1
|
Wang L, Han H. Strategies for improving the genome-editing efficiency of class 2 CRISPR/Cas system. Heliyon 2024; 10:e38588. [PMID: 39397905 PMCID: PMC11471210 DOI: 10.1016/j.heliyon.2024.e38588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
Since its advent, gene-editing technology has been widely used in microorganisms, animals, plants, and other species. This technology shows remarkable application prospects, giving rise to a new biotechnological industry. In particular, third-generation gene editing technology, represented by the CRISPR/Cas9 system, has become the mainstream gene editing technology owing to its advantages of high efficiency, simple operation, and low cost. These systems can be widely used because they have been modified and optimized, leading to notable improvements in the efficiency of gene editing. This review introduces the characteristics of popular CRISPR/Cas systems and optimization methods aimed at improving the editing efficiency of class 2 CRISPR/Cas systems, providing a reference for the development of superior gene editing systems. Additionally, the review discusses the development and optimization of base editors, primer editors, gene activation and repression tools, as well as the advancement and refinement of compact systems such as IscB, TnpB, Fanzor, and Cas12f.
Collapse
Affiliation(s)
- Linli Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hongbing Han
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
2
|
Přibylová A, Fischer L. How to use CRISPR/Cas9 in plants: from target site selection to DNA repair. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5325-5343. [PMID: 38648173 PMCID: PMC11389839 DOI: 10.1093/jxb/erae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/21/2024] [Indexed: 04/25/2024]
Abstract
A tool for precise, target-specific, efficient, and affordable genome editing is a dream for many researchers, from those who conduct basic research to those who use it for applied research. Since 2012, we have tool that almost fulfils such requirements; it is based on clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) systems. However, even CRISPR/Cas has limitations and obstacles that might surprise its users. In this review, we focus on the most frequently used variant, CRISPR/Cas9 from Streptococcus pyogenes, and highlight key factors affecting its mutagenesis outcomes: (i) factors affecting the CRISPR/Cas9 activity, such as the effect of the target sequence, chromatin state, or Cas9 variant, and how long it remains in place after cleavage; and (ii) factors affecting the follow-up DNA repair mechanisms including mostly the cell type and cell cycle phase, but also, for example, the type of DNA ends produced by Cas9 cleavage (blunt/staggered). Moreover, we note some differences between using CRISPR/Cas9 in plants, yeasts, and animals, as knowledge from individual kingdoms is not fully transferable. Awareness of these factors can increase the likelihood of achieving the expected results of plant genome editing, for which we provide detailed guidelines.
Collapse
Affiliation(s)
- Adéla Přibylová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12800, Prague 2, Czech Republic
| | - Lukáš Fischer
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12800, Prague 2, Czech Republic
| |
Collapse
|
3
|
Guo X, Geng L, Jiang C, Yao W, Jin J, Liu Z, Mu Y. Multiplexed genome engineering for porcine fetal fibroblasts with gRNA-tRNA arrays based on CRISPR/Cas9. Anim Biotechnol 2023; 34:4703-4712. [PMID: 36946758 DOI: 10.1080/10495398.2023.2187402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Multiplex gene modifications are highly required for various fields of porcine research. In many species, the CRISPR/Cas9 system has been widely applied for genomic editing and provides a potential tool for introducing multiplex genome mutations simultaneously. Here, we present a CRISPR-Cas9 gRNA-tRNA array (GTR-CRISPR) for multiplexed engineering of porcine fetal fibroblasts (PFFs). We successfully produced multiple sgRNAs using only one Pol III promoter by taking advantage of the endogenous tRNA processing mechanism in porcine cells. Using an all-in-one construct carrying GTR and Cas9, we disrupted the IGFBP3, MSTN, MC4R, and SOCS2 genes in multiple codon regions in one PFF cell simultaneously. This technique allows the simultaneous disruption of four genes with 5.5% efficiency. As a result, this approach may effectively target multiple genes at the same time, making it a powerful tool for establishing multiple genes mutant cells in pigs.
Collapse
Affiliation(s)
- Xiaochen Guo
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Lishuang Geng
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Chaoqian Jiang
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Wang Yao
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Junxue Jin
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Yanshuang Mu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
4
|
Seys FM, Humphreys CM, Tomi-Andrino C, Li Q, Millat T, Yang S, Minton NP. Base editing enables duplex point mutagenesis in Clostridium autoethanogenum at the price of numerous off-target mutations. Front Bioeng Biotechnol 2023; 11:1211197. [PMID: 37496853 PMCID: PMC10366002 DOI: 10.3389/fbioe.2023.1211197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/06/2023] [Indexed: 07/28/2023] Open
Abstract
Base editors are recent multiplex gene editing tools derived from the Cas9 nuclease of Streptomyces pyogenes. They can target and modify a single nucleotide in the genome without inducing double-strand breaks (DSB) of the DNA helix. As such, they hold great potential for the engineering of microbes that lack effective DSB repair pathways such as homologous recombination (HR) or non-homologous end-joining (NHEJ). However, few applications of base editors have been reported in prokaryotes to date, and their advantages and drawbacks have not been systematically reported. Here, we used the base editors Target-AID and Target-AID-NG to introduce nonsense mutations into four different coding sequences of the industrially relevant Gram-positive bacterium Clostridium autoethanogenum. While up to two loci could be edited simultaneously using a variety of multiplexing strategies, most colonies exhibited mixed genotypes and most available protospacers led to undesired mutations within the targeted editing window. Additionally, fifteen off-target mutations were detected by sequencing the genome of the resulting strain, among them seven single-nucleotide polymorphisms (SNP) in or near loci bearing some similarity with the targeted protospacers, one 15 nt duplication, and one 12 kb deletion which removed uracil DNA glycosylase (UDG), a key DNA repair enzyme thought to be an obstacle to base editing mutagenesis. A strategy to process prokaryotic single-guide RNA arrays by exploiting tRNA maturation mechanisms is also illustrated.
Collapse
Affiliation(s)
- François M. Seys
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Christopher M. Humphreys
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Claudio Tomi-Andrino
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
- Nottingham BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Qi Li
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Thomas Millat
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Nigel P. Minton
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
5
|
Sum H, Brewer AC. Epigenetic modifications as therapeutic targets in atherosclerosis: a focus on DNA methylation and non-coding RNAs. Front Cardiovasc Med 2023; 10:1183181. [PMID: 37304954 PMCID: PMC10248074 DOI: 10.3389/fcvm.2023.1183181] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Significant progress in the diagnosis and treatment of cardiovascular disease (CVD) has been made in the past decade, yet it remains a leading cause of morbidity and mortality globally, claiming an estimated 17.9 million deaths per year. Although encompassing any condition that affects the circulatory system, including thrombotic blockage, stenosis, aneurysms, blood clots and arteriosclerosis (general hardening of the arteries), the most prevalent underlying hallmark of CVD is atherosclerosis; the plaque-associated arterial thickening. Further, distinct CVD conditions have overlapping dysregulated molecular and cellular characteristics which underlie their development and progression, suggesting some common aetiology. The identification of heritable genetic mutations associated with the development of atherosclerotic vascular disease (AVD), in particular resulting from Genome Wide Association Studies (GWAS) studies has significantly improved the ability to identify individuals at risk. However, it is increasingly recognised that environmentally-acquired, epigenetic changes are key factors associated with atherosclerosis development. Increasing evidence suggests that these epigenetic changes, most notably DNA methylation and the misexpression of non-coding, microRNAs (miRNAs) are potentially both predictive and causal in AVD development. This, together with their reversible nature, makes them both useful biomarkers for disease and attractive therapeutic targets potentially to reverse AVD progression. We consider here the association of aberrant DNA methylation and dysregulated miRNA expression with the aetiology and progression of atherosclerosis, and the potential development of novel cell-based strategies to target these epigenetic changes therapeutically.
Collapse
|
6
|
Aimola G, Wight DJ, Flamand L, Kaufer BB. Excision of Integrated Human Herpesvirus 6A Genomes Using CRISPR/Cas9 Technology. Microbiol Spectr 2023; 11:e0076423. [PMID: 36926973 PMCID: PMC10100985 DOI: 10.1128/spectrum.00764-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
Human herpesviruses 6A and 6B are betaherpesviruses that can integrate their genomes into the telomeres of latently infected cells. Integration can also occur in germ cells, resulting in individuals who harbor the integrated virus in every cell of their body and can pass it on to their offspring. This condition is termed inherited chromosomally integrated HHV-6 (iciHHV-6) and affects about 1% of the human population. The integrated HHV-6A/B genome can reactivate in iciHHV-6 patients and in rare cases can also cause severe diseases including encephalitis and graft-versus-host disease. Until now, it has remained impossible to prevent virus reactivation or remove the integrated virus genome. Therefore, we developed a system that allows the removal of HHV-6A from the host telomeres using the CRISPR/Cas9 system. We used specific guide RNAs (gRNAs) targeting the direct repeat region at the ends of the viral genome to remove the virus from latently infected cells generated in vitro and iciHHV-6A patient cells. Fluorescence-activated cell sorting (FACS), quantitative PCR (qPCR), and fluorescence in situ hybridization (FISH) analyses revealed that the virus genome was efficiently excised and lost in most cells. Efficient excision was achieved with both constitutive and transient expression of Cas9. In addition, reverse transcription-qPCR (RT-qPCR) revealed that the virus genome did not reactivate upon excision. Taken together, our data show that our CRISPR/Cas9 approach allows efficient removal of the integrated virus genome from host telomeres. IMPORTANCE Human herpesvirus 6 (HHV-6) infects almost all humans and integrates into the telomeres of latently infected cells to persist in the host for life. In addition, HHV-6 can also integrate into the telomeres of germ cells, which results in about 80 million individuals worldwide who carry the virus in every cell of their body and can pass it on to their offspring. In this study, we develop the first system that allows excision of the integrated HHV-6 genome from host telomeres using CRISPR/Cas9 technology. Our data revealed that the integrated HHV-6 genome can be efficiently removed from the telomeres of latently infected cells and cells of patients harboring the virus in their germ line. Virus removal could be achieved with both stable and transient Cas9 expression, without inducing viral reactivation.
Collapse
Affiliation(s)
- Giulia Aimola
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Darren J. Wight
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Louis Flamand
- Division of Infectious and Immune Diseases, CHU de Quebec Research Center-Laval University, Québec, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Laval University, Québec, Canada
| | - Benedikt B. Kaufer
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
7
|
CRISPR/dCas9-Mediated Gene Silencing in Two Plant Fungal Pathogens. mSphere 2023; 8:e0059422. [PMID: 36655998 PMCID: PMC9942560 DOI: 10.1128/msphere.00594-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Magnaporthe oryzae and Ustilaginoidea virens are two filamentous fungal pathogens that threaten rice production worldwide. Genetic tools that permit fast gene deletion and silencing are of great interest for functional genomics of fungal pathogens. As a revolutionary genome editing tool, clustered regularly interspaced palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) enable many innovative applications. Here, we developed a CRISPR interference (CRISPRi) toolkit using nuclease activity dead Cas9 (dCas9) to silence genes of interest in M. oryzae and U. virens. We optimized the components of CRISPRi vectors, including transcriptional repression domains, dCas9 promoters, and guide RNA (gRNA) promoters. The CRISPRi tool was tested using nine gRNAs to target the promoters of MoATG3, MoATG7, and UvPal1. The results indicated that a single gRNA could direct the dCas9-fused transcriptional repression domain to efficiently silence the target gene in M. oryzae and U. virens. In both fungi, the target genes were repressed >100-fold, and desired phenotypes were observed in CRISPRi strains. Importantly, we showed that multiple genes could be easily silenced using polycistronic tRNA-gRNA in CRISPRi. Furthermore, gRNAs that bind different promoter regions displayed variable repression levels of target genes, highlighting the importance of gRNA design for CRISPRi efficiency. Together, this study provides an efficient and robust CRISPRi tool for targeted gene silencing in M. oryzae and U. virens. Owing to its simplicity and multiplexity, CRISPRi will be a useful tool for gene function discovery in fungal pathogens. IMPORTANCE Many devastating plant diseases are caused by fungal pathogens that evolve rapidly to adapt to host resistance and environmental changes. Therefore, genetic tools that enable fast gene function discovery are needed to study the pathogenicity and stress adaptation of fungal pathogens. In this study, we adopted the CRISPR/Cas9 system to silence genes in Magnaporthe oryzae and Ustilaginoidea virens, which are two dominant fungal pathogens that threaten rice production worldwide. We present a versatile and robust CRISPRi toolkit that represses target gene expression >100-fold using a single gRNA. We also demonstrated that CRISPRi could simultaneously silence multiple genes using the tRNA-gRNA strategy. The CRISPRi technologies described in this study would accelerate the functional genomics of fungal pathogens.
Collapse
|
8
|
Replogle JM, Bonnar JL, Pogson AN, Liem CR, Maier NK, Ding Y, Russell BJ, Wang X, Leng K, Guna A, Norman TM, Pak RA, Ramos DM, Ward ME, Gilbert LA, Kampmann M, Weissman JS, Jost M. Maximizing CRISPRi efficacy and accessibility with dual-sgRNA libraries and optimal effectors. eLife 2022; 11:e81856. [PMID: 36576240 PMCID: PMC9829409 DOI: 10.7554/elife.81856] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
CRISPR interference (CRISPRi) enables programmable, reversible, and titratable repression of gene expression (knockdown) in mammalian cells. Initial CRISPRi-mediated genetic screens have showcased the potential to address basic questions in cell biology, genetics, and biotechnology, but wider deployment of CRISPRi screening has been constrained by the large size of single guide RNA (sgRNA) libraries and challenges in generating cell models with consistent CRISPRi-mediated knockdown. Here, we present next-generation CRISPRi sgRNA libraries and effector expression constructs that enable strong and consistent knockdown across mammalian cell models. First, we combine empirical sgRNA selection with a dual-sgRNA library design to generate an ultra-compact (1-3 elements per gene), highly active CRISPRi sgRNA library. Next, we compare CRISPRi effectors to show that the recently published Zim3-dCas9 provides an excellent balance between strong on-target knockdown and minimal non-specific effects on cell growth or the transcriptome. Finally, we engineer a suite of cell lines with stable expression of Zim3-dCas9 and robust on-target knockdown. Our results and publicly available reagents establish best practices for CRISPRi genetic screening.
Collapse
Affiliation(s)
- Joseph M Replogle
- Medical Scientist Training Program, University of California, San FranciscoSan FranciscoUnited States
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical Institute, Massachusetts Institute of TechnologyCambridgeUnited States
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Jessica L Bonnar
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical Institute, Massachusetts Institute of TechnologyCambridgeUnited States
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Angela N Pogson
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical Institute, Massachusetts Institute of TechnologyCambridgeUnited States
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Christina R Liem
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
| | - Nolan K Maier
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
| | - Yufang Ding
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
| | - Baylee J Russell
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
| | - Xingren Wang
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
| | - Kun Leng
- Medical Scientist Training Program, University of California, San FranciscoSan FranciscoUnited States
- Institute for Neurodegenerative Disease, University of California, San FranciscoSan FranciscoUnited States
| | - Alina Guna
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Thomas M Norman
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
| | - Ryan A Pak
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
| | - Daniel M Ramos
- Center for Alzheimer's Disease and Related Dementias, National Institutes of HealthBethesdaUnited States
- National Institute on Aging, National Institutes of HealthBethesdaUnited States
| | - Michael E Ward
- National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Luke A Gilbert
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Department of Urology and Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
- Arc InstitutePalo AltoUnited States
| | - Martin Kampmann
- Institute for Neurodegenerative Disease, University of California, San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical Institute, Massachusetts Institute of TechnologyCambridgeUnited States
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Marco Jost
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
9
|
Oliynyk RT, Church GM. Efficient modification and preparation of circular DNA for expression in cell culture. Commun Biol 2022; 5:1393. [PMID: 36543890 PMCID: PMC9772414 DOI: 10.1038/s42003-022-04363-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
DNA plasmids are an essential tool for delivery and expression of RNAs and proteins in cell culture experiments. The preparation of plasmids typically involves a laborious process of bacterial cloning, validation, and purification. While the expression plasmids can be designed and ordered from the contract manufacturers, the cost may be prohibitive when a large number of plasmids is required. We have developed an efficient fully synthetic method and protocol that enables the production of circularized DNA containing expression elements ready for transfection in as little as 3 hours, thereby eliminating the bacterial cloning steps. The protocol describes how to take a linear double-stranded DNA fragment and efficiently circularize and purify this DNA fragment with minimal hands-on time. As proof of the principle, we applied Circular Vector expressing engineered prime editing guide RNA (epegRNA) in cell culture, and demonstrated matching and even exceeding performance of this method as compared to guides expressed by plasmids. The method's speed of preparation, low cost, and ease of use will make it a useful tool in applications requiring the expression of short RNAs and proteins.
Collapse
Affiliation(s)
- Roman Teo Oliynyk
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Computer Science, University of Auckland, Auckland, New Zealand.
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| |
Collapse
|
10
|
Yuan Q, Gao X. Multiplex base- and prime-editing with drive-and-process CRISPR arrays. Nat Commun 2022; 13:2771. [PMID: 35589728 PMCID: PMC9120480 DOI: 10.1038/s41467-022-30514-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 05/04/2022] [Indexed: 12/17/2022] Open
Abstract
Current base- and prime-editing technologies lack efficient strategies to edit multiple genomic loci simultaneously, limiting their applications in complex genomics and polygenic diseases. Here, we describe drive-and-process (DAP) CRISPR array architectures for multiplex base-editing (MBE) and multiplex prime-editing (MPE) in human cells. We leverage tRNA as the RNA polymerase III promoter to drive the expression of tandemly assembled tRNA-guide RNA (gRNA) arrays, of which the individual gRNAs are released by the cellular endogenous tRNA processing machinery. We engineer a 75-nt human cysteine tRNA (hCtRNA) for the DAP array, achieving up to 31-loci MBE and up to 3-loci MPE. By applying MBE or MPE elements for deliveries via adeno-associated virus (AAV) and lentivirus, we demonstrate simultaneous editing of multiple disease-relevant genomic loci. Our work streamlines the expression and processing of gRNAs on a single array and establishes efficient MBE and MPE strategies for biomedical research and therapeutic applications.
Collapse
Affiliation(s)
- Qichen Yuan
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Xue Gao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Department of Chemistry, Rice University, Houston, TX, USA.
| |
Collapse
|
11
|
Doldur-Balli F, Imamura T, Veatch OJ, Gong NN, Lim DC, Hart MP, Abel T, Kayser MS, Brodkin ES, Pack AI. Synaptic dysfunction connects autism spectrum disorder and sleep disturbances: A perspective from studies in model organisms. Sleep Med Rev 2022; 62:101595. [PMID: 35158305 PMCID: PMC9064929 DOI: 10.1016/j.smrv.2022.101595] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/24/2021] [Accepted: 01/19/2022] [Indexed: 01/03/2023]
Abstract
Sleep disturbances (SD) accompany many neurodevelopmental disorders, suggesting SD is a transdiagnostic process that can account for behavioral deficits and influence underlying neuropathogenesis. Autism Spectrum Disorder (ASD) comprises a complex set of neurodevelopmental conditions characterized by challenges in social interaction, communication, and restricted, repetitive behaviors. Diagnosis of ASD is based primarily on behavioral criteria, and there are no drugs that target core symptoms. Among the co-occurring conditions associated with ASD, SD are one of the most prevalent. SD often arises before the onset of other ASD symptoms. Sleep interventions improve not only sleep but also daytime behaviors in children with ASD. Here, we examine sleep phenotypes in multiple model systems relevant to ASD, e.g., mice, zebrafish, fruit flies and worms. Given the functions of sleep in promoting brain connectivity, neural plasticity, emotional regulation and social behavior, all of which are of critical importance in ASD pathogenesis, we propose that synaptic dysfunction is a major mechanism that connects ASD and SD. Common molecular targets in this interplay that are involved in synaptic function might be a novel avenue for therapy of individuals with ASD experiencing SD. Such therapy would be expected to improve not only sleep but also other ASD symptoms.
Collapse
Affiliation(s)
- Fusun Doldur-Balli
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| | - Toshihiro Imamura
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Olivia J Veatch
- Department of Psychiatry and Behavioral Sciences, School of Medicine, The University of Kansas Medical Center, Kansas City, USA
| | - Naihua N Gong
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Diane C Lim
- Pulmonary, Allergy, Critical Care and Sleep Medicine Division, Department of Medicine, Miller School of Medicine, University of Miami, Miami, USA
| | - Michael P Hart
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Ted Abel
- Iowa Neuroscience Institute and Department of Neuroscience & Pharmacology, University of Iowa, Iowa City, USA
| | - Matthew S Kayser
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA; Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Edward S Brodkin
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Allan I Pack
- Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
12
|
Jamehdor S, Pajouhanfar S, Saba S, Uzan G, Teimoori A, Naserian S. Principles and Applications of CRISPR Toolkit in Virus Manipulation, Diagnosis, and Virus-Host Interactions. Cells 2022; 11:999. [PMID: 35326449 PMCID: PMC8946942 DOI: 10.3390/cells11060999] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Viruses are one of the most important concerns for human health, and overcoming viral infections is a worldwide challenge. However, researchers have been trying to manipulate viral genomes to overcome various disorders, including cancer, for vaccine development purposes. CRISPR (clustered regularly interspaced short palindromic repeats) is becoming one of the most functional and widely used tools for RNA and DNA manipulation in multiple organisms. This approach has provided an unprecedented opportunity for creating simple, inexpensive, specific, targeted, accurate, and practical manipulations of viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human immunodeficiency virus-1 (HIV-1), and vaccinia virus. Furthermore, this method can be used to make an effective and precise diagnosis of viral infections. Nevertheless, a valid and scientifically designed CRISPR system is critical to make more effective and accurate changes in viruses. In this review, we have focused on the best and the most effective ways to design sgRNA, gene knock-in(s), and gene knock-out(s) for virus-targeted manipulation. Furthermore, we have emphasized the application of CRISPR technology in virus diagnosis and in finding significant genes involved in virus-host interactions.
Collapse
Affiliation(s)
- Saleh Jamehdor
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan 989155432609, Iran;
| | - Sara Pajouhanfar
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Sadaf Saba
- Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Georges Uzan
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, 94800 Villejuif, France;
- Paris-Saclay University, 94800 Villejuif, France
| | - Ali Teimoori
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan 6517838738, Iran
| | - Sina Naserian
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, 94800 Villejuif, France;
- Paris-Saclay University, 94800 Villejuif, France
- CellMedEx, 94100 Saint Maur Des Fossés, France
| |
Collapse
|
13
|
Pan Q, Luo J, Jiang Y, Wang Z, Lu K, Chen T. Efficient gene editing in a medaka ( Oryzias latipes) cell line and embryos by SpCas9/tRNA-gRNA. J Zhejiang Univ Sci B 2022; 23:74-83. [PMID: 35029089 PMCID: PMC8758932 DOI: 10.1631/jzus.b2100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/09/2021] [Indexed: 11/11/2022]
Abstract
Generation of mutants with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) is commonly carried out in fish species by co-injecting a mixture of Cas9 messenger RNA (mRNA) or protein and transcribed guide RNA (gRNA). However, the appropriate expression system to produce functional gRNAs in fish embryos and cells is rarely present. In this study, we employed a poly-transfer RNA (tRNA)-gRNA (PTG) system driven by cytomegalovirus (CMV) promoter to target the medaka (Oryzias latipes) endogenous gene tyrosinase(tyr) or paired box 6.1 (pax6.1) and illustrated its function in a medaka cell line and embryos. The PTG system was combined with the CRISPR/Cas9 system under high levels of promoter to successfully induce gene editing in medaka. This is a valuable step forward in potential application of the CRISPR/Cas9 system in medaka and other teleosts.
Collapse
Affiliation(s)
- Qihua Pan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College, Jimei University, Xiamen 361021, China
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Junzhi Luo
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuewen Jiang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Wang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Ke Lu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Tiansheng Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College, Jimei University, Xiamen 361021, China.
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
14
|
Alok A, Chauhan H, Upadhyay SK, Pandey A, Kumar J, Singh K. Compendium of Plant-Specific CRISPR Vectors and Their Technical Advantages. Life (Basel) 2021; 11:1021. [PMID: 34685392 PMCID: PMC8540340 DOI: 10.3390/life11101021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/25/2022] Open
Abstract
CRISPR/Cas mediated genome editing is a revolutionary approach for manipulating the plant genome. However, the success of this technology is highly dependent on selection of a specific vector and the other components. A plant-specific CRISPR/Cas vector usually consists of a Cas gene, target-specific gRNA, leader sequence, selectable marker gene, precise promoters, and other accessories. It has always been challenging to select the specific vector for each study due to a lack of comprehensive information on CRISPR vectors in one place. Herein, we have discussed every technical aspect of various important elements that will be highly useful in vector selection and efficient editing of the desired plant genome. Various factors such as the promoter regulating the expression of Cas and gRNA, gRNA size, Cas variants, multicistronic gRNA, and vector backbone, etc. influence transformation and editing frequency. For example, the use of polycistronic tRNA-gRNA, and Csy4-gRNA has been documented to enhance the editing efficiency. Similarly, the selection of an efficient selectable marker is also a very important factor. Information on the availability of numerous variants of Cas endonucleases, such as Cas9, Cas12a, Cas12b, Casɸ, and CasMINI, etc., with diverse recognition specificities further broadens the scope of editing. The development of chimeric proteins such as Cas fused to cytosine or adenosine deaminase domain and modified reverse transcriptase using protein engineering enabled base and prime editing, respectively. In addition, the newly discovered Casɸ and CasMINI would increase the scope of genetic engineering in plants by being smaller Cas variants. All advancements would contribute to the development of various tools required for gene editing, targeted gene insertion, transcriptional activation/suppression, multiplexing, prime editing, base editing, and gene tagging. This review will serve as an encyclopedia for plant-specific CRISPR vectors and will be useful for researchers.
Collapse
Affiliation(s)
- Anshu Alok
- Department of Biotechnology, Panjab University, Chandigarh 160014, India; (A.A.); (H.C.)
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Hanny Chauhan
- Department of Biotechnology, Panjab University, Chandigarh 160014, India; (A.A.); (H.C.)
| | | | - Ashutosh Pandey
- National Institute of Plant Genome Research, New Delhi 110067, India;
| | - Jitendra Kumar
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh 160014, India; (A.A.); (H.C.)
| |
Collapse
|
15
|
Pan C, Wu X, Markel K, Malzahn AA, Kundagrami N, Sretenovic S, Zhang Y, Cheng Y, Shih PM, Qi Y. CRISPR-Act3.0 for highly efficient multiplexed gene activation in plants. NATURE PLANTS 2021; 7:942-953. [PMID: 34168320 DOI: 10.1038/s41477-021-00953-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 05/27/2021] [Indexed: 05/22/2023]
Abstract
RNA-guided CRISPR activation (CRISPRa) systems have been developed in plants. However, the simultaneous activation of multiple genes remains challenging. Here, we develop a highly robust CRISPRa system working in rice, Arabidopsis and tomato, CRISPR-Act3.0, through systematically exploring different effector recruitment strategies and various transcription activators based on deactivated Streptococcus pyogenes Cas9 (dSpCas9). The CRISPR-Act3.0 system results in fourfold to sixfold higher activation than the state-of-the-art CRISPRa systems. We further develop a tRNA-gR2.0 (single guide RNA 2.0) expression system enabling CRISPR-Act3.0-based robust activation of up to seven genes for metabolic engineering in rice. In addition, CRISPR-Act3.0 allows the simultaneous modification of multiple traits in Arabidopsis, which are stably transmitted to the T3 generations. On the basis of CRISPR-Act3.0, we elucidate guide RNA targeting rules for effective transcriptional activation. To target T-rich protospacer adjacent motifs (PAMs), we transfer this activation strategy to CRISPR-dCas12b and further improve the dAaCas12b-based CRISPRa system. Moreover, we develop a potent near-PAM-less CRISPR-Act3.0 system on the basis of the SpRY dCas9 variant, which outperforms the dCas9-NG system in both activation potency and targeting scope. Altogether, our study has substantially improved the CRISPRa technology in plants and provided plant researchers a powerful toolbox for efficient gene activation in foundational and translational research.
Collapse
Affiliation(s)
- Changtian Pan
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Xincheng Wu
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Kasey Markel
- Department of Plant Biology, University of California, Davis, CA, USA
| | - Aimee A Malzahn
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Neil Kundagrami
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Simon Sretenovic
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Yingxiao Zhang
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Yanhao Cheng
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Patrick M Shih
- Department of Plant Biology, University of California, Davis, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA.
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA.
| |
Collapse
|
16
|
Shin SW, Kim D, Lee JS. Controlling Ratios of Plasmid-Based Double Cut Donor and CRISPR/Cas9 Components to Enhance Targeted Integration of Transgenes in Chinese Hamster Ovary Cells. Int J Mol Sci 2021; 22:ijms22052407. [PMID: 33673701 PMCID: PMC7957797 DOI: 10.3390/ijms22052407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
Chinese hamster ovary (CHO) cells are the most valuable expression host for the commercial production of biotherapeutics. Recent trends in recombinant CHO cell-line development have focused on the site-specific integration of transgenes encoding recombinant proteins over random integration. However, the low efficiency of homology-directed repair upon transfection of Cas9, single-guide RNA (sgRNA), and the donor template has limited its feasibility. Previously, we demonstrated that a double-cut donor (DCD) system enables highly efficient CRISPR/Cas9-mediated targeted integration (TI) in CHO cells. Here, we describe several CRISPR/Cas9 vector systems based on DCD templates using a promoter trap-based TI monitoring cell line. Among them, a multi-component (MC) system consisting of an sgRNA/DCD vector and Cas9 expression vector showed an approximate 1.5-fold increase in knock-in (KI) efficiency compared to the previous DCD system, when a systematically optimized relative ratio of sgRNA/DCD and Cas9 vector was applied. Our optimization efforts revealed that concurrently increasing sgRNA and DCD components relative to Cas9 correlated positively with KI efficiency at a single KI site. Furthermore, we explored component bottlenecks, such as effects of sgRNA components and applicability of the MC system on simultaneous double KI. Taken together, we improved the DCD vector design by tailoring plasmid constructs and relative component ratios, and this system can be widely used in the TI strategy of transgenes, particularly in CHO cell line development and engineering.
Collapse
|
17
|
Chon C, Chon G, Matsui Y, Zeng H, Lai ZC, Liu A. Efficient multiplexed genome engineering with a polycistronic tRNA and CRISPR guide-RNA reveals an important role of detonator in reproduction of Drosophila melanogaster. PLoS One 2021; 16:e0245454. [PMID: 33444382 PMCID: PMC7808601 DOI: 10.1371/journal.pone.0245454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/03/2021] [Indexed: 11/18/2022] Open
Abstract
Genome association studies in human and genetic studies in mouse implicated members of the transmembrane protein 132 (TMEM132) family in multiple conditions including panic disorder, hearing loss, limb and kidney malformation. However, the presence of five TMEM132 paralogs in mammalian genomes makes it extremely challenging to reveal the full requirement for these proteins in vivo. In contrast, there is only one TMEM132 homolog, detonator (dtn), in the genome of fruit fly Drosophila melanogaster, enabling straightforward research into its in vivo function. In the current study, we generate multiple loss-of-function dtn mutant fly strains through a polycistronic tRNA-gRNA approach, and show that most embryos lacking both maternal and paternal dtn fail to hatch into larvae, indicating an essential role of dtn in Drosophila reproduction.
Collapse
Affiliation(s)
- Cristin Chon
- Department of Biology, Eberly College of Science, Centers for Cellular Dynamics and Cellular and Molecular Investigation of Neurological Diseases, Huck Institutes of Life Sciences, The Pennsylvania State University, State College, PA, United States of America
| | - Grace Chon
- Department of Biology, Eberly College of Science, Centers for Cellular Dynamics and Cellular and Molecular Investigation of Neurological Diseases, Huck Institutes of Life Sciences, The Pennsylvania State University, State College, PA, United States of America
| | - Yurika Matsui
- Department of Biology, Eberly College of Science, Centers for Cellular Dynamics and Cellular and Molecular Investigation of Neurological Diseases, Huck Institutes of Life Sciences, The Pennsylvania State University, State College, PA, United States of America
| | - Huiqing Zeng
- Department of Biology, Eberly College of Science, Centers for Cellular Dynamics and Cellular and Molecular Investigation of Neurological Diseases, Huck Institutes of Life Sciences, The Pennsylvania State University, State College, PA, United States of America
| | - Zhi-Chun Lai
- Department of Biology, Eberly College of Science, Centers for Cellular Dynamics and Cellular and Molecular Investigation of Neurological Diseases, Huck Institutes of Life Sciences, The Pennsylvania State University, State College, PA, United States of America
| | - Aimin Liu
- Department of Biology, Eberly College of Science, Centers for Cellular Dynamics and Cellular and Molecular Investigation of Neurological Diseases, Huck Institutes of Life Sciences, The Pennsylvania State University, State College, PA, United States of America
| |
Collapse
|
18
|
Knapp DJHF, Fulga TA. Harnessing tRNA for Processing Ability and Promoter Activity. Methods Mol Biol 2021; 2162:89-114. [PMID: 32926380 DOI: 10.1007/978-1-0716-0687-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Transfer RNA (tRNA) and their associated production and processing machinery can be coopted as a versatile tool for the production of guide RNAs (gRNAs) for Cas9-based genome engineering. Using different tRNA variants enables the production of gRNAs at a variety of steady state levels. Furthermore, engineered tRNAs can be used to process gRNAs from Pol-II transcripts, thus enabling spatial/temporal control of gRNA expression. Here we describe the design, cloning, and testing of tRNA scaffolds for both Pol-III-driven expression of different levels of gRNAs, and for processing gRNAs from Pol-II transcripts.
Collapse
Affiliation(s)
- David J H F Knapp
- Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| | - Tudor A Fulga
- Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
Kumar P, Malik YS, Ganesh B, Rahangdale S, Saurabh S, Natesan S, Srivastava A, Sharun K, Yatoo MI, Tiwari R, Singh RK, Dhama K. CRISPR-Cas System: An Approach With Potentials for COVID-19 Diagnosis and Therapeutics. Front Cell Infect Microbiol 2020; 10:576875. [PMID: 33251158 PMCID: PMC7673385 DOI: 10.3389/fcimb.2020.576875] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
Abstract
COVID-19, the human coronavirus disease caused by SARS-CoV-2, was reported for the first time in Wuhan, China in late 2019. COVID-19 has no preventive vaccine or proven standard pharmacological treatment, and consequently, the outbreak swiftly became a pandemic affecting more than 215 countries around the world. For the diagnosis of COVID-19, the only reliable diagnostics is a qPCR assay. Among other diagnostic tools, the CRISPR-Cas system is being investigated for rapid and specific diagnosis of COVID-19. The CRISPR-Cas-based methods diagnose the SARS-CoV-2 infections within an hour. Apart from its diagnostic ability, CRISPR-Cas system is also being assessed for antiviral therapy development; however, till date, no CRISPR-based therapy has been approved for human use. The Prophylactic Antiviral CRISPR in huMAN cells (PAC-MAN), which is Cas 13 based strategy, has been developed against coronavirus. Although this strategy has the potential to be developed as a therapeutic modality, it may face significant challenges for approval in human clinical trials. This review is focused on describing potential use and challenges of CRISPR-Cas based approaches for the development of rapid and accurate diagnostic technique and/or a possible therapeutic alternative for combating COVID-19. The assessment of potential risks associated with use of CRISPR will be important for future clinical advancements.
Collapse
Affiliation(s)
- Prashant Kumar
- Amity Institute of Virology and Immunology, Amity University, Noida, India
| | - Yashpal Singh Malik
- Division of Biological Standardization, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Bareilly, India
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Science University, Ludhiana, India
| | - Balasubramanian Ganesh
- Laboratory Division, Indian Council of Medical Research—National Institute of Epidemiology, Ministry of Health & Family Welfare, Chennai, India
| | - Somnath Rahangdale
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, India
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Sharad Saurabh
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
| | | | - Ashish Srivastava
- Amity Institute of Virology and Immunology, Amity University, Noida, India
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Mohd. Iqbal Yatoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Raj Kumar Singh
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
20
|
Matsumoto D, Tamamura H, Nomura W. A cell cycle-dependent CRISPR-Cas9 activation system based on an anti-CRISPR protein shows improved genome editing accuracy. Commun Biol 2020; 3:601. [PMID: 33097793 PMCID: PMC7584632 DOI: 10.1038/s42003-020-01340-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022] Open
Abstract
The development of genome editing systems based on the Cas9 endonuclease has greatly facilitated gene knockouts and targeted genetic alterations. Precise editing of target genes without off-target effects is crucial to prevent adverse effects in clinical applications. Although several methods have been reported to result in less off-target effects associated with the CRISPR technology, these often exhibit lower editing efficiency. Therefore, efficient, accurate, and innocuous CRISPR technology is still required. Anti-CRISPR proteins are natural inhibitors of CRISPR-Cas systems derived from bacteriophages. Here, the anti-CRISPR protein, AcrIIA4, was fused with the N terminal region of human Cdt1 that is degraded specifically in S and G2, the phases of the cell cycle when homology-directed repair (HDR) is dominant. Co-expression of SpyCas9 and AcrIIA4-Cdt1 not only increases the frequency of HDR but also suppress off-targets effects. Thus, the combination of SpyCas9 and AcrIIA4-Cdt1 is a cell cycle-dependent Cas9 activation system for accurate and efficient genome editing.
Collapse
Affiliation(s)
- Daisuke Matsumoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
- Daisuke Matsumoto, Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Wataru Nomura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan.
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan.
| |
Collapse
|
21
|
Borsenberger V, Croux C, Daboussi F, Neuvéglise C, Bordes F. Developing Methods to Circumvent the Conundrum of Chromosomal Rearrangements Occurring in Multiplex Gene Edition. ACS Synth Biol 2020; 9:2562-2575. [PMID: 32786349 DOI: 10.1021/acssynbio.0c00325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CRISPR/Cas9 is a powerful tool to edit the genome of the yeast Yarrowia lipolytica. Here, we design a simple and robust method to knockout multiple gene families based on the construction of plasmids enabling the simultaneous expression of several sgRNAs. We exemplify the potency of this approach by targeting the well-characterized acyl-CoA oxidase family (POX) and the uncharacterized SPS19 family. We establish a correlation between the high lethality observed upon editing multiple loci and chromosomal translocations resulting from the simultaneous generation of several double-strand breaks (DSBs) and develop multiplex gene editing strategies. Using homologous directed recombination to reduce chromosomal translocations, we demonstrated that simultaneous editing of four genes can be achieved and constructed a strain carrying a sextuple deletion of POX genes. We explore an "excision approach" by simultaneously performing two DSBs in genes and reached 73 to 100% editing efficiency in double disruptions and 41.7% in a triple disruption. This work led to identifying SPS193 as a gene encoding a 2-4 dienoyl-CoA reductase, demonstrating the potential of this method to accelerate knowledge on gene function in expanded gene families.
Collapse
Affiliation(s)
- Vinciane Borsenberger
- Toulouse Biotechnology Institute, Université de Toulouse, INSA, INRAE, CNRS, Toulouse, 31077, France
| | - Christian Croux
- Toulouse Biotechnology Institute, Université de Toulouse, INSA, INRAE, CNRS, Toulouse, 31077, France
| | - Fayza Daboussi
- Toulouse Biotechnology Institute, Université de Toulouse, INSA, INRAE, CNRS, Toulouse, 31077, France
- Toulouse White Biotechnology, Ramonville-Saint-Agne, 31520, France
| | - Cécile Neuvéglise
- AgroParisTech, Micalis Institute, Université Paris-Saclay, INRAE, Paris, 78350, France
| | - Florence Bordes
- Toulouse Biotechnology Institute, Université de Toulouse, INSA, INRAE, CNRS, Toulouse, 31077, France
| |
Collapse
|
22
|
Wolabu TW, Cong L, Park JJ, Bao Q, Chen M, Sun J, Xu B, Ge Y, Chai M, Liu Z, Wang ZY. Development of a Highly Efficient Multiplex Genome Editing System in Outcrossing Tetraploid Alfalfa ( Medicago sativa). FRONTIERS IN PLANT SCIENCE 2020; 11:1063. [PMID: 32765553 PMCID: PMC7380066 DOI: 10.3389/fpls.2020.01063] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/26/2020] [Indexed: 05/03/2023]
Abstract
Alfalfa (Medicago sativa) is an outcrossing tetraploid legume species widely cultivated in the world. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) system has been successfully used for genome editing in many plant species. However, the use of CRISPR/Cas9 for gene knockout in alfalfa is still very challenging. Our initial single gRNA-CRISPR/Cas9 system had very low mutagenesis efficiency in alfalfa with no mutant phenotype. In order to develop an optimized genome editing system in alfalfa, we constructed multiplex gRNA-CRISPR/Cas9 vectors by a polycistronic tRNA-gRNA approach targeting the Medicago sativa stay-green (MsSGR) gene. The replacement of CaMV35S promoter by the Arabidopsis ubiquitin promoter (AtUBQ10) to drive Cas9 expression in the multiplex gRNA system led to a significant improvement in genome editing efficiency, whereas modification of the gRNA scaffold resulted in lower editing efficiency. The most effective multiplex system exhibited 75% genotypic mutagenesis efficiency, which is 30-fold more efficient than the single gRNA vector. Importantly, phenotypic change was easily observed in the mutants, and the phenotypic mutation efficiency reached 68%. This highly efficient multiplex gRNA-CRISPR/Cas9 genome editing system allowed the generation of homozygous mutants with a complete knockout of the four allelic copies in the T0 generation. This optimized system offers an effective way of testing gene functions and overcomes a major barrier in the utilization of genome editing for alfalfa improvement.
Collapse
Affiliation(s)
| | - Lili Cong
- Noble Research Institute, Ardmore, OK, United States
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Jong-Jin Park
- Noble Research Institute, Ardmore, OK, United States
| | - Qinyan Bao
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Miao Chen
- Noble Research Institute, Ardmore, OK, United States
| | - Juan Sun
- Noble Research Institute, Ardmore, OK, United States
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Bin Xu
- Noble Research Institute, Ardmore, OK, United States
| | - Yaxin Ge
- Noble Research Institute, Ardmore, OK, United States
| | - Maofeng Chai
- Noble Research Institute, Ardmore, OK, United States
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Zhipeng Liu
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zeng-Yu Wang
- Noble Research Institute, Ardmore, OK, United States
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
23
|
Efficient expression of multiple guide RNAs for CRISPR/Cas genome editing. ABIOTECH 2020; 1:123-134. [PMID: 36304720 PMCID: PMC9590505 DOI: 10.1007/s42994-019-00014-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/21/2019] [Indexed: 01/16/2023]
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein system (CRISPR/Cas) has recently become the most powerful tool available for genome engineering in various organisms. With efficient and proper expression of multiple guide RNAs (gRNAs), the CRISPR/Cas system is particularly suitable for multiplex genome editing. During the past several years, different CRISPR/Cas expression strategies, such as two-component transcriptional unit, single transcriptional unit, and bidirectional promoter systems, have been developed to efficiently express gRNAs as well as Cas nucleases. Significant progress has been made to optimize gRNA production using different types of promoters and RNA processing strategies such as ribozymes, endogenous RNases, and exogenous endoribonuclease (Csy4). Besides being constitutively and ubiquitously expressed, inducible and spatiotemporal regulations of gRNA expression have been demonstrated using inducible, tissue-specific, and/or synthetic promoters for specific research purposes. Most recently, the emergence of CRISPR/Cas ribonucleoprotein delivery methods, such as engineered nanoparticles, further revolutionized transgene-free and multiplex genome editing. In this review, we discuss current strategies and future perspectives for efficient expression and engineering of gRNAs with a goal to facilitate CRISPR/Cas-based multiplex genome editing.
Collapse
|
24
|
Kulcsár PI, Tálas A, Tóth E, Nyeste A, Ligeti Z, Welker Z, Welker E. Blackjack mutations improve the on-target activities of increased fidelity variants of SpCas9 with 5'G-extended sgRNAs. Nat Commun 2020; 11:1223. [PMID: 32144253 PMCID: PMC7060260 DOI: 10.1038/s41467-020-15021-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 02/06/2020] [Indexed: 12/17/2022] Open
Abstract
Increased fidelity mutants of the SpCas9 nuclease constitute the most promising approach to mitigating its off-target effects. However, these variants are effective only in a restricted target space, and many of them are reported to work less efficiently when applied in clinically relevant, pre-assembled, ribonucleoprotein forms. The low tolerance to 5'-extended, 21G-sgRNAs contributes, to a great extent, to their decreased performance. Here, we report the generation of Blackjack SpCas9 variant that shows increased fidelity yet remain effective with 21G-sgRNAs. Introducing Blackjack mutations into previously reported increased fidelity variants make them effective with 21G-sgRNAs and increases their fidelity. Two "Blackjack" nucleases, eSpCas9-plus and SpCas9-HF1-plus are superior variants of eSpCas9 and SpCas9-HF1, respectively, possessing matching on-target activity and fidelity but retaining activity with 21G-sgRNAs. They facilitate the use of existing pooled sgRNA libraries with higher specificity and show similar activities whether delivered as plasmids or as pre-assembled ribonucleoproteins.
Collapse
Affiliation(s)
- Péter István Kulcsár
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, H-1117, Hungary.
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary.
- Doctoral School of Multidisciplinary Medical Science, University of Szeged, H-6720, Szeged, Hungary.
| | - András Tálas
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, H-1117, Hungary
- School of Ph.D. Studies, Semmelweis University, Budapest, H-1085, Hungary
| | - Eszter Tóth
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, H-1117, Hungary
| | - Antal Nyeste
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, H-1117, Hungary
| | - Zoltán Ligeti
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, H-1117, Hungary
- Doctoral School of Multidisciplinary Medical Science, University of Szeged, H-6720, Szeged, Hungary
- Gene Design Ltd, Szeged, H-6726, Hungary
| | | | - Ervin Welker
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, H-1117, Hungary.
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary.
| |
Collapse
|
25
|
Kumar P, Malik YS, Ganesh B, Rahangdale S, Saurabh S, Natesan S, Srivastava A, Sharun K, Yatoo MI, Tiwari R, Singh RK, Dhama K. CRISPR-Cas System: An Approach With Potentials for COVID-19 Diagnosis and Therapeutics. Front Cell Infect Microbiol 2020. [PMID: 33251158 DOI: 10.3389/fcimb] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
COVID-19, the human coronavirus disease caused by SARS-CoV-2, was reported for the first time in Wuhan, China in late 2019. COVID-19 has no preventive vaccine or proven standard pharmacological treatment, and consequently, the outbreak swiftly became a pandemic affecting more than 215 countries around the world. For the diagnosis of COVID-19, the only reliable diagnostics is a qPCR assay. Among other diagnostic tools, the CRISPR-Cas system is being investigated for rapid and specific diagnosis of COVID-19. The CRISPR-Cas-based methods diagnose the SARS-CoV-2 infections within an hour. Apart from its diagnostic ability, CRISPR-Cas system is also being assessed for antiviral therapy development; however, till date, no CRISPR-based therapy has been approved for human use. The Prophylactic Antiviral CRISPR in huMAN cells (PAC-MAN), which is Cas 13 based strategy, has been developed against coronavirus. Although this strategy has the potential to be developed as a therapeutic modality, it may face significant challenges for approval in human clinical trials. This review is focused on describing potential use and challenges of CRISPR-Cas based approaches for the development of rapid and accurate diagnostic technique and/or a possible therapeutic alternative for combating COVID-19. The assessment of potential risks associated with use of CRISPR will be important for future clinical advancements.
Collapse
Affiliation(s)
- Prashant Kumar
- Amity Institute of Virology and Immunology, Amity University, Noida, India
| | - Yashpal Singh Malik
- Division of Biological Standardization, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Bareilly, India
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Science University, Ludhiana, India
| | - Balasubramanian Ganesh
- Laboratory Division, Indian Council of Medical Research-National Institute of Epidemiology, Ministry of Health & Family Welfare, Chennai, India
| | - Somnath Rahangdale
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, India
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Sharad Saurabh
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
| | | | - Ashish Srivastava
- Amity Institute of Virology and Immunology, Amity University, Noida, India
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Mohd Iqbal Yatoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Raj Kumar Singh
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
26
|
Zhang H, Cao Y, Zhang H, Xu Y, Zhou C, Liu W, Zhu R, Shang C, Li J, Shen Z, Guo S, Hu Z, Fu C, Sun D. Efficient Generation of CRISPR/Cas9-Mediated Homozygous/Biallelic Medicago truncatula Mutants Using a Hairy Root System. FRONTIERS IN PLANT SCIENCE 2020; 11:294. [PMID: 32265954 PMCID: PMC7105802 DOI: 10.3389/fpls.2020.00294] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 02/27/2020] [Indexed: 05/05/2023]
Abstract
In the process of acquiring mutants mediated by CRISPR/Cas9, plantlets are often regenerated from both mutated and non-mutated cells in a random manner, which increase the odds of chimeric mutated plant. In general, it's necessary to infect more explants or grow to next generation for the need of generating more biallelic or homozygous mutants. In present study, an efficient way of obtaining biallelic or homozygous mutated lines via fast-growing hairy root system without increasing numbers of infected explants or prolonging sexual propagation generation is reported. The fast growing lateral branches of hair roots are originated deep within the parental root from a small number of founder cells at the periphery, and therefore were employed as a library that classify different editing types in different lateral branches in which the homozygous or biallelic lines were screened. Here, MtPDS was employed in a proof-of-concept experiment to evaluate the efficiency of genome editing with our hairy root system. Homozygous/biallelic mutations were found only 1 of the 20 lines in the 1st generation hairy roots, and 8 lines randomly selected were cultured to obtain their branch roots, homozygous/biallelic mutations were found in 6 of the 8 lines in their branch roots. We also tested the method with MtCOMT gene and got the same result. All of the seedlings regenerated from the homozygous/biallelic hairy root mutation lines of MtPDS displayed albino phenotypes. The entire process from vector design to the recovery of plantlets with homozygous/biallelic mutations took approximately 4.5-6.5 months. The whole process could bring inspiration for efficiently generating homozygous/biallelic mutants through CRISPR/Cas9 system from the hairy root or root system of a chimeric mutated transformants, especially for the rare and endangered plants whose explants sources are very limited or the plants that lack of tissue culture and rapid propagation system.
Collapse
Affiliation(s)
- Hailing Zhang
- Grass and Science Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Shandong Technology Innovation Center of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Yingping Cao
- Shandong Technology Innovation Center of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Huan Zhang
- Qingdao Tianyun Ecological Technology Co., Ltd., Qingdao, China
| | - Yue Xu
- Shandong Technology Innovation Center of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Wenwen Liu
- Shandong Technology Innovation Center of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Ruifen Zhu
- Grass and Science Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Chen Shang
- Grass and Science Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Jikai Li
- Grass and Science Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Zhongbao Shen
- Grass and Science Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Siyi Guo
- Collaborative Innovation Center of Crop Stress Biology, Henan Province and Institute of Plant Stress Biology, Henan University, Kaifeng, China
| | - Zhubing Hu
- Collaborative Innovation Center of Crop Stress Biology, Henan Province and Institute of Plant Stress Biology, Henan University, Kaifeng, China
| | - Chunxiang Fu
- Shandong Technology Innovation Center of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- *Correspondence: Chunxiang Fu,
| | - Dequan Sun
- Grass and Science Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Dequan Sun,
| |
Collapse
|
27
|
Oh Y, Lee B, Kim H, Kim SG. A multiplex guide RNA expression system and its efficacy for plant genome engineering. PLANT METHODS 2020; 16:37. [PMID: 32190101 PMCID: PMC7069183 DOI: 10.1186/s13007-020-00580-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/04/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND The Streptococcus pyogenes CRISPR system is composed of a Cas9 endonuclease (SpCas9) and a single-stranded guide RNA (gRNA) harboring a target-specific sequence. Theoretically, SpCas9 proteins could cleave as many targeted loci as gRNAs bind in a genome. RESULTS We introduce a PCR-free multiple gRNA cloning system for editing plant genomes. This method consists of two steps: (1) cloning the annealed products of two single-stranded oligonucleotide fragments harboring a complimentary target-binding sequence on each strand between tRNA and gRNA scaffold sequences in a pGRNA vector; and (2) assembling tRNA-gRNA units from several pGRNA vectors with a plant binary vector containing a SpCas9 expression cassette using the Golden Gate assembly method. We validated the editing efficiency and patterns of the multiplex gRNA expression system in wild tobacco (Nicotiana attenuata) protoplasts and in transformed plants by performing targeted deep sequencing. Two proximal cleavages by SpCas9-gRNA largely increased the editing efficiency and induced large deletions between two cleavage sites. CONCLUSIONS This multiplex gRNA expression system enables high-throughput production of a single binary vector and increases the efficiency of plant genome editing.
Collapse
Affiliation(s)
- Youngbin Oh
- Department of Biological Sciences, KAIST, Daejeon, 34141 Republic of Korea
| | - Bora Lee
- Department of Biological Sciences, KAIST, Daejeon, 34141 Republic of Korea
| | - Hyeonjin Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141 Republic of Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141 Republic of Korea
| |
Collapse
|
28
|
A one-step tRNA-CRISPR system for genome-wide genetic interaction mapping in mammalian cells. Sci Rep 2019; 9:14499. [PMID: 31601883 PMCID: PMC6787096 DOI: 10.1038/s41598-019-51090-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022] Open
Abstract
Mapping genetic interactions in mammalian cells is limited due to technical obstacles. Here we describe a method called TCGI (tRNA-CRISPR for genetic interactions) to generate a high-efficient, barcode-free and scalable pairwise CRISPR libraries in mammalian cells for identifying genetic interactions. We have generated a genome- wide library to identify genes genetically interacting with TAZ in cell viability regulation. Validation of candidate synergistic genes reveals the screening accuracy of 85% and TAZ-MCL1 is characterized as combinational drug targets for non-small cell lung cancer treatments. TCGI has dramatically improved the current methods for mapping genetic interactions and screening drug targets for combinational therapies.
Collapse
|
29
|
Song R, Zhai Q, Sun L, Huang E, Zhang Y, Zhu Y, Guo Q, Tian Y, Zhao B, Lu H. CRISPR/Cas9 genome editing technology in filamentous fungi: progress and perspective. Appl Microbiol Biotechnol 2019; 103:6919-6932. [PMID: 31332488 PMCID: PMC6690858 DOI: 10.1007/s00253-019-10007-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 12/16/2022]
Abstract
Filamentous fungi play an important role in human health and industrial/agricultural production. With the increasing number of full genomes available for fungal species, the study of filamentous fungi has brought about a wider range of genetic manipulation opportunities. However, the utilization of traditional methods to study fungi is time consuming and laborious. Recent rapid progress and wide application of a versatile genome editing technology, i.e., the CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR-related nuclease 9) system, has revolutionized biological research and has many innovative applications in a wide range of fields showing great promise in research and application of filamentous fungi. In this review, we introduce the CRISPR/Cas9 genome editing technology focusing on its application in research of filamentous fungi and we discuss the general considerations of genome editing using CRISPR/Cas9 system illustrating vector construction, multiple editing strategies, technical consideration of different sizes of homology arms on genome editing efficiency, off-target effects, and different transformation methodologies. In addition, we discuss the challenges encountered using CRISPR/Cas9 technology and give the perspectives of future applications of CRISPR/Cas9 technology for basic research and practical application of filamentous fungi.
Collapse
Affiliation(s)
- Runjie Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qing Zhai
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000, Tibet, China
| | - Lu Sun
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Enxia Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yu Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanli Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qingyun Guo
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University/Key Laboratory of Agricultural Integrated Pest Management, Qinghai Province/State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, Qinghai, China.
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hao Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
30
|
Ahmadzadeh V, Farajnia S, Baghban R, Rahbarnia L, Zarredar H. CRISPR-Cas system: Toward a more efficient technology for genome editing and beyond. J Cell Biochem 2019; 120:16379-16392. [PMID: 31219653 DOI: 10.1002/jcb.29140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/07/2019] [Indexed: 12/26/2022]
Abstract
Genome engineering technology is of great interest for biomedical research that enables scientists to make specific manipulation in the DNA sequence. Early methods for introducing double-stranded DNA breaks relies on protein-based systems. These platforms have enabled fascinating advances, but all are costly and time-consuming to engineer, preventing these from gaining high-throughput applications. The CRISPR-Cas9 system, co-opted from bacteria, has generated considerable excitement in gene targeting. In this review, we describe gene targeting techniques with an emphasis on recent strategies to improve the specificities of CRISPR-Cas systems for nuclease and non-nuclease applications.
Collapse
Affiliation(s)
- Vahideh Ahmadzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayyeh Baghban
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Zarredar
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Kotov JA, Kotov DI, Linehan JL, Bardwell VJ, Gearhart MD, Jenkins MK. BCL6 corepressor contributes to Th17 cell formation by inhibiting Th17 fate suppressors. J Exp Med 2019; 216:1450-1464. [PMID: 31053612 PMCID: PMC6547868 DOI: 10.1084/jem.20182376] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/26/2019] [Accepted: 04/12/2019] [Indexed: 12/15/2022] Open
Abstract
Th17 cells provide a protective immunity against extracellular bacterial and fungal pathogens. Kotov et al. identify and characterize a mechanism by which BCOR promotes Th17 formation after Streptococcus pyogenes infection by repressing genes that inhibit the Th17 lineage. CD4+ T helper 17 (Th17) cells protect vertebrate hosts from extracellular pathogens at mucosal surfaces. Th17 cells form from naive precursors when signals from the T cell antigen receptor (TCR) and certain cytokine receptors induce the expression of the RORγt transcription factor, which activates a set of Th17-specific genes. Using T cell–specific loss-of-function experiments, we find that two components of the Polycomb repressive complex 1.1 (PRC1.1), BCL6 corepressor (BCOR) and KDM2B, which helps target the complex to unmethylated CpG DNA islands, are required for optimal Th17 cell formation in mice after Streptococcus pyogenes infection. Genome-wide expression and BCOR chromatin immunoprecipitation studies revealed that BCOR directly represses Lef1, Runx2, and Dusp4, whose products inhibit Th17 differentiation. Together, the results suggest that the PRC1.1 components BCOR and KDM2B work together to enhance Th17 cell formation by repressing Th17 fate suppressors.
Collapse
Affiliation(s)
- Jessica A Kotov
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
| | - Dmitri I Kotov
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
| | | | - Vivian J Bardwell
- Developmental Biology Center, Masonic Cancer Center, and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN
| | - Micah D Gearhart
- Developmental Biology Center, Masonic Cancer Center, and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN
| | - Marc K Jenkins
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
| |
Collapse
|
32
|
Kotov DI, Mitchell JS, Pengo T, Ruedl C, Way SS, Langlois RA, Fife BT, Jenkins MK. TCR Affinity Biases Th Cell Differentiation by Regulating CD25, Eef1e1, and Gbp2. THE JOURNAL OF IMMUNOLOGY 2019; 202:2535-2545. [PMID: 30858199 DOI: 10.4049/jimmunol.1801609] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/20/2019] [Indexed: 12/13/2022]
Abstract
Naive CD4+ T lymphocytes differentiate into various Th cell subsets following TCR binding to microbial peptide:MHC class II (p:MHCII) complexes on dendritic cells (DCs). The affinity of the TCR interaction with p:MHCII plays a role in Th differentiation by mechanisms that are not completely understood. We found that low-affinity TCRs biased mouse naive T cells to become T follicular helper (Tfh) cells, whereas higher-affinity TCRs promoted the formation of Th1 or Th17 cells. We explored the basis for this phenomenon by focusing on IL-2R signaling, which is known to promote Th1 and suppress Tfh cell differentiation. SIRP⍺+ DCs produce abundant p:MHCII complexes and consume IL-2, whereas XCR1+ DCs weakly produce p:MHCII but do not consume IL-2. We found no evidence, however, of preferential interactions between Th1 cell-prone, high-affinity T cells and XCR1+ DCs or Tfh cell-prone, low-affinity T cells and SIRP⍺+ DCs postinfection with bacteria expressing the peptide of interest. Rather, high-affinity T cells sustained IL-2R expression longer and expressed two novel Th cell differentiation regulators, Eef1e1 and Gbp2, to a higher level than low-affinity T cells. These results suggest that TCR affinity does not influence Th cell differentiation by biasing T cell interactions with IL-2-consuming DCs, but instead, directly regulates genes in naive T cells that control the differentiation process.
Collapse
Affiliation(s)
- Dmitri I Kotov
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Jason S Mitchell
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455.,University Imaging Centers, University of Minnesota, Minneapolis, MN 55455.,Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| | - Thomas Pengo
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN 55455
| | - Christiane Ruedl
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Sing Sing Way
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229; and.,Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Ryan A Langlois
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Brian T Fife
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455.,Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| | - Marc K Jenkins
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455; .,Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
33
|
Escobar-Aguirre S, Arancibia D, Escorza A, Bravo C, Andrés ME, Zamorano P, Martínez V. Development of a Bicistronic Vector for the Expression of a CRISPR/Cas9-mCherry System in Fish Cell Lines. Cells 2019; 8:E75. [PMID: 30669572 PMCID: PMC6357165 DOI: 10.3390/cells8010075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 12/26/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system has been widely used in animals as an efficient genome editing tool. In fish cells, the technique has been difficult to implement due to the lack of proper vectors that use active promoters to drive the expression of both small guide RNA (sgRNA) and the S. pyogenes Cas9 (spCas9) protein within a single expression platform. Until now, fish cells have been modified using co-transfection of the mRNA of both the sgRNA and the spCas9. In the present study, we describe the optimization of a new vector for the expression of a CRISPR/Cas9 system, designed to edit the genome of fish cell lines, that combines a gene reporter (mCherry), sgRNA, and spCas9 in a single vector, facilitating the study of the efficiency of piscine and non-piscine promoters. A cassette containing the zebrafish U6 RNA III polymerase (U6ZF) promoter was used for the expression of the sgRNA. The new plasmid displayed the expression of spCas9, mCherry, and sgRNA in CHSE/F fish cells. The results demonstrate the functionality of the mammalian promoter and the U6ZF promoter in fish cell lines. This is the first approach aimed at developing a unified genome editing system in fish cells using bicistronic vectors, thus creating a powerful biotechnological platform to study gene function.
Collapse
Affiliation(s)
- Sebastian Escobar-Aguirre
- FAVET-INBIOGEN, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Avda. Santa Rosa, 11735 Santiago, Chile.
| | - Duxan Arancibia
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, 7520245 Santiago, Chile.
| | - Amanda Escorza
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, 7520245 Santiago, Chile.
| | - Cristián Bravo
- FAVET-INBIOGEN, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Avda. Santa Rosa, 11735 Santiago, Chile.
| | - María Estela Andrés
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, 7520245 Santiago, Chile.
| | - Pedro Zamorano
- Departamento Biomédico, Facultad de Ciencias de la Salud; Instituto Antofagasta, Universidad de Antofagasta, Avenida Angamos 601, 1240000 Antofagasta, Chile.
| | - Víctor Martínez
- FAVET-INBIOGEN, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Avda. Santa Rosa, 11735 Santiago, Chile.
| |
Collapse
|
34
|
Abstract
The CRISPR-Cas9 system has become a powerful and popular tool for genome editing due to its efficiency and simplicity. Multiplex genome editing is an important feature of the CRISPR-Cas9 system and requires simultaneous expression of multiple guide RNAs (gRNAs). Here we describe a general method to efficiently produce many gRNAs from a single gene transcript based on the endogenous tRNA-processing system. A step-by-step protocol is provided for the design and construction of the polycistronic tRNA-gRNA (PTG) gene. The PTG method has been demonstrated to be highly efficient for multiplex genome editing in various plant, animal, and microbial species.
Collapse
Affiliation(s)
- Kabin Xie
- National Key Laboratory for Crop Genetic Improvement and Plant Gene Research Center (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Yinong Yang
- Department of Plant Pathology and Environmental Microbiology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, Pennsylvania, PA, USA.
| |
Collapse
|
35
|
Lau CH, Suh Y. In vivo epigenome editing and transcriptional modulation using CRISPR technology. Transgenic Res 2018; 27:489-509. [PMID: 30284145 PMCID: PMC6261694 DOI: 10.1007/s11248-018-0096-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/25/2018] [Indexed: 01/11/2023]
Abstract
The rapid advancement of CRISPR technology has enabled targeted epigenome editing and transcriptional modulation in the native chromatin context. However, only a few studies have reported the successful editing of the epigenome in adult animals in contrast to the rapidly growing number of in vivo genome editing over the past few years. In this review, we discuss the challenges facing in vivo epigenome editing and new strategies to overcome the huddles. The biggest challenge has been the difficulty in packaging dCas9 fusion proteins required for manipulation of epigenome into the adeno-associated virus (AAV) delivery vehicle. We review the strategies to address the AAV packaging issue, including small dCas9 orthologues, truncated dCas9 mutants, a split-dCas9 system, and potent truncated effector domains. We discuss the dCas9 conjugation strategies to recruit endogenous chromatin modifiers and remodelers to specific genomic loci, and recently developed methods to recruit multiple copies of the dCas9 fusion protein, or to simultaneous express multiple gRNAs for robust epigenome editing or synergistic transcriptional modulation. The use of Cre-inducible dCas9-expressing mice or a genetic cross between dCas9- and sgRNA-expressing flies has also helped overcome the transgene delivery issue. We provide perspective on how a combination use of these strategies can facilitate in vivo epigenome editing and transcriptional modulation.
Collapse
Affiliation(s)
- Cia-Hin Lau
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR, China
| | - Yousin Suh
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
36
|
A tRNA-based multiplex sgRNA expression system in zebrafish and its application to generation of transgenic albino fish. Sci Rep 2018; 8:13366. [PMID: 30190522 PMCID: PMC6127137 DOI: 10.1038/s41598-018-31476-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/20/2018] [Indexed: 01/20/2023] Open
Abstract
The CRISPR/Cas9 system can be introduced into zebrafish as transgenes. Namely, expression of single-guide RNA (sgRNA) and controlled expression of Cas9 in transgenic zebrafish enables the study of gene functions in specific cell types. This transgenic CRISPR/Cas9 approach would be more useful if multiple sgRNAs could be expressed simultaneously since we could knock-out a gene more efficiently or disrupt multiple genes simultaneously. Here we describe a novel system to express multiple sgRNAs efficiently in zebrafish, that relies on the endogenous tRNA processing machinery. We cloned nine endogenous zebrafish tRNA genes, fused them to sgRNAs, and demonstrated that an active sgRNA can be produced from a precursor transcript containing either of these tRNAs. To show a proof of principle, we constructed transgenic fish expressing Cas9 under the control of the ubiquitin promoter and a single transcript containing three distinct sgRNAs, that targeted the slc45a2 (albino) gene, fused to tRNAs under the control of the U6 promoter. We found that the Tg(ubb:SpCas9,u6c:3xslc45a2-sgRNA) harbored mutations in all of the target sites in the albino gene and showed nearly complete albino phenotypes, which were amenable to imaging experiments. Thus, the tRNA-based multiplex sgRNA expression system should facilitate gene knock-out studies in transgenic zebrafish.
Collapse
|
37
|
Ding D, Chen K, Chen Y, Li H, Xie K. Engineering Introns to Express RNA Guides for Cas9- and Cpf1-Mediated Multiplex Genome Editing. MOLECULAR PLANT 2018; 11:542-552. [PMID: 29462720 DOI: 10.1016/j.molp.2018.02.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/27/2018] [Accepted: 02/13/2018] [Indexed: 05/19/2023]
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR) system has emerged as the revolutionary platform for DNA targeting. This system uses a site-specific RNA guide to direct a CRISPR effector (e.g., Cas9 and Cpf1) to a DNA target. Here, we elaborate a general strategy to simultaneously express multiple guide RNAs (gRNA) and CRISPR RNAs (crRNA) from introns of Cas9 and Cpf1. This method utilizes the endogenous tRNA processing system or crRNA processing activity of Cpf1 to cleave the spliced intron that contains tRNA-gRNA polycistron or crRNA-crRNA array. We demonstrated that the tRNA-gRNA intron is able to fuse with Cas9 as one gene. Such a hybrid gene could be expressed using one polymerase II promoter, and exhibited high efficiency and robustness in simultaneously targeting multiple sites. We also implemented this strategy in Cpf1-mediated genome editing using intronic tRNA-crRNA and crRNA-crRNA arrays. Interestingly, hybrid genes containing Cpf1 and intronic crRNA array exhibited remarkably increased efficiency compared with the conventional Cpf1 vectors. Taken together, this study presents a method to express CRISPR reagents from one hybrid gene to increase genome-editing efficiency and capacity. Owing to its simplicity and versatility, this method could be broadly used to develop sophisticated CRISPR tools in eukaryotes.
Collapse
Affiliation(s)
- Dan Ding
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaiyuan Chen
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuedan Chen
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
38
|
Cao J, Xiao Q, Yan Q. The multiplexed CRISPR targeting platforms. DRUG DISCOVERY TODAY. TECHNOLOGIES 2018; 28:53-61. [PMID: 30205881 DOI: 10.1016/j.ddtec.2018.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/02/2018] [Accepted: 01/12/2018] [Indexed: 12/11/2022]
Abstract
The discovery and engineering of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) in the past several years have revolutionized biomedical research. The CRISPR technology showed great potential to advance detection, prevention, and treatment of human diseases in the near future. Compared to previous developed genome editing approaches, such as zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), the CRISPR-based systems have numerous advantages. One example is that the CRISPR systems can be easily adopted to efficiently target multiple genes simultaneously. Several strategies and toolboxes have been developed to achieve multiplexed targeting using the CRISPR systems. In this short review, we will discuss the principle, approach, and application of these strategies.
Collapse
Affiliation(s)
- Jian Cao
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, United States.
| | - Qian Xiao
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, United States
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, United States.
| |
Collapse
|
39
|
Efficient oligo nucleotide mediated CRISPR-Cas9 gene editing in Aspergilli. Fungal Genet Biol 2018; 115:78-89. [PMID: 29325827 DOI: 10.1016/j.fgb.2018.01.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/05/2018] [Accepted: 01/06/2018] [Indexed: 11/23/2022]
Abstract
CRISPR-Cas9 technologies are revolutionizing fungal gene editing. Here we show that survival of specific Cas9/sgRNA mediated DNA double strand breaks (DSBs) depends on the non-homologous end-joining, NHEJ, DNA repair pathway and we use this observation to develop a tool, TAPE, to assess protospacer efficiency in Aspergillus nidulans. Moreover, we show that in NHEJ deficient strains, highly efficient marker-free gene targeting can be performed. Indeed, we show that even single-stranded oligo nucleotides efficiently work as repair templates of specific Cas9/sgRNA induced DNA DSBs in A. nidulans, A. niger, and in A. oryzae indicating that this type of repair may be wide-spread in filamentous fungi. Importantly, we demonstrate that by using single-stranded oligo nucleotides for CRISPR-Cas9 mediated gene editing it is possible to introduce specific point mutations as well gene deletions at efficiencies approaching 100%. The efficiency of the system invites for multiplexing and we have designed a vector system with the capacity of delivering Cas9 and multiple sgRNAs based on polymerase III promoters and tRNA spacers. We show that it is possible to introduce two point mutations and one gene insertion in one transformation experiment with a very high efficiency. Our system is compatible with future high-throughput gene-editing experiments.
Collapse
|
40
|
Sattar MN, Iqbal Z, Tahir MN, Shahid MS, Khurshid M, Al-Khateeb AA, Al-Khateeb SA. CRISPR/Cas9: A Practical Approach in Date Palm Genome Editing. FRONTIERS IN PLANT SCIENCE 2017; 8:1469. [PMID: 28878801 PMCID: PMC5572371 DOI: 10.3389/fpls.2017.01469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/07/2017] [Indexed: 05/22/2023]
Abstract
The genetic modifications through breeding of crop plants have long been used to improve the yield and quality. However, precise genome editing (GE) could be a very useful supplementary tool for improvement of crop plants by targeted genome modifications. Various GE techniques including ZFNs (zinc finger nucleases), TALENs (transcription activator-like effector nucleases), and most recently clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 (CRISPR-associated protein 9)-based approaches have been successfully employed for various crop plants including fruit trees. CRISPR/Cas9-based approaches hold great potential in GE due to their simplicity, competency, and versatility over other GE techniques. However, to the best of our knowledge no such genetic improvement has ever been developed in date palm-an important fruit crop in Oasis agriculture. The applications of CRISPR/Cas9 can be a challenging task in date palm GE due to its large and complex genome, high rate of heterozygosity and outcrossing, in vitro regeneration and screening of mutants, high frequency of single-nucleotide polymorphism in the genome and ultimately genetic instability. In this review, we addressed the potential application of CRISPR/Cas9-based approaches in date palm GE to improve the sustainable date palm production. The availability of the date palm whole genome sequence has made it feasible to use CRISPR/Cas9 GE approach for genetic improvement in this species. Moreover, the future prospects of GE application in date palm are also addressed in this review.
Collapse
Affiliation(s)
- Muhammad N. Sattar
- Department of Environment and Natural Resources, Faculty of Agriculture and Food Sciences, King Faisal UniversityAl-Ahsa, Saudi Arabia
| | - Zafar Iqbal
- Akhuwat-Faisalabad Institute of Research, Science and TechnologyFaisalabad, Pakistan
| | - Muhammad N. Tahir
- National Institute for Biotechnology and Genetic EngineeringFaisalabad, Pakistan
| | - Muhammad S. Shahid
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos UniversityAl-Khoud, Oman
| | - Muhammad Khurshid
- Institute of Biochemistry and Biotechnology, University of the PunjabLahore, Pakistan
| | - Abdullatif A. Al-Khateeb
- Plant Biotechnology Department, Faculty of Agricultural and Food Sciences, King Faisal UniversityAl-Ahsa, Saudi Arabia
| | - Suliman A. Al-Khateeb
- Department of Environment and Natural Resources, Faculty of Agriculture and Food Sciences, King Faisal UniversityAl-Ahsa, Saudi Arabia
- Ministry of Environment, Water and AgricultureRiyadh, Saudi Arabia
| |
Collapse
|
41
|
Minkenberg B, Wheatley M, Yang Y. CRISPR/Cas9-Enabled Multiplex Genome Editing and Its Application. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 149:111-132. [PMID: 28712493 DOI: 10.1016/bs.pmbts.2017.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The CRISPR/Cas9 system is a prevalent and versatile genome-editing tool of choice for basic and applied biological research. An exchange of a 20-bp spacer sequence in the gRNA can easily reprogram Cas9 to target a different DNA site. By expressing or providing multiple gRNAs, the system also enables multiplex genome editing at high efficiencies. Current approaches for providing multiple gRNAs in vivo include the use of multigene cassettes to express several gRNAs, Csy4-based excision, arrays of crRNAs, ribozyme-flanked gRNAs, tRNA-dependent cleavage of gRNAs, and direct introduction of Cas9 proteins preloaded with different gRNAs. By simultaneously targeting multiple DNA sequences, multiplex genome editing can be used to knockout multiple genes or delete chromosomal fragments. Off-target risk can also be reduced by Cas9-dimers that require the simultaneous expression of two gRNAs. With multiple gRNAs, specific gene expression or methylation status can be efficiently controlled by dCas9 fused to activators, repressors, methyltransferase, demethylase, or other functional domains. As a result, multiplex genome editing is expected to accelerate functional discovery of plant genes as well as genetic improvement of agricultural crops.
Collapse
Affiliation(s)
| | - Matthew Wheatley
- The Pennsylvania State University, University Park, PA, United States
| | - Yinong Yang
- The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|