1
|
Rodríguez-Campuzano AG, Castelán F, Hernández-Kelly LC, Felder-Schmittbuhl MP, Ortega A. Yin Yang 1: Function, Mechanisms, and Glia. Neurochem Res 2025; 50:96. [PMID: 39904836 PMCID: PMC11794380 DOI: 10.1007/s11064-025-04345-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
Yin Yang 1 is a ubiquitously expressed transcription factor that has been extensively studied given its particular dual transcriptional regulation. Yin Yang 1 is involved in various cellular processes like cell cycle progression, cell differentiation, DNA repair, cell survival and apoptosis among others. Its malfunction or alteration leads to disease and even to malignant transformation. This transcription factor is essential for the proper central nervous system development and function. The activity of Yin Yang 1 depends on its interacting partners, promoter environment and chromatin structure, however, its mechanistic activity is not completely understood. In this review, we briefly discuss the Yin Yang 1 structure, post-translational modifications, interactions, mechanistic functions and its participation in neurodevelopment. We also discuss its expression and critical involvement in the physiology and physiopathology of glial cells, summarizing the contribution of Yin Yang 1 on different aspects of cellular function.
Collapse
Affiliation(s)
- Ada G Rodríguez-Campuzano
- Departamento de Biología Celular y Fisiología, Unidad Foránea Tlaxcala, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlaxcala, Tlaxcala, Mexico
| | - Francisco Castelán
- Departamento de Biología Celular y Fisiología, Unidad Foránea Tlaxcala, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlaxcala, Tlaxcala, Mexico
| | - Luisa C Hernández-Kelly
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacantenco, G.A. Madero, 07360, Ciudad de Mexico, Mexico
| | - Marie-Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Université de Strasbourg, Strasbourg, France
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacantenco, G.A. Madero, 07360, Ciudad de Mexico, Mexico.
| |
Collapse
|
2
|
Yuan H, Peng Z, Zhang M, Li H, Lu K, Yang C, Li M, Liu S. Antagonising Yin Yang 1 ameliorates the symptoms of lupus nephritis via modulating T lymphocyte signaling. Pharmacol Res 2024; 210:107525. [PMID: 39613121 DOI: 10.1016/j.phrs.2024.107525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Lupus nephritis (LN) is a chronic complication of systemic lupus erythematosus (SLE). At present, no drugs are capable of delaying the progression of LN without a risk of serious side effects. There is thus a pressing need for further studies of LN pathogenesis to identify novel therapeutic targets and aid in the development of new approaches to treating this debilitating disease. In this study, a multi-omics approach was used to characterize the pathogenesis of LN and to identify disease-related targets, ultimately leading to the identification and validation of Yin Yang 1 (YY1) as a promising therapeutic target in LN. A rapid approach to efficiently screening for candidate YY1 ligands was implemented using drug databases that established rebamipide as a YY1 antagonist suitable for use in the management of LN. Specifically, the YY1 antagonist activity of rebamipide was found to regulate lymphocyte activity, reduce autoantibody production, limit immune complex deposition, and suppress macrophage activation while improving symptoms in a murine model of LN. Results supportive of a similar pathologic mechanism of action were also obtained when analyzing renal tissue sections from LN patients, underscoring the potential clinical significance of YY1 and its antagonist rebamipide, suggesting that rebamipide may have positive effects on lymphocytes and may improve symptoms in treated patients. This study provides a robust foundation for further research focused on the pathogenesis and treatment of LN.
Collapse
Affiliation(s)
- Haoxing Yuan
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zheng Peng
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Meilian Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Honglian Li
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kunyu Lu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chan Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Minmin Li
- Center of Clinical Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou 510515, China; Innovation Center for Medical Basic Research on Inflammation and Immune Related Diseases of Ministry of Education, Southern Medical University, Guangzhou 510515, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515, China.
| |
Collapse
|
3
|
Cao Y, Wang D, Zhou D. MSC Promotes the Secretion of Exosomal lncRNA KLF3-AS1 to Regulate Sphk1 Through YY1-Musashi-1 Axis and Improve Cerebral Ischemia-Reperfusion Injury. Mol Neurobiol 2024; 61:10462-10480. [PMID: 38735900 DOI: 10.1007/s12035-024-04150-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 03/11/2024] [Indexed: 05/14/2024]
Abstract
Stroke remains the 3rd leading cause of long-term disability globally. Over the past decade, mesenchymal stem cell (MSC) transplantation has been proven as an effective therapy for ischemic stroke. However, the mechanism of MSC-derived exosomal lncRNAs during cerebral ischemia/reperfusion (I/R) remains ambiguous. The oxygen-glucose deprivation/reoxygenation (OGD/R) and middle cerebral artery occlusion (MCAO) rat model were generated. MSCs were isolated and characterized by flow cytometry and histochemical staining, and MSC exosomes were purified and characterized by transmission electron microscopy, flow cytometry and Western blot. Western blot, RT-qPCR and ELISA assay were employed to examine the expression or secretion of key molecules. CCK-8 and TUNEL assays were used to assess cell viability and apoptosis. RNA immunoprecipitation and RNA pull-down were used to investigate the direct association between krüppel-like factor 3 antisense RNA 1 (KLF3-AS1) and musashi-1(MSI1). Yin Yang 1 (YY1)-mediated transcriptional regulation was assessed by chromatin immunoprecipitation and luciferase assays. The histological changes and immunoreactivity of key molecules in brain tissues were examined by H&E and immunohistochemistry. MSCs were successfully isolated and exhibited directionally differential potentials. MSC exosomal KLF3-AS1 alleviated OGD/R-induced inflammation in SK-N-SH and SH-SY5Y cells via modulating Sphk1. Mechanistical studies showed that MSI1 positively regulated KLF3-AS1 expression through its direct binding to KLF3-AS1. YY1 was identified as a transcription activator of MSI1 in MSCs. Functionally, YY1/MSI1 axis regulated the release of MSC exosomal KLF3-AS1 to modulate sphingosine kinase 1 (Sphk1)/NF-κB pathway, thereby ameliorating OGD/R- or cerebral I/R-induced injury. MSCs promote the release of exosomal KLF3-AS1 to regulate Sphk1 through YY1/MSI axis and improve cerebral I/R injury.
Collapse
Affiliation(s)
- Yu Cao
- Department of Comprehensive Surgery, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, 410000, Hunan Province, People's Republic of China
| | - Daodao Wang
- Department of Neurosurgery, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, 410000, Hunan Province, People's Republic of China
| | - Dingzhou Zhou
- Department of Neurosurgery, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, 410000, Hunan Province, People's Republic of China.
| |
Collapse
|
4
|
Yuan H, Peng Z, Li H, Rao Y, Lu K, Yang C, Cheng C, Liu S. Oxymatrine Ameliorates Lupus Nephritis by Targeting the YY1-Mediated IL-6/STAT3 Axis. Int J Mol Sci 2024; 25:12260. [PMID: 39596325 PMCID: PMC11594375 DOI: 10.3390/ijms252212260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/30/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Lupus nephritis (LN) is a severe form of systemic lupus erythematosus (SLE), characterized by inflammation in the renal glomeruli and tubules. Previous research has demonstrated that dihydroartemisinin (DHA) can reduce inflammatory damage in LN mouse models. Oxymatrine, which has similar biological properties to DHA, may also provide therapeutic benefits. This study aims to investigate the effects of oxymatrine on LN using a murine model and examines its molecular mechanisms through an analysis of microarray datasets from LN patients. The analysis identified differentially expressed genes (DEGs) in renal tissues, regulated by the transcription factor Yin Yang 1 (YY1), which was found to be significantly upregulated in LN patient kidneys. The results indicate that oxymatrine targets the YY1/IL-6/STAT3 signaling pathway. In cell models simulating renal inflammation, oxymatrine reduced YY1 expression and inhibited the secretion of inflammatory factors (IFs), thereby diminishing inflammation. YY1 is crucial in modulating IFs' secretion and contributing to LN pathogenesis. Additionally, oxymatrine's interaction with YY1, leading to its downregulation, appears to be a key mechanism in alleviating LN symptoms. These findings support oxymatrine as a promising therapeutic agent for LN, offering new avenues for treating this autoimmune kidney disorder.
Collapse
Affiliation(s)
- Haoxing Yuan
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (H.Y.); (Z.P.); (H.L.); (Y.R.); (K.L.); (C.Y.); (C.C.)
| | - Zheng Peng
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (H.Y.); (Z.P.); (H.L.); (Y.R.); (K.L.); (C.Y.); (C.C.)
| | - Honglian Li
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (H.Y.); (Z.P.); (H.L.); (Y.R.); (K.L.); (C.Y.); (C.C.)
| | - Yuzhen Rao
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (H.Y.); (Z.P.); (H.L.); (Y.R.); (K.L.); (C.Y.); (C.C.)
| | - Kunyu Lu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (H.Y.); (Z.P.); (H.L.); (Y.R.); (K.L.); (C.Y.); (C.C.)
| | - Chan Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (H.Y.); (Z.P.); (H.L.); (Y.R.); (K.L.); (C.Y.); (C.C.)
| | - Chen Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (H.Y.); (Z.P.); (H.L.); (Y.R.); (K.L.); (C.Y.); (C.C.)
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (H.Y.); (Z.P.); (H.L.); (Y.R.); (K.L.); (C.Y.); (C.C.)
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou 510515, China
- Innovation Center for Medical Basic Research on Inflammation and Immune Related Diseases, Ministry of Education, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
5
|
Huang J, Wang X, Li N, Fan W, Li X, Zhou Q, Liu J, Li W, Zhang Z, Liu X, Zeng S, Yang H, Tian M, Yang P, Hou S. YY1 Lactylation Aggravates Autoimmune Uveitis by Enhancing Microglial Functions via Inflammatory Genes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308031. [PMID: 38493498 PMCID: PMC11109619 DOI: 10.1002/advs.202308031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/02/2024] [Indexed: 03/19/2024]
Abstract
Activated microglia in the retina are essential for the development of autoimmune uveitis. Yin-Yang 1 (YY1) is an important transcription factor that participates in multiple inflammatory and immune-mediated diseases. Here, an increased YY1 lactylation in retinal microglia within in the experimental autoimmune uveitis (EAU) group is observed. YY1 lactylation contributed to boosting microglial activation and promoting their proliferation and migration abilities. Inhibition of lactylation suppressed microglial activation and attenuated inflammation in EAU. Mechanistically, cleavage under targets & tagmentation (CUT&Tag) analysis revealed that YY1 lactylation promoted microglial activation by regulating the transcription of a set of inflammatory genes, including STAT3, CCL5, IRF1, IDO1, and SEMA4D. In addition, p300 is identified as the writer of YY1 lactylation. Inhibition of p300 decreased YY1 lactylation and suppressed microglial inflammation in vivo and in vitro. Collectively, the results showed that YY1 lactylation promoted microglial dysfunction in autoimmune uveitis by upregulating inflammatory cytokine secretion and boosting cell migration and proliferation. Therapeutic effects can be achieved by targeting the lactate/p300/YY1 lactylation/inflammatory genes axis.
Collapse
Affiliation(s)
- Jiaxing Huang
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute; Chongqing Branch of National Clinical Research Center for Ocular DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Xiaotang Wang
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute; Chongqing Branch of National Clinical Research Center for Ocular DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Na Li
- Department of Laboratory Medicine, Beijing Tongren HospitalCapital Medical UniversityBeijing100005China
| | - Wei Fan
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute; Chongqing Branch of National Clinical Research Center for Ocular DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Xingran Li
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute; Chongqing Branch of National Clinical Research Center for Ocular DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Qian Zhou
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute; Chongqing Branch of National Clinical Research Center for Ocular DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Jiangyi Liu
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute; Chongqing Branch of National Clinical Research Center for Ocular DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Wanqian Li
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute; Chongqing Branch of National Clinical Research Center for Ocular DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Zhi Zhang
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute; Chongqing Branch of National Clinical Research Center for Ocular DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Xiaoyan Liu
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute; Chongqing Branch of National Clinical Research Center for Ocular DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Shuhao Zeng
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute; Chongqing Branch of National Clinical Research Center for Ocular DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Hui Yang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Tongren HospitalCapital Medical UniversityBeijing100730China
| | - Meng Tian
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Tongren HospitalCapital Medical UniversityBeijing100730China
| | - Peizeng Yang
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute; Chongqing Branch of National Clinical Research Center for Ocular DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Shengping Hou
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Tongren HospitalCapital Medical UniversityBeijing100730China
| |
Collapse
|
6
|
Yang P, Zhao X, Aweya JJ, Zhang Y. The Yin Yang 1 of Penaeus vannamei regulates transcription of the small subunit hemocyanin gene during Vibrio parahaemolyticus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 151:105087. [PMID: 37898353 DOI: 10.1016/j.dci.2023.105087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023]
Abstract
Hemocyanin is a respiratory protein, it is also a multifunctional immune molecule that plays a vital role against pathogen invasion in shrimp. However, the regulation of hemocyanin gene expression in shrimp hemocytes and the mechanisms involved during pathogen infection remains unclear. Here, we used DNA pull-down followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify the Yin Yang 1 transcription factor homolog in Penaeus vannamei (PvYY1) as a key factor that modulates transcription of the small subunit hemocyanin gene of P. vannamei (PvHMCs) in hemocytes during Vibrio parahaemolyticus AHPND (VPAHPND) infection. Bioinformatics analysis revealed that the core promoter region of PvHMCs contains two YY1 motifs. Mutational and oligoprecipitation analyses confirmed that PvYY1 could bind to the YY1 motifs in the PvHMCs core promoter region, while truncation of PvYY1 revealed that the N-terminal domain of PvYY1 is essential for the transactivation of PvHMCs core promoter. Besides, the REPO domain of PvYY1 could repress the activity of the PvHMCs core promoter. Overexpression of PvYY1 significantly activates the promoter activity of PvHMCs core promoter, while PvYY1 knockdown significantly decreases the expression level of PvHMCs in shrimp hemocytes and survival rate of shrimp upon infection with VPAHPND. Our present study provides new insights into the transcriptional regulation of PvHMCs by PvYY1 in shrimp hemocytes during bacteria (VPAHPND) infection.
Collapse
Affiliation(s)
- Peikui Yang
- School of Life Science and Food Engineering, Hanshan Normal University, Chaozhou, 521041, China; Guangdong Provincial Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, Chaozhou, 521041, China
| | - Xianliang Zhao
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Jude Juventus Aweya
- College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, Fujian, 361021, China
| | - Yueling Zhang
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China.
| |
Collapse
|
7
|
Wan S, Liu C, Li C, Wang Z, Zhao G, Li J, Ran W, Zhong X, Li Y, Zhang L, Cui H. AKIP1 accelerates glioblastoma progression through stabilizing EGFR expression. Oncogene 2023; 42:2905-2918. [PMID: 37596322 DOI: 10.1038/s41388-023-02796-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/20/2023]
Abstract
A Kinase Interacting Protein 1 (AKIP1) is found to be overexpressed in a variety of human cancers and associated with patients' worse prognosis. Several studies have established AKIP1's malignant functions in tumor metastasis, angiogenesis, and chemoradiotherapy resistance. However, the mechanism of AKIP1 involved in accelerating glioblastoma (GBM) progression remains unknown. Here, we showed that the expression of AKIP1 was positively correlated with the glioma pathological grades. Down-regulating AKIP1 greatly impaired the proliferation, colony formation, and tumorigenicity of GBM cells. In terms of the mechanism, AKIP1 cooperates with transcriptional factor Yin Yang 1 (YY1)-mediated Heat Shock Protein 90 Alpha Family Class A Member 1 (HSP90AA1) transcriptional activation, enhancing the stability of Epidermal Growth Factor Receptor (EGFR). YY1 was identified as a potential transcriptional factor of HSP90AA1 and directly interacts with AKIP1. The overexpression of HSP90α significantly reversed AKIP1 depletion incurred EGFR instability and the blocked cell proliferation. Moreover, we further investigated the interacted pattern between EGFR and HSP90α. These findings established that AKIP1 acted as a critical oncogenic factor in GBM and uncovered a novel regulatory mechanism in EGFR aberrant expression.
Collapse
Affiliation(s)
- Sicheng Wan
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Chaolong Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Chongyang Li
- School of Basic Medicine, Fudan University, Shanghai, 200032, China
| | - Zhi Wang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Gaichao Zhao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Jingui Li
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Wenhao Ran
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Xi Zhong
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Yongsen Li
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Li Zhang
- Department of Radiology and Nuclear Medicine, The First Hospital of HeBei Medical University, Shijiazhuang, HeBei Province, 050000, China.
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
8
|
Lu J, Jin K, Jiao J, Liu R, Mou T, Chen B, Zhang Z, Jiang C, Zhao H, Wang Z, Zhou R, Huang M. YY1 (Yin-Yang 1), a transcription factor regulating systemic inflammation, is involved in cognitive impairment of depression. Psychiatry Clin Neurosci 2023; 77:149-159. [PMID: 36436207 DOI: 10.1111/pcn.13510] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 11/28/2022]
Abstract
AIM Clinical and preclinical studies suggest that alterations in the peripheral and brain immune system are associated with the pathophysiology of depression, also leading to changes in local glucose metabolism in the brain. Here, the authors identified Yin-Yang 1 (YY1), a transcription factor closely associated with central and peripheral inflammation. METHODS Plasma levels of YY1, interleukin (IL) 6, and IL-1β in major depressive disorder (MDD) were collected before and after treatment with vortioxetine, and correlation with clinical and cognitive scores was studied. Chronic unpredictable mild stress was treated with vortioxetine. Micropositron emission tomography (microPET) was used to analyze glucose metabolism and mRNA, and the protein level of the YY1-nuclear factor κB (NF-κB)-IL-1β inflammatory pathway were measured in related brain regions. RESULTS Plasma levels of YY1 and IL-1β were significantly increased in MDD and decreased after treatment with vortioxetine. Meanwhile, the level of YY1 in plasma was negatively correlated with cognitive functions in patients with MDD and positively correlated with the level of IL-1β in plasma. Compared with the control group, in chronic unpredictable mild stress rats, (microPET) analysis showed that the decrease of glucose metabolism in the hippocampus, entorhinal cortex, amygdala, striatum, and medial prefrontal cortex was reversed after treatment. mRNA and protein level of related molecular in YY1-NF-κB-IL-1β inflammatory pathway decreased in the hippocampus and was reversed by vortioxetine. CONCLUSION The current study suggests that the YY1-NF-κB-IL-1β inflammatory pathway may play an essential role in both mood changes and cognitive impairment in depression, and may be associated with changes in glucose metabolism in emotion regulation and cognition. These findings provide new evidence for the inflammatory mechanisms of depression.
Collapse
Affiliation(s)
- Jing Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Kangyu Jin
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Jianping Jiao
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Longquan City People's Hospital, Lishui, 323799, China
| | - Ripeng Liu
- College of First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tingting Mou
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Bing Chen
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Zhihan Zhang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Chaonan Jiang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Haoyang Zhao
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Zheng Wang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Rui Zhou
- Department of Nuclear Medicine and Medical PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| |
Collapse
|
9
|
Yang T, Hu Y, Jiang W, Pang J, Zhou Y, Zhang H, Yin Z, Jiang Z, Qian S, Wei C, Yan M, Zhu X, Wang T, Lu Q. YY1 was indispensable for the alleviation of quercetin on diabetic nephropathy-associated tubulointerstitial inflammation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154659. [PMID: 36641979 DOI: 10.1016/j.phymed.2023.154659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND The emergence of tubulointerstitial inflammation (TI) could accelerate the development of tubulointerstitial fibrosis (TIF) of diabetic nephropathy (DN). Yin Yang 1 (YY1) was a new pro-inflammatory mediator and became the important target of DN-related TIF. Quercetin performed an effective role in anti-inflammation and was probable to bind to YY1. However, the role of YY1 in quercetin's anti-inflammatory effect on DN-related TIF was uncovered. PURPOSE To investigate the potential effect and mechanism of quercetin against DN-related TI. STUDY DESIGN AND METHODS The protein levels of YY1 were examined in the renal tubular epithelial cells (RTECs) of db/db mice and HG-cultured HK-2 cells. Molecular modeling studies and YY1 overexpression lentivirus vector were selected to further confirm the indispensable part of YY1 in quercetin's TI protection in vitro. Luciferase assay and chromatin immunoprecipitation (ChIP) assay were carried out to identify whether YY1 directly regulated IL-6/STAT3 signaling by binding to the IL-6 promoter in quercetin's TI protection in vitro. At last, the important role of YY1-mediated IL-6/STAT3 signaling in quercetin's TIF protection effect was further identified by using of YY1 overexpression lentivirus vector and IL-6 specific inhibitor tocilizumab. RESULTS Along with the alleviated tubulointerstitial injury by quercetin in the RTECs of db/db mice and HK-2 cells stimulated by HG, YY1-mediated IL-6/STAT-3 pathway involved in TI protection of quercetin in vivo and in vitro. Quercetin bound to YY1 and decreased its protein expression, and YY1 directly suppressed IL-6 transcription by bounding to its promoter, resulting in the alleviation of inflammation by inactivating of IL-6/STAT-3 pathway in vitro. YY1-mediated IL-6/STAT-3 pathway was also indispensable for the alleviation of quercetin on DN-associated TIF. CONCLUSION YY1 could not be absent from quercetin's anti-inflammatory effect on DN-associated TIF via alleviating IL-6/STAT-3 pathway mediated TI.
Collapse
Affiliation(s)
- Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Yinlu Hu
- Department of Pharmacy, Wuxi Higher Health Vocational Technology School, Wuxi 214000, China
| | - Wenjie Jiang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Jiale Pang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Yequan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Huanming Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Zeyuan Yin
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Zhenzhou Jiang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Sitong Qian
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Chujing Wei
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Meng Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Tao Wang
- Department of Pharmacy, The affiliated hospital of Xuzhou Medical University, Xuzhou 221006, China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
10
|
Pajarillo E, Nyarko-Danquah I, Digman A, Vied C, Son DS, Lee J, Aschner M, Lee E. Astrocytic Yin Yang 1 is critical for murine brain development and protection against apoptosis, oxidative stress, and inflammation. Glia 2023; 71:450-466. [PMID: 36300569 PMCID: PMC9772165 DOI: 10.1002/glia.24286] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 12/24/2022]
Abstract
The transcription factor Yin Yang 1 (YY1) is ubiquitously expressed in mammalian cells, regulating the expression of a variety of genes involved in proliferation, differentiation, and apoptosis in a context-dependent manner. While it is well-established that global YY1 knockout (KO) leads to embryonic death in mice and that YY1 deletion in neurons or oligodendrocytes induces impaired brain function, the role of astrocytic YY1 in the brain remains unknown. We investigated the role of astrocytic YY1 in the brain using a glial fibrillary acidic protein (GFAP)-specific YY1 conditional KO (YY1 cKO) mouse model to delete astrocytic YY1. Astrocytic YY1 cKO mice were tested for behavioral phenotypes, such as locomotor activity, coordination, and cognition, followed by an assessment of relevant biological pathways using RNA-sequencing analysis, immunoblotting, and immunohistochemistry in the cortex, midbrain, and cerebellum. YY1 cKO mice showed abnormal phenotypes, movement deficits, and cognitive dysfunction. At the molecular level, astrocytic YY1 deletion altered the expression of genes associated with proliferation and differentiation, p53/caspase apoptotic pathways, oxidative stress response, and inflammatory signaling including NF-κB, STAT, and IRF in all regions. Astrocytic YY1 deletion significantly increased the expression of GFAP as astrocytic activation and Iba1 as microglial activation, indicating astrocytic YY1 deletion activated microglia as well. Accordingly, multiple inflammatory cytokines and chemokines including TNF-α and CXCL10 were elevated. Combined, these novel findings suggest that astrocytic YY1 is a critical transcription factor for normal brain development and locomotor activity, motor coordination, and cognition. Astrocytic YY1 is also essential in preventing pathological oxidative stress, apoptosis, and inflammation.
Collapse
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA 32307
| | - Ivan Nyarko-Danquah
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA 32307
| | - Alexis Digman
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA 32307
| | - Cynthia Vied
- Translational Science Laboratory, Florida State University College of Medicine, Tallahassee, FL, USA 32306
| | - Deok-Soo Son
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA 37208
| | - Jayden Lee
- Department of Speech, Language and Hearing Sciences, Boston University, Boston, MA, USA 02215
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, New York, USA, 10461
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA 32307
| |
Collapse
|
11
|
Anderson G. Depression Pathophysiology: Astrocyte Mitochondrial Melatonergic Pathway as Crucial Hub. Int J Mol Sci 2022; 24:ijms24010350. [PMID: 36613794 PMCID: PMC9820523 DOI: 10.3390/ijms24010350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Major depressive disorder (MDD) is widely accepted as having a heterogenous pathophysiology involving a complex mixture of systemic and CNS processes. A developmental etiology coupled to genetic and epigenetic risk factors as well as lifestyle and social process influences add further to the complexity. Consequently, antidepressant treatment is generally regarded as open to improvement, undoubtedly as a consequence of inappropriately targeted pathophysiological processes. This article reviews the diverse array of pathophysiological processes linked to MDD, and integrates these within a perspective that emphasizes alterations in mitochondrial function, both centrally and systemically. It is proposed that the long-standing association of MDD with suppressed serotonin availability is reflective of the role of serotonin as a precursor for the mitochondrial melatonergic pathway. Astrocytes, and the astrocyte mitochondrial melatonergic pathway, are highlighted as crucial hubs in the integration of the wide array of biological underpinnings of MDD, including gut dysbiosis and permeability, as well as developmental and social stressors, which can act to suppress the capacity of mitochondria to upregulate the melatonergic pathway, with consequences for oxidant-induced changes in patterned microRNAs and subsequent patterned gene responses. This is placed within a development context, including how social processes, such as discrimination, can physiologically regulate a susceptibility to MDD. Future research directions and treatment implications are derived from this.
Collapse
Affiliation(s)
- George Anderson
- CRC Scotland & London, Eccleston Square, London SW1V 1PX, UK
| |
Collapse
|
12
|
Jiang D, Jiang C, Sui C, Wu X, Hu Y, Lee C, Cong X, Li J, Du Y, Qi J. Swine NONO is an essential factor to inhibit pseudorabies virus infection. Vet Microbiol 2022; 275:109582. [DOI: 10.1016/j.vetmic.2022.109582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/09/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
|
13
|
Qian Z, Zhao J. Silencing YY1 Alleviates Ox-LDL-Induced Inflammation and Lipid Accumulation in Macrophages through Regulation of PCSK9/ LDLR Signaling. J Microbiol Biotechnol 2022; 32:1406-1415. [PMID: 36330745 PMCID: PMC9720084 DOI: 10.4014/jmb.2207.07011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022]
Abstract
The formation of macrophage foam cells stimulated by oxidized low-density lipoprotein (ox-LDL) is deemed an important cause of atherosclerosis. Transcription factor Yin Yang 1 (YY1), which is a universally expressed multifunctional protein, is closely related to cell metabolism disorders such as lipid metabolism, sugar metabolism, and bile acid metabolism. However, whether YY1 is involved in macrophage inflammation and lipid accumulation still remains unknown. After mouse macrophage cell line RAW264.7 cells were induced by ox-LDL, YY1 and proprotein convertase subtilisin/kexin type 9 (PCSK9) expressions were found to be increased while low-density lipoprotein receptor (LDLR) expression was lowly expressed. Subsequently, through reverse transcription-quantitative polymerase chain reaction (RT-qPCR), Western blot analysis, Oil Red O staining and cholesterol quantification, it turned out that silencing of YY1 attenuated the inflammatory response and lipid accumulation in RAW264.7 cells caused by ox-LDL. Moreover, results from the JASPAR database, chromatin immunoprecipitation (ChIP) assay, luciferase reporter assay and Western blot analysis suggested that YY1 activated PCSK9 by binding to PCSK9 promoter and modulated the expression of LDLR in the downstream of PCSK9. In addition, the results of functional experiments demonstrated that the inhibitory effects of YY1 interference on ox-LDL-mediated macrophage inflammation and lipid accumulation were reversed by PCSK9 overexpression. To sum up, YY1 depletion inhibited its activation of PCSK9, thereby reducing cellular inflammatory response, cholesterol homeostasis imbalance, and lipid accumulation caused by ox-LDL.
Collapse
Affiliation(s)
- Zhengyao Qian
- The Second Department of Cardiology, Tianjin Hospital, No.406, Jiefang South Road, Hexi District, Tianjin 300211, P.R. China,Corresponding author Phone: +86-22-60123231 E-mail:
| | - Jianping Zhao
- The Second Department of Cardiology, Tianjin Hospital, No.406, Jiefang South Road, Hexi District, Tianjin 300211, P.R. China
| |
Collapse
|
14
|
Berberine Protects against TNF- α-Induced Injury of Human Umbilical Vein Endothelial Cells via the AMPK/NF- κB/YY1 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2021:6518355. [PMID: 35003308 PMCID: PMC8741384 DOI: 10.1155/2021/6518355] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/09/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
Endothelial injury, characterized by an inflammatory response and increased permeability, is an initial stage of atherosclerosis (AS). Adenosine 5′-monophosphate (AMP), activated protein kinase (AMPK), and Nuclear Factor kappa B (NF-κB)/Yin Yang 1(YY1) signaling pathways play important roles in the process of endothelial injury. Berberine (BBR), a bioactive alkaloid isolated from several herbal substances, possesses multiple pharmacological effects, including anti-inflammatory, antimicrobial, antidiabetic, anticancer, and antioxidant activities. Previous studies showed a protective effect of berberine against endothelial injury. However, the underlying mechanism remains unclear. We explored the potential effect of BBR on TNF- (tumor necrosis factor-) α-induced injury of human umbilical endothelial cells (HUVECs) and studied its possible molecular mechanism. In the present study, HUVECs were divided into three groups. HUVEC viability was measured with Cell Counting Kit-8 assay. Extracellular lactic dehydrogenase (LDH) concentration was measured with LDH leakage assay. Endothelial microparticle (EMP) numbers were evaluated by flow cytometry analysis assay. The expression of proinflammatory cytokines was evaluated by Enzyme-Linked Immunosorbent Assay (ELISA). The mRNA expression of NF-κB and YY1 was detected by Real-Time PCR (RT-PCR). The protein expression of NF-κB, YY1, and AMPK was detected by immunofluorescence microscopy assay or western blot analysis. The results showed that LDH concentration, EMPs numbers, and the expression of proinflammatory cytokines (IL-6, IL-8, and IL-1β) increased in TNF-α-induced injured HUVECs, but ameliorated by BBR pretreatment. BBR pretreatment upregulated the expression of phosphorylated AMPK and downregulated the expressions of NF-κB and YY1 in injured HUVECs induced by TNF-α, which were offset by the AMPK inhibitor Compound C (CC). The results indicated that BBR protected against TNF-α-induced endothelial injury via the AMPK/NF-κB/YY1 signaling pathway.
Collapse
|
15
|
Yang S, Zhang S, Tang W, Fang S, Zhang H, Zheng J, Liu X, Zhang Y, Zhao L, Huang L, Li B. Enriched Environment Prevents Surgery-Induced Persistent Neural Inhibition and Cognitive Dysfunction. Front Aging Neurosci 2021; 13:744719. [PMID: 34658844 PMCID: PMC8517535 DOI: 10.3389/fnagi.2021.744719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/03/2021] [Indexed: 11/21/2022] Open
Abstract
Perioperative neurocognitive disorders (PND) encompass short-term delirium and long-term cognitive dysfunction. Aging increases the susceptibility to PND, yet the neural mechanism is not known. In this study, we monitored the dynamic changes of neuronal activity in the prelimbic cortex before and after surgery. We found that anesthesia combined with surgery, but not anesthesia alone, induced a prolonged decrease in neuronal activity during the post-operation period in the aged mice, but not in the adult mice. The prolonged decrease in neuronal activity was accompanied by surgery-induced microglial activation and proinflammatory cytokines expression. Importantly, we found that the enriched environment (EE) completely prevented both the prolonged neural inhibition and neuroinflammation, and improved cognitive function in the aged mice. These results indicate that the prolonged neural inhibition correlated to PND and that EE before the surgery could effectively alleviate the surgery- induced cognitive dysfunction.
Collapse
Affiliation(s)
- Shana Yang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Song Zhang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenting Tang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shunchang Fang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongyang Zhang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jieyan Zheng
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xia Liu
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Zhang
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Liang Zhao
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lianyan Huang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Boxing Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Yu Q, Zhang W, Zhou X, Shen W, Xing C, Yang X. Regulation of lnc-TLCD2-1 on Radiation Sensitivity of Colorectal Cancer and Comprehensive Analysis of Its Mechanism. Front Oncol 2021; 11:714159. [PMID: 34336703 PMCID: PMC8320535 DOI: 10.3389/fonc.2021.714159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/29/2021] [Indexed: 12/16/2022] Open
Abstract
As is well known that colorectal cancer is the third most common cancer in the world, and radiation treatment plays a vital role in colorectal cancer therapy, but radiation resistance is a significant problem in the treatment of colorectal cancer. As an important member of the non-coding RNA family, long non-coding RNAs (lncRNAs) have been found that it plays a role in the occurrence and progression of colorectal cancer in recent years. However, little is known about the effect of lncRNA on colorectal cancer sensitivity to radiotherapy. We found that lnc-TLCD2-1 was significantly differentially expressed in radiation-tolerant CCL244 cell lines and radiation-sensitive HCT116 cell lines, suggesting that lnc-TLCD2-1 may regulate the radiosensitivity of colorectal cancer, and the relevant underlying mechanism was investigated. Cell clone formation assay, flow cytometry, and cell counting kit 8 (CCK8) were used to detect radiation sensitivity, apoptosis, and proliferation of colorectal cancer cells, respectively; Quantitative real-time PCR and western blot were used to detect the expression of genes; the direct interaction between lnc-TLCD2-1 and hsa-miR-193a-5p was verified by dual luciferase reporter assays; GEPIA, Starbase, TIMER and DAVID were used to complete expression of lnc-TLCD2-1, miR-193a-5p,YY1 and NF-кB-P65 in colorectal cancer, correlation, immune cell infiltration, GO and KEGG enrichment analysis. Clinical prognostic analysis data were obtained from GSE17536 dataset. After radiotherapy for HCT116, the expression of lnc-TLCD2-1 was increased, and the expression of hsa-miR-193a-5p was significantly decreased, while that of CCL244 was the opposite, and the change range of lnc-TLCD2-1 was relatively small. HCT116 with overexpression of lnc-TLCD2-1 after radiation treatment, the number of cell colonies significantly increased, and cell apoptosis decreased compared with the negative control group. The cell colonies and apoptosis of CCL244 with disturbed expression of lnc-TLCD2-1 were opposite to those of HCT116. Lnc-TLCD2-1 can regulate the expression of YY1/NF-кB-P65 by targeting miR-193a-5p. Lnc-TLCD2-1 can promote the proliferation of colorectal cancer. High expression of lnc-TLCD2-1 independently predicted a shorter survival. Lnc-TLCD2-1 is associated with radiation resistance and short survival in colorectal cancer patients. In addition, Lnc-TLCD2-1 can promote the proliferation of colorectal cancer. Our study provides a scientific basis for targeting lnc-TLCD2-1 in colorectal cancer radiation resistance interventions and selection of prognostic biomarker.
Collapse
Affiliation(s)
- Qifeng Yu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Zhang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Zhou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenqi Shen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chungen Xing
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaodong Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
17
|
Rubin JD, Stanley JT, Sigauke RF, Levandowski CB, Maas ZL, Westfall J, Taatjes DJ, Dowell RD. Transcription factor enrichment analysis (TFEA) quantifies the activity of multiple transcription factors from a single experiment. Commun Biol 2021; 4:661. [PMID: 34079046 PMCID: PMC8172830 DOI: 10.1038/s42003-021-02153-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/20/2021] [Indexed: 02/04/2023] Open
Abstract
Detecting changes in the activity of a transcription factor (TF) in response to a perturbation provides insights into the underlying cellular process. Transcription Factor Enrichment Analysis (TFEA) is a robust and reliable computational method that detects positional motif enrichment associated with changes in transcription observed in response to a perturbation. TFEA detects positional motif enrichment within a list of ranked regions of interest (ROIs), typically sites of RNA polymerase initiation inferred from regulatory data such as nascent transcription. Therefore, we also introduce muMerge, a statistically principled method of generating a consensus list of ROIs from multiple replicates and conditions. TFEA is broadly applicable to data that informs on transcriptional regulation including nascent transcription (eg. PRO-Seq), CAGE, histone ChIP-Seq, and accessibility data (e.g., ATAC-Seq). TFEA not only identifies the key regulators responding to a perturbation, but also temporally unravels regulatory networks with time series data. Consequently, TFEA serves as a hypothesis-generating tool that provides an easy, rigorous, and cost-effective means to broadly assess TF activity yielding new biological insights.
Collapse
Affiliation(s)
- Jonathan D Rubin
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Jacob T Stanley
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Rutendo F Sigauke
- Computational Bioscience Program, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | | | - Zachary L Maas
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Jessica Westfall
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Robin D Dowell
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA.
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA.
- Department of Computer Science, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
18
|
Chen C, Zhang H, Ge M, Ye J, Li R, Wang D. LncRNA NEAT1 acts as a key regulator of cell apoptosis and inflammatory response by the miR-944/TRIM37 axis in acute lung injury. J Pharmacol Sci 2021; 145:202-212. [PMID: 33451755 DOI: 10.1016/j.jphs.2020.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
Acute lung injury (ALI), a common complication of sepsis, is characterized by the impairment and injury of pulmonary function. The nuclear factor kappa-B (NF-κB) pathway is activated in ALI. Tripartite motif-containing 37 (TRIM37) can activate the NF-κB pathway and is closely associated with inflammation. The purpose of our study is to reveal the role of TRIM37 in ALI. The present study revealed that TRIM37 presented high levels in lung tissues of ALI mice, and knockdown of TRIM37 alleviated lipopolysaccharide (LPS)-induced lung injury, inflammatory response, and cell apoptosis in vivo. In addition, knockdown of TRIM37 inhibited the inflammatory response, and cell apoptosis of LPS-treated WI-38 cells. Mechanistically, miR-944 was identified to bind with and negatively regulate TRIM37. Furthermore, NEAT1 was indicated to act as a competitive endogenous RNA to promote TRIM37 expression by sequestering miR-944. Detailly, NEAT1 bound with miR-944, negatively modulated miR-944 expression, and positively modulated TRIM37 expression. The rescue assays suggested that overexpression of TRIM37 rescued the influence of NEAT1 knockdown on cell apoptosis and inflammatory response. Overall, NEAT1 facilitated cell apoptosis and inflammatory response of WI-38 cells by the miR-944/TRIM37 axis in sepsis-induced ALI, implying that NEAT1 may provide a novel insight for the treatment of sepsis-induced ALI.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, China; Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing 210008, Jiangsu, China
| | - Haitao Zhang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Graduate School of Peking Union Medical College, Nanjing, 210008, China
| | - Min Ge
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, China
| | - Jiaxin Ye
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, China
| | - Ruisha Li
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, China; Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing 210008, Jiangsu, China
| | - Dongjin Wang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, China; Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing 210008, Jiangsu, China.
| |
Collapse
|
19
|
Astragalus membranaceus Injection Suppresses Production of Interleukin-6 by Activating Autophagy through the AMPK-mTOR Pathway in Lipopolysaccharide-Stimulated Macrophages. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1364147. [PMID: 32724488 PMCID: PMC7364262 DOI: 10.1155/2020/1364147] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022]
Abstract
Astragalus membranaceus (AM), used in traditional Chinese medicine, has been shown to enhance immune functions, and recently, its anti-inflammatory effects were identified. However, the mechanisms of action remain unclear. Most studies have shown that autophagy might be involved in the immune response of the body, including inflammation. Here, we developed an inflammatory model by stimulating macrophages with lipopolysaccharides (LPS) to explore the anti-inflammatory effect and mechanisms of AM injection from the perspective of the regulation of autophagy. Immunoblot, immunofluorescence, and ELISA were used to determine the effects of AM injection on the production of interleukin-6 (IL-6) and alterations of autophagy markers. It was found that AM injection reduced the expression of IL-6 in LPS-stimulated macrophages and reversed the LPS-induced inhibition of cellular autophagy. After treatment with inhibitors of signaling pathways, it was shown that LPS downregulated autophagy and upregulated the production of IL-6 in macrophages via the protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway. AM injection reversed the effects of LPS by activating the AMP-activated protein kinase (AMPK) instead of inhibiting Akt. These results were further confirmed by testing activators and siRNA silencing of AMPK. Hence, these 2 distinct signaling molecules appear to exert opposite effects on mTOR, which integrates information from multiple upstream signaling pathways, negatively regulating autophagy. In addition, we demonstrated that autophagy might play a key role in regulating the production of IL-6 by testing activators and inhibitors of autophagy and siRNA silencing of ATG5. These findings showed that AM injection might enhance autophagy by activating AMPK and might further play a repressive effect on the LPS-stimulated expression of IL-6. This study explored the relationship between autophagy, signaling pathways, and the production of inflammatory factors in a model of endotoxin infection and treatment with AM injection.
Collapse
|
20
|
Li Y, Sun J, Zhang Y, Wang M, Wang L, Song L. CgRel involved in antibacterial immunity by regulating the production of CgIL17s and CgBigDef1 in the Pacific oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2020; 97:474-482. [PMID: 31743759 DOI: 10.1016/j.fsi.2019.11.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
The NF-κB/Rel transcription factors play essential roles in the induction and regulation of innate immune responses. In the present study, the full-length cDNA of CgRel from the Pacific oyster Crassostrea gigas was of 2,647 bp with an RHD and an IPT domain. The mRNA of CgRel was found to be constitutively expressed in all the tested tissues including gills, hepatopancreas, gonad, adductor muscle, labial palps, mantle, hemocytes, and ganglion. After lipopolysaccharide (LPS) stimulation, the expression level of CgRel mRNA in hemocytes was up-regulated to the first peak at 3 h (3.06-fold compared to the control group, p < 0.001) and second peak at 48 h (1.96-fold, p < 0.05). It increased significantly at 3 h (7.68-fold compared to the control group, p < 0.001), 24 h (3.63-fold, p < 0.05) and 48 h (1.99-fold, p < 0.05) post Vibrio splendidus stimulation, respectively. The protein of CgRel was translocated from cytoplasm into nucleus of oyster hemocytes after LPS stimulation. The mRNA expression levels of interleukin17s (CgIL17s) and big defensin (CgBigDef1) in hemocytes were examined after the expression of CgRel was silenced by RNAi. The transcripts of CgIL17-1 (0.25-fold of the control group, p < 0.01), CgIL17-2 (0.12-fold, p < 0.01), CgIL17-4 (0.33-fold, p < 0.01), CgIL17-6 (0.27-fold, p < 0.05) and CgBigDef1 (0.38-fold, p < 0.01) in CgRel-knockdown oysters decreased significantly at 12 h after LPS stimulation. The results indicated that CgRel played important roles in the immune defense against bacteria by regulating the expression of CgIL17 and CgBigDef1.
Collapse
Affiliation(s)
- Yinan Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Yukun Zhang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Min Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
21
|
Li Q, Chen W, Luo R, Zhang Z, Song M, Chen W, Yang Z, Yang Y, Guo Z, Yang A. Upregulation of OIP5-AS1 Predicts Poor Prognosis and Contributes to Thyroid Cancer Cell Proliferation and Migration. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:279-291. [PMID: 32193154 PMCID: PMC7078457 DOI: 10.1016/j.omtn.2019.11.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/03/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022]
Abstract
As a common malignancy, thyroid cancer mainly occurs in the endocrine system. There have been accumulating studies on therapeutic methods of thyroid cancer, but its internal molecular mechanism is still not fully understood. Long noncoding RNA (lncRNA) OIP5-AS1 was confirmed as an oncogene and related to poor prognosis in various cancers. Nevertheless, its role and underlying mechanism remain unclear in thyroid cancer. Here, we observed a significant upregulation of OIP5-AS1 in thyroid cancer tissues and cells, and upregulated OIP5-AS1 was correlated with poor prognosis in thyroid cancer. Moreover, OIP5-AS1 knockdown resulted in the inhibited cell proliferation and migration, while overexpressed OIP5-AS1 exhibited the reverse function in thyroid cancer. Besides, OIP5-AS1 was found to positively regulate Wnt/β-catenin signaling pathway. Through mechanism exploration, OIP5-AS1 was discovered to activate Wnt/β-catenin signaling pathway via FXR1/YY1/CTNNB1 axis. Finally, rescue assays indicated that the inhibitive role of silenced OIP5-AS1 in thyroid cancer cell growth and Wnt/β-catenin signaling pathway could be rescued by overexpression of CTNNB1 or addition of lithium chloride (LiCl). In conclusion, upregulation of OIP5-AS1 predicted unfavorable prognosis and enhanced thyroid cancer cell growth by activating Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Qiuli Li
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Weichao Chen
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Rongzhen Luo
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Zhiyi Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Ming Song
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Wenkuan Chen
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Zhongyuan Yang
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yuanzhong Yang
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Zhuming Guo
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Ankui Yang
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.
| |
Collapse
|
22
|
Zhang XC, Gu AP, Zheng CY, Li YB, Liang HF, Wang HJ, Tang XL, Bai XX, Cai J. YY1/LncRNA GAS5 complex aggravates cerebral ischemia/reperfusion injury through enhancing neuronal glycolysis. Neuropharmacology 2019; 158:107682. [DOI: 10.1016/j.neuropharm.2019.107682] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/29/2019] [Accepted: 06/23/2019] [Indexed: 12/13/2022]
|
23
|
Hays E, Bonavida B. YY1 regulates cancer cell immune resistance by modulating PD-L1 expression. Drug Resist Updat 2019; 43:10-28. [PMID: 31005030 DOI: 10.1016/j.drup.2019.04.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 02/08/2023]
Abstract
Recent advances in the treatment of various cancers have resulted in the adaptation of several novel immunotherapeutic strategies. Notably, the recent intervention through immune checkpoint inhibitors has resulted in significant clinical responses and prolongation of survival in patients with several therapy-resistant cancers (melanoma, lung, bladder, etc.). This intervention was mediated by various antibodies directed against inhibitory receptors expressed on cytotoxic T-cells or against corresponding ligands expressed on tumor cells and other cells in the tumor microenvironment (TME). However, the clinical responses were only observed in a subset of the treated patients; it was not clear why the remaining patients did not respond to checkpoint inhibitor therapies. One hypothesis stated that the levels of PD-L1 expression correlated with poor clinical responses to cell-mediated anti-tumor immunotherapy. Hence, exploring the underlying mechanisms that regulate PD-L1 expression on tumor cells is one approach to target such mechanisms to reduce PD-L1 expression and, therefore, sensitize the resistant tumor cells to respond to PD-1/PD-L1 antibody treatments. Various investigations revealed that the overexpression of the transcription factor Yin Yang 1 (YY1) in most cancers is involved in the regulation of tumor cells' resistance to cell-mediated immunotherapies. We, therefore, hypothesized that the role of YY1 in cancer immune resistance may be correlated with PD-L1 overexpression on cancer cells. This hypothesis was investigated and analysis of the reported literature revealed that several signaling crosstalk pathways exist between the regulations of both YY1 and PD-L1 expressions. Such pathways include p53, miR34a, STAT3, NF-kB, PI3K/AKT/mTOR, c-Myc, and COX-2. Noteworthy, many clinical and pre-clinical drugs have been utilized to target these above pathways in various cancers independent of their roles in the regulation of PD-L1 expression. Therefore, the direct inhibition of YY1 and/or the use of the above targeted drugs in combination with checkpoint inhibitors should result in enhancing the cell-mediated anti-tumor cell response and also reverse the resistance observed with the use of checkpoint inhibitors alone.
Collapse
Affiliation(s)
- Emily Hays
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, United States
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, United States.
| |
Collapse
|
24
|
Chen ZS, Chan HYE. Transcriptional dysregulation in neurodegenerative diseases: Who tipped the balance of Yin Yang 1 in the brain? Neural Regen Res 2019; 14:1148-1151. [PMID: 30804239 PMCID: PMC6425841 DOI: 10.4103/1673-5374.251193] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Yin Yang 1 (YY1) is a multi-functional transcription factor that regulates gene expression in a range of cell types, including neurons. It controls neuronal differentiation, as well as neuronal specification and migration during the development of the mammalian nervous system. Besides, YY1 also mediates the transcription of genes that are required for neuronal survival. An impairment of the transcriptional function of YY1 causes neuronal death. This review summarizes recent research findings that unveil the dysfunction of YY1 in multiple neurodegenerative disorders. The expression of disease proteins perturbs the function of YY1 via distinct molecular mechanisms, including recruitment to protein aggregates, protein degradation and aberrant nuclear/cytoplasmic shuttling. Understanding the pathogenic roles of YY1 will further broaden our knowledge of the disease mechanisms in distinct neurodegenerative disorders.
Collapse
Affiliation(s)
- Zhefan Stephen Chen
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong Special Administration Region, China
| | - Ho Yin Edwin Chan
- School of Life Sciences, Faculty of Science; Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong Special Administration Region, China
| |
Collapse
|