1
|
Rodriguez-Tellez TG, Magaña H, Cornejo-Bravo JM, Palomino-Vizcaino G, Palomino-Vizcaino K. Microgels of N-Isopropylacrylamide Copolymerized with an Amphiphilic Acid for the Delivery of Doxorubicin. Gels 2024; 10:806. [PMID: 39727564 DOI: 10.3390/gels10120806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
This study aims to design microgels that are thermo- and pH-sensitive for controlled doxorubicin (Dox) release in response to tumor microenvironment changes. N-isopropylacrylamide (NIPAAm) is widely used for thermoresponsive tumor-targeted drug delivery systems for the release of therapeutic payloads in response to temperature changes. Herein, a NIPAAm microgel (MP) that is responsive to temperature and pH was designed for the smart delivery of Dox. MP was made from NIPAAm, and polyethylene glycol methyl ether methacrylate (PEGMA) was copolymerized with 5%, 10%, or 15% mol of methacryloylamido hexanoic acid, (CAM5) an amphiphilic acid. We characterized the microgels using FTIR-ATR, DLS, and FESEM. The MP 10% CAM5 exhibited a particle size of 268 nm, with a transition temperature of 44 °C. MP had a drug loading capacity of 13% and entrapment efficiency of 87%. Nearly 100% of the Dox was released at pH 5 and 42 °C, compared to 30% at pH 7.4 and 37 °C. MP 10% CAM5 showed cytocompatibility in HeLa cells using the MTT assay. However, the cell viability assay showed that dox-MP was twice as effective as free Dox. Specifically, 3 μg/mL of free Dox resulted in 74% cell viability, while the same doses of Dox in NP reduced it to 35%. These results are promising for the future tumor-targeted delivery of antineoplastic-drugs, as they may reduce the side effects of Dox.
Collapse
Affiliation(s)
- Teresa G Rodriguez-Tellez
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, University Boulevard No. 14418, Otay Mesa, Tijuana 22390, Mexico
| | - Héctor Magaña
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, University Boulevard No. 14418, Otay Mesa, Tijuana 22390, Mexico
| | - José M Cornejo-Bravo
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, University Boulevard No. 14418, Otay Mesa, Tijuana 22390, Mexico
| | - Giovanni Palomino-Vizcaino
- Faculty of Health Sciences, Autonomous University of Baja California, University Boulevard No. 1000, Tijuana 22260, Mexico
| | - Kenia Palomino-Vizcaino
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, University Boulevard No. 14418, Otay Mesa, Tijuana 22390, Mexico
| |
Collapse
|
2
|
Man S, Liu W, Bi J, Bai J, Wu Q, Hu B, Hu J, Ma L. Smart Mesoporous Silica Nanoparticles Loading Curcumin Inhibit Liver Cancer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25743-25754. [PMID: 39506560 DOI: 10.1021/acs.jafc.4c08202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Curcumin (CUR) as one of the natural edible pigments is approved by the World Health Organization due to its nontoxic and anticancer effect. However, the utility of CUR is restricted due to its low oral bioavailability. Nanoparticle drug delivery systems like mesoporous silica nanoparticles (MSNs) have been extensively used due to their high specific surface area, high loading rate, and ease of modification. This study developed lactobionic acid (LA)-modified carboxymethyl chitosan (CMCS)-coated MSNs to deliver CUR specifically targeting hepatocellular carcinoma. Among these nanoparticles, LA targets liver cancer cells. CMCS utilizes pH-responsive release of CUR. The LA-CMCS-MSN@CUR (MSN@CUR) were evaluated using several methods, including Fourier transform infrared spectroscopy, transmission electron microscopy, and zeta potential measurements. Liver cellular uptake of MSN@CUR depends on a specific LA receptor-mediated endocytosis mechanism. Additionally, MSN@CUR performed with a better antitumor effect than Cur in H22 orthotopic transplantation of liver cancer and H22 solid tumor mouse models. Treatment with MSN@CUR significantly reduced the protein of VEGF, p-PI3K, and AKT, increased the protein of caspases 3 and 8, ultimately inhibited tumor migration, and promoted apoptosis. This study provides a new path for delivery of natural active ingredients with excellent bioavailability in the antitumor field.
Collapse
Affiliation(s)
- Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wei Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jingxian Bi
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jingjing Bai
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qiong Wu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Bin Hu
- Department of Pharmacy, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Jing Hu
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
3
|
Abtahi MS, Fotouhi A, Rezaei N, Akalin H, Ozkul Y, Hossein-Khannazer N, Vosough M. Nano-based drug delivery systems in hepatocellular carcinoma. J Drug Target 2024; 32:977-995. [PMID: 38847573 DOI: 10.1080/1061186x.2024.2365937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 06/19/2024]
Abstract
The high recurrence rate of hepatocellular carcinoma (HCC) and poor prognosis after medical treatment reflects the necessity to improve the current chemotherapy protocols, particularly drug delivery methods. Development of targeted and efficient drug delivery systems (DDSs), in all active, passive and stimuli-responsive forms for selective delivery of therapeutic drugs to the tumour site has been extended to improve efficacy and reduce the severe side effects. Recent advances in nanotechnology offer promising breakthroughs in the diagnosis, treatment and monitoring of cancer cells. In this review, the specific design of DDSs based on the different nano-particles and their surface engineering is discussed. In addition, the innovative clinical studies in which nano-based DDS was used in the treatment of HCC were highlighted.
Collapse
Affiliation(s)
- Maryam Sadat Abtahi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Alireza Fotouhi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Niloufar Rezaei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hilal Akalin
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Yusuf Ozkul
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Nikoo Hossein-Khannazer
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
4
|
Atmaca H, Oguz F, Ilhan S. Chitosan in cancer therapy: a dual role as a therapeutic agent and drug delivery system. Z NATURFORSCH C 2024; 79:95-105. [PMID: 38478126 DOI: 10.1515/znc-2023-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/21/2024] [Indexed: 07/04/2024]
Abstract
Although chemotherapy is still the most preferred treatment for cancer, most chemotherapeutic agents target both cancer cells and healthy cells and cause serious side effects due to high toxicity. Improved drug delivery systems (DDSs), which enhance the efficacy of current chemotherapeutic drugs while reducing their toxicity, offer potential solutions to these challenges. Chitosan (CS) and its derivatives are biopolymers with biodegradable, biocompatible, and low-toxicity properties, and their structure allows for convenient chemical and mechanical modifications. In its role as a therapeutic agent, CS can impede the proliferation of tumor cells through the inhibition of angiogenesis and metastasis, as well as by triggering apoptosis. CS and its derivatives are also frequently preferred as DDSs due to their properties such as high drug-carrying capacity, polycationic structure, long-term circulation, and direct targeting of cancer cells. Various therapeutic agents linked to CS and its derivatives demonstrate potent anticancer effects with advantages such as reduced side effects compared to the original drugs, owing to factors like targeted distribution within cancer tissues and sustained release. This review emphasizes the utilization of CS and its derivatives, both as therapeutic agents and as carriers for established chemotherapeutic drugs.
Collapse
Affiliation(s)
- Harika Atmaca
- Department of Biology 52953 , Faculty of Engineering and Natural Sciences, Manisa Celal Bayar University , Manisa 45140, Türkiye
| | - Ferdi Oguz
- Graduate School of Health Sciences, Cellular and Molecular Medicine, Koç University, İstanbul, Türkiye
| | - Suleyman Ilhan
- Department of Biology 52953 , Faculty of Engineering and Natural Sciences, Manisa Celal Bayar University , Manisa 45140, Türkiye
| |
Collapse
|
5
|
Wu P, Wang X, Yin M, Zhu W, Chen Z, Zhang Y, Jiang Z, Shi L, Zhu Q. ULK1 Mediated Autophagy-Promoting Effects of Rutin-Loaded Chitosan Nanoparticles Contribute to the Activation of NF-κB Signaling Besides Inhibiting EMT in Hep3B Hepatoma Cells. Int J Nanomedicine 2024; 19:4465-4493. [PMID: 38779103 PMCID: PMC11110815 DOI: 10.2147/ijn.s443117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Background Liver cancer remains to be one of the leading causes of cancer worldwide. The treatment options face several challenges and nanomaterials have proven to improve the bioavailability of several drug candidates and their applications in nanomedicine. Specifically, chitosan nanoparticles (CNPs) are extremely biodegradable, pose enhanced biocompatibility and are considered safe for use in medicine. Methods CNPs were synthesized by ionic gelation, loaded with rutin (rCNPs) and characterized by ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS) and transmission electron microscopy (TEM). The rCNPs were tested for their cytotoxic effects on human hepatoma Hep3B cells, and experiments were conducted to determine the mechanism of such effects. Further, the biocompatibility of the rCNPs was tested on L929 fibroblasts, and their hemocompatibility was determined. Results Initially, UV-vis and FTIR analyses indicated the possible loading of rutin on rCNPs. Further, the rutin load was quantitatively measured using Ultra-Performance Liquid Chromatography (UPLC) and the concentration was 88 µg/mL for 0.22 micron filtered rCNPs. The drug loading capacity (LC%) of the rCNPs was observed to be 13.29 ± 0.68%, and encapsulation efficiency (EE%) was 19.55 ± 1.01%. The drug release was pH-responsive as 88.58% of the drug was released after 24 hrs at the lysosomal pH 5.5, whereas 91.44% of the drug was released at physiological pH 7.4 after 102 hrs. The cytotoxic effects were prominent in 0.22 micron filtered samples of 5 mg/mL rutin precursor. The particle size for the rCNPs at this concentration was 144.1 nm and the polydispersity index (PDI) was 0.244, which is deemed to be ideal for tumor targeting. A zeta potential (ζ-potential) value of 16.4 mV indicated rCNPs with good stability. The IC50 value for the cytotoxic effects of rCNPs on human hepatoma Hep3B cells was 9.7 ± 0.19 μg/mL of rutin load. In addition, the increased production of reactive oxygen species (ROS) and changes in mitochondrial membrane potential (MMP) were observed. Gene expression studies indicated that the mechanism for cytotoxic effects of rCNPs on Hep3B cells was due to the activation of Unc-51-like autophagy-activating kinase (ULK1) mediated autophagy and nuclear factor kappa B (NF-κB) signaling besides inhibiting the epithelial-mesenchymal Transition (EMT). In addition, the rCNPs were less toxic on NCTC clone 929 (L929) fibroblasts in comparison to the Hep3B cells and possessed excellent hemocompatibility (less than 2% of hemolysis). Conclusion The synthesized rCNPs were pH-responsive and possessed the physicochemical properties suitable for tumor targeting. The particles were effectively cytotoxic on Hep3B cells in comparison to normal cells and possessed excellent hemocompatibility. The very low hemolytic profile of rCNPs indicates that the drug could be administered intravenously for cancer therapy.
Collapse
Affiliation(s)
- Peng Wu
- Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Xiaoyong Wang
- The People’s Hospital of Rugao, Nantong, People’s Republic of China
| | - Min Yin
- Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Wenjie Zhu
- Kangda College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Zheng Chen
- Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yang Zhang
- Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Ziyu Jiang
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, People’s Republic of China
| | - Longqing Shi
- Department of Hepatobiliary and Pancreatic Surgery, Third Affiliated Hospital of Soochow University, Jiangsu, People’s Republic of China
| | - Qiang Zhu
- Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
6
|
Saeed Y, Zhong R, Sun Z. Advances in traditional herbal formulation based nano-vaccine for cancer immunotherapy: Unraveling the enigma of complex tumor environment and multidrug resistance. Int Immunopharmacol 2024; 132:111948. [PMID: 38554445 DOI: 10.1016/j.intimp.2024.111948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
Cancer is attributed to uncontrolled cell growth and is among the leading causes of death with no known effective treatment while complex tumor microenvironment (TME) and multidrug resistance (MDR) are major challenges for developing an effective therapeutic strategy. Advancement in cancer immunotherapy has been limited by the over-activation of the host immune response that ultimately affects healthy tissues or organs and leads to a feeble response of the patient's immune system against tumor cells. Besides, traditional herbal medicines (THM) have been well-known for their essential role in the treatment of cancer and are considered relatively safe due to their compatibility with the human body. Yet, poor solubility, low bio-availability, and lack of understanding about their pathophysiological mechanism halt their clinical application. Moreover, considering the complex TME and drug resistance, the most precarious and least discussed concerns for developing THM-based nano-vaccination, are identification of specific biomarkers for drug inhibitory protein and targeted delivery of bioactive ingredients of THM on the specific sites in tumor cells. The concept of THM-based nano-vaccination indicates immunomodulation of TME by THM-based bioactive adjuvants, exerting immunomodulatory effects, via targeted inhibition of key proteins involved in the metastasis of cancer. However, this concept is at its nascent stage and very few preclinical studies provided the evidence to support clinical translation. Therefore, we attempted to capsulize previously reported studies highlighting the role of THM-based nano-medicine in reducing the risk of MDR and combating complex tumor environments to provide a reference for future study design by discussing the challenges and opportunities for developing an effective and safe therapeutic strategy against cancer.
Collapse
Affiliation(s)
- Yasmeen Saeed
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China.
| | - Ruimin Zhong
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Zhanghua Sun
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| |
Collapse
|
7
|
Twal S, Jaber N, Al-Remawi M, Hamad I, Al-Akayleh F, Alshaer W. Dual stimuli-responsive polymeric nanoparticles combining soluplus and chitosan for enhanced breast cancer targeting. RSC Adv 2024; 14:3070-3084. [PMID: 38239437 PMCID: PMC10795518 DOI: 10.1039/d3ra08074a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/13/2024] [Indexed: 01/22/2024] Open
Abstract
A dual stimuli-responsive nanocarrier was developed from smart biocompatible chitosan and soluplus graft copolymers. The copolymerization was investigated by differential scanning calorimetry (DSC), thermo-gravimetric analysis (TGA), and Fourier transform infrared (FTIR). The optimized chitosan-soluplus nanoparticles (CS-SP NPs) were further used for the encapsulation of a poorly water-soluble anticancer drug. Tamoxifen citrate (TC) was used as the model drug and it was loaded in CS-SP NPs. TC CS-SP NPs were characterized in terms of particle size, zeta potential, polydispersity, morphology, encapsulation efficiency, and physical stability. The nanoparticles showed homogenous spherical features with a size around 94 nm, a slightly positive zeta potential, and an encapsulation efficiency around 96.66%. Dynamic light scattering (DLS), in vitro drug release, and cytotoxicity confirmed that the created nano-system is smart and exhibits pH and temperature-responsive behavior. In vitro cellular uptake was evaluated by flow cytometry and confocal microscopy. The nanoparticles revealed a triggered increase in size upon reaching the lower critical solution temperature of SP, with 70% of drug release at acidic pH and 40 °C within the first hour and a 3.5-fold increase in cytotoxicity against MCF7 cells incubated at 40 °C. The cellular uptake study manifested that the prepared nanoparticles succeeded in delivering drug molecules to MCF7 and MDA-MB-231 cells. In summary, the distinctive characteristics provided by these novel CS-SP NPs result in a promising nano-platform for effective drug delivery in cancer treatment.
Collapse
Affiliation(s)
- Shrouq Twal
- Faculty of Pharmacy and Medical Sciences, University of Petra Amman 1196 Jordan (+962) 797683190
- Faculty of Health Sciences, American University of Madaba Amman 11821 Jordan
| | - Nisrein Jaber
- Faculty of Pharmacy, Al Zaytoonah University of Jordan Amman 11733 Jordan
| | - Mayyas Al-Remawi
- Faculty of Pharmacy and Medical Sciences, University of Petra Amman 1196 Jordan (+962) 797683190
| | - Islam Hamad
- Faculty of Health Sciences, American University of Madaba Amman 11821 Jordan
| | - Faisal Al-Akayleh
- Faculty of Pharmacy and Medical Sciences, University of Petra Amman 1196 Jordan (+962) 797683190
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan Amman 11942 Jordan (+962) 790823678
| |
Collapse
|
8
|
Najm A, Niculescu AG, Bolocan A, Rădulescu M, Grumezescu AM, Beuran M, Gaspar BS. Chitosan and Cyclodextrins-Versatile Materials Used to Create Drug Delivery Systems for Gastrointestinal Cancers. Pharmaceutics 2023; 16:43. [PMID: 38258054 PMCID: PMC10819812 DOI: 10.3390/pharmaceutics16010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Gastrointestinal cancers are characterized by a frequent incidence, a high number of associated deaths, and a tremendous burden on the medical system and patients worldwide. As conventional chemotherapeutic drugs face numerous limitations, researchers started to investigate better alternatives for extending drug efficacy and limiting adverse effects. A remarkably increasing interest has been addressed to chitosan and cyclodextrins, two highly versatile natural carbohydrate materials endowed with unique physicochemical properties. In this respect, numerous studies reported on fabricating various chitosan and cyclodextrin-based formulations that enabled prolonged circulation times, improved cellular internalization of carried drugs, preferential uptake by the targeted cells, reduced side effects, enhanced apoptosis rates, and increased tumor suppression rates. Therefore, this paper aims to briefly present the advantageous properties of these oligo- and polysaccharides for designing drug delivery systems, further focusing the discussion on nanocarrier systems based on chitosan/cyclodextrins for treating different gastrointestinal cancers. Specifically, there are reviewed studies describing promising solutions for colorectal, liver, gastric, pancreatic, and other types of cancers of the digestive system towards creating an updated framework of what concerns anticancer chitosan/cyclodextrin-based drug delivery systems.
Collapse
Affiliation(s)
- Alfred Najm
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari, Sector 5, 050474 Bucharest, Romania; (A.N.); (M.B.); (B.S.G.)
- Emergency Hospital Floreasca Bucharest, 8 Calea Floresca, Sector 1, 014461 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.-G.N.); (A.M.G.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Alexandra Bolocan
- General Surgery Department, Carol Davila University of Medicine and Pharmacy, The University Emergency Hospital of Bucharest, 050098 Bucharest, Romania;
| | - Marius Rădulescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.-G.N.); (A.M.G.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Mircea Beuran
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari, Sector 5, 050474 Bucharest, Romania; (A.N.); (M.B.); (B.S.G.)
- Emergency Hospital Floreasca Bucharest, 8 Calea Floresca, Sector 1, 014461 Bucharest, Romania
| | - Bogdan Severus Gaspar
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari, Sector 5, 050474 Bucharest, Romania; (A.N.); (M.B.); (B.S.G.)
- Emergency Hospital Floreasca Bucharest, 8 Calea Floresca, Sector 1, 014461 Bucharest, Romania
| |
Collapse
|
9
|
Imran H, Tang Y, Wang S, Yan X, Liu C, Guo L, Wang E, Xu C. Optimized DOX Drug Deliveries via Chitosan-Mediated Nanoparticles and Stimuli Responses in Cancer Chemotherapy: A Review. Molecules 2023; 29:31. [PMID: 38202616 PMCID: PMC10780101 DOI: 10.3390/molecules29010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Chitosan nanoparticles (NPs) serve as useful multidrug delivery carriers in cancer chemotherapy. Chitosan has considerable potential in drug delivery systems (DDSs) for targeting tumor cells. Doxorubicin (DOX) has limited application due to its resistance and lack of specificity. Chitosan NPs have been used for DOX delivery because of their biocompatibility, biodegradability, drug encapsulation efficiency, and target specificity. In this review, various types of chitosan derivatives are discussed in DDSs to enhance the effectiveness of cancer treatments. Modified chitosan-DOX NP drug deliveries with other compounds also increase the penetration and efficiency of DOX against tumor cells. We also highlight the endogenous stimuli (pH, redox, enzyme) and exogenous stimuli (light, magnetic, ultrasound), and their positive effect on DOX drug delivery via chitosan NPs. Our study sheds light on the importance of chitosan NPs for DOX drug delivery in cancer treatment and may inspire the development of more effective approaches for cancer chemotherapy.
Collapse
Affiliation(s)
- HafizMuhammad Imran
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Yixin Tang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Siyuan Wang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Xiuzhang Yan
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Chang Liu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Lei Guo
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Erlei Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Caina Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| |
Collapse
|
10
|
Ullah A, Khan M, Yibang Z, Raza F, Hasnat M, Cao J, Qi X, Hussain A, Liu D. Hollow Mesoporous Silica Nanoparticles for Dual Chemo-starvation Therapy of Hepatocellular Carcinoma. Pharm Res 2023; 40:2215-2228. [PMID: 37700104 DOI: 10.1007/s11095-023-03599-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
PURPOSE This study aims at chemotherapy and starvation therapy of HCC via starvation and apoptosis. METHODS Hollow mesoporous organosilica nanoparticles (HMONs) with the thioether-hybrid structure were developed using an organic/inorganic co-templating assembly approach. Hydrofluoric acid was used to remove the internal MSN core for yielding large radial mesopores for loading drug cargos. The morphology and structure of NPs were determined using TEM and SEM. HMONs were stepwise surface modified with glucose oxidase (GOx), oxygen (O2) and Doxorubicin (DOX), and cancer cell membrane (CCM) for yielding CCM-coated HMONs (targeted stealth biorobots; TSBRs) for starvation, apoptotic, and enhanced cell uptake properties, respectively. The surface area and pore size distribution were determined via BET and BJH assays. The catalytic ability of GOx-modified NPs was measured using in vitro glucose conversion approach authenticated by H2O2 and pH determination assays. MTT assay was used to determine the cytotoxicities of NPs. Cell uptake and apoptotic assay were used for the NPs internalization and apoptosis mechanisms. The subcutaneous HepG2 tumor model was established in mice. The long-term in vivo toxicity was determined using blood assays. RESULTS The prepared NPs were spherical, hollow and mesoporous with excellent surface area and pore size distribution. The GOx-modified NPs exhibited excellent catalytic activity. The TSBRs showed better cytotoxicity and reduce the tumor size and weight. The NPs showed long-term safety in vivo. CONCLUSION TSBRs destroyed cancer cells by starvation and chemotherapy in both in-vitro and in-vivo settings which demonstrates its anti-cancer potential.
Collapse
Affiliation(s)
- Aftab Ullah
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Marina Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Pakistan
| | - Zhang Yibang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Muhammad Hasnat
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Outfall Road, Lahore, 54000, Pakistan
| | - Jin Cao
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xueyong Qi
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Abid Hussain
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Daojun Liu
- Department of Pharmacy, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong, China.
| |
Collapse
|
11
|
Nasr M, Kira AY, Saber S, Essa EA, El-Gizawy SA. Telmisartan-Loaded Lactosylated Chitosan Nanoparticles as a Liver Specific Delivery System: Synthesis, Optimization and Targeting Efficiency. AAPS PharmSciTech 2023; 24:144. [PMID: 37353643 DOI: 10.1208/s12249-023-02605-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has a significant economic impact and a high mortality rate. Telmisartan (TLM) is a potential therapy for HCC, but it has a limited scope in drug delivery due to unpredictable distribution and poor bioavailability. The objective of this study was to prepare, design, and in vitro evaluate lactose-modified chitosan nanoparticles (LCH NPs) as a liver-targeted nanocarrier for TLM with the potential to offer a promising HCC therapy. The combination of chitosan with lactose was successfully attained using the Maillard reaction. TLM-LCH NPs were prepared, characterized, and optimized with the developed 23 full factorial design. The optimized formulation (F1) was in vitro and in vivo characterized. LCH was synthesized with an acceptable yield of 43.8 ± 0.56%, a lactosylation degree of 14.34%, and a significantly higher aqueous solubility (6.28 ± 0.21 g/L) compared to native chitosan (0.25 ± 0.03 g/L). In vitro characterization demonstrated that, F1 had a particle size of 145.46 ± 0.7 nm, an entrapment efficiency of 90.21 ± 0.28%, and a surface charge of + 27.13 ± 0.21 mV. In vitro TLM release from F1 was most consistent with the Higuchi model and demonstrated significantly higher release at pH 5.5. Moreover, a significantly higher ratio of liver to plasma concentration was observed with TLM-LCH NPs compared to plain TLM and unmodified TLM-NPs. The obtained results nominate TLM-LCH NPs as a promising carrier for enhancing liver targeting of TLM in treatment of HCC.
Collapse
Affiliation(s)
- Mohamed Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo, 11790, Egypt.
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 35712, Egypt.
| | - Ahmed Y Kira
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 35712, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 35712, Egypt
| | - Ebtessam A Essa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, 31111, Egypt
| | - Sanaa A El-Gizawy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, 31111, Egypt
| |
Collapse
|
12
|
Zhou Y, Li S, Tan W, Wei X, Chang Y, Yi Q, Pu C, Wang J. Design, Synthesis, and Preparation of Ultrasound-Responsive Curcumin-Loaded Chitosan Nanocarriers. RUSS J GEN CHEM+ 2023. [DOI: 10.1134/s1070363223010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
13
|
Liu J, Liu T, Zhang C, He J, Zhou D, Wang Z, Wang R. EIF2S2 is a novel independent prognostic biomarker and correlated with immune infiltrates in hepatocellular carcinoma. Front Genet 2022; 13:992343. [PMID: 36276981 PMCID: PMC9579270 DOI: 10.3389/fgene.2022.992343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/20/2022] [Indexed: 11/15/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a highly malignant disease with poor prognosis. It is urgent to find effective biomarkers. Eukaryotic Translation Initiation Factor 2 Subunit Beta (EIF2S2) is a subunit of heterotrimeric G protein EIF2, and its function is still unclear. We studied the role of EIF2S2 in the malignant progression of liver cancer and its relationship with immune infiltration. Methods: Download the RNA expression and clinical information of EIF2S2 from the Cancer Genome Atlas (TCGA) database, analyze the relationship between the expression of EIF2S2 and the prognosis and clinicopathological characteristics of HCC, analyze the differential genes by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and tumor related immune infiltrating cells. The Protein expression level of EIF2S2 was obtained from Human Protein Atlas (HPA) databases. The relationship between EIF2S2 expression and immune infiltrates in HCC was analyzed on TIMER 2.0. The data processing analysis based on R language. Drug Sensitivity data from Genomics of Drug Sensitivity in Cancer (GDSC). Results: EIF2S2 is highly expressed in HCC patients and is associated with poor prognosis. The expression of EIF2S2 was also correlated with age, clinical stage and pathological grade. Univariate and multivariate COX regression analysis showed that EIF2S2 was an independent risk factor for survival. The receiver operating characteristic (ROC) curve of EIF2S2 also confirmed the diagnostic value of EIF2S2 in HCC patients. Through GO and KEGG enrichment analysis, EIF2S2 expression was found to be closely related to some immune pathways. The expression of EIF2S2 was correlated with memory B cell, plasma B cell, CD8+ T cell, CD4+ resting memory T cell and the expression of some immune checkpoints, such as PDCD1, TIGIT and CTLA-4. It is also more sensitive to paclitaxel, sunitinib and other drugs. Conclusion: This study shows that EIF2S2 can be used as a prognostic factor for HCC, which is closely related to immune infiltration and immune checkpoints, and may play a potential regulatory role in predicting drug sensitivity.
Collapse
Affiliation(s)
- Jing Liu
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian, China
| | - Tongyu Liu
- Department of Gynecology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Chuanhao Zhang
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian, China
| | - Jiabei He
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian, China
| | - Dong Zhou
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian, China
| | - Zhe Wang
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian, China
- *Correspondence: Zhe Wang, ; Ruoyu Wang,
| | - Ruoyu Wang
- Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian, China
- *Correspondence: Zhe Wang, ; Ruoyu Wang,
| |
Collapse
|
14
|
Fard GH, Moinipoor Z, Anastasova-Ivanova S, Iqbal HM, Dwek MV, Getting S, Keshavarz T. Development of chitosan, pullulan, and alginate based drug-loaded nano-emulsions as a potential malignant melanoma delivery platform. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
15
|
Preparation and biological evaluation of novel 5-Fluorouracil and Carmofur loaded polyethylene glycol / rosin ester nanocarriers as potential anticancer agents and ceramidase inhibitors. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Lei R, Zhou M, Zhang S, Luo J, Qu C, Wang Y, Guo P, Huang R. Potential role of PRKCSH in lung cancer: bioinformatics analysis and a case study of Nano ZnO. NANOSCALE 2022; 14:4495-4510. [PMID: 35254362 DOI: 10.1039/d1nr08133k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
PRKCSH, also known as glucosidase II beta, functions as a contributor to lung tumorigenesis by regulating the cell cycle in a p53-dependent manner under severe environmental stress. However, the prognostic value and molecular mechanisms by which the level of PRKCSH is significantly increased in cancer cells are not clearly understood. Here, we first generated a biological profile of PRKCSH expression changes in cancers by analysing bioinformatic data from cancer databases. We found that higher PRKCSH expression was correlated with a poorer prognosis and greater infiltration of most immune cell types in patients with lung cancer. In particular, PRKCSH expression showed significant negative correlations with the level of STAT6 (r = -0.31, p < 0.001) in lung cancer tissues. We further found that PRKCSH deficiency promoted G2/M arrest in response to zinc oxide nanoparticle (Nano ZnO) treatment in A549 cells. With regard to the mechanism, PRKCSH deficiency may induce STAT6 translocation to the nucleus to activate p53 expression through binding to the p53 promoter region from -365 bp to +126 bp. Eventually, activated p53 contributed to Nano-ZnO-induced G2/M arrest in lung cancer cells. Taken together, our data provide new insights into immunotherapy target choices and the prognostic value of PRKCSH. Since the G2/M cell cycle checkpoint is crucial for lung cancer prognosis, targeting PRKCSH expression to suppress the activation of the STAT6/p53 pathway is a potential therapeutic strategy for managing lung cancer.
Collapse
Affiliation(s)
- Ridan Lei
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| | - Meiling Zhou
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| | - Shusheng Zhang
- Changsha Stomatological Hospital, Changsha, Hunan Province, China.
| | - Jinhua Luo
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| | - Can Qu
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| | - Yin Wang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| | - Peiyu Guo
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| |
Collapse
|
17
|
Atmaca H, Oguz F, Ilhan S. Drug delivery systems for cancer treatment: a review of marine-derived polysaccharides. Curr Pharm Des 2022; 28:1031-1045. [DOI: 10.2174/1381612828666220211153931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/15/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Cancer is a disease characterized by uncontrolled cell proliferation and the spread of cells to other tissues and remains one of the worldwide problems waiting to be solved. There are various treatment strategies for cancer, such as chemotherapy, surgery, radiotherapy, and immunotherapy, although it varies according to its type and stage. Many chemotherapeutic agents have limited clinical use due to lack of efficacy, off-target toxicity, metabolic instability, or poor pharmacokinetics. One possible solution to this high rate of clinical failure is to design drug delivery systems that deliver drugs in a controlled and specific manner and are not toxic to normal cells.
Marine systems contain biodiversity, including components and materials that can be used in biomedical applications and therapy. Biomaterials such as chitin, chitosan, alginate, carrageenan, fucoidan, hyaluronan, agarose, and ulvan obtained from marine organisms have found use in DDSs today. These polysaccharides are biocompatible, non-toxic, biodegradable, and cost-effective, making them ideal raw materials for increasingly complex DDSs with a potentially regulated release. In this review, the contributions of polysaccharides from the marine environment to the development of anticancer drugs in DDSs will be discussed.
Collapse
Affiliation(s)
- Harika Atmaca
- Department of Biology, Faculty of Science and Letters, Manisa Celal Bayar University, Muradiye, Manisa, Turkey
| | - Ferdi Oguz
- Department of Biology, The Institute of Natural and Applied Sciences, Manisa Celal Bayar University, Muradiye, Manisa, Turkey
| | - Suleyman Ilhan
- Department of Biology, Faculty of Science and Letters, Manisa Celal Bayar University, Muradiye, Manisa, Turkey
| |
Collapse
|
18
|
Alves HJ, Gasparrini LJ, Silva FEB, Caciano L, de Muniz GIB, Ballester ELC, Cremonez PA, Arantes MK. Alternative methods for the pilot-scale production and characterization of chitosan nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10977-10987. [PMID: 33106907 DOI: 10.1007/s11356-020-11343-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
This work describes the production/characterization of low molar mass chitosan nanoparticles derived from waste shrimp shells (SSC), as well as from a commercial chitosan (CC). The production of low molar mass nanochitosan employed thermal shock, alternating between 100 °C and ambient temperature, followed by grinding the dry material (SSC and CC) in a ball mill, producing around 500 g of nanochitosan per batch. A highlight of the methodology employed is that it enables nanochitosan to be obtained even from a low quality commercial raw material. All particles had diameters smaller than 223 nm, with an average diameter below 25 nm (determined by DLS), while reductions of molar mass were between 8.4-fold and 13.5-fold. The depolymerization process resulted in a reduction in crystallinity of 38.1 to 25.4% and 55.6 to 25.9% in the CC and SSC samples, respectively. The production of nanochitosans was also confirmed by TEM through the observation of crystalline domains with diameters between 5 and 10 nm. This work perfectly reproduces the results on bench scale from previous research. The simple and inexpensive processes enable easy scale-up, representing an important advance in the production chain of biopolymers. Graphical abstract.
Collapse
Affiliation(s)
- Helton José Alves
- Laboratory of Materials and Renewable Energy (LABMATER), Department of Engineering and Exact, Federal University of Paraná - UFPR, Rua Pioneiro 2153, Jardim Dallas, Palotina, PR, 85950-000, Brazil
| | - Lázaro José Gasparrini
- Laboratory of Materials and Renewable Energy (LABMATER), Department of Engineering and Exact, Federal University of Paraná - UFPR, Rua Pioneiro 2153, Jardim Dallas, Palotina, PR, 85950-000, Brazil
| | - Felipe Eduardo Bueno Silva
- Laboratory of Materials and Renewable Energy (LABMATER), Department of Engineering and Exact, Federal University of Paraná - UFPR, Rua Pioneiro 2153, Jardim Dallas, Palotina, PR, 85950-000, Brazil
| | - Laressa Caciano
- Laboratory of Materials and Renewable Energy (LABMATER), Department of Engineering and Exact, Federal University of Paraná - UFPR, Rua Pioneiro 2153, Jardim Dallas, Palotina, PR, 85950-000, Brazil
| | - Graciela Ines Bolzon de Muniz
- Department of Forest Engineering and Technology, Federal University of Paraná, Av. Pref. Lothario Meissner, 900, Jardim Botânico, Curitiba, PR, 80210-170, Brazil
| | - Eduardo Luis Cupertino Ballester
- Laboratory of Shrimp (LABCAR), Department of Zootechnics, Federal University of Paraná - UFPR, Rua Pioneiro 2153, Jardim Dallas, Palotina, PR, 85950-000, Brazil
| | - Paulo André Cremonez
- Laboratory of Materials and Renewable Energy (LABMATER), Department of Engineering and Exact, Federal University of Paraná - UFPR, Rua Pioneiro 2153, Jardim Dallas, Palotina, PR, 85950-000, Brazil.
| | - Mabel Karina Arantes
- Laboratory of Materials and Renewable Energy (LABMATER), Department of Engineering and Exact, Federal University of Paraná - UFPR, Rua Pioneiro 2153, Jardim Dallas, Palotina, PR, 85950-000, Brazil
| |
Collapse
|
19
|
Xie H, Feng S, Farag MA, Sun P, Shao P. Synergistic cytotoxicity of erianin, a bisbenzyl in the dietetic Chinese herb Dendrobium against breast cancer cells. Food Chem Toxicol 2021; 149:111960. [PMID: 33385512 DOI: 10.1016/j.fct.2020.111960] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/07/2020] [Accepted: 12/27/2020] [Indexed: 10/22/2022]
Abstract
Erianin (ER), a dietary compound extracted from Dendrobium, a traditional Chinese medicinal edible herb, is well recognized for its potential anti-cancer activity. Nevertheless, its limitations, regarding its complex isolation procedure, low yield and low water solubility, limit large scale application. Combinatorial therapeutic regimen that combines several drugs to target different pathways in a characteristically synergistic manner at lower doses of drugs proved effective in several diseases treatment. Besides, new knowledge aimed at improving drug delivery into the intracellular environment is essential. In this study, ER was assessed for its cytotoxic effect in combination with doxorubicin hydrochloride (DOX·HCl) against breast cancer cells. Drug synergy was calculated by using combination index (CI) index and we discovered that they had positive effects. To ensure uniform delivery of both drugs to cells for a desired synergistic action, a dual drug loaded liposomes was developed using thin-film dispersion, and coated by a layer of folate-chitosan. Cytotoxicity and cell proliferation based assays revealed the increase of cell inhibition rate by more than 30% compared with free drugs. Fluorescence imaging revealed that liposomes can aid faster drugs accumulate in cancer cells. The study presented a novel strategy for the treatment of breast cancer.
Collapse
Affiliation(s)
- Hualing Xie
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, PR China
| | - Simin Feng
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, PR China
| | | | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, PR China
| | - Ping Shao
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, PR China.
| |
Collapse
|
20
|
Production, characterization and application of nanocarriers made of polysaccharides, proteins, bio-polyesters and other biopolymers: A review. Int J Biol Macromol 2020; 165:3088-3105. [DOI: 10.1016/j.ijbiomac.2020.10.104] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 01/10/2023]
|
21
|
Vyas M, Simbo DA, Mursalin M, Mishra V, Bashary R, Khatik GL. Drug Delivery Approaches for Doxorubicin in the Management of Cancers. CURRENT CANCER THERAPY REVIEWS 2020. [DOI: 10.2174/1573394716666191216114950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aim:
We aimed to review the drug delivery approaches including a novel drug delivery
system of doxorubicin as an important anticancer drug.
Background:
Doxorubicin (DOX) is widely used against breast, uterine, ovarian, lung and cervical
cancer. It is listed among the essential medicines by WHO and is thus a very important drug
that can be used to fight against cancer. Despite its effectiveness, the use of the drug is limited due
to its dose-dependent toxicity. Several studies based on the DOX have suggested the need for
novel drug delivery formulations in the treatment of malignant and cancerous diseases due to its
cytotoxic nature.
Objectives:
This review focuses on the different formulations of DOX which is a useful drug in the
management of cancers, but associated with toxicity thus these approaches found applicability in
the reduction of its toxicity.
Methods:
We searched the scientific database using cancer, DOX, and different formulations as
the keywords. Here in only peer-reviewed research articles collected which were useful to our
current work.
Results:
This study is based on an examination of the recent advancements of its novel drug delivery
formulations. DOX hydrochloride is the first liposomal anticancer drug, administered via
the intravenous route, and also clinically approved for the treatment of lymphomas, leukemias,
and solid tumors. DOX is prepared into a liposomal formulation that contains polyethylene glycol
(PEG) layer around DOX containing liposome made by pegylation process. DOX also formulated
in nano-formulations which is also discussed herein led to reduced toxicity and increased efficacy.
Conclusion:
In the review, we described the significance of DOX in the form of different delivery
approaches in the management of cancers with a reduction in the associated toxicity.
Collapse
Affiliation(s)
- Manish Vyas
- Department of Ayurveda, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab-144411, India
| | - Daniel A. Simbo
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab-144411, India
| | - Mohd. Mursalin
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab-144411, India
| | - Vijay Mishra
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab-144411, India
| | - Roqia Bashary
- Department of Pharmaceutical Chemistry, Kabul University, Kabul, Afghanistan
| | - Gopal L. Khatik
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab-144411, India
| |
Collapse
|
22
|
Rehman A, Jafari SM, Tong Q, Riaz T, Assadpour E, Aadil RM, Niazi S, Khan IM, Shehzad Q, Ali A, Khan S. Drug nanodelivery systems based on natural polysaccharides against different diseases. Adv Colloid Interface Sci 2020; 284:102251. [PMID: 32949812 DOI: 10.1016/j.cis.2020.102251] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
Drug nanodelivery systems (DNDSs) are fascinated cargos to achieve outstanding therapeutic results of various drugs or natural bioactive compounds owing to their unique structures. The efficiency of several pharmaceutical drugs or natural bioactive ingredients is restricted because of their week bioavailability, poor bioaccessibility and pharmacokinetics after orally pathways. In order to handle such constraints, usage of native/natural polysaccharides (NPLS) in fabrication of DNDSs has gained more popularity in the arena of nanotechnology for controlled drug delivery to enhance safety, biocompatibility, better retention time, bioavailability, lower toxicity and enhanced permeability. The main commonly used NPLS in nanoencapsulation systems include chitosan, pectin, alginates, cellulose, starches, and gums recognized as potential materials for fabrication of cargos. Herein, this review is centered on different polysaccharide-based nanocarriers including nanoemulsions, nanohydrogels, nanoliposomes, nanoparticles and nanofibers, which have already served as encouraging candidates for entrapment of therapeutic drugs as well as for their sustained controlled release. Furthermore, the current article explicitly offers comprehensive details regarding application of NPLS-based nanocarriers encapsulating several drugs intended for the handling of numerous disorders, including diabetes, cancer, HIV, malaria, cardiovascular and respiratory as well as skin diseases.
Collapse
Affiliation(s)
- Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran.
| | - Qunyi Tong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China.
| | - Tahreem Riaz
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
| | - Elham Assadpour
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, Faculty of Food Nutrition and Home Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sobia Niazi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
| | - Qayyum Shehzad
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
| | - Ahmad Ali
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
| | - Sohail Khan
- National Institute of Food Science and Technology, Faculty of Food Nutrition and Home Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
23
|
Adeola HA, Sabiu S, Adekiya TA, Aruleba RT, Aruwa CE, Oyinloye BE. Prospects of nanodentistry for the diagnosis and treatment of maxillofacial pathologies and cancers. Heliyon 2020; 6:e04890. [PMID: 32984600 PMCID: PMC7492852 DOI: 10.1016/j.heliyon.2020.e04890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/31/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Despite the commendable milestones achieved in molecular maxillofacial pathology in the last decade, there remains a paucity of utilization of ancillary nanomolecular tools that complement the omics-based approaches. As the advent of omics science transforms our understanding of tumour biology from a phenomenological to a complex network (systems-oriented) paradigm, several ancillary tools have emerged to improve the scope of individualized medicine. Targeted nano drug delivery systems have significantly reduced toxicity of chemotherapeutic agents in a precise manner. Many conventional cancer therapies are limited in efficacy and this has led to the emergence of nanomedical innovations. Despite the success of nanomedicine, a major challenge that persists is tumour heterogeneity and biological complexity. A good understanding of the interaction between inorganic nanoparticles and the biological systems has led to the development of better tools for individualized medicine. Tools such as the composite organic-inorganic nanoparticles (COINs) and the quantum dots (QD) have significantly improved the identification and quantification of disease biomarkers, histopathological detection methods, as well as improving the clinical translation and utility of these nanomaterials. Nanomedicine has lent credence to several multipronged theranostic applications in medicine, and this has improved the medical practice tremendously. Despite the palpable influence of nanomedicine on the delivery of individualized medical therapies, the term "nanodentistry" remains in the background without much hype, albeit some progress has been made in this area. Hence, this review discusses the potential and challenges of nanodentistry in the diagnosis and treatment of maxillofacial pathologies, particularly cancer in resource-limited settings.
Collapse
Affiliation(s)
- Henry A. Adeola
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, University of the Western Cape and Tygerberg Hospital, Cape Town South Africa
- Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Technology, Durban University of Technology, Steve Biko Campus, Steve Biko Road, Berea, Durban 4001, South Africa
| | - Tayo A. Adekiya
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Raphael T. Aruleba
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town 7701, South Africa
| | - Christiana E. Aruwa
- Department of Biotechnology and Food Technology, Durban University of Technology, Steve Biko Campus, Steve Biko Road, Berea, Durban 4001, South Africa
| | - Babatunji E. Oyinloye
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, Faculty of Sciences, Afe Babalola University, P.M.B 5454 Ado Ekiti 360001, Nigeria
| |
Collapse
|
24
|
Tan YY, Yap PK, Xin Lim GL, Mehta M, Chan Y, Ng SW, Kapoor DN, Negi P, Anand K, Singh SK, Jha NK, Lim LC, Madheswaran T, Satija S, Gupta G, Dua K, Chellappan DK. Perspectives and advancements in the design of nanomaterials for targeted cancer theranostics. Chem Biol Interact 2020; 329:109221. [PMID: 32768398 DOI: 10.1016/j.cbi.2020.109221] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/18/2020] [Accepted: 08/03/2020] [Indexed: 12/23/2022]
Abstract
Cancer continues to be one of the most challenging diseases to be treated and is one of the leading causes of deaths around the globe. Cancers account for 13% of all deaths each year, with cancer-related mortality expected to rise to 13.1 million by the year 2030. Although, we now have a large library of chemotherapeutic agents, the problem of non-selectivity remains the biggest drawback, as these substances are toxic not only to cancerous cells, but also to other healthy cells in the body. The limitations with chemotherapy and radiation have led to the discovery and development of novel strategies for safe and effective treatment strategies to manage the menace of cancer. Researchers have long justified and have shed light on the emergence of nanotechnology as a potential area for cancer therapy and diagnostics, whereby, nanomaterials are used primarily as nanocarriers or as delivery agents for anticancer drugs due to their tumor targeting properties. Furthermore, nanocarriers loaded with chemotherapeutic agents also overcome biological barriers such as renal and hepatic clearances, thus improving therapeutic efficacy with lowered morbidity. Theranostics, which is the combination of rationally designed nanomaterials with cancer-targeting moieties, along with protective polymers and imaging agents has become one of the core keywords in cancer research. In this review, we have highlighted the potential of various nanomaterials for their application in cancer therapy and imaging, including their current state and clinical prospects. Theranostics has successfully paved a path to a new era of drug design and development, in which nanomaterials and imaging contribute to a large variety of cancer therapies and provide a promising future in the effective management of various cancers. However, in order to meet the therapeutic needs, theranostic nanomaterials must be designed in such a way, that take into account the pharmacokinetic and pharmacodynamics properties of the drug for the development of effective carcinogenic therapy.
Collapse
Affiliation(s)
- Yoke Ying Tan
- School of Health Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Pui Khee Yap
- School of Health Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Griselda Loo Xin Lim
- School of Health Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Meenu Mehta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Yinghan Chan
- School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sin Wi Ng
- School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Deepak N Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No.32-34 Knowledge Park III Greater Noida, Uttar Pradesh, 201310, India
| | - Lay Cheng Lim
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Saurabh Satija
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura Mahal Road, 302017, Jaipur, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, The University of Newcastle (UoN), Callaghan, NSW, 2308, Australia.
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
25
|
Malla RR, Kumari S, Kgk D, Momin S, Nagaraju GP. Nanotheranostics: Their role in hepatocellular carcinoma. Crit Rev Oncol Hematol 2020; 151:102968. [DOI: 10.1016/j.critrevonc.2020.102968] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/24/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
|
26
|
Advances in anti-breast cancer drugs and the application of nano-drug delivery systems in breast cancer therapy. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101662] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Chitosan Nanoparticles for Therapy and Theranostics of Hepatocellular Carcinoma (HCC) and Liver-Targeting. NANOMATERIALS 2020; 10:nano10050870. [PMID: 32365938 PMCID: PMC7279387 DOI: 10.3390/nano10050870] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/24/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
Abstract
Chitosan nanoparticles are well-known delivery systems widely used as polymeric carriers in the field of nanomedicine. Chitosan is a carbohydrate of natural origin: it is a biodegradable, biocompatible, mucoadhesive, polycationic polymer and it is endowed with penetration enhancer properties. Furthermore, it can be easily derivatized. Hepatocellular carcinoma (HCC) represents a remarkable health problem because current therapies, that include surgery, liver transplantation, trans-arterial embolization, chemoembolization and chemotherapy, present significant limitations due to the high risk of recurrence, to a lack of drug selectivity and to other serious side effects. Therefore, there is the need for new therapeutic strategies and for improving the liver-targeting to HCC. Nanomedicine consists in the use of nanoscale carriers as delivery systems to target and deliver drugs and/or diagnostic agents to specific organs or tissues. Chitosan and its derivatives can be successfully used in the preparation of nanoparticles that, for their peculiar surface-properties, can specifically interact with liver tumor, by passive and active targeting. This review concerns the use of chitosan nanoparticles for the therapy and theranostics of HCC and liver-targeting.
Collapse
|
28
|
Ruman U, Fakurazi S, Masarudin MJ, Hussein MZ. Nanocarrier-Based Therapeutics and Theranostics Drug Delivery Systems for Next Generation of Liver Cancer Nanodrug Modalities. Int J Nanomedicine 2020; 15:1437-1456. [PMID: 32184597 PMCID: PMC7060777 DOI: 10.2147/ijn.s236927] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
The development of therapeutics and theranostic nanodrug delivery systems have posed a challenging task for the current researchers due to the requirement of having various nanocarriers and active agents for better therapy, imaging, and controlled release of drugs efficiently in one platform. The conventional liver cancer chemotherapy has many negative effects such as multiple drug resistance (MDR), high clearance rate, severe side effects, unwanted drug distribution to the specific site of liver cancer and low concentration of drug that finally reaches liver cancer cells. Therefore, it is necessary to develop novel strategies and novel nanocarriers that will carry the drug molecules specific to the affected cancerous hepatocytes in an adequate amount and duration within the therapeutic window. Therapeutics and theranostic systems have advantages over conventional chemotherapy due to the high efficacy of drug loading or drug encapsulation efficiency, high cellular uptake, high drug release, and minimum side effects. These nanocarriers possess high drug accumulation in the tumor area while minimizing toxic effects on healthy tissues. This review focuses on the current research on nanocarrier-based therapeutics and theranostic drug delivery systems excluding the negative consequences of nanotechnology in the field of drug delivery systems. However, clinical developments of theranostics nanocarriers for liver cancer are considered outside of the scope of this article. This review discusses only the recent developments of nanocarrier-based drug delivery systems for liver cancer therapy and diagnosis. The negative consequences of individual nanocarrier in the drug delivery system will also not be covered in this review.
Collapse
Affiliation(s)
- Umme Ruman
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
| | - Sharida Fakurazi
- Laboratory of Vaccine and Immunotherapeutics, Institute of Bioscience Universiti, Putra43400, Malaysia
- Department of Human Anatomy, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
| | - Mas Jaffri Masarudin
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
- Laboratory of Vaccine and Immunotherapeutics, Institute of Bioscience Universiti, Putra43400, Malaysia
- Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
| |
Collapse
|
29
|
Zienkiewicz-Strzałka M, Deryło-Marczewska A, Skorik YA, Petrova VA, Choma A, Komaniecka I. Silver Nanoparticles on Chitosan/Silica Nanofibers: Characterization and Antibacterial Activity. Int J Mol Sci 2019; 21:E166. [PMID: 31881739 PMCID: PMC6981428 DOI: 10.3390/ijms21010166] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022] Open
Abstract
A simple, low-cost, and reproducible method for creating materials with even silver nanoparticles (AgNP) dispersion was established. Chitosan nanofibers with silica phase (CS/silica) were synthesized by an electrospinning technique to obtain highly porous 3D nanofiber scaffolds. Silver nanoparticles in the form of a well-dispersed metallic phase were synthesized in an external preparation step and embedded in the CS/silica nanofibers by deposition for obtaining chitosan nanofibers with silica phase decorated by silver nanoparticles (Ag/CS/silica). The antibacterial activity of investigated materials was tested using Gram-positive and Gram-negative bacteria. The results were compared with the properties of the nanocomposite without silver nanoparticles and a colloidal solution of AgNP. The minimum inhibitory concentration (MIC) of obtained AgNP against Staphylococcus aureus (S. aureus) ATCC25923 and Escherichia coli (E. coli) ATCC25922 was determined. The physicochemical characterization of Ag/CS/silica nanofibers using various analytical techniques, as well as the applicability of these techniques in the characterization of this type of nanocomposite, is presented. The resulting Ag/CS/silica nanocomposites (Ag/CS/silica nanofibers) were characterized by small angle X-ray scattering (SAXS), X-ray diffraction (XRD), and atomic force microscopy (AFM). The morphology of the AgNP in solution, both initial and extracted from composite, the properties of composites, the size, and crystallinity of the nanoparticles, and the characteristics of the chitosan fibers were determined by electron microscopy (SEM and TEM).
Collapse
Affiliation(s)
- Małgorzata Zienkiewicz-Strzałka
- Department of Physical Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University, sq. Maria Curie-Skłodowska 3, 20-031 Lublin, Poland;
| | - Anna Deryło-Marczewska
- Department of Physical Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University, sq. Maria Curie-Skłodowska 3, 20-031 Lublin, Poland;
| | - Yury A. Skorik
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi pr. VO 31, St. Petersburg 199004, Russia;
| | - Valentina A. Petrova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi pr. VO 31, St. Petersburg 199004, Russia;
| | - Adam Choma
- Department of Genetics and Microbiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (A.C.); (I.K.)
| | - Iwona Komaniecka
- Department of Genetics and Microbiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (A.C.); (I.K.)
| |
Collapse
|
30
|
Synergy of NUP98-HOXA10 Fusion Gene and NrasG12D Mutation Preserves the Stemness of Hematopoietic Stem Cells on Culture Condition. Cells 2019; 8:cells8090951. [PMID: 31443434 PMCID: PMC6770072 DOI: 10.3390/cells8090951] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/08/2019] [Accepted: 08/16/2019] [Indexed: 12/21/2022] Open
Abstract
Natural hematopoietic stem cells (HSC) are susceptible and tend to lose stemness, differentiate, or die on culture condition in vitro, which adds technical challenge for maintaining bona fide HSC-like cells, if ever generated, in protocol screening from pluripotent stem cells. It remains largely unknown whether gene-editing of endogenous genes can genetically empower HSC to endure the culture stress and preserve stemness. In this study, we revealed that both NUP98-HOXA10HD fusion and endogenous Nras mutation modifications (NrasG12D) promoted the engraftment competitiveness of HSC. Furthermore, the synergy of these two genetic modifications endowed HSC with super competitiveness in vivo. Strikingly, single NAV-HSC successfully maintained its stemness and showed robust multi-lineage engraftments after undergoing the in vitro culture. Mechanistically, NUP98-HOXA10HD fusion and NrasG12D mutation distinctly altered multiple pathways involving the cell cycle, cell division, and DNA replication, and distinctly regulated stemness-related genes including Hoxa9, Prdm16, Hoxb4, Trim27, and Smarcc1 in the context of HSC. Thus, we develop a super-sensitive transgenic model reporting the existence of HSC at the single cell level on culture condition, which could be beneficial for protocol screening of bona fide HSC regeneration from pluripotent stem cells in vitro.
Collapse
|
31
|
Ma Z, Zhang B, Fan Y, Wang M, Kebebe D, Li J, Liu Z. Traditional Chinese medicine combined with hepatic targeted drug delivery systems: A new strategy for the treatment of liver diseases. Biomed Pharmacother 2019; 117:109128. [PMID: 31234023 DOI: 10.1016/j.biopha.2019.109128] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 12/18/2022] Open
Abstract
Liver diseases are clinically common and present a substantial public health issue. Many of the currently available drugs for the treatment of liver diseases suffer from limitations that include low hepatic distribution, lack of target effects, poor in vivo stability and adverse effects on other organs. Consequently, conventional treatment of hepatic diseases is ineffective. TCM is commonly used in the treatment of liver diseases worldwide, particularly in China, and has advantages over conventional therapy. HTDDS can be designed to enhance clinical efficacy in the treatment of liver diseases. We have conducted an extensive review of 335 studies reported since 1964. These included about 166 references involving the treatment of liver diseases with TCM (covering active components of TCM, single TCM and Chinese medicine formulas), 169 reports on HTDDS and background studies on liver-related diseases. Here we review the long history of TCM in the treatment of liver diseases.We have also reviewed the status of studies on active components of TCM using nanotechnology-based targeted delivery systems to provide support for further research and development of TCM-based targeted preparations for the treatment of liver disease.
Collapse
Affiliation(s)
- Zhe Ma
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Bing Zhang
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yuqi Fan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Meng Wang
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Dereje Kebebe
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; School of Pharmacy, Institute of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Jiawei Li
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Zhidong Liu
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
32
|
Ma Z, Fan Y, Wu Y, Kebebe D, Zhang B, Lu P, Pi J, Liu Z. Traditional Chinese medicine-combination therapies utilizing nanotechnology-based targeted delivery systems: a new strategy for antitumor treatment. Int J Nanomedicine 2019; 14:2029-2053. [PMID: 30962686 PMCID: PMC6435121 DOI: 10.2147/ijn.s197889] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cancer is a major public health problem, and is now the world’s leading cause of death. Traditional Chinese medicine (TCM)-combination therapy is a new treatment approach and a vital therapeutic strategy for cancer, as it exhibits promising antitumor potential. Nano-targeted drug-delivery systems have remarkable advantages and allow the development of TCM-combination therapies by systematically controlling drug release and delivering drugs to solid tumors. In this review, the anticancer activity of TCM compounds is introduced. The combined use of TCM for antitumor treatment is analyzed and summarized. These combination therapies, using a single nanocarrier system, namely codelivery, are analyzed, issues that require attention are determined, and future perspectives are identified. We carried out a systematic review of >280 studies published in PubMed since 1985 (no patents involved), in order to provide a few basic considerations in terms of the design principles and management of targeted nanotechnology-based TCM-combination therapies.
Collapse
Affiliation(s)
- Zhe Ma
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ;
| | - Yuqi Fan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yumei Wu
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ;
| | - Dereje Kebebe
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,School of Pharmacy, Institute of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Bing Zhang
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ;
| | - Peng Lu
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ;
| | - Jiaxin Pi
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ;
| | - Zhidong Liu
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ;
| |
Collapse
|
33
|
Li C, Zhou D, Jiang X, Liu M, Tang H, Mei Z. Identifying hepatocellular carcinoma-related hub genes by bioinformatics analysis and CYP2C8 is a potential prognostic biomarker. Gene 2019; 698:9-18. [PMID: 30825595 DOI: 10.1016/j.gene.2019.02.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 02/18/2019] [Accepted: 02/23/2019] [Indexed: 12/18/2022]
Abstract
Hepatocellular carcinoma (HCC) is one type of the most common malignancies. However, the underlying molecular mechanisms involved in the development of HCC remain unknown. To identify the candidate genes in the progression of HCC, gene expression profiles GSE14520, GSE54236, GSE57957 and GSE64041 were downloaded from the Gene Expression Omnibus database (GEO). A total of 405 tumor and 399 para-carcinoma samples from patients with HCC were examined to identify the differentially expressed genes (DEGs), followed by function enrichment analyses including Gene Ontology (GO) functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. A total of 78 DEGs were screened, including 62 downregulated genes and 16 upregulated genes. Subsequently, the protein-protein interaction network (PPI) was constructed using the Search Tool for Retrieval of Interacting Genes (STRING) database. The module analysis and Hub genes validation were performed using Cytoscape software. Hierarchical clustering of hub genes was evaluated using UCSC Cancer Genomics Browser. Survival analyses of Hub genes were performed using Kaplan Meier Plotter database. Genes specifically expressed in the liver were analyzed using GENEVESTIGATOR database. CYP2C8 was identified as one of the most promising molecules among all the candidate genes. The expression profile of CYP2C8 in HCC was analyzed using ONCOMINE and UALCAN database. The expression levels of CYP2C8 in HCC samples and hepatoma cells were verified using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry analysis. In summary, DEGs and hub genes were identified in the present study, which provides novel insight on the development of HCC. CYP2C8 was downregulated in HCC and could be a potential prognostic biomarker.
Collapse
Affiliation(s)
- Chuanfei Li
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Di Zhou
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaoling Jiang
- Tongnan District People's Hospital, The First Affiliated Hospital of Chongqing Medical University, Chongqing 402660, China
| | - Minhui Liu
- Department of Infectious Diseases, Jinhua Hospital, Zhejiang University School of Medicine. Jinhua, Zhejiang Province 321000, China
| | - Hui Tang
- Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases, Chinese Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Zhechuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
34
|
Potential of siRNA-albumin complex against cancer. Chem Biol Interact 2018; 295:93-96. [PMID: 29709588 DOI: 10.1016/j.cbi.2018.04.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/20/2018] [Accepted: 04/24/2018] [Indexed: 02/06/2023]
|