1
|
Chen C, Xie Y, Qian S. Multifaceted role of GCN2 in tumor adaptation and therapeutic targeting. Transl Oncol 2024; 49:102096. [PMID: 39178574 PMCID: PMC11388189 DOI: 10.1016/j.tranon.2024.102096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/26/2024] [Accepted: 08/11/2024] [Indexed: 08/26/2024] Open
Abstract
Tumor cells voraciously consume nutrients from their environment to facilitate rapid proliferation, necessitating effective strategies to manage nutrient scarcity during tumor growth and progression. A pivotal regulatory mechanism in this context is the Integrated Stress Response (ISR), which ensures cellular homeostasis under conditions such as endoplasmic reticulum stress, the unfolded protein response, and nutrient deprivation. Within the ISR framework, the kinase GCN2 is critical, orchestrating a myriad of cellular processes including the inhibition of protein synthesis, the enhancement of amino acid transport, autophagy initiation, and angiogenesis. These processes collectively enable tumor survival and adaptation under nutrient-limited conditions. Furthermore, GCN2-mediated pathways may induce apoptosis, a property exploited by specific therapeutic agents. Leveraging extensive datasets from TCGA, GEO, and GTEx projects, we conducted a pan-cancer analysis to investigate the prognostic significance of GCN2 expression across diverse cancer types. Our analysis indicates that GCN2 expression significantly varies and correlates with both adverse and favorable prognoses depending on the type of cancer, illustrating its complex role in tumorigenesis. Importantly, GCN2 also modulates the tumor immune microenvironment, influencing immune checkpoint expression and the functionality of immune cells, thereby affecting immunotherapy outcomes. This study highlights the potential of targeting GCN2 with specific inhibitors, as evidenced by their efficacy in preclinical models to augment treatment responses and combat resistance in oncology. These findings advocate for a deeper exploration of GCN2's multifaceted roles, which could pave the way for novel targeted therapies in cancer treatment, aiming to improve clinical outcomes.
Collapse
Affiliation(s)
- Can Chen
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Westlake University, School of Medicine, Hangzhou, China; Zhejiang University, School of Medicine, Hangzhou, China
| | - Yaping Xie
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Westlake University, School of Medicine, Hangzhou, China; Zhejiang University, School of Medicine, Hangzhou, China.
| | - Shenxian Qian
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Westlake University, School of Medicine, Hangzhou, China; Zhejiang University, School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Mishra S, Malhotra N, Laleu B, Chakraborti S, Yogavel M, Sharma A. ATP mimetics targeting prolyl-tRNA synthetases as a new avenue for antimalarial drug development. iScience 2024; 27:110049. [PMID: 39104570 PMCID: PMC11298890 DOI: 10.1016/j.isci.2024.110049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/24/2023] [Accepted: 05/17/2024] [Indexed: 08/07/2024] Open
Abstract
The prolyl-tRNA synthetase (PRS) is an essential enzyme for protein translation and a validated target against malaria parasite. We describe five ATP mimetics (L95, L96, L97, L35, and L36) against PRS, exhibiting enhanced thermal stabilities in co-operativity with L-proline. L35 displays the highest thermal stability akin to halofuginone, an established inhibitor of Plasmodium falciparum PRS. Four compounds exhibit nanomolar inhibitory potency against PRS. L35 exhibits the highest potency of ∼1.6 nM against asexual-blood-stage (ABS) and ∼100-fold (effective concentration [EC50]) selectivity for the parasite. The macromolecular structures of PfPRS with L95 and L97 in complex with L-pro reveal their binding modes and catalytic site malleability. Arg401 of PfPRS oscillates between two rotameric configurations when in complex with L95, whereas it is locked in one of the configurations due to the larger size of L97. Harnessing such specific and selective chemical features holds significant promise for designing potential inhibitors and expediting drug development efforts.
Collapse
Affiliation(s)
- Siddhartha Mishra
- Molecular Medicine – Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
- ICMR-National Institute of Malaria Research (NIMR), Dwarka, New Delhi 110077, India
- Academy of Scientific and Innovative Research (AcSIR), UP, India
| | - Nipun Malhotra
- Molecular Medicine – Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Benoît Laleu
- Medicines for Malaria Venture (MMV), International Center Cointrin (ICC), Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Soumyananda Chakraborti
- ICMR-National Institute of Malaria Research (NIMR), Dwarka, New Delhi 110077, India
- Academy of Scientific and Innovative Research (AcSIR), UP, India
| | - Manickam Yogavel
- Molecular Medicine – Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Amit Sharma
- Molecular Medicine – Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
3
|
Venugopal S, Kaur B, Verma A, Wadhwa P, Magan M, Hudda S, Kakoty V. Recent advances of benzimidazole as anticancer agents. Chem Biol Drug Des 2023; 102:357-376. [PMID: 37009821 DOI: 10.1111/cbdd.14236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/20/2023] [Accepted: 03/14/2023] [Indexed: 04/04/2023]
Abstract
Cancer is the second leading cause of death globally, with 9.6 million deaths yearly. As a life-threatening disease, it necessitates the emergence of new therapies. Resistance to current chemotherapies drives scientists to develop new medications that will eventually be accessible. Because heterocycles are so common in biological substances, compounds play a big part in the variety of medications that have been developed. The "Master Key" is the benzimidazole nucleus, which consists of a six-membered benzene ring fused with a five-membered imidazole/imidazoline ring, which is an azapyrrole. One of the five-membered aromatic nitrogen heterocycles identified in American therapies that have been approved by the Food and Drug Administration (FDA). Our results show that benzimidazole's broad therapeutic spectrum is due to its structural isosteres with purine, which improves hydrogen bonding, electrostatic interactions with topoisomerase complexes, intercalation with DNA, and other functions. It also enhances protein and nucleic acid inhibition, tubulin microtubule degeneration, apoptosis, DNA fragmentation, and other functions. Additionally, readers for designing the more recent benzimidazole analogues as prospective cancer treatments.
Collapse
Affiliation(s)
- Sneha Venugopal
- Department of Pharmaceutical Sciences, School of Pharmacy, Lovely Professional University, Punjab, India
| | - Balwinder Kaur
- Department of Pharmaceutical Sciences, School of Pharmacy, Lovely Professional University, Punjab, India
| | - Anil Verma
- Department of Pharmaceutical Sciences, School of Pharmacy, Lovely Professional University, Punjab, India
| | - Pankaj Wadhwa
- Department of Pharmaceutical Sciences, School of Pharmacy, Lovely Professional University, Punjab, India
| | - Muskan Magan
- Department of Pharmaceutical Sciences, School of Pharmacy, Lovely Professional University, Punjab, India
| | - Sharwan Hudda
- Department of Pharmaceutical Sciences, School of Pharmacy, Lovely Professional University, Punjab, India
| | - Violina Kakoty
- Department of Pharmaceutical Sciences, School of Pharmacy, Lovely Professional University, Punjab, India
| |
Collapse
|
4
|
Yogavel M, Bougdour A, Mishra S, Malhotra N, Chhibber-Goel J, Bellini V, Harlos K, Laleu B, Hakimi MA, Sharma A. Targeting prolyl-tRNA synthetase via a series of ATP-mimetics to accelerate drug discovery against toxoplasmosis. PLoS Pathog 2023; 19:e1011124. [PMID: 36854028 PMCID: PMC9974123 DOI: 10.1371/journal.ppat.1011124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/16/2023] [Indexed: 03/02/2023] Open
Abstract
The prolyl-tRNA synthetase (PRS) is a validated drug target for febrifugine and its synthetic analog halofuginone (HFG) against multiple apicomplexan parasites including Plasmodium falciparum and Toxoplasma gondii. Here, a novel ATP-mimetic centered on 1-(pyridin-4-yl) pyrrolidin-2-one (PPL) scaffold has been validated to bind to Toxoplasma gondii PRS and kill toxoplasma parasites. PPL series exhibited potent inhibition at the cellular (T. gondii parasites) and enzymatic (TgPRS) levels compared to the human counterparts. Cell-based chemical mutagenesis was employed to determine the mechanism of action via a forward genetic screen. Tg-resistant parasites were analyzed with wild-type strain by RNA-seq to identify mutations in the coding sequence conferring drug resistance by computational analysis of variants. DNA sequencing established two mutations, T477A and T592S, proximal to terminals of the PPL scaffold and not directly in the ATP, tRNA, or L-pro sites, as supported by the structural data from high-resolution crystal structures of drug-bound enzyme complexes. These data provide an avenue for structure-based activity enhancement of this chemical series as anti-infectives.
Collapse
Affiliation(s)
- Manickam Yogavel
- Molecular Medicine–Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
| | - Alexandre Bougdour
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Siddhartha Mishra
- Molecular Medicine–Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Nipun Malhotra
- Molecular Medicine–Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
| | - Jyoti Chhibber-Goel
- Molecular Medicine–Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
| | - Valeria Bellini
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Karl Harlos
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Benoît Laleu
- Medicines for Malaria Venture (MMV), International Center Cointrin (ICC), Geneva, Switzerland
| | - Mohamed-Ali Hakimi
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Amit Sharma
- Molecular Medicine–Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| |
Collapse
|
5
|
Tye MA, Payne NC, Johansson C, Singh K, Santos SA, Fagbami L, Pant A, Sylvester K, Luth MR, Marques S, Whitman M, Mota MM, Winzeler EA, Lukens AK, Derbyshire ER, Oppermann U, Wirth DF, Mazitschek R. Elucidating the path to Plasmodium prolyl-tRNA synthetase inhibitors that overcome halofuginone resistance. Nat Commun 2022; 13:4976. [PMID: 36008486 PMCID: PMC9403976 DOI: 10.1038/s41467-022-32630-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 08/10/2022] [Indexed: 02/07/2023] Open
Abstract
The development of next-generation antimalarials that are efficacious against the human liver and asexual blood stages is recognized as one of the world's most pressing public health challenges. In recent years, aminoacyl-tRNA synthetases, including prolyl-tRNA synthetase, have emerged as attractive targets for malaria chemotherapy. We describe the development of a single-step biochemical assay for Plasmodium and human prolyl-tRNA synthetases that overcomes critical limitations of existing technologies and enables quantitative inhibitor profiling with high sensitivity and flexibility. Supported by this assay platform and co-crystal structures of representative inhibitor-target complexes, we develop a set of high-affinity prolyl-tRNA synthetase inhibitors, including previously elusive aminoacyl-tRNA synthetase triple-site ligands that simultaneously engage all three substrate-binding pockets. Several compounds exhibit potent dual-stage activity against Plasmodium parasites and display good cellular host selectivity. Our data inform the inhibitor requirements to overcome existing resistance mechanisms and establish a path for rational development of prolyl-tRNA synthetase-targeted anti-malarial therapies.
Collapse
Affiliation(s)
- Mark A Tye
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Graduate School of Arts and Sciences, Cambridge, MA, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - N Connor Payne
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Catrine Johansson
- Botnar Research Centre, NIHR Oxford Biomedical Research Unit, University of Oxford, Oxford, UK
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Kritika Singh
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Sofia A Santos
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Lọla Fagbami
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Graduate School of Arts and Sciences, Cambridge, MA, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Akansha Pant
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Madeline R Luth
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Sofia Marques
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Malcolm Whitman
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Maria M Mota
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Elizabeth A Winzeler
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | | | | | - Udo Oppermann
- Botnar Research Centre, NIHR Oxford Biomedical Research Unit, University of Oxford, Oxford, UK
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Dyann F Wirth
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
6
|
A novel inflammatory response-related signature predicts the prognosis of cutaneous melanoma and the effect of antitumor drugs. World J Surg Oncol 2022; 20:263. [PMID: 35982458 PMCID: PMC9389732 DOI: 10.1186/s12957-022-02726-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/06/2022] [Indexed: 11/10/2022] Open
Abstract
Cutaneous melanoma (CM) is a skin cancer that is highly metastatic and aggressive, with a dismal prognosis. This is the first study to use inflammatory response-related genes to build a model and evaluate their predictive significance in CM. This study used public databases to download CM patients' mRNA expression profiles and clinical data to create multigene prognostic markers in the UCSC cohort. We compared overall survival (OS) between high- and low-risk groups using the Kaplan-Meier curve and determined independent predictors using Cox analysis. We also used enrichment analysis to assess immune cell infiltration fraction and immune pathway-related activity using KEGG enrichment analysis. Furthermore, we detected prognostic genes' mRNA and protein expression in CM and normal skin tissues using qRT-PCR and immunohistochemistry. Finally, we developed a 5-gene predictive model that showed that patients in the high-risk group had a considerably shorter OS than those in the low-risk group. The analysis of the receiver operating characteristic (ROC) curve proved the model's predictive ability. We also conducted a drug sensitivity analysis and discovered that the expression levels of prognostic genes were substantially linked with cancer cell sensitivity to antitumor medicines. The findings show that the model we developed, which consists of five inflammatory response-related genes, can be used to forecast the prognosis and immunological state of CM, giving personalized and precision medicine a new goal and direction.
Collapse
|
7
|
Wusiman W, Zhang Z, Ding Q, Liu M. The pathophyiological role of aminoacyl-tRNA synthetases in digestive system diseases. Front Physiol 2022; 13:935576. [PMID: 36017335 PMCID: PMC9396140 DOI: 10.3389/fphys.2022.935576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/05/2022] [Indexed: 12/24/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) catalyze the ligation of amino acids to their cognate transfer RNAs and are indispensable enzymes for protein biosynthesis in all the cells. Previously, ARSs were considered simply as housekeeping enzymes, however, they are now known to be involved in a variety of physiological and pathological processes, such as tumorigenesis, angiogenesis, and immune response. In this review, we summarize the role of ARSs in the digestive system, including the esophagus, stomach, small intestine, colon, as well as the auxiliary organs such as the pancreas, liver, and the gallbladder. Furthermore, we specifically focus on the diagnostic and prognostic value of ARSs in cancers, aiming to provide new insights into the pathophysiological implications of ARSs in tumorigenesis.
Collapse
Affiliation(s)
- Wugelanmu Wusiman
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zerui Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Ding
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Liu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Mei Liu,
| |
Collapse
|
8
|
Manickam Y, Malhotra N, Mishra S, Babbar P, Dusane A, Laleu B, Bellini V, Hakimi MA, Bougdour A, Sharma A. Double drugging of prolyl-tRNA synthetase provides a new paradigm for anti-infective drug development. PLoS Pathog 2022; 18:e1010363. [PMID: 35333915 PMCID: PMC9004777 DOI: 10.1371/journal.ppat.1010363] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/12/2022] [Accepted: 02/11/2022] [Indexed: 01/13/2023] Open
Abstract
Toxoplasmosis is caused by Toxoplasma gondii and in immunocompromised patients it may lead to seizures, encephalitis or death. The conserved enzyme prolyl-tRNA synthetase (PRS) is a validated druggable target in Toxoplasma gondii but the traditional ‘single target–single drug’ approach has its caveats. Here, we describe two potent inhibitors namely halofuginone (HFG) and a novel ATP mimetic (L95) that bind to Toxoplasma gondii PRS simultaneously at different neighbouring sites to cover all three of the enzyme substrate subsites. HFG and L95 act as one triple-site inhibitor in tandem and form an unusual ternary complex wherein HFG occupies the 3’-end of tRNA and the L-proline (L-pro) binding sites while L95 occupies the ATP pocket. These inhibitors exhibit nanomolar IC50 and EC50 values independently, and when given together reveal an additive mode of action in parasite inhibition assays. This work validates a novel approach and lays a structural framework for further drug development based on simultaneous targeting of multiple pockets to inhibit druggable proteins. Among infectious diseases, parasitic diseases are a major cause of death and morbidity. Toxoplasmosis is caused by an infection of the apicomplexan parasite Toxoplasma gondii. In immunocompromised patients Toxoplasmosis may lead to seizures, encephalitis or death. Novel therapeutics for human parasites are constantly needed. In recent years, the aminoacyl-tRNA synthetase (aaRS) enzyme family has been validated as a drug target for several parasitic infections. The Toxoplasma gondii prolyl-tRNA synthetase inhibitor halofuginone (HFG) has been validated earlier but here we show that an ATP-mimic called L95 is a potent inhibitor and can bind to the target enzyme in the presence of HFG. Thus, the two inhibitors described in this study simultaneously occupy all three natural substrate (ATP, L-amino acid and 3’-end of tRNA) binding pockets and thereby inhibit the enzyme leading to parasite death. This unprecedented double drugging of a pathogen enzyme may delay resistance mutation generation and this approach opens the path to multi-drugging of validated parasite proteins.
Collapse
Affiliation(s)
- Yogavel Manickam
- Molecular Medicine–Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Nipun Malhotra
- Molecular Medicine–Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Siddhartha Mishra
- Molecular Medicine–Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
- ICMR-National Institute of Malaria Research (NIMR), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Palak Babbar
- Molecular Medicine–Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Abhishek Dusane
- Molecular Medicine–Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Benoît Laleu
- Medicines for Malaria Venture (MMV), International Center Cointrin (ICC), Geneva, Switzerland
| | - Valeria Bellini
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Mohamed-Ali Hakimi
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Alexandre Bougdour
- Institute for Advanced Biosciences (IAB), Team Host-Pathogen Interactions and Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
- * E-mail: (AB); (AS)
| | - Amit Sharma
- Molecular Medicine–Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
- ICMR-National Institute of Malaria Research (NIMR), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- * E-mail: (AB); (AS)
| |
Collapse
|
9
|
Tian H, Yan H, Zhang Y, Fu Q, Li C, He J, Li H, Zhou Y, Huang Y, Li R. Knockdown of mitochondrial threonyl-tRNA synthetase 2 inhibits lung adenocarcinoma cell proliferation and induces apoptosis. Bioengineered 2022; 13:5190-5204. [PMID: 35184682 PMCID: PMC8974053 DOI: 10.1080/21655979.2022.2037368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Lung cancer is a significant global burden. Aminoacyl-tRNA synthetases (aaRSs) can be reliably identified by the occurrence and improvement of tumors. Threonyl-tRNA synthetase (TARS) and mitochondrial threonyl-tRNA synthetase 2 (TARS2) are both aaRSs. Many studies have shown that TARS are involved in tumor angiogenesis and metastasis. However, TARS2 has not yet been reported in tumors. This study explored the role of TARS2 in the proliferation and apoptosis of lung adenocarcinoma (LUAD). TARS2 expression in lung adenocarcinoma and non-cancerous lung tissues was detected via immunohistochemistry. Cell proliferation was detected using MTS, clone formation, and EdU staining assays. Flow cytometry was used to detect cell cycle, mitochondria reactive oxygen species (mROS) production, and apoptosis. Mitochondrial membrane potential (MMP ΔΨm) was detected using JC-1 fluorescent probes. Cell cycle, apoptosis-related pathway, and mitochondrial DNA (mtDNA) -encoded protein expression was detected via Western blotting. Finally, the effect of TARS2 on tumor growth was examined using a xenotransplanted tumor model in nude mice. We found that TARS2 was highly expressed in lung adenocarcinoma tissues and associated with poor overall survival (OS). Mechanistic analysis showed that knockdown of TARS2 inhibited proliferation through the retinoblastoma protein (RB) pathway and promoted mROS-induced apoptosis. Knockdown of TARS2 inhibits tumor growth in a xenotransplanted tumor model. TARS2 plays an important role in LUAD cell proliferation and apoptosis and may be a new therapeutic target.
Collapse
Affiliation(s)
- Hui Tian
- Department of Radiation Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hao Yan
- Department of Radiation Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yong Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Qiaofen Fu
- Department of Radiation Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chunyan Li
- Department of Head and Neck Surgery Section II, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Juan He
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hui Li
- Department of Radiation Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yong Zhou
- Division Department of Thoracic Surgery Organization, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Youguang Huang
- Department of Yunnan Tumor Research Institute, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, China
| | - Rongqing Li
- Department of Radiation Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
10
|
Okaniwa M, Shibata A, Ochida A, Akao Y, White KL, Shackleford DM, Duffy S, Lucantoni L, Dey S, Striepen J, Yeo T, Mok S, Aguiar ACC, Sturm A, Crespo B, Sanz LM, Churchyard A, Baum J, Pereira DB, Guido RVC, Dechering KJ, Wittlin S, Uhlemann AC, Fidock DA, Niles JC, Avery VM, Charman SA, Laleu B. Repositioning and Characterization of 1-(Pyridin-4-yl)pyrrolidin-2-one Derivatives as Plasmodium Cytoplasmic Prolyl-tRNA Synthetase Inhibitors. ACS Infect Dis 2021; 7:1680-1689. [PMID: 33929818 PMCID: PMC8204304 DOI: 10.1021/acsinfecdis.1c00020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Prolyl-tRNA synthetase
(PRS) is a clinically validated antimalarial
target. Screening of a set of PRS ATP-site binders, initially designed
for human indications, led to identification of 1-(pyridin-4-yl)pyrrolidin-2-one
derivatives representing a novel antimalarial scaffold. Evidence designates
cytoplasmic PRS as the drug target. The frontrunner 1 and its active enantiomer 1-S exhibited low-double-digit nanomolar activity against resistant Plasmodium falciparum (Pf) laboratory strains
and development of liver schizonts. No cross-resistance with strains
resistant to other known antimalarials was noted. In addition, a similar
level of growth inhibition was observed against clinical field isolates
of Pf and P. vivax. The slow killing
profile and the relative high propensity to develop resistance in vitro (minimum inoculum resistance of 8 × 105 parasites at a selection pressure of 3 × IC50) constitute unfavorable features for treatment of malaria. However,
potent blood stage and antischizontal activity are compelling for
causal prophylaxis which does not require fast onset of action. Achieving
sufficient on-target selectivity appears to be particularly challenging
and should be the primary focus during the next steps of optimization
of this chemical series. Encouraging preliminary off-target profile
and oral efficacy in a humanized murine model of Pf malaria allowed us to conclude that 1-(pyridin-4-yl)pyrrolidin-2-one
derivatives represent a promising starting point for the identification
of novel antimalarial prophylactic agents that selectively target Plasmodium PRS.
Collapse
Affiliation(s)
- Masanori Okaniwa
- Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Akira Shibata
- Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Atsuko Ochida
- Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yuichiro Akao
- Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Karen L. White
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - David M. Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Sandra Duffy
- Discovery Biology, Griffith University, Brisbane Innovation Park, Don Young Road, Nathan, Queensland 4111, Australia
| | - Leonardo Lucantoni
- Discovery Biology, Griffith University, Brisbane Innovation Park, Don Young Road, Nathan, Queensland 4111, Australia
| | - Sumanta Dey
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Josefine Striepen
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Anna Caroline C. Aguiar
- Sao Carlos Institute of Physics, University of São Paulo, Av. João Dagnone, 1100, São Carlos, São Paulo 13563-120, Brazil
| | - Angelika Sturm
- TropIQ Health Sciences, Transistorweg 5-C02, 6534 AT Nijmegen, The Netherlands
| | - Benigno Crespo
- Global Health, GlaxoSmithKline R&D, Tres Cantos, Madrid 28760, Spain
| | - Laura M. Sanz
- Global Health, GlaxoSmithKline R&D, Tres Cantos, Madrid 28760, Spain
| | - Alisje Churchyard
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| | - Jake Baum
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| | - Dhelio B. Pereira
- Tropical Medicine Research Center of Rondonia, Av. Guaporé, 215, Porto Velho, Rondonia 76812-329, Brazil
| | - Rafael V. C. Guido
- Sao Carlos Institute of Physics, University of São Paulo, Av. João Dagnone, 1100, São Carlos, São Paulo 13563-120, Brazil
| | - Koen J. Dechering
- TropIQ Health Sciences, Transistorweg 5-C02, 6534 AT Nijmegen, The Netherlands
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, 4002 Basel, Switzerland
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Jacquin C. Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Vicky M. Avery
- Discovery Biology, Griffith University, Brisbane Innovation Park, Don Young Road, Nathan, Queensland 4111, Australia
| | - Susan A. Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Benoît Laleu
- Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| |
Collapse
|
11
|
Law CSW, Yeong KY. Benzimidazoles in Drug Discovery: A Patent Review. ChemMedChem 2021; 16:1861-1877. [PMID: 33646618 DOI: 10.1002/cmdc.202100004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Indexed: 01/10/2023]
Abstract
Benzimidazole is a heterocyclic ring system that has been widely studied in the pharmaceutical field. For the past decade, numerous benzimidazole derivatives have been synthesized and evaluated for their wide range of pharmacological activities, which are beneficial for drug development. This article presents the biological effects of benzimidazole derivatives in each invention from 2015 to 2020. Two patent databases, Google Patents and Lens, were used to locate relevant granted patent applications. Specifically, this review delineates the role of patented benzimidazoles from a disease-centric perspective and examines the mechanisms of action of these compounds in related diseases. Most of the benzimidazoles have shown good activities against various target proteins. Whilst several of them have progressed into clinical trials, most patents presented novel therapeutic approaches for respective target diseases. Hence, their potential in being developed into clinical drugs are also discussed.
Collapse
Affiliation(s)
- Christine S W Law
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan Bandar Sunway, 47500, Selangor, Malaysia
| | - Keng Y Yeong
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan Bandar Sunway, 47500, Selangor, Malaysia.,Tropical Medicine and Biology (TMB) multidisciplinary platform, Monash University Malaysia, Jalan Lagoon Selatan Bandar Sunway, 47500, Selangor, Malaysia
| |
Collapse
|
12
|
McFarland MR, Keller CD, Childers BM, Adeniyi SA, Corrigall H, Raguin A, Romano MC, Stansfield I. The molecular aetiology of tRNA synthetase depletion: induction of a GCN4 amino acid starvation response despite homeostatic maintenance of charged tRNA levels. Nucleic Acids Res 2020; 48:3071-3088. [PMID: 32016368 PMCID: PMC7102972 DOI: 10.1093/nar/gkaa055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 12/13/2022] Open
Abstract
During protein synthesis, charged tRNAs deliver amino acids to translating ribosomes, and are then re-charged by tRNA synthetases (aaRS). In humans, mutant aaRS cause a diversity of neurological disorders, but their molecular aetiologies are incompletely characterised. To understand system responses to aaRS depletion, the yeast glutamine aaRS gene (GLN4) was transcriptionally regulated using doxycycline by tet-off control. Depletion of Gln4p inhibited growth, and induced a GCN4 amino acid starvation response, indicative of uncharged tRNA accumulation and Gcn2 kinase activation. Using a global model of translation that included aaRS recharging, Gln4p depletion was simulated, confirming slowed translation. Modelling also revealed that Gln4p depletion causes negative feedback that matches translational demand for Gln-tRNAGln to aaRS recharging capacity. This maintains normal charged tRNAGln levels despite Gln4p depletion, confirmed experimentally using tRNA Northern blotting. Model analysis resolves the paradox that Gln4p depletion triggers a GCN4 response, despite maintenance of tRNAGln charging levels, revealing that normally, the aaRS population can sequester free, uncharged tRNAs during aminoacylation. Gln4p depletion reduces this sequestration capacity, allowing uncharged tRNAGln to interact with Gcn2 kinase. The study sheds new light on mutant aaRS disease aetiologies, and explains how aaRS sequestration of uncharged tRNAs can prevent GCN4 activation under non-starvation conditions.
Collapse
Affiliation(s)
- Matthew R McFarland
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Corina D Keller
- Institute of Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Brandon M Childers
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Stephen A Adeniyi
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Holly Corrigall
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Adélaïde Raguin
- Institute of Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - M Carmen Romano
- Institute of Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Ian Stansfield
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
13
|
Chorna N, Romaguera J, Godoy-Vitorino F. Cervicovaginal Microbiome and Urine Metabolome Paired Analysis Reveals Niche Partitioning of the Microbiota in Patients with Human Papilloma Virus Infections. Metabolites 2020; 10:E36. [PMID: 31952112 PMCID: PMC7022855 DOI: 10.3390/metabo10010036] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 12/31/2022] Open
Abstract
In this study, we evaluate the association between vaginal and cervical human papillomavirus infections high-risk types (HPV+H), negative controls (HPV-), the bacterial biota, and urinary metabolites via integration of metagenomics, metabolomics, and bioinformatics analysis. We recently proposed that testing urine as a biofluid could be a non-invasive method for the detection of cervical HPV+H infections by evaluating the association between cervical HPV types and a total of 24 urinary metabolites identified in the samples. As a follow-up study, we expanded the analysis by pairing the urine metabolome data with vaginal and cervical microbiota in selected samples from 19 Puerto Rican women diagnosed with HPV+H infections and HPV- controls, using a novel comprehensive framework, Model-based Integration of Metabolite Observations and Species Abundances 2 (MIMOSA2). This approach enabled us to estimate the functional activities of the cervicovaginal microbiome associated with HPV+H infections. Our results suggest that HPV+H infections could induce changes in physicochemical properties of the genital tract through which niche partitioning may occur. As a result, Lactobacillus sp. enrichment coincided with the depletion of L. iners and Shuttleworthia, which dominate under normal physiological conditions. Changes in the diversity of microbial species in HPV+H groups influence the capacity of new community members to produce or consume metabolites. In particular, the functionalities of four metabolic enzymes were predicted to be associated with the microbiota, including acylphosphatase, prolyl aminopeptidase, prolyl-tRNA synthetase, and threonyl-tRNA synthetase. Such metabolic changes may influence systemic health effects in women at risk of developing cervical cancer. Overall, even assuming the limitation of the power due to the small sample number, our study adds to current knowledge by suggesting how microbial taxonomic and metabolic shifts induced by HPV infections may influence the maintenance of microbial homeostasis and indicate that HPV+H infections may alter the ecological balance of the cervicovaginal microbiota, resulting in higher bacterial diversity.
Collapse
Affiliation(s)
- Nataliya Chorna
- Department of Biochemistry, UPR School of Medicine, San Juan 00936, Puerto Rico
- PR-INBRE Metabolomics Research Core, UPR School of Medicine, San Juan 00936, Puerto Rico
| | - Josefina Romaguera
- Department of Ob-Gyn, UPR School of Medicine, San Juan 00936, Puerto Rico;
| | - Filipa Godoy-Vitorino
- Department of Microbiology & Medical Zoology, UPR School of Medicine, San Juan 00936, Puerto Rico
| |
Collapse
|
14
|
Shibata A, Kuno M, Adachi R, Sato Y, Hattori H, Matsuda A, Okuzono Y, Igaki K, Tominari Y, Takagi T, Yabuki M, Okaniwa M. Discovery and pharmacological characterization of a new class of prolyl-tRNA synthetase inhibitor for anti-fibrosis therapy. PLoS One 2017; 12:e0186587. [PMID: 29065190 PMCID: PMC5655428 DOI: 10.1371/journal.pone.0186587] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/03/2017] [Indexed: 11/19/2022] Open
Abstract
Scleroderma has clinical characteristics including skin and other tissue fibrosis, but there is an unmet need for anti-fibrotic therapy. Halofuginone (HF) is a well-known anti-fibrosis agent in preclinical and clinical studies which exerts its effect via inhibition of TGF-β/Smad3 signaling pathway. Recently, prolyl-tRNA synthetase (PRS) was elucidated as a target protein for HF that binds to the proline binding site of the catalytic domain of PRS. Here, we characterized a new class of PRS inhibitor (T-3833261) that is carefully designed in a way that binds to the ATP site of the catalytic domain and does not disrupt binding of proline. The anti-fibrotic activity and the mechanism of action for T-3833261 on TGF-β-induced fibrotic assay were compared with those of HF in primary human skin fibroblast. We evaluated in vivo effect of topical application of T-3833261 and HF on TGF-β-induced fibrotic genes expression in mice. We found that T-3833261 suppressed TGF-β-induced α-smooth muscle actin (α-SMA) and type I collagen α1 (COL1A1) expression through the Smad3 axis in a similar fashion to HF. In vivo topical application of T-3833261 reduced the increase of fibrotic genes expression such as α-Sma, Col1a1 and Col1a2 by TGF-β intradermal injection to the ear of a mouse. We revealed that T-3833261 is more effective than HF under the conditions of high proline concentration, as reported in fibrotic tissues. These results suggest the potential of ATP competitive PRS inhibitors for the treatment of fibrotic diseases such as scleroderma.
Collapse
Affiliation(s)
- Akira Shibata
- Immunology Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
- * E-mail: (AS); (MO)
| | - Masako Kuno
- Immunology Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Ryutaro Adachi
- Biomolecular Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Yosuke Sato
- Immunology Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Harumi Hattori
- Immunology Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Atsushi Matsuda
- Immunology Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Yuumi Okuzono
- Immunology Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Keiko Igaki
- Immunology Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Yusuke Tominari
- Immunology Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Terufumi Takagi
- Medicinal Chemistry Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Masato Yabuki
- Immunology Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Masanori Okaniwa
- Immunology Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
- * E-mail: (AS); (MO)
| |
Collapse
|
15
|
Discovery of a novel prolyl-tRNA synthetase inhibitor and elucidation of its binding mode to the ATP site in complex with l-proline. Biochem Biophys Res Commun 2017; 488:393-399. [PMID: 28501621 DOI: 10.1016/j.bbrc.2017.05.064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/10/2017] [Indexed: 11/23/2022]
Abstract
Prolyl-tRNA synthetase (PRS) is a member of the aminoacyl-tRNA synthetase family of enzymes and catalyzes the synthesis of prolyl-tRNAPro using ATP, l-proline, and tRNAPro as substrates. An ATP-dependent PRS inhibitor, halofuginone, was shown to suppress autoimmune responses, suggesting that the inhibition of PRS is a potential therapeutic approach for inflammatory diseases. Although a few PRS inhibitors have been derivatized from natural sources or substrate mimetics, small-molecule human PRS inhibitors have not been reported. In this study, we discovered a novel series of pyrazinamide PRS inhibitors from a compound library using pre-transfer editing activity of human PRS enzyme. Steady-state biochemical analysis on the inhibitory mode revealed its distinctive characteristics of inhibition with proline uncompetition and ATP competition. The binding activity of a representative compound was time-dependently potentiated by the presence of l-proline with Kd of 0.76 nM. Thermal shift assays demonstrated the stabilization of PRS in complex with l-proline and pyrazinamide PRS inhibitors. The binding mode of the PRS inhibitor to the ATP site of PRS enzyme was elucidated using the ternary complex crystal structure with l-proline. The results demonstrated the different inhibitory and binding mode of pyrazinamide PRS inhibitors from preceding halofuginone. Furthermore, the PRS inhibitor inhibited intracellular protein synthesis via a different mode than halofuginone. In conclusion, we have identified a novel drug-like PRS inhibitor with a distinctive binding mode. This inhibitor was effective in a cellular context. Thus, the series of PRS inhibitors are considered to be applicable to further development with differentiation from preceding halofuginone.
Collapse
|