silencing of ALKBH5, m6A methylation decreased, and the autophagy-attenuating effects of SJP and its components, senkyunolide A and l-borneol, were lost in H/R H9C2 cells, whereas in MIRI rats, these effects were not abolished but merely weakened. Further investigation indicated that the METTL3 inhibitor STM2475, combined with the silencing of miR-193a-3p, similarly attenuated autophagy in the hearts of MIRI rats. This suggests that a reduction in m6A methylation is involved in autophagy alleviation. CONCLUSION We demonstrated that SJP mitigates autophagy in MIRI by downregulating miR-193a-3p, enhancing ALKBH5 expression, and reducing m6A methylation, a mechanism potentially attributed to its constituents, senkyunolide A and l-borneol.
Collapse
Affiliation(s)
- Dongyuan Wang
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Wang
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qipeng Jin
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaolong Wang
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
10
|
Jiang J, Song B, Meng J, Zhou J. Tissue-specific RNA methylation prediction from gene expression data using sparse regression models. Comput Biol Med 2024; 169:107892. [PMID: 38171264 DOI: 10.1016/j.compbiomed.2023.107892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
N6-methyladenosine (m6A) is a highly prevalent and conserved post-transcriptional modification observed in mRNA and long non-coding RNA (lncRNA). Identifying potential m6A sites within RNA sequences is crucial for unraveling the potential influence of the epitranscriptome on biological processes. In this study, we introduce Exp2RM, a novel approach that formulates single-site-based tissue-specific elastic net models for predicting tissue-specific methylation levels utilizing gene expression data. The resulting ensemble model demonstrates robust predictive performance for tissue-specific methylation levels, with an average R-squared value of 0.496 and a median R-squared value of 0.482 across all 22 human tissues. Since methylation distribution varies among tissues, we trained the model to incorporate similar patterns, significantly improves accuracy with the median R-squared value increasing to 0.728. Additonally, functional analysis reveals Exp2RM's ability to capture coefficient genes in relevant biological processes. This study emphasizes the importance of tissue-specific methylation distribution in enhancing prediction accuracy and provides insights into the functional implications of methylation sites.
Collapse
Affiliation(s)
- Jie Jiang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China; Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L69 7ZB, Liverpool, United Kingdom
| | - Bowen Song
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jia Meng
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China; AI University Research Centre, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China; Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L69 7ZB, Liverpool, United Kingdom
| | - Jingxian Zhou
- School of AI and Advanced Computing, Xi'an Jiaotong-Liverpool University Entrepreneur College (Taicang), Taicang, Suzhou, Jiangsu Province, 215400, China; Department of Computer Science, University of Liverpool, L69 7ZB, Liverpool, United Kingdom.
| |
Collapse
|
11
|
Mao-Mao, Zhang JJ, Xu YP, Shao MM, Wang MC. Regulatory effects of natural products on N6-methyladenosine modification: A novel therapeutic strategy for cancer. Drug Discov Today 2024; 29:103875. [PMID: 38176674 DOI: 10.1016/j.drudis.2023.103875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
N6-methyladenosine (m6A) is considered to be the most common and abundant epigenetics modification in messenger RNA (mRNA) and noncoding RNA. Abnormal modification of m6A is closely related to the occurrence, development, progression, and prognosis of cancer. m6A regulators have been identified as novel targets for anticancer drugs. Natural products, a rich source of traditional anticancer drugs, have been utilized for the development of m6A-targeting drugs. Here, we review the key role of m6A modification in cancer progression and explore the prospects and structural modification mechanisms of natural products as potential drugs targeting m6A modification for cancer treatment.
Collapse
Affiliation(s)
- Mao-Mao
- Affiliated Cixi Hospital, Wenzhou Medical University, Cixi, China
| | - Jin-Jing Zhang
- Affiliated Cixi Hospital, Wenzhou Medical University, Cixi, China
| | - Yue-Ping Xu
- Affiliated Cixi Hospital, Wenzhou Medical University, Cixi, China
| | - Min-Min Shao
- Affiliated Cixi Hospital, Wenzhou Medical University, Cixi, China
| | - Meng-Chuan Wang
- Affiliated Cixi Hospital, Wenzhou Medical University, Cixi, China.
| |
Collapse
|
12
|
Yang M, Hu X, Tang B, Deng F. Exploring the interplay between methylation patterns and non-coding RNAs in non-small cell lung cancer: Implications for pathogenesis and therapeutic targets. Heliyon 2024; 10:e24811. [PMID: 38312618 PMCID: PMC10835372 DOI: 10.1016/j.heliyon.2024.e24811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Lung cancer is a global public health issue, with non-small cell lung cancer (NSCLC) accounting for 80-85 % of cases. With over two million new diagnoses annually, understanding the complex evolution of this disease is crucial. The development of lung cancer involves a complex interplay of genetic, epigenetic, and environmental factors, leading the key oncogenes and tumor suppressor genes to disorder, and activating the cancer related signaling pathway. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNA (lncRNAs), and circular RNA (circRNAs) are unique RNA transcripts with diverse biological functions. These ncRNAs are generated through genome transcription and play essential roles in cellular processes. Epigenetic modifications such as DNA methylation, N6-methyladenosine (m6A) modification, and histone methylation have gained significant attention in NSCLC research. The complexity of the interactions among these methylation modifications and ncRNAs contribute to the precise regulation of NSCLC development. This review comprehensively summarizes the associations between ncRNAs and different methylation modifications and discusses their effects on NSCLC. By elucidating these relationships, we aim to advance our understanding of NSCLC pathogenesis and identify potential therapeutic targets for this devastating disease.
Collapse
Affiliation(s)
- Mei Yang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Xue Hu
- School of Basic Medical Science, Chengdu Medical College, Chengdu, 610500, China
| | - Bin Tang
- Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Fengmei Deng
- School of Basic Medical Science, Chengdu Medical College, Chengdu, 610500, China
| |
Collapse
|
13
|
Zhou X, Chai K, Zhu H, Luo C, Zou X, Zou J, Zhang G. The role of the methyltransferase METTL3 in prostate cancer: a potential therapeutic target. BMC Cancer 2024; 24:8. [PMID: 38166703 PMCID: PMC10762986 DOI: 10.1186/s12885-023-11741-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
The incidence of prostate cancer (PCa), the most prevalent malignancy, is currently at the forefront. RNA modification is a subfield of the booming field of epigenetics. To date, more than 170 types of RNA modifications have been described, and N6-methyladenosine (m6A) is the most abundant and well-characterized internal modification of mRNAs involved in various aspects of cancer progression. METTL3, the first identified key methyltransferase, regulates human mRNA and non-coding RNA expression in an m6A-dependent manner. This review elucidates the biological function and role of METTL3 in PCa and discusses the implications of METTL3 as a potential therapeutic target for future research directions and clinical applications.
Collapse
Affiliation(s)
- Xuming Zhou
- First Clinical College, Gannan Medical University, Ganzhou, 341000, China
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Keqiang Chai
- Department of Urology, Third Affiliated Hospital of Gansu University of Chinese Medicine, Baiyin, 730900, China
| | - Hezhen Zhu
- First Clinical College, Gannan Medical University, Ganzhou, 341000, China
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Cong Luo
- First Clinical College, Gannan Medical University, Ganzhou, 341000, China
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Xiaofeng Zou
- Department of Urology, Third Affiliated Hospital of Gansu University of Chinese Medicine, Baiyin, 730900, China
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, 341000, China
| | - Junrong Zou
- Department of Urology, Third Affiliated Hospital of Gansu University of Chinese Medicine, Baiyin, 730900, China
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, 341000, China
| | - Guoxi Zhang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, 341000, China.
| |
Collapse
|
14
|
Wen T, Li T, Xu Y, Zhang Y, Pan H, Wang Y. The role of m6A epigenetic modifications in tumor coding and non-coding RNA processing. Cell Commun Signal 2023; 21:355. [PMID: 38102645 PMCID: PMC10722709 DOI: 10.1186/s12964-023-01385-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/04/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Epigenetic modifications of RNA significantly contribute to the regulatory processes in tumors and have, thus, received considerable attention. The m6A modification, known as N6-methyladenosine, is the predominant epigenetic alteration found in both eukaryotic mRNAs and ncRNAs. MAIN BODY m6A methylation modifications are dynamically reversible and are catalyzed, removed, and recognized by the complex of m6A methyltransferase (MTases), m6A demethylase, and m6A methyl recognition proteins (MRPs). Published evidence suggests that dysregulated m6A modification results in abnormal biological behavior of mature mRNA, leading to a variety of abnormal physiological processes, with profound implications for tumor development in particular. CONCLUSION Abnormal RNA processing due to dysregulation of m6A modification plays an important role in tumor pathogenesis and potential mechanisms of action. In this review, we comprehensively explored the mechanisms by which m6A modification regulates mRNA and ncRNA processing, focusing on their roles in tumors, and aiming to understand the important regulatory function of m6A modification, a key RNA epigenetic modification, in tumor cells, with a view to providing theoretical support for tumor diagnosis and treatment. Video Abstract.
Collapse
Affiliation(s)
- Tongxuan Wen
- Department of Neurosurgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, 110024, P.R. China
| | - Tong Li
- Department of Neurosurgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, 110024, P.R. China
| | - Yeqiu Xu
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, 110024, P.R. China
| | - Yuanzhuang Zhang
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, 110024, P.R. China
| | - Hai Pan
- Department of Neurosurgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, 110024, P.R. China.
| | - Yong Wang
- Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, 110024, P.R. China.
| |
Collapse
|
15
|
Nylund P, Garrido-Zabala B, Kalushkova A, Wiklund HJ. The complex nature of lncRNA-mediated chromatin dynamics in multiple myeloma. Front Oncol 2023; 13:1303677. [PMID: 38148842 PMCID: PMC10750364 DOI: 10.3389/fonc.2023.1303677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
Extensive genome-wide sequencing efforts have unveiled the intricate regulatory potential of long non-protein coding RNAs (lncRNAs) within the domain of haematological malignancies. Notably, lncRNAs have been found to directly modulate chromatin architecture, thereby impacting gene expression and disease progression by interacting with DNA, RNA, and proteins in a tissue- or condition-specific manner. Furthermore, recent studies have highlighted the intricate epigenetic control of lncRNAs in cancer. Consequently, this provides a rationale to explore the possibility of therapeutically targeting lncRNAs themselves or the epigenetic mechanisms that govern their activity. Within the scope of this review, we will assess the current state of knowledge regarding the epigenetic regulation of lncRNAs and how, in turn, lncRNAs contribute to chromatin remodelling in the context of multiple myeloma.
Collapse
Affiliation(s)
| | | | | | - Helena Jernberg Wiklund
- Science for Life Laboratory, Department of Immunology, Genetic and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Jin Q, Qu H, Quan C. New insights into the regulation of METTL3 and its role in tumors. Cell Commun Signal 2023; 21:334. [PMID: 37996892 PMCID: PMC10732098 DOI: 10.1186/s12964-023-01360-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023] Open
Abstract
As one of the most abundant epigenetic modifications in RNA, N6-methyladenosine (m6A) affects RNA transcription, splicing, stability, and posttranscriptional translation. Methyltransferase-like 3 (METTL3), a key component of the m6A methyltransferase complex, dynamically regulates target genes expression through m6A modification. METTL3 has been found to play a critical role in tumorigenesis, tumor growth, metastasis, metabolic reprogramming, immune cell infiltration, and tumor drug resistance. As a result, the development of targeted drugs against METTL3 is becoming increasingly popular. This review systematically summarizes the factors that regulate METTL3 expression and explores the specific mechanisms by which METTL3 affects multiple tumor biological behaviors. We aim to provide fundamental support for tumor diagnosis and treatment, at the same time, to offer new ideas for the development of tumor-targeting drugs.
Collapse
Affiliation(s)
- Qiu Jin
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 130021, People's Republic of China
| | - Huinan Qu
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 130021, People's Republic of China.
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 130021, People's Republic of China.
| |
Collapse
|
17
|
Huang M, Guo J, Liu L, Jin H, Chen X, Zou J. m6A demethylase FTO and osteoporosis: potential therapeutic interventions. Front Cell Dev Biol 2023; 11:1275475. [PMID: 38020896 PMCID: PMC10667916 DOI: 10.3389/fcell.2023.1275475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Osteoporosis is a common bone disease, characterized by a descent in bone mass due to the dysregulation of bone homeostasis. Although different studies have identified an association between osteoporosis and epigenetic alterations in osteogenic genes, the mechanisms of osteoporosis remain unclear. N6-methyladenosine (m6A) modification is a methylated adenosine nucleotide, which regulates the translocation, exporting, translation, and decay of RNA. FTO is the first identified m6A demethylase, which eliminates m6A modifications from RNAs. Variation in FTO disturbs m6A methylation in RNAs to regulate cell proliferation, differentiation, and apoptosis. Besides, FTO as an obesity-associated gene, also affects osteogenesis by regulating adipogenesis. Pharmacological inhibition of FTO markedly altered bone mass, bone mineral density and the distribution of adipose tissue. Small molecules which modulate FTO function are potentially novel remedies to the treatment of osteoporosis by adjusting the m6A levels. This article reviews the roles of m6A demethylase FTO in regulating bone metabolism and osteoporosis.
Collapse
Affiliation(s)
- Mei Huang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jianmin Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Lifei Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation, The People’s Hospital of Liaoning Province, Shenyang, China
| | - Haiming Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xi Chen
- School of Sports Science, Wenzhou Medical University, Wenzhou, China
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
18
|
Wang M, Liu Z, Fang X, Cong X, Hu Y. The emerging role of m 6A modification of non-coding RNA in gastrointestinal cancers: a comprehensive review. Front Cell Dev Biol 2023; 11:1264552. [PMID: 37965577 PMCID: PMC10642577 DOI: 10.3389/fcell.2023.1264552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Gastrointestinal (GI) cancer is a series of malignant tumors with a high incidence globally. Although approaches for tumor diagnosis and therapy have advanced substantially, the mechanisms underlying the occurrence and progression of GI cancer are still unclear. Increasing evidence supports an important role for N6-methyladenosine (m6A) modification in many biological processes, including cancer-related processes via splicing, export, degradation, and translation of mRNAs. Under distinct cancer contexts, m6A regulators have different expression patterns and can regulate or be regulated by mRNAs and non-coding RNAs, especially long non-coding RNAs. The roles of m6A in cancer development have attracted increasing attention in epigenetics research. In this review, we synthesize progress in our understanding of m6A and its roles in GI cancer, especially esophageal, gastric, and colorectal cancers. Furthermore, we clarify the mechanism by which m6A contributes to GI cancer, providing a basis for the development of diagnostic, prognostic, and therapeutic targets.
Collapse
Affiliation(s)
- Meiqi Wang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhuo Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuedong Fang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianling Cong
- Department of Biobank, the China-Japan Union Hospital of Jilin University, Changchun, China
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yue Hu
- Department of Biobank, the China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
Shi K, Sa R, Dou L, Wu Y, Dong Z, Fu X, Yu H. METTL3 exerts synergistic effects on m6A methylation and histone modification to regulate the function of VGF in lung adenocarcinoma. Clin Epigenetics 2023; 15:153. [PMID: 37742030 PMCID: PMC10517543 DOI: 10.1186/s13148-023-01568-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Multiple genetic and epigenetic regulatory mechanisms play a vital role in tumorigenesis and development. Understanding the interplay between different epigenetic modifications and its contribution to transcriptional regulation in cancer is essential for precision medicine. Here, we aimed to investigate the interplay between N6-methyladenosine (m6A) modifications and histone modifications in lung adenocarcinoma (LUAD). RESULTS Based on the data from public databases, including chromatin property data (ATAC-seq, DNase-seq), methylated RNA immunoprecipitation sequencing (MeRIP-seq), and gene expression data (RNA-seq), a m6A-related differentially expressed gene nerve growth factor inducible (VGF) was identified between LUAD tissues and normal lung tissues. VGF was significantly highly expressed in LUAD tissues and cells, and was associated with a worse prognosis for LUAD, silencing of VGF inhibited the malignant phenotype of LUAD cells by inactivating the PI3K/AKT/mTOR pathway. Through the weighted correlation network analysis (WGCNA) and integration of TCGA-LUAD RNA-seq and m6A methyltransferase METTL3-knockdown RNA-seq data, a significant positive correlation between METTL3 and VGF was observed. By using the MeRIP-qPCR and dual-luciferase reporter assays, we demonstrated that METTL3 knockdown decreased m6A modification level of VGF coding sequences in LUAD cells, the colorimetric m6A quantification assay also showed that METTL3 knockdown significantly decreased global m6A modification level in LUAD cells. Interestingly, we found that METTL3 knockdown also reduced VGF expression by increasing H3K36me3 modification at the VGF promoter. Further research revealed that METTL3 knockdown upregulated the expression of histone methylase SETD2, the major H3K36me3 methyltransferase, by methylating the m6A site in the 3'UTR of SETD2 mRNA in LUAD cells. CONCLUSIONS Overall, our results reveal that the expression of VGF in LUAD cells is regulated spatio-temporally by METTL3 through both transcriptional (via histone modifications) and post-transcriptional (via m6A modifications) mechanisms. The synergistic effect of these multiple epigenetic mechanisms provides new opportunities for the diagnosis and precision treatment of tumors.
Collapse
Affiliation(s)
- Kesong Shi
- State Key Laboratory of Reproductive Regulation a Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, Inner Mongolia, China
| | - Rula Sa
- State Key Laboratory of Reproductive Regulation a Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, Inner Mongolia, China
| | - Le Dou
- State Key Laboratory of Reproductive Regulation a Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, Inner Mongolia, China
| | - Yuan Wu
- State Key Laboratory of Reproductive Regulation a Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, Inner Mongolia, China
| | - Zhiqiang Dong
- State Key Laboratory of Reproductive Regulation a Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, Inner Mongolia, China
| | - Xinyao Fu
- State Key Laboratory of Reproductive Regulation a Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, Inner Mongolia, China
| | - Haiquan Yu
- State Key Laboratory of Reproductive Regulation a Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, Inner Mongolia, China.
| |
Collapse
|
20
|
Meng Q, Schatten H, Zhou Q, Chen J. Crosstalk between m6A and coding/non-coding RNA in cancer and detection methods of m6A modification residues. Aging (Albany NY) 2023; 15:6577-6619. [PMID: 37437245 PMCID: PMC10373953 DOI: 10.18632/aging.204836] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/15/2023] [Indexed: 07/14/2023]
Abstract
N6-methyladenosine (m6A) is one of the most common and well-known internal RNA modifications that occur on mRNAs or ncRNAs. It affects various aspects of RNA metabolism, including splicing, stability, translocation, and translation. An abundance of evidence demonstrates that m6A plays a crucial role in various pathological and biological processes, especially in tumorigenesis and tumor progression. In this article, we introduce the potential functions of m6A regulators, including "writers" that install m6A marks, "erasers" that demethylate m6A, and "readers" that determine the fate of m6A-modified targets. We have conducted a review on the molecular functions of m6A, focusing on both coding and noncoding RNAs. Additionally, we have compiled an overview of the effects noncoding RNAs have on m6A regulators and explored the dual roles of m6A in the development and advancement of cancer. Our review also includes a detailed summary of the most advanced databases for m6A, state-of-the-art experimental and sequencing detection methods, and machine learning-based computational predictors for identifying m6A sites.
Collapse
Affiliation(s)
- Qingren Meng
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, The Second Hospital Affiliated with the Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Qian Zhou
- International Cancer Center, Shenzhen University Medical School, Shenzhen, Guangdong Province, China
| | - Jun Chen
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, The Second Hospital Affiliated with the Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| |
Collapse
|
21
|
Diao MN, Zhang XJ, Zhang YF. The critical roles of m6A RNA methylation in lung cancer: from mechanism to prognosis and therapy. Br J Cancer 2023; 129:8-23. [PMID: 36997662 PMCID: PMC10307841 DOI: 10.1038/s41416-023-02246-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/05/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
Lung cancer, a highly malignant disease, greatly affects patients' quality of life. N6-methyladenosine (m6A) is one of the most common posttranscriptional modifications of various RNAs, including mRNAs and ncRNAs. Emerging studies have demonstrated that m6A participates in normal physiological processes and that its dysregulation is involved in many diseases, especially pulmonary tumorigenesis and progression. Among these, regulators including m6A writers, readers and erasers mediate m6A modification of lung cancer-related molecular RNAs to regulate their expression. Furthermore, the imbalance of this regulatory effect adversely affects signalling pathways related to lung cancer cell proliferation, invasion, metastasis and other biological behaviours. Based on the close association between m6A and lung cancer, various prognostic risk models have been established and novel drugs have been developed. Overall, this review comprehensively elaborates the mechanism of m6A regulation in the development of lung cancer, suggesting its potential for clinical application in the therapy and prognostic assessment of lung cancer.
Collapse
Affiliation(s)
- Mei-Ning Diao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Xiao-Jing Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
22
|
Meng S, Xia Y, Li M, Wu Y, Wang D, Zhou Y, Ma D, Ye J, Sun T, Ji C. NCBP1 enhanced proliferation of DLBCL cells via METTL3-mediated m6A modification of c-Myc. Sci Rep 2023; 13:8606. [PMID: 37244946 DOI: 10.1038/s41598-023-35777-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is malignant hyperplasia of B lymphocytes and standard care cannot satisfactorily meet clinical needs. Potential diagnostic and prognostic DLBCL biomarkers are needed. NCBP1 could bind to the 5'-end cap of pre-mRNAs to participate in RNA processing, transcript nuclear export and translation. Aberrant NCBP1 expression is involved in the pathogenesis of cancers, but little is known about NCBP1 in DLBCL. We proved that NCBP1 is significantly elevated in DLBCL patients and is associated with their poor prognosis. Then, we found that NCBP1 is important for the proliferation of DLBCL cells. Moreover, we verified that NCBP1 enhances the proliferation of DLBCL cells in a METTL3-dependent manner and found that NCBP1 enhances the m6A catalytic function of METTL3 by maintaining METTL3 mRNA stabilization. Mechanistically, the expression of c-MYC is regulated by NCBP1-enhanced METTL3, and the NCBP1/METTL3/m6A/c-MYC axis is important for DLBCL progression. We identified a new pathway for DLBCL progression and suggest innovative ideas for molecular targeted therapy of DLBCL.
Collapse
Affiliation(s)
- Sibo Meng
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
- Department of Medical Oncology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Heifei Road, Qingdao, 266035, Shandong, People's Republic of China
| | - Yuan Xia
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Mingying Li
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Yuyan Wu
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Dongmei Wang
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Ying Zhou
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Jingjing Ye
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Tao Sun
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China.
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
23
|
Zhang S, Shen T, Zeng Y. Epigenetic Modifications in Prostate Cancer Metastasis and Microenvironment. Cancers (Basel) 2023; 15:cancers15082243. [PMID: 37190171 DOI: 10.3390/cancers15082243] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
The gradual evolution of prostate tissue from benign tumor to malignant lesion or distant metastasis is driven by intracellular epigenetic changes and the tumor microenvironment remodeling. With the continuous study of epigenetic modifications, these tumor-driving forces are being discovered and are providing new treatments for cancer. Here we introduce the classification of epigenetic modification and highlight the role of epigenetic modification in tumor remodeling and communication of the tumor microenvironment.
Collapse
Affiliation(s)
- Shouyi Zhang
- Department of Urology, the Cancer Hospital of Dalian University of Technology & Liaoning Cancer Hospital, Shenyang 110042, China
| | - Tao Shen
- Department of Urology, Second Affiliated Hospital of Shenyang Medical College, No. 20 Beijiu Road, Heping District, Shenyang 110001, China
| | - Yu Zeng
- Department of Urology, the Cancer Hospital of Dalian University of Technology & Liaoning Cancer Hospital, Shenyang 110042, China
| |
Collapse
|
24
|
Papadimitriou MA, Panoutsopoulou K, Pilala KM, Scorilas A, Avgeris M. Epi-miRNAs: Modern mediators of methylation status in human cancers. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1735. [PMID: 35580998 DOI: 10.1002/wrna.1735] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023]
Abstract
Methylation of the fundamental macromolecules, DNA/RNA, and proteins, is remarkably abundant, evolutionarily conserved, and functionally significant in cellular homeostasis and normal tissue/organism development. Disrupted methylation imprinting is strongly linked to loss of the physiological equilibrium and numerous human pathologies, and most importantly to carcinogenesis, tumor heterogeneity, and cancer progression. Mounting recent evidence has documented the active implication of miRNAs in the orchestration of the multicomponent cellular methylation machineries and the deregulation of methylation profile in the epigenetic, epitranscriptomic, and epiproteomic levels during cancer onset and progression. The elucidation of such regulatory networks between the miRNome and the cellular methylation machineries has led to the emergence of a novel subclass of miRNAs, namely "epi-miRNAs" or "epi-miRs." Herein, we have summarized the existing knowledge on the functional role of epi-miRs in the methylation dynamic landscape of human cancers and their clinical utility in modern cancer diagnostics and tailored therapeutics. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina-Marina Pilala
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.,Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| |
Collapse
|
25
|
Chuong NN, Doan PPT, Wang L, Kim JH, Kim J. Current Insights into m 6A RNA Methylation and Its Emerging Role in Plant Circadian Clock. PLANTS (BASEL, SWITZERLAND) 2023; 12:624. [PMID: 36771711 PMCID: PMC9920239 DOI: 10.3390/plants12030624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
N6-adenosine methylation (m6A) is a prevalent form of RNA modification found in the expressed transcripts of many eukaryotic organisms. Moreover, m6A methylation is a dynamic and reversible process that requires the functioning of various proteins and their complexes that are evolutionarily conserved between species and include methylases, demethylases, and m6A-binding proteins. Over the past decade, the m6A methylation process in plants has been extensively studied and the understanding thereof has drastically increased, although the regulatory function of some components relies on information derived from animal systems. Notably, m6A has been found to be involved in a variety of factors in RNA processing, such as RNA stability, alternative polyadenylation, and miRNA regulation. The circadian clock in plants is a molecular timekeeping system that regulates the daily and rhythmic activity of many cellular and physiological processes in response to environmental changes such as the day-night cycle. The circadian clock regulates the rhythmic expression of genes through post-transcriptional regulation of mRNA. Recently, m6A methylation has emerged as an additional layer of post-transcriptional regulation that is necessary for the proper functioning of the plant circadian clock. In this review, we have compiled and summarized recent insights into the molecular mechanisms behind m6A modification and its various roles in the regulation of RNA. We discuss the potential role of m6A modification in regulating the plant circadian clock and outline potential future directions for the study of mRNA methylation in plants. A deeper understanding of the mechanism of m6A RNA regulation and its role in plant circadian clocks will contribute to a greater understanding of the plant circadian clock.
Collapse
Affiliation(s)
- Nguyen Nguyen Chuong
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 690756, Republic of Korea
| | - Phan Phuong Thao Doan
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 690756, Republic of Korea
| | - Lanshuo Wang
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 690756, Republic of Korea
| | - Jin Hee Kim
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 690756, Republic of Korea
| | - Jeongsik Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 690756, Republic of Korea
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 690756, Republic of Korea
- Faculty of Science Education, Jeju National University, Jeju 690756, Republic of Korea
| |
Collapse
|
26
|
Fiorentino F, Menna M, Rotili D, Valente S, Mai A. METTL3 from Target Validation to the First Small-Molecule Inhibitors: A Medicinal Chemistry Journey. J Med Chem 2023; 66:1654-1677. [PMID: 36692498 PMCID: PMC9923689 DOI: 10.1021/acs.jmedchem.2c01601] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
RNA methylation is a critical mechanism for regulating the transcription and translation of specific sequences or for eliminating unnecessary sequences during RNA maturation. METTL3, an RNA methyltransferase that catalyzes the transfer of a methyl group to the N6-adenosine of RNA, is one of the key mediators of this process. METTL3 dysregulation may result in the emergence of a variety of diseases ranging from cancer to cardiovascular and neurological disorders beyond contributing to viral infections. Hence, the discovery of METTL3 inhibitors may assist in furthering the understanding of the biological roles of this enzyme, in addition to contributing to the development of novel therapeutics. Through this work, we will examine the existing correlations between METTL3 and diseases. We will also analyze the development, mode of action, pharmacology, and structure-activity relationships of the currently known METTL3 inhibitors. They include both nucleoside and non-nucleoside compounds, with the latter comprising both competitive and allosteric inhibitors.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Martina Menna
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Dante Rotili
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy,
| | - Sergio Valente
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy,
| | - Antonello Mai
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy,Pasteur
Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
27
|
Feng H, Yuan X, Wu S, Yuan Y, Cui L, Lin D, Peng X, Liu X, Wang F. Effects of writers, erasers and readers within miRNA-related m6A modification in cancers. Cell Prolif 2023; 56:e13340. [PMID: 36162823 DOI: 10.1111/cpr.13340] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/17/2022] [Accepted: 09/07/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND As one of the most abundant post-transcriptional mRNA modifications, N6-methyladenosine (m6A) has attracted extensive attention from scientists. Emerging evidence indicates that m6A modification plays a significant role in cancer-related signalling pathways. Existing research demonstrates that m6A modifications were also identified in miRNAs and contribute to cancer-related signalling pathways. METHODS A literature retrieval has been performed to collect m6A-miRNA-related original articles published in recent years. Later, a systematic analysis has been conducted to abstract and classify the relationships between m6A modification and miRNAs, and their contributions to tumorigenesis and cancer development. RESULTS Accumulating literature provides important insights into multiple relationships between m6A modifications and miRNAs. Mechanically, m6A writer and eraser alter pri-miRNAs m6A levels, and m6A readers could dually modulate pri-miRNAs processing and pri-miRNAs degradation. It is also been demonstrated that miRNAs impair m6A regulators' translation to influence m6A medication function in return. Aberrant expressions of m6A regulators and miRNAs could dysregulate proliferative, apoptosis, cell adhesion-related, and malignant transformation signalling pathways, and contribute to tumour occurrence and development. CONCLUSION This review summarizes the interrelationship between m6A modification and miRNAs; highlights the combined effects of each type of m6A regulator and miRNAs in cancers. These findings enhance our understanding of m6A-miRNAs' multiple interactions and significant modulatory role in tumorigenesis and progression.
Collapse
Affiliation(s)
- Huiru Feng
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, People's Republic of China
| | - Xiaofei Yuan
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, People's Republic of China
| | - Shuting Wu
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, People's Republic of China
| | - Yue Yuan
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, People's Republic of China
| | - Linchong Cui
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, People's Republic of China
| | - Danfan Lin
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, People's Republic of China
| | - Xiaohong Peng
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, People's Republic of China
| | - Xiong Liu
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, People's Republic of China
| | - Fan Wang
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, People's Republic of China
| |
Collapse
|
28
|
Mei Z, Mou Y, Zhang N, Liu X, He Z, Gu S. Emerging Mutual Regulatory Roles between m 6A Modification and microRNAs. Int J Mol Sci 2023; 24:ijms24010773. [PMID: 36614216 PMCID: PMC9821650 DOI: 10.3390/ijms24010773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 01/03/2023] Open
Abstract
N6-metyladenosine (m6A), one of the most common RNA methylation modifications in mammals, has attracted extensive attentions owing to its regulatory roles in a variety of physiological and pathological processes. As a reversible epigenetic modification on RNAs, m6A is dynamically mediated by the functional interplay among the regulatory proteins of methyltransferases, demethylases and methyl-binding proteins. In recent years, it has become increasingly clear that m6A modification is associated with the production and function of microRNAs (miRNAs). In this review, we summarize the specific kinds of m6A modification methyltransferases, demethylases and methyl-binding proteins. In particular, we focus on describing the roles of m6A modification and its regulatory proteins in the production and function of miRNAs in a variety of pathological and physiological processes. More importantly, we further discuss the mediating mechanisms of miRNAs in m6A modification and its regulatory proteins during the occurrence and development of various diseases.
Collapse
|
29
|
Wang X, Guo Z, Yan F. RNA Epigenetics in Chronic Lung Diseases. Genes (Basel) 2022; 13:genes13122381. [PMID: 36553648 PMCID: PMC9777603 DOI: 10.3390/genes13122381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Chronic lung diseases are highly prevalent worldwide and cause significant mortality. Lung cancer is the end stage of many chronic lung diseases. RNA epigenetics can dynamically modulate gene expression and decide cell fate. Recently, studies have confirmed that RNA epigenetics plays a crucial role in the developing of chronic lung diseases. Further exploration of the underlying mechanisms of RNA epigenetics in chronic lung diseases, including lung cancer, may lead to a better understanding of the diseases and promote the development of new biomarkers and therapeutic strategies. This article reviews basic information on RNA modifications, including N6 methylation of adenosine (m6A), N1 methylation of adenosine (m1A), N7-methylguanosine (m7G), 5-methylcytosine (m5C), 2'O-methylation (2'-O-Me or Nm), pseudouridine (5-ribosyl uracil or Ψ), and adenosine to inosine RNA editing (A-to-I editing). We then show how they relate to different types of lung disease. This paper hopes to summarize the mechanisms of RNA modification in chronic lung disease and finds a new way to develop early diagnosis and treatment of chronic lung disease.
Collapse
Affiliation(s)
- Xiaorui Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362002, China
| | - Zhihou Guo
- Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362002, China
| | - Furong Yan
- Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362002, China
- Correspondence:
| |
Collapse
|
30
|
Hong J, Xu K, Lee JH. Biological roles of the RNA m 6A modification and its implications in cancer. Exp Mol Med 2022; 54:1822-1832. [PMID: 36446846 PMCID: PMC9722703 DOI: 10.1038/s12276-022-00897-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/30/2022] Open
Abstract
The N6-Methyladenosine (m6A) modification of RNA transcripts is the most prevalent and abundant internal modification in eukaryotic messenger RNAs (mRNAs) and plays diverse and important roles in normal biological processes. Extensive studies have indicated that dysregulated m6A modification and m6A-associated proteins play critical roles in tumorigenesis and cancer progression. However, m6A-mediated physiological consequences often lead to opposite outcomes in a biological context-dependent manner. Therefore, context-related complexity must be meaningfully considered to obtain a comprehensive understanding of RNA methylation. Recently, it has been reported that m6A-modified RNAs are closely related to the regulation of the DNA damage response and genomic integrity maintenance. Here, we present an overview of the current knowledge on the m6A modification and its function in human cancer, particularly in relation to the DNA damage response and genomic instability.
Collapse
Affiliation(s)
- Juyeong Hong
- grid.267309.90000 0001 0629 5880Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX USA
| | - Kexin Xu
- grid.267309.90000 0001 0629 5880Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX USA
| | - Ji Hoon Lee
- grid.267309.90000 0001 0629 5880Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX USA
| |
Collapse
|
31
|
Chen J, Guo B, Liu X, Zhang J, Zhang J, Fang Y, Zhu S, Wei B, Cao Y, Zhan L. Roles of N6-methyladenosine (m6A) modifications in gynecologic cancers: mechanisms and therapeutic targeting. Exp Hematol Oncol 2022; 11:98. [DOI: 10.1186/s40164-022-00357-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/01/2022] [Indexed: 11/14/2022] Open
Abstract
AbstractUterine and ovarian cancers are the most common gynecologic cancers. N6−methyladenosine (m6A), an important internal RNA modification in higher eukaryotes, has recently become a hot topic in epigenetic studies. Numerous studies have revealed that the m6A-related regulatory factors regulate the occurrence and metastasis of tumors and drug resistance through various mechanisms. The m6A-related regulatory factors can also be used as therapeutic targets and biomarkers for the early diagnosis of cancers, including gynecologic cancers. This review discusses the role of m6A in gynecologic cancers and summarizes the recent advancements in m6A modification in gynecologic cancers to improve the understanding of the occurrence, diagnosis, treatment, and prognosis of gynecologic cancers.
Collapse
|
32
|
Dai SM, Li FJ, Long HZ, Zhou ZW, Luo HY, Xu SG, Gao LC. Relationship between miRNA and ferroptosis in tumors. Front Pharmacol 2022; 13:977062. [PMID: 36408273 PMCID: PMC9672467 DOI: 10.3389/fphar.2022.977062] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/21/2022] [Indexed: 07/20/2023] Open
Abstract
Malignant tumor is a major killer that seriously endangers human health. At present, the methods of treating tumors include surgical resection, chemotherapy, radiotherapy and immunotherapy. However, the survival rate of patients is still very low due to the complicated mechanism of tumor occurrence and development and high recurrence rate. Individualized treatment will be the main direction of tumor treatment in the future. Because only by understanding the molecular mechanism of tumor development and differentially expressed genes can we carry out accurate treatment and improve the therapeutic effect. MicroRNA (miRNA) is a kind of small non coding RNA, which regulates gene expression at mRNA level and plays a key role in tumor regulation. Ferroptosis is a kind of programmed death caused by iron dependent lipid peroxidation, which is different from apoptosis, necrosis and other cell death modes. Now it has been found that ferroptosis plays an important role in the occurrence and development of tumors and drug resistance. More and more studies have found that miRNAs can regulate tumor development and drug resistance through ferroptosis. Therefore, in this review, the mechanism of ferroptosis is briefly outlined, and the relationship between miRNAs and ferroptosis in tumors is reviewed.
Collapse
Affiliation(s)
- Shang-Ming Dai
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Feng-Jiao Li
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Hui-Zhi Long
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Zi-Wei Zhou
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Hong-Yu Luo
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Shuo-Guo Xu
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Li-Chen Gao
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| |
Collapse
|
33
|
Xu L, Zhou L, Yan C, Li L. Emerging role of N6-methyladenosine RNA methylation in lung diseases. Exp Biol Med (Maywood) 2022; 247:1862-1872. [PMID: 36278325 PMCID: PMC9679358 DOI: 10.1177/15353702221128564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In recent years, with the increase of air pollution, smoking, aging, and respiratory infection, the incidence rate and mortality of lung diseases are increasing annually, which has become a major hazard to human health. N6-methyladenosine (m6A) RNA methylation is the most abundant modifications in eukaryotes, and such modified RNA can be specifically recognized and combined by m6A recognition proteins and then mediate RNA splicing, maturation, enucleation, degradation, and translation. More and more studies have revealed that the m6A modification is involved in the pathogenesis and development of some diseases; however, the mechanisms of m6A in lung diseases are poorly understood. In this review, we summarize the latest progress in the biological function of m6A modifications in lung diseases and discuss the potential therapeutic and prognostic strategies. The dysregulation of global m6A levels and m6A regulators may affect the occurrence and development of asthma, chronic obstructive pulmonary disease, lung cancer, and other lung diseases through inflammation and immune function. In lung cancer, this modification has an important impact on malignant cell proliferation, migration, invasion, and drug resistance. In addition, abnormally changed m6A-modified proteins in lung cancer tissue samples and circulating tumor cells (CTCs) may be used as diagnostic and prognostic markers of lung cancer. Models composed of multiple m6A regulators can be used to evaluate the risk prediction or prognosis of asthma and pulmonary fibrosis. In general, the in-depth study of m6A modifications is a frontier direction in disease research. It provides novel insights for understanding of the molecular mechanisms underlying disease occurrence, development, and drug resistance, as well as for the development of effective novel therapeutics.
Collapse
Affiliation(s)
- Limin Xu
- Huzhou Central Hospital, Affiliated Hospital of Huzhou Normal University, Huzhou 313000, China,Huzhou Hospital, Zhejiang University, Huzhou 313000, China
| | - Lingyan Zhou
- Huzhou Central Hospital, Affiliated Hospital of Huzhou Normal University, Huzhou 313000, China,Huzhou Hospital, Zhejiang University, Huzhou 313000, China
| | - Chenxin Yan
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Liqin Li
- Huzhou Central Hospital, Affiliated Hospital of Huzhou Normal University, Huzhou 313000, China,Huzhou Hospital, Zhejiang University, Huzhou 313000, China,Liqin Li.
| |
Collapse
|
34
|
Li Y, Huang H, Zhu Y, Xu B, Chen J, Liu Y, Zheng X, Chen L. Increased expression of METTL3 in pancreatic cancer tissues associates with poor survival of the patients. World J Surg Oncol 2022; 20:283. [PMID: 36058919 PMCID: PMC9442951 DOI: 10.1186/s12957-022-02743-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Methyltransferase-like 3 (METTL3) expression could be found in various normal and cancerous tissues. As of now, the clinical significance of METTL3 expression in human pancreatic cancer (PC) tissues still remains to be understood. Our present study aims to investigate the prognostic value and clinical implications of METTL3 expression in PC tissues. METHODS The TCGA, GTEx, and GEO public databases were used to study the mRNA expression level of the m6A family members and its relationship among PC tissues and normal pancreatic tissue. The immunohistochemistry was used to analyze the difference of METTL3 expression between cancer tissues and adjacent normal tissues. The prognostic value was evaluated by using the Log-rank survival analysis and Cox model analysis. PAAD samples from TCGA and GEO databases were used to perform the immune infiltration analysis and gene set enrichment analysis based on the genes that were highly correlated with METTL3. RESULTS Based on the analysis of TCGA, GTEx, and GEO public database, we found that the m6A family members showed a higher correlation in PC tissues compared to normal pancreatic tissues, and the mRNA expression level of the m6A family members showed a significant difference between PC tissues and adjacent normal tissues. Moreover, scRNA-seq data indicated that METTL3 showed a higher expression level in malignant epithelial cells. Our immunohistochemistry results also confirmed that the intensity of METTL3 immunostaining in PC tissues was significantly higher than that in adjacent normal tissues (P = 0.015). The overall survival (OS) of PC patients with high expression of METTL3 protein were significantly poorer than those with low expression of METTL3 protein (HR = 1.788, 95% CI 1.071-2.984, P = 0.026). Further analysis of PC data from the database showed that METTL3 expression was associated with a variety of tumor-infiltrating immune cells and was involved in m6A modification and metabolism in PC tissues. CONCLUSION Increased METTL3 expression at the protein level could be found in PC tissues, suggesting that the METTL3 expression was involved in the progression of PC and could serve as an important marker for prognostic prediction of this malignancy.
Collapse
Affiliation(s)
- Yuan Li
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China.,Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China
| | - Hao Huang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China.,Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China
| | - Yulan Zhu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China.,Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China
| | - Bin Xu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China.,Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China
| | - Junjun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China.,Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China
| | - Yingting Liu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China.,Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China.,Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China. .,Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China. .,Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China.
| |
Collapse
|
35
|
Mutual regulation of noncoding RNAs and RNA modifications in psychopathology: Potential therapeutic targets for psychiatric disorders? Pharmacol Ther 2022; 237:108254. [DOI: 10.1016/j.pharmthera.2022.108254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022]
|
36
|
Multilevel regulation of N6-methyladenosine RNA modifications: Implications in tumorigenesis and therapeutic opportunities. Genes Dis 2022. [PMID: 37492716 PMCID: PMC10363589 DOI: 10.1016/j.gendis.2022.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
N6-methyladenosine (m6A) RNA modification is widely perceived as the most abundant and common modification in transcripts. This modification is dynamically regulated by specific m6A "writers", "erasers" and "readers" and is reportedly involved in the occurrence and development of many diseases. Since m6A RNA modification was discovered in the 1970s, with the progress of relevant research technologies, an increasing number of functions of m6A have been reported, and a preliminary understanding of m6A has been obtained. In this review, we summarize the mechanisms through which m6A RNA modification is regulated from the perspectives of expression, posttranslational modification and protein interaction. In addition, we also summarize how external and internal environmental factors affect m6A RNA modification and its functions in tumors. The mechanisms through which m6A methylases, m6A demethylases and m6A-binding proteins are regulated are complicated and have not been fully elucidated. Therefore, we hope to promote further research in this field by summarizing these mechanisms and look forward to the future application of m6A in tumors.
Collapse
|
37
|
Ma J, Liu H, Mao Y, Zhang L. LRTCLS: low-rank tensor completion with Laplacian smoothing regularization for unveiling the post-transcriptional machinery of N6-methylation (m6A)-mediated diseases. Brief Bioinform 2022; 23:6672902. [DOI: 10.1093/bib/bbac325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/29/2022] [Accepted: 07/18/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Recently, N6-methylation (m6A) has recently become a hot topic due to its key role in disease pathogenesis. Identifying disease-related m6A sites aids in the understanding of the molecular mechanisms and biosynthetic pathways underlying m6A-mediated diseases. Existing methods treat it primarily as a binary classification issue, focusing solely on whether an m6A–disease association exists or not. Although they achieved good results, they all shared one common flaw: they ignored the post-transcriptional regulation events during disease pathogenesis, which makes biological interpretation unsatisfactory. Thus, accurate and explainable computational models are required to unveil the post-transcriptional regulation mechanisms of disease pathogenesis mediated by m6A modification, rather than simply inferring whether the m6A sites cause disease or not. Emerging laboratory experiments have revealed the interactions between m6A and other post-transcriptional regulation events, such as circular RNA (circRNA) targeting, microRNA (miRNA) targeting, RNA-binding protein binding and alternative splicing events, etc., present a diverse landscape during tumorigenesis. Based on these findings, we proposed a low-rank tensor completion-based method to infer disease-related m6A sites from a biological standpoint, which can further aid in specifying the post-transcriptional machinery of disease pathogenesis. It is so exciting that our biological analysis results show that Coronavirus disease 2019 may play a role in an m6A- and miRNA-dependent manner in inducing non-small cell lung cancer.
Collapse
Affiliation(s)
- Jiani Ma
- Engineering Research Center of Intelligent Control for Underground Space , Ministry of Education, , Xuzhou 221116 , China
- China University of Mining and Technology , Ministry of Education, , Xuzhou 221116 , China
- School of Information and Control Engineering, China University of Mining and Technology , Xuzhou 221116 , China
| | - Hui Liu
- Engineering Research Center of Intelligent Control for Underground Space , Ministry of Education, , Xuzhou 221116 , China
- China University of Mining and Technology , Ministry of Education, , Xuzhou 221116 , China
- School of Information and Control Engineering, China University of Mining and Technology , Xuzhou 221116 , China
| | - Yumeng Mao
- Engineering Research Center of Intelligent Control for Underground Space , Ministry of Education, , Xuzhou 221116 , China
- China University of Mining and Technology , Ministry of Education, , Xuzhou 221116 , China
- School of Information and Control Engineering, China University of Mining and Technology , Xuzhou 221116 , China
| | - Lin Zhang
- Engineering Research Center of Intelligent Control for Underground Space , Ministry of Education, , Xuzhou 221116 , China
- China University of Mining and Technology , Ministry of Education, , Xuzhou 221116 , China
- School of Information and Control Engineering, China University of Mining and Technology , Xuzhou 221116 , China
| |
Collapse
|
38
|
Li S, Lu X, Zheng D, Chen W, Li Y, Li F. Methyltransferase-like 3 facilitates lung cancer progression by accelerating m6A methylation-mediated primary miR-663 processing and impeding SOCS6 expression. J Cancer Res Clin Oncol 2022; 148:3485-3499. [PMID: 35907010 DOI: 10.1007/s00432-022-04128-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Lung cancer (LC) remains a threatening health issue worldwide. Methyltransferase-like protein 3 (METTL3) is imperative in carcinogenesis via m6A modification of microRNAs (miRNAs). This study estimated the effect of METTL3 in LC by regulating m6A methylation-mediated pri-miR-663 processing. METHODS miR-663 expression in 4 LC cell lines and normal HBE cells was determined using RT-qPCR. A549 and PC9 LC cells selected for in vitro studies were transfected with miR-663 mimics or inhibitor. Cell viability, migration, invasion, proliferation, and apoptosis were detected by CCK-8, Transwell, EdU, and flow cytometry assays. The downstream target genes and binding sites of miR-663 were predicted via Starbase database and validated by dual-luciferase assay. LC cells were delivered with oe-METTL3/sh-METTL3. Crosslinking between METTL3 and DGCR8 was verified by co-immunoprecipitation. Levels of m6A, miR-663, and pri-miR-663 were measured by m6A dot blot assay and RT-qPCR. m6A modification of pri-miR-663 was verified by Me-RIP assay. Finally, the effects of METTL3 in vivo were ascertained by tumor xenograft in nude mice. RESULTS miR-663 was upregulated in LC cells, and miR-663 overexpression promoted cell proliferation, migration, invasion, and inhibited apoptosis, but miR-663 knockdown exerted the opposite effects. miR-663 repressed SOCS6 expression. SOCS6 overexpression annulled the promotion of miR-663 on LC cell growth. METTL3 bound to DGCR8, and METTL3 silencing elevated the levels of pri-miR-663 and m6A methylation-modified pri-miR-663, and suppressed miR-663 maturation and miR-663 expression. METTL3 facilitated tumor growth in mice through the miR-663/SOCS6 axis. CONCLUSION METTL3 promotes LC progression by accelerating m6A methylation-mediated pri-miR-663 processing and repressing SOCS6.
Collapse
Affiliation(s)
- Shengshu Li
- Department of Pulmonary and Critical Care Medicine, The 8th Medical Center of Chinese, PLA General Hospital, Beijing, 100091, China
| | - Xiaoxin Lu
- Department of Oncology, Hainan Hospital of PLA General Hospital, Haitang District, Sanya, 572013, China
| | - Dongyang Zheng
- Department of Pulmonary and Critical Care Medicine, Hainan Hospital of PLA General Hospital, Haitang District, Sanya, 572013, China
| | - Weizong Chen
- Xinglong Red Cross Hospital, Wanning, 571533, China
| | - Yuzhu Li
- Department of Pulmonary and Critical Care Medicine, Hainan Hospital of PLA General Hospital, Haitang District, Sanya, 572013, China.
| | - Fang Li
- Department of Oncology, Hainan Hospital of PLA General Hospital, Haitang District, Sanya, 572013, China.
| |
Collapse
|
39
|
Multifaceted Roles of the N6-Methyladenosine RNA Methyltransferase METTL3 in Cancer and Immune Microenvironment. Biomolecules 2022; 12:biom12081042. [PMID: 36008936 PMCID: PMC9406229 DOI: 10.3390/biom12081042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 12/24/2022] Open
Abstract
As the most abundant internal mRNA modification in eukaryotic cells, N6-methyladenosine (m6A) has emerged as an important regulator of gene expression and has a profound impact on cancer initiation and progression. mRNA m6A modification is regulated by m6A methyltransferases, demethylases and reader proteins to fine tune gene expression at the post-transcriptional level. The most well-studied m6A methyltransferase, METTL3, plays critical roles in regulating gene expression and affecting the outcome of various cancers. In this review, we discuss the multifaceted roles of METTL3 in regulating specific molecular signaling pathways in different types of cancers and the recent progress on how METTL3 impacts the tumor immune microenvironment. Finally, we discuss future directions and the potential for therapeutic targeting of METTL3 in cancer treatment.
Collapse
|
40
|
del Valle-Morales D, Le P, Saviana M, Romano G, Nigita G, Nana-Sinkam P, Acunzo M. The Epitranscriptome in miRNAs: Crosstalk, Detection, and Function in Cancer. Genes (Basel) 2022; 13:1289. [PMID: 35886072 PMCID: PMC9316458 DOI: 10.3390/genes13071289] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/09/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023] Open
Abstract
The epitranscriptome encompasses all post-transcriptional modifications that occur on RNAs. These modifications can alter the function and regulation of their RNA targets, which, if dysregulated, result in various diseases and cancers. As with other RNAs, miRNAs are highly modified by epitranscriptomic modifications such as m6A methylation, 2'-O-methylation, m5C methylation, m7G methylation, polyuridine, and A-to-I editing. miRNAs are a class of small non-coding RNAs that regulates gene expression at the post-transcriptional level. miRNAs have gathered high clinical interest due to their role in disease, development, and cancer progression. Epitranscriptomic modifications alter the targeting, regulation, and biogenesis of miRNAs, increasing the complexity of miRNA regulation. In addition, emerging studies have revealed crosstalk between these modifications. In this review, we will summarize the epitranscriptomic modifications-focusing on those relevant to miRNAs-examine the recent crosstalk between these modifications, and give a perspective on how this crosstalk expands the complexity of miRNA biology.
Collapse
Affiliation(s)
- Daniel del Valle-Morales
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (D.d.V.-M.); (P.L.); (M.S.); (G.R.); (P.N.-S.)
| | - Patricia Le
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (D.d.V.-M.); (P.L.); (M.S.); (G.R.); (P.N.-S.)
| | - Michela Saviana
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (D.d.V.-M.); (P.L.); (M.S.); (G.R.); (P.N.-S.)
| | - Giulia Romano
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (D.d.V.-M.); (P.L.); (M.S.); (G.R.); (P.N.-S.)
| | - Giovanni Nigita
- Comprehensive Cancer Center, Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210, USA;
| | - Patrick Nana-Sinkam
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (D.d.V.-M.); (P.L.); (M.S.); (G.R.); (P.N.-S.)
| | - Mario Acunzo
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (D.d.V.-M.); (P.L.); (M.S.); (G.R.); (P.N.-S.)
| |
Collapse
|
41
|
Han J, Kong H, Wang X, Zhang XA. Novel insights into the interaction between N6-methyladenosine methylation and noncoding RNAs in musculoskeletal disorders. Cell Prolif 2022; 55:e13294. [PMID: 35735243 PMCID: PMC9528765 DOI: 10.1111/cpr.13294] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Musculoskeletal disorder (MSD) are a class of inflammatory and degener-ative diseases, but the precise molecular mechanisms are still poorly understood. Noncoding RNA (ncRNA) N6-methyladenosine (m6A) modification plays an essential role in the pathophysiological process of MSD. This review summarized the interaction be-tween m6A RNA methylation and ncRNAs in the molecular regulatory mechanism of MSD. It provides a new perspective for the pathophysiological mechanism and ncRNA m6A targeted therapy of MSD. METHODS A comprehensive search of databases was conducted with musculoskeletal disorders, noncoding RNA, N6-methyladenosine, intervertebral disc degeneration, oste-oporosis, osteosarcoma, osteoarthritis, skeletal muscle, bone, and cartilage as the key-words. Then, summarized all the relevant articles. RESULTS Intervertebral disc degeneration (IDD), osteoporosis (OP), osteosarcoma (OS), and osteoarthritis (OA) are common MSDs that affect muscle, bone, cartilage, and joint, leading to limited movement, pain, and disability. However, the precise pathogenesis remains unclear, and no effective treatment and drug is available at present. Numerous studies confirmed that the mutual regulation between m6A and ncRNAs (i.e., microRNAs, long ncRNAs, and circular RNAs) was found in MSD, m6A modification can regulate ncRNAs, and ncRNAs can also target m6A regulators. ncRNA m6A modification plays an essential role in the pathophysiological process of MSDs by regulating the homeostasis of skeletal muscle, bone, and cartilage. CONCLUSION m6A interacts with ncRNAs to regulate multiple biological processes and plays important roles in IDD, OP, OS, and OA. These studies provide new insights into the pathophysiological mechanism of MSD and targeting m6A-modified ncRNAs may be a promising therapy approach.
Collapse
Affiliation(s)
- Juanjuan Han
- College of Kinesiology, Shenyang Sport University, Shenyang, China.,Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Hui Kong
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xueqiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| | - Xin-An Zhang
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| |
Collapse
|
42
|
Sun J, Cheng B, Su Y, Li M, Ma S, Zhang Y, Zhang A, Cai S, Bao Q, Wang S, Zhu P. The Potential Role of m6A RNA Methylation in the Aging Process and Aging-Associated Diseases. Front Genet 2022; 13:869950. [PMID: 35518355 PMCID: PMC9065606 DOI: 10.3389/fgene.2022.869950] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022] Open
Abstract
N6-methyladenosine (m6A) is the most common and conserved internal eukaryotic mRNA modification. m6A modification is a dynamic and reversible post-transcriptional regulatory modification, initiated by methylase and removed by RNA demethylase. m6A-binding proteins recognise the m6A modification to regulate gene expression. Recent studies have shown that altered m6A levels and abnormal regulator expression are crucial in the ageing process and the occurrence of age-related diseases. In this review, we summarise some key findings in the field of m6A modification in the ageing process and age-related diseases, including cell senescence, autophagy, inflammation, oxidative stress, DNA damage, tumours, neurodegenerative diseases, diabetes, and cardiovascular diseases (CVDs). We focused on the biological function and potential molecular mechanisms of m6A RNA methylation in ageing and age-related disease progression. We believe that m6A modification may provide a new target for anti-ageing therapies.
Collapse
Affiliation(s)
- Jin Sun
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Bokai Cheng
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Yongkang Su
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Man Li
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Shouyuan Ma
- Department of Geriatric Cardiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yan Zhang
- Department of Outpatient, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Anhang Zhang
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Shuang Cai
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Qiligeer Bao
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Shuxia Wang
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| | - Ping Zhu
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Medical School of Chinese PLA, Beijing, China
| |
Collapse
|
43
|
Wang X, Hu M, Yu L, Wang X, Jiang X, Zhang G, Ding K. The "m6A writer" METTL3 and the "m6A reader" IGF2BP2 regulate cutaneous T-cell lymphomas (CTCL) progression via CDKN2A. Hematol Oncol 2022; 40:567-576. [PMID: 35446451 DOI: 10.1002/hon.3005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/08/2022]
Abstract
It has been established that Cutaneous T-Cell lymphomas (CTCL) are caused by the monoclonal proliferation of T lymphocytes in the skin. This heterogeneous group of diseases represents a significant source of distress to patients since the diagnosis and treatment are often challenging. As one of the most abundant internal modifications in mRNA in higher eukaryotes, N6-methyladenosine (m6A) is widely recognized to affect the development and progression of cancers. However, knowledge on the involvement of m6A in CTCL is still limited. In this work, we revealed the role of METTL3-mediated m6A modification in CTCL progression. ELISA, western blot, and qRT-PCR assays demonstrated that METTL3 was significantly downregulated in CTCL cells both in vivo and in vitro. CCK-8, EdU, flow cytometry, and transwell assays showed that the decline in METTL3 levels was responsible for CTCL cell proliferation and migration. Furthermore, using small interfering RNAs (siRNAs) against METTL3 and the RIP assay, we showed that CDKN2A was a key regulator during this process in vitro and in vivo, and insufficient methylation modification blocked the interaction between CDKN2A and m6A reader IGF2BP2, resulting in mRNA degradation. To the best of our knowledge, this is the first study to depict the role of m6A in CTCL development and provide potential bio-targets for therapy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xinchen Wang
- Department of Hematology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, Hefei, 230001, China
| | - Maogui Hu
- Department of Hematology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, Hefei, 230001, China
| | - Lu Yu
- Department of Hematology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, Hefei, 230001, China
| | - Xiaoyan Wang
- Department of Hematology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, Hefei, 230001, China
| | - Xinlu Jiang
- Department of Hematology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, Hefei, 230001, China
| | - Guihong Zhang
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Kaiyang Ding
- Department of Hematology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, Hefei, 230001, China
| |
Collapse
|
44
|
Ma C, Ma RJ, Hu K, Zheng QM, Wang YP, Zhang N, Sun ZG. The molecular mechanism of METTL3 promoting the malignant progression of lung cancer. Cancer Cell Int 2022; 22:133. [PMID: 35331234 PMCID: PMC8944087 DOI: 10.1186/s12935-022-02539-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer remains one of the major causes of cancer-related death globally. Recent studies have shown that aberrant m6A levels caused by METTL3 are involved in the malignant progression of various tumors, including lung cancer. The m6A modification, the most abundant RNA chemical modification, regulates RNA stabilization, splicing, translation, decay, and nuclear export. The methyltransferase complex plays a key role in the occurrence and development of many tumors by installing m6A modification. In this complex, METTL3 is the first identified methyltransferase, which is also the major catalytic enzyme. Recent findings have revealed that METTL3 is remarkably associated with different aspects of lung cancer progression, influencing the prognosis of patients. In this review, we will focus on the underlying mechanism of METT3 in lung cancer and predict the future work and potential clinical application of targeting METTL3 for lung cancer therapy.
Collapse
Affiliation(s)
- Chao Ma
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Road, Jinan, 250013, Shandong, China.,School of Clinical Medicine, Weifang Medical University, Weifang, 261053, Shangdong, China
| | - Rui-Jie Ma
- Cheeloo College of Medicine, Shandong University, Jinan, 250013, Shangdong, China
| | - Kang Hu
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Road, Jinan, 250013, Shandong, China.,School of Clinical Medicine, Weifang Medical University, Weifang, 261053, Shangdong, China
| | - Qi-Ming Zheng
- Cheeloo College of Medicine, Shandong University, Jinan, 250013, Shangdong, China
| | - Ye-Peng Wang
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Road, Jinan, 250013, Shandong, China
| | - Nan Zhang
- Breast Center, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Road, Jinan, 250013, Shandong, China.
| | - Zhi-Gang Sun
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Road, Jinan, 250013, Shandong, China.
| |
Collapse
|
45
|
Guo YQ, Wang Q, Wang JG, Gu YJ, Song PP, Wang SY, Qian XY, Gao X. METTL3 modulates m6A modification of CDC25B and promotes head and neck squamous cell carcinoma malignant progression. Exp Hematol Oncol 2022; 11:14. [PMID: 35287752 PMCID: PMC8919647 DOI: 10.1186/s40164-022-00256-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/13/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) RNA methylation and its methyltransferase METTL3 have been widely reported to be involved in different cancers by regulating RNA metabolism and function. Here, we aimed to explore the biological function and clinical significance of m6A modification and METTL3 in head and neck squamous cell carcinoma (HNSCC). METHODS The prognostic value of METTL3 expression was evaluated using tissue microarray and immunohistochemical staining analyses in a human HNSCC cohort. The biological role and mechanism of METTL3 in HNSCC tumour growth, metastasis and angiogenesis were determined in vitro and in vivo. RESULTS M6A levels and METTL3 expressions in HNSCC tissues were significantly increased compared with paired adjacent tissues. Meanwhile, METTL3 was an independent risk factor for the prognosis of HNSCC patients. Moreover, METTL3 overexpression promoted HNSCC cell proliferation, migration, invasion, and angiogenesis, while knockdown of METTL3 had an opposite effect in vivo and in vitro. Mechanistically, METTL3 enhanced the m6A modification of CDC25B mRNA, which maintained its stability and upregulated its expression, thereby activating G2/M phase of cell cycle and leading to HNSCC malignant progression. CONCLUSIONS METTL3 may be a potential prognostic biomarker and therapeutic target for HNSCC.
Collapse
Affiliation(s)
- Yu-Qing Guo
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Qiang Wang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Jun-Guo Wang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China
- Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Ya-Jun Gu
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China
- Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Pan-Pan Song
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China
- Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Shou-Yu Wang
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China.
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Xiao-Yun Qian
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China.
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China.
- Research Institute of Otolaryngology, Nanjing, 210008, China.
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No.321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Xia Gao
- Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China.
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China.
- Research Institute of Otolaryngology, Nanjing, 210008, China.
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, No.321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
46
|
Li W, Gao Y, Jin X, Wang H, Lan T, Wei M, Yan W, Wang G, Li Z, Zhao Z, Jiang X. Comprehensive analysis of N6-methylandenosine regulators and m6A-related RNAs as prognosis factors in colorectal cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:598-610. [PMID: 35070494 PMCID: PMC8753275 DOI: 10.1016/j.omtn.2021.12.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies and has been a leading cause of cancer-related death worldwide in recent years. N6-methyladenosine (m6A) methylation is the most abundant epigenetic modification of various types of RNAs, and it plays a vital role in promoting cancer development. Here, we obtained SNV and transcriptome data of CRC from The Cancer Genome Atlas (TCGA). We demonstrated that most m6A methylation regulators were aberrantly expressed in individuals with CRC. The abnormal expression of m6A regulators was caused by their different copy number variation (CNV) patterns, and alteration of m6A regulators was significantly correlated with prognosis and tumor stage. By using weighted coexpression network analysis (WGCNA), we identified m6A-related long noncoding RNAs (lncRNAs) and mRNAs; then we used least absolute shrinkage and selection operator (LASSO) Cox regression analysis to construct m6A-related lncRNA and mRNA prognostic signatures in the TCGA dataset. Furthermore, a nomogram with clinicopathological features, lncRNA risk scores, and mRNA risk scores was established, which showed a strong ability to forecast the overall survival of the individuals with CRC in training and testing sets. In conclusion, m6A methylation regulators played a vital role in affecting the prognosis of subjects with CRC, and m6A-related lncRNAs and mRNAs revealed underlying mechanisms in CRC tumorigenesis and progression.
Collapse
Affiliation(s)
- Wei Li
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yingchao Gao
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaojing Jin
- Department of Emergency, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Haobo Wang
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tianhao Lan
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ming Wei
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Weitao Yan
- Department of Breast Surgery, The First People's Hospital of Qinhuangdao, Hebei, China
| | - Guiqi Wang
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhongxin Li
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zengren Zhao
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xia Jiang
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
47
|
Wu Z, Zhang X, Chen D, Li Z, Wu X, Wang J, Deng Y. N6-Methyladenosine-Related LncRNAs Are Potential Remodeling Indicators in the Tumor Microenvironment and Prognostic Markers in Osteosarcoma. Front Immunol 2022; 12:806189. [PMID: 35095893 PMCID: PMC8790065 DOI: 10.3389/fimmu.2021.806189] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/06/2021] [Indexed: 12/23/2022] Open
Abstract
N6-Adenosine methylation, yielding N6-methyladenosine (m6A), is a reversible epigenetic modification found in messenger RNAs and long non-coding RNAs (lncRNAs), which affects the fate of modified RNA molecules and is essential for the development and differentiation of immune cells in the tumor microenvironment (TME). Osteosarcoma (OS) is the most common primary bone tumor in children and adolescents, and is characterized by high mortality. Currently, the possible role of m6A modifications in the prognosis of OS is unclear. In the present study, we investigated the correlation between m6A-related lncRNA expression and the clinical outcomes of OS patients via a comprehensive analysis. Clinical and workflow-type data were obtained from the Genotype-Tissue Expression Program and The Cancer Genome Atlas. We examined the relationship between m6A modifications and lncRNA expression, conducted Kyoto Encyclopedia of Genes analysis and also gene set enrichment analysis (GSEA), implemented survival analysis to investigate the association of clinical survival data with the expression of m6A-related lncRNAs, and utilized Lasso regression to model the prognosis of OS. Furthermore, we performed immune correlation analysis and TME differential analysis to investigate the infiltration levels of immune cells and their relationship with clinical prognosis. LncRNA expression and m6A levels were closely associated in co-expression analysis. The expression of m6A-related lncRNAs was quite low in tumor tissues; this appeared to be a predicting factor of OS in a prognostic model, independent of other clinical features. The NOD-like receptor signaling pathway was the most significantly enriched pathway in GSEA. In tumor tissues, SPAG4 was overexpressed while ZBTB32 and DEPTOR were downregulated. Tissues in cluster 2 were highly infiltrated by plasma cells. Cluster 2 presented higher ESTIMATE scores and stromal scores, showing a lower tumor cell purity in the TME. In conclusion, m6A-related lncRNA expression is strongly associated with the occurrence and development of OS, and can be used to as a prognostic factor of OS. Moreover, m6A-related lncRNAs and infiltrating immune cells in the TME could serve as new therapeutic targets and prognostic biomarkers for OS.
Collapse
Affiliation(s)
- Zhongguang Wu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Zhang
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Dongjie Chen
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zian Li
- Department of Clinical Laboratory, Qinghai Provincial People's Hospital, Xining, China
| | - Xin Wu
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jianlong Wang
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Youwen Deng
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
48
|
Xu P, Ge R. Roles and drug development of METTL3 (methyltransferase-like 3) in anti-tumor therapy. Eur J Med Chem 2022; 230:114118. [DOI: 10.1016/j.ejmech.2022.114118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/05/2021] [Accepted: 01/09/2022] [Indexed: 12/13/2022]
|
49
|
Advances in the functional roles of N6-methyladenosine modification in cancer progression: mechanisms and clinical implications. Mol Biol Rep 2022; 49:4929-4941. [PMID: 35025029 DOI: 10.1007/s11033-022-07126-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/04/2022] [Indexed: 12/24/2022]
Abstract
N6-methyladenosine (m6A), the methylation targeting the N6 position of adenosine, is the most common internal modification of mRNA in eukaryotes. Considering the roles of m6A in regulating gene expression, the investigation of m6A roles in the biological processes including cell renewal, differentiation, apoptosis, and invasion of cancer cells has become a hot research topic. There are three kinds of protein involved in m6A regulation. The methyltransferases and demethylases cooperatively regulate the m6A levels, while the m6A reading proteins recognize the m6A sites and mediate multiple m6A-dependent biological functions including mRNA splicing, transfer, translation, and degradation. At present, a large number of studies have found that the changes of m6A levels in tumor cells play a very important role in the occurrence and development of tumors, as well as metastasis and invasion of tumor cells. This review summarizes the different roles of m6A modification in the occurrence and development of various cancers, and discusses the possibility of choosing the m6A related proteins as potential therapeutic targets.
Collapse
|
50
|
Xu K, Zhang Q, Chen M, Li B, Wang N, Li C, Gao Z, Zhang D, Yang L, Xu Z, Li X, Xu H. N 6-methyladenosine modification regulates imatinib resistance of gastrointestinal stromal tumor by enhancing the expression of multidrug transporter MRP1. Cancer Lett 2022; 530:85-99. [PMID: 35032557 DOI: 10.1016/j.canlet.2022.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/23/2021] [Accepted: 01/08/2022] [Indexed: 12/29/2022]
Abstract
N6-methyladenosine (m6A) is a frequently occurring mRNA modification, which regulates mRNA stability, splicing, and translation. However, its role in drug resistance of gastrointestinal stromal tumor (GIST) is not known. Here, we report that m6A modification levels are elevated in imatinib-resistant GIST cells and tissues, and that methyltransferase METTL3 is one of the main protein responsible for this aberrant modification. Increased METTL3 levels contributed to imatinib resistance and worse progression-free survival of GIST patients. Mechanistic studies revealed that METTL3-mediated m6A modification of the 5'UTR of the multidrug transporter MRP1 mRNA promoted drug resistance of GIST by stimulating MRP1 mRNA translation, via binding with YTHDF1 and eEF-1. Further, METTL3 transcription in Imatinib resistant GIST cells was activated by ETV1, leading to the increased m6A methylation of MRP1 mRNA. This is the first report showing a novel regulatory mechanism whereby ETV1, METTL3, and the YTHDF1/eEF-1 complex mediate the translation of MRP1 mRNA in an m6A-dependent manner to regulate the intracellular concentration of imatinib and drug resistance of GIST. These findings highlight MRP1 as a new potential therapeutic target for imatinib resistance of GIST.
Collapse
Affiliation(s)
- Kangjing Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Qiang Zhang
- Department of Gastrointestinal Surgery, The Second People's Hospital of Lianyungang Affiliated to Kangda College, Nanjing Medical University, Lianyungang, 222002, China
| | - Ming Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Bowen Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Nuofan Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Chao Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Zhishuang Gao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Diancai Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Li Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Xueming Li
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, 211816, China.
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China.
| |
Collapse
|