1
|
Daniels Gatward LF, Kennard MR, Smith LIF, King AJF. The use of mice in diabetes research: The impact of physiological characteristics, choice of model and husbandry practices. Diabet Med 2021; 38:e14711. [PMID: 34614258 DOI: 10.1111/dme.14711] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/04/2021] [Indexed: 12/24/2022]
Abstract
Diabetes mellitus is characterised by hyperglycaemia, which results from an absolute or relative lack of insulin. Chronic and acute hyperglycaemia are associated with a range of health complications and an overall increased risk of mortality. Mouse models are vital in understanding the pathogenesis of this disease and its complications, as well as for developing new diabetes therapeutics. However, for experimental questions to be suitably tested, it is critical that factors inherent to the animal model are considered, as these can have profound impacts on experimental outcome, data reproducibility and robustness. In this review, we discuss key considerations relating to model choice, physiological characteristics (such as age, sex and genetic background) and husbandry practices and explore the impact of these on common experimental readouts used in preclinical diabetes research.
Collapse
|
2
|
Moon JH, Kim H, Kim H, Park J, Choi W, Choi W, Hong HJ, Ro HJ, Jun S, Choi SH, Banerjee RR, Shong M, Cho NH, Kim SK, German MS, Jang HC, Kim H. Lactation improves pancreatic β cell mass and function through serotonin production. Sci Transl Med 2021; 12:12/541/eaay0455. [PMID: 32350130 DOI: 10.1126/scitranslmed.aay0455] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 12/23/2019] [Accepted: 03/04/2020] [Indexed: 12/18/2022]
Abstract
Pregnancy imposes a substantial metabolic burden on women through weight gain and insulin resistance. Lactation reduces the risk of maternal postpartum diabetes, but the mechanisms underlying this benefit are unknown. Here, we identified long-term beneficial effects of lactation on β cell function, which last for years after the cessation of lactation. We analyzed metabolic phenotypes including β cell characteristics in lactating and non-lactating humans and mice. Lactating and non-lactating women showed comparable glucose tolerance at 2 months after delivery, but after a mean of 3.6 years, glucose tolerance in lactated women had improved compared to non-lactated women. In humans, the disposition index, a measure of insulin secretory function of β cells considering the degree of insulin sensitivity, was higher in lactated women at 3.6 years after delivery. In mice, lactation improved glucose tolerance and increased β cell mass at 3 weeks after delivery. Amelioration of glucose tolerance and insulin secretion were maintained up to 4 months after delivery in lactated mice. During lactation, prolactin induced serotonin production in β cells. Secreted serotonin stimulated β cell proliferation through serotonin receptor 2B in an autocrine and paracrine manner. In addition, intracellular serotonin acted as an antioxidant to mitigate oxidative stress and improved β cell survival. Together, our results suggest that serotonin mediates the long-term beneficial effects of lactation on female metabolic health by increasing β cell proliferation and reducing oxidative stress in β cells.
Collapse
Affiliation(s)
- Joon Ho Moon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hyeongseok Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.,Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Hyunki Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Jungsun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Wonsuk Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Wongun Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Hyun Jung Hong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Hyun-Joo Ro
- Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Korea.,Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Sangmi Jun
- Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Korea.,Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Sung Hee Choi
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Ronadip R Banerjee
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama School of Medicine, Birmingham, AL 35294, USA
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Nam Han Cho
- Department of Preventive Medicine, Ajou University School of Medicine, Suwon 16499, Korea
| | - Seung K Kim
- Department of Developmental Biology and Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael S German
- Diabetes Center, Hormone Research Institute and Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Hak Chul Jang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea.
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.
| |
Collapse
|
3
|
β Cell GHS-R Regulates Insulin Secretion and Sensitivity. Int J Mol Sci 2021; 22:ijms22083950. [PMID: 33920473 PMCID: PMC8069226 DOI: 10.3390/ijms22083950] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 12/14/2022] Open
Abstract
Growth hormone secretagogue receptor (GHS-R) is widely known to regulate food intake and adiposity, but its role in glucose homeostasis is unclear. In this study, we investigated the expression of GHS-R in mouse pancreatic islets and its role in glycemic regulation. We used Ghsr-IRES-tauGFP mice, with Green Fluorescent Protein (GFP) as a surrogate for GHS-R, to demonstrate the GFP co-localization with insulin and glucagon expression in pancreatic islets, confirming GHS-R expression in β and α cells. We then generated β-cell-specific GHSR-deleted mice with MIP-Cre/ERT and validated that GHS-R suppression was restricted to the pancreatic islets. MIP-Cre/ERT;Ghsrf/f mice showed normal energy homeostasis with similar body weight, body composition, and indirect calorimetry profile. Interestingly, MIP-Cre/ERT;Ghsrf/f mice exhibited an impressive phenotype in glucose homeostasis. Compared to controls, MIP-Cre/ERT;Ghsrf/f mice showed lower fasting blood glucose and insulin; reduced first-phase insulin secretion during a glucose tolerance test (GTT) and glucose-stimulated insulin secretion (GSIS) test in vivo. The isolated pancreatic islets of MIP-Cre/ERT;Ghsrf/f mice also showed reduced insulin secretion during GSIS ex vivo. Further, MIP-Cre/ERT;Ghsrf/f mice exhibited improved insulin sensitivity during insulin tolerance tests (ITT). Overall, our results confirmed GHS-R expression in pancreatic β and α cells; GHS-R cell-autonomously regulated GSIS and modulated systemic insulin sensitivity. In conclusion, β cell GHS-R was an important regulator of glucose homeostasis, and GHS-R antagonists may have therapeutic potential for Type 2 Diabetes.
Collapse
|
4
|
Sandovici I, Hammerle CM, Virtue S, Vivas-Garcia Y, Izquierdo-Lahuerta A, Ozanne SE, Vidal-Puig A, Medina-Gómez G, Constância M. Autocrine IGF2 programmes β-cell plasticity under conditions of increased metabolic demand. Sci Rep 2021; 11:7717. [PMID: 33833312 PMCID: PMC8032793 DOI: 10.1038/s41598-021-87292-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
When exposed to nutrient excess and insulin resistance, pancreatic β-cells undergo adaptive changes in order to maintain glucose homeostasis. The role that growth control genes, highly expressed in early pancreas development, might exert in programming β-cell plasticity in later life is a poorly studied area. The imprinted Igf2 (insulin-like growth factor 2) gene is highly transcribed during early life and has been identified in recent genome-wide association studies as a type 2 diabetes susceptibility gene in humans. Hence, here we investigate the long-term phenotypic metabolic consequences of conditional Igf2 deletion in pancreatic β-cells (Igf2βKO) in mice. We show that autocrine actions of IGF2 are not critical for β-cell development, or for the early post-natal wave of β-cell remodelling. Additionally, adult Igf2βKO mice maintain glucose homeostasis when fed a chow diet. However, pregnant Igf2βKO females become hyperglycemic and hyperinsulinemic, and their conceptuses exhibit hyperinsulinemia and placentomegalia. Insulin resistance induced by congenital leptin deficiency also renders Igf2βKO females more hyperglycaemic compared to leptin-deficient controls. Upon high-fat diet feeding, Igf2βKO females are less susceptible to develop insulin resistance. Based on these findings, we conclude that in female mice, autocrine actions of β-cell IGF2 during early development determine their adaptive capacity in adult life.
Collapse
Affiliation(s)
- Ionel Sandovici
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK.
- Department of Obstetrics and Gynaecology and National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge, CB2 0SW, UK.
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK.
| | - Constanze M Hammerle
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK.
- Department of Obstetrics and Gynaecology and National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge, CB2 0SW, UK.
- Novo Nordisk A/S, 2880, Bagsværd, Denmark.
| | - Sam Virtue
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Yurena Vivas-Garcia
- Área de Bioquímica y Biología Molecular, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, 28922, Alcorcón, Madrid, Spain
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Adriana Izquierdo-Lahuerta
- Área de Bioquímica y Biología Molecular, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, 28922, Alcorcón, Madrid, Spain
| | - Susan E Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
- Welcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
- Cambridge University Nanjing Centre of Technology and Innovation, Jiangbei Area, Nanjing, People's Republic of China
| | - Gema Medina-Gómez
- Área de Bioquímica y Biología Molecular, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, 28922, Alcorcón, Madrid, Spain
| | - Miguel Constância
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK.
- Department of Obstetrics and Gynaecology and National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge, CB2 0SW, UK.
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK.
| |
Collapse
|
5
|
Moon JH, Kim YG, Kim K, Osonoi S, Wang S, Saunders DC, Wang J, Yang K, Kim H, Lee J, Jeong JS, Banerjee RR, Kim SK, Wu Y, Mizukami H, Powers AC, German MS, Kim H. Serotonin Regulates Adult β-Cell Mass by Stimulating Perinatal β-Cell Proliferation. Diabetes 2020; 69:205-214. [PMID: 31806625 PMCID: PMC6971487 DOI: 10.2337/db19-0546] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 11/14/2019] [Indexed: 12/21/2022]
Abstract
A sufficient β-cell mass is crucial for preventing diabetes, and perinatal β-cell proliferation is important in determining the adult β-cell mass. However, it is not yet known how perinatal β-cell proliferation is regulated. Here, we report that serotonin regulates β-cell proliferation through serotonin receptor 2B (HTR2B) in an autocrine/paracrine manner during the perinatal period. In β-cell-specific Tph1 knockout (Tph1 βKO) mice, perinatal β-cell proliferation was reduced along with the loss of serotonin production in β-cells. Adult Tph1 βKO mice exhibited glucose intolerance with decreased β-cell mass. Disruption of Htr2b in β-cells also resulted in decreased perinatal β-cell proliferation and glucose intolerance in adulthood. Growth hormone (GH) was found to induce serotonin production in β-cells through activation of STAT5 during the perinatal period. Thus, our results indicate that GH-GH receptor-STAT5-serotonin-HTR2B signaling plays a critical role in determining the β-cell mass by regulating perinatal β-cell proliferation, and defects in this pathway affect metabolic phenotypes in adults.
Collapse
Affiliation(s)
- Joon Ho Moon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Yeong Gi Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Kyuho Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Sho Osonoi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shuang Wang
- Institute of Genome Engineered Animal Models for Human Disease and National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, Liaoning, China
| | - Diane C Saunders
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Juehu Wang
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Diabetes Center and Hormone Research Institute, University of California, San Francisco, San Francisco, CA
| | - Katherine Yang
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Diabetes Center and Hormone Research Institute, University of California, San Francisco, San Francisco, CA
| | - Hyeongseok Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, Korea
| | - Junguee Lee
- Department of Pathology, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Daejeon, Korea
| | - Ji-Seon Jeong
- Center for Bioanalysis, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, Daejeon, Korea
| | - Ronadip R Banerjee
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama School of Medicine, Birmingham, AL
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Palo Alto, CA
| | - Yingjie Wu
- Institute of Genome Engineered Animal Models for Human Disease and National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, Liaoning, China
- Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn Mount Sinai School of Medicine, New York, NY
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Alvin C Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- VA Tennessee Valley Healthcare System, Nashville, TN
| | - Michael S German
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Diabetes Center and Hormone Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| |
Collapse
|
6
|
Smith LIF, Hill TG, Bowe JE. Generating Beta-Cell-Specific Transgenic Mice Using the Cre-Lox System. Methods Mol Biol 2020; 2128:181-205. [PMID: 32180194 DOI: 10.1007/978-1-0716-0385-7_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Beta-cell-specific transgenic mice provide an invaluable model for dissecting the direct signaling mechanisms involved in regulating beta-cell structure and function. Furthermore, generating novel transgenic models is now easier and more cost-effective than ever, thanks to exciting novel approaches such as CRISPR.Here, we describe the commonly used approaches for generating and maintaining beta-cell-specific transgenic models and some of the considerations involved in their use. This includes the use of different beta-cell-specific promoters (e.g., pancreatic and duodenal homeobox factor 1 (Pdx1), rat insulin 2 promoter (RIP), and mouse insulin 1 promoter (MIP)) to drive site-specific recombinase technology. Important considerations during selection include level and uniformity of expression in the beta-cell population, ectopic transgene expression, and the use of inducible models.This chapter provides a guide to the procurement, generation, and maintenance of a beta-cell-specific transgene colony from preexisting Cre and loxP mouse strains, providing methods for crossbreeding and genotyping, as well as subsequent maintenance and, in the case of inducible models, transgenic induction.
Collapse
Affiliation(s)
- Lorna I F Smith
- Department of Diabetes, School of Life Course Sciences, King's College London, London, UK.
| | - Thomas G Hill
- Department of Diabetes, School of Life Course Sciences, King's College London, London, UK
| | - James E Bowe
- Department of Diabetes, School of Life Course Sciences, King's College London, London, UK
| |
Collapse
|
7
|
Bowe JE, Hill TG, Hunt KF, Smith LI, Simpson SJ, Amiel SA, Jones PM. A role for placental kisspeptin in β cell adaptation to pregnancy. JCI Insight 2019; 4:124540. [PMID: 31619585 PMCID: PMC6824306 DOI: 10.1172/jci.insight.124540] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/11/2019] [Indexed: 12/19/2022] Open
Abstract
During pregnancy the maternal pancreatic islets of Langerhans undergo adaptive changes to compensate for gestational insulin resistance. Kisspeptin has been shown to stimulate insulin release, through its receptor, GPR54. The placenta releases high levels of kisspeptin into the maternal circulation, suggesting a role in modulating the islet adaptation to pregnancy. In the present study we show that pharmacological blockade of endogenous kisspeptin in pregnant mice resulted in impaired glucose homeostasis. This glucose intolerance was due to a reduced insulin response to glucose as opposed to any effect on insulin sensitivity. A β cell–specific GPR54-knockdown mouse line was found to exhibit glucose intolerance during pregnancy, with no phenotype observed outside of pregnancy. Furthermore, in pregnant women circulating kisspeptin levels significantly correlated with insulin responses to oral glucose challenge and were significantly lower in women with gestational diabetes (GDM) compared with those without GDM. Thus, kisspeptin represents a placental signal that plays a physiological role in the islet adaptation to pregnancy, maintaining maternal glucose homeostasis by acting through the β cell GPR54 receptor. Our data suggest reduced placental kisspeptin production, with consequent impaired kisspeptin-dependent β cell compensation, may be a factor in the development of GDM in humans. Placental kisspeptin regulates islet adaptation to pregnancy that is necessary for preventing gestational diabetes in mice and humans.
Collapse
|
8
|
Stancill JS, Osipovich AB, Cartailler JP, Magnuson MA. Transgene-associated human growth hormone expression in pancreatic β-cells impairs identification of sex-based gene expression differences. Am J Physiol Endocrinol Metab 2019; 316:E196-E209. [PMID: 30532991 PMCID: PMC6397359 DOI: 10.1152/ajpendo.00229.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fluorescent protein reporter genes are widely used to identify and sort murine pancreatic β-cells. In this study, we compared use of the MIP-GFP transgene, which exhibits aberrant expression of human growth hormone (hGH), with a newly derived Ins2Apple allele that lacks hGH expression on the expression of sex-specific genes. β-Cells from MIP-GFP transgenic mice exhibit changes in the expression of 7,733 genes, or greater than half of their transcriptome, compared with β-cells from Ins2Apple/+ mice. To determine how these differences might affect a typical differential gene expression study, we analyzed the effect of sex on gene expression using both reporter lines. Six hundred fifty-seven differentially expressed genes were identified between male and female β-cells containing the Ins2Apple allele. Female β-cells exhibit higher expression of Xist, Tmed9, Arpc3, Eml2, and several islet-enriched transcription factors, including Nkx2-2 and Hnf4a, whereas male β-cells exhibited a generally higher expression of genes involved in cell cycle regulation. In marked contrast, the same male vs. female comparison of β-cells containing the MIP-GFP transgene revealed only 115 differentially expressed genes, and comparison of the 2 lists of differentially expressed genes revealed only 17 that were common to both analyses. These results indicate that 1) male and female β-cells differ in their expression of key transcription factors and cell cycle regulators and 2) the MIP-GFP transgene may attenuate sex-specific differences that distinguish male and female β-cells, thereby impairing the identification of sex-specific variations.
Collapse
Affiliation(s)
- Jennifer S Stancill
- Department of Cell and Developmental Biology, Vanderbilt University , Nashville, Tennessee
- Center for Stem Cell Biology, Vanderbilt University , Nashville, Tennessee
| | - Anna B Osipovich
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
- Center for Stem Cell Biology, Vanderbilt University , Nashville, Tennessee
| | | | - Mark A Magnuson
- Department of Cell and Developmental Biology, Vanderbilt University , Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
- Center for Stem Cell Biology, Vanderbilt University , Nashville, Tennessee
| |
Collapse
|
9
|
Kayacan Y, Yazar H, Cerit G, Ghojebeigloo BE. A new oxidative stress indicator: Effect of 5-hydroxytryptophan on thiol-disulfide homeostasis in exercise. Nutrition 2019; 63-64:114-119. [PMID: 30939385 DOI: 10.1016/j.nut.2019.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The aim of the present study was to evaluate the relationship between exercise and both 5-hydroxytryptophan and oxidative stress using thiol-disulfide homeostasis via what is likely a novel biomarker. METHODS Male albino Wistar rats (n = 32) were randomly divided into four groups as follows: control, exercise group, 5-hydroxytryptophan group (5H), and 5-HTP + exercise group (5Hex). Exercise and 5-HTP administration (25mg/kg per d) were performed 5d/wk for 10 wk. After completion of the experimental protocol, to determine oxidative stress parameters, serum total thiol and native thiol concentrations were measured. Dynamic disulfide status, reduced thiol, oxidized thiol (OT), and thiol oxidation reduction percentage ratios were compared between the groups. The methods used in the present study to measure dynamic thiol-disulfide homeostasis as calorimetric and duplex quantities were developed in 2014. These new methods are simple, reliable, and sensitive, with both high linearity and repeatability. RESULTS Compared with the control group, serum dynamic disulfide levels were significantly lower in the 5H group and highest in the control group. The lowest OT and the highest reduced thiol rates were determined to be in the 5H group. The highest OT value was found in the 5Hex group. Thiol oxidation reduction values were found to be highest in the 5H group and lowest in the 5Hex group. CONCLUSIONS Both 5-HTP and moderate exercise seem to be significantly effective in inhibiting oxidative damage. In addition, the new oxidative stress measurement method used in this study is a promising practical and useful method to evaluate and improve the performance of athletes.
Collapse
Affiliation(s)
- Yildirim Kayacan
- Ondokuz Mayıs University, Faculty of Yasar Dogu Sports Sciences, Samsun, Turkey.
| | - Hayrullah Yazar
- Sakarya University Faculty of Medicine, Department of Medical Biochemistry, Sakarya, Turkey
| | - Günay Cerit
- Ondokuz Mayıs University, Faculty of Yasar Dogu Sports Sciences, Samsun, Turkey
| | | |
Collapse
|
10
|
Kim H, Kim YG, Choi W, Moon JH, Hwang I, Kim K, Yadav VK, Karsenty G, Jeong JS, Kim H. Generation of a highly efficient and tissue-specific tryptophan hydroxylase 1 knockout mouse model. Sci Rep 2018; 8:17642. [PMID: 30518775 PMCID: PMC6281741 DOI: 10.1038/s41598-018-36097-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022] Open
Abstract
Recent studies on tissue-autonomous serotonin (5-hydroxytryptamine [5-HT]) function have identified new roles for 5-HT in peripheral organs. Most of these studies were performed by crossing mice carrying the Tph1tm1Kry allele with tissue specific Cre mice. In the present study, we found that 5-HT production was not completely abolished in Tph1tm1Kry KO mice. The residual 5-HT production in Tph1tm1Kry KO mice is attributed to the expression of a truncated form of TPH1 containing the catalytic domain. Hence, in an effort to obtain mice with a Tph1 null phenotype, we generated mice harboring a new Tph1 floxed allele, Tph1tm1c, targeting exons 5 and 6 which encode the catalytic domain of TPH1. By crossing the new Tph1 floxed mice with villin-Cre or insulin-Cre mice, we observed near-complete ablation of 5-HT production in the intestine and β cells. In conclusion, this improved Tph1 floxed mouse model will serve as useful and accurate tool for analyzing peripheral 5-HT system.
Collapse
Affiliation(s)
- Hyeongseok Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yeong Gi Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Wonsuk Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Joon Ho Moon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Inseon Hwang
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Kyuho Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Vijay K Yadav
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, 10032, USA
| | - Gerard Karsenty
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, 10032, USA
| | - Ji-Seon Jeong
- Center for Bioanalysis, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea.
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
11
|
de Faudeur G, Brouwers B, Schuit F, Creemers JWM, Ramos-Molina B. Transgenic Artifacts Caused by Passenger Human Growth Hormone. Trends Endocrinol Metab 2018; 29:670-674. [PMID: 29921469 DOI: 10.1016/j.tem.2018.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 05/18/2018] [Accepted: 05/29/2018] [Indexed: 12/26/2022]
Abstract
The minigene encoding human growth hormone (hGH) has been incorporated into over 300 transgenic mouse lines to improve transgene expression. However, unexpected and functional hGH expression can drastically alter physiology. We list here the mouse lines in which ectopic hGH has been confirmed, and we provide a wiki for lines awaiting analysis.
Collapse
Affiliation(s)
- Geoffroy de Faudeur
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; These authors contributed equally
| | - Bas Brouwers
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium; Metabolic Research Laboratories, Wellcome Trust Medical Research Council (MRC) Institute of Metabolic Science, University of Cambridge, Cambridge, UK; These authors contributed equally
| | - Frans Schuit
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - John W M Creemers
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium.
| | - Bruno Ramos-Molina
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium; Institute of Biomedical Research in Malaga (IBIMA), Virgen de la Victoria University Hospital, Malaga, Spain; Centro de Investigación Biomédica en Red (CIBER) Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|