1
|
Palir N, Stajnko A, Mazej D, France Štiglic A, Rosolen V, Mariuz M, Ronfani L, Snoj Tratnik J, Runkel AA, Tursunova V, Marc J, Prpić I, Špirić Z, Barbone F, Horvat M, Falnoga I. Maternal APOE ε2 as a possible risk factor for elevated prenatal Pb levels. ENVIRONMENTAL RESEARCH 2024; 260:119583. [PMID: 38992759 DOI: 10.1016/j.envres.2024.119583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Lead (Pb) is a global contaminant associated with multiple adverse health effects. Humans are especially vulnerable during critical developmental stages. During pregnancy, exposure to Pb can occur through diet and release from maternal bones. Apolipoprotein E gene (APOE) variants (ɛ2, ɛ3, ɛ4 alleles) may influence sex steroid hormones, bone metabolism, and Pb kinetics. We examined the interplay among maternal APOE (mAPOE) genotypes, fetal sex, parity, and Pb in maternal and cord blood (mB-Pb, CB-Pb) using linear regression models. Our study involved 817 pregnant women and 772 newborns with measured adequate levels of zinc and selenium. We compared carriers of the ε2 and ε4 alleles to those with the ε3/ε3 genotype. The geometric means (range) of mB-Pb and CB-Pb were 11.1 (3.58-87.6) and 9.31 (1.82-47.0) ng/g, respectively. In cases with female fetuses, the maternal mAPOE ε2 allele was associated with higher, while the mAPOE ε4 allele was associated with lower mB-Pb and CB-Pb levels. Nulliparity increased the strength of the observed associations. These findings highlight the significance of mAPOE genetics, fetal sex, and parity in prenatal Pb kinetics. Notably, the maternal ε2 allele may increase the risk of Pb exposure.
Collapse
Affiliation(s)
- Neža Palir
- Department of Environmental Sciences, Jožef Stefan Institute, 1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, 1000, Ljubljana, Slovenia
| | - Anja Stajnko
- Department of Environmental Sciences, Jožef Stefan Institute, 1000, Ljubljana, Slovenia
| | - Darja Mazej
- Department of Environmental Sciences, Jožef Stefan Institute, 1000, Ljubljana, Slovenia
| | - Alenka France Štiglic
- Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia
| | - Valentina Rosolen
- Central Directorate for Health, Social Policies and Disability, Friuli Venezia Giulia Region, 34124, Trieste, Italy
| | - Marika Mariuz
- Central Directorate for Health, Social Policies and Disability, Friuli Venezia Giulia Region, 34124, Trieste, Italy
| | - Luca Ronfani
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", 34137, Trieste, Italy
| | - Janja Snoj Tratnik
- Department of Environmental Sciences, Jožef Stefan Institute, 1000, Ljubljana, Slovenia
| | - Agneta Annika Runkel
- Department of Environmental Sciences, Jožef Stefan Institute, 1000, Ljubljana, Slovenia
| | | | - Janja Marc
- Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Igor Prpić
- Department of Pediatrics, University Hospital Centre Rijeka, 51000, Rijeka, Croatia; Faculty of Medicine, University of Rijeka, 51000, Rijeka, Croatia
| | | | - Fabio Barbone
- Central Directorate for Health, Social Policies and Disability, Friuli Venezia Giulia Region, 34124, Trieste, Italy; Department of Medicine, Surgery and Health Sciences, University of Trieste, 34129, Trieste, Italy
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, 1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, 1000, Ljubljana, Slovenia
| | - Ingrid Falnoga
- Department of Environmental Sciences, Jožef Stefan Institute, 1000, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Zhou L, Li Y, Ma J, Zhang Q, Tang S, Zou K, Zeng Q, Huang H, Jin H, Zhang Q, Feng J. Role and mechanism of Actein on condylar bone metabolism in APOE deletion-induced osteoporotic mice. Bone 2024; 190:117304. [PMID: 39448001 DOI: 10.1016/j.bone.2024.117304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/18/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
AIMS To investigate the effects of Actein from Cimicifugae Rhizoma on condylar bone and cartilage in APOE deletion-induced osteoporotic mice, and to preliminarily explore the underlying mechanism. METHODS Sixty 8-week-old female mice were used, which underwent APOE-/- and ovariectomy procedures, followed by oral administration of Actein (15 mg/kg) and Atorvastatin Calcium (AC, 3 mg/kg) for eight weeks. Body weight, uterine weight, and systemic indexes related to bone metabolism and lipid metabolism were assessed in each group. Changes in condylar bone histomorphometric parameters were evaluated using Micro-CT. Morphological changes in the condyle were observed with Hematoxylin-Eosin (H&E), Safranin O/Fast Green, and Alcian Blue Hematoxylin/Orange G (ABH/OG) staining, with OARSI pathology scoring performed. Sirius red staining and immunofluorescence were used to determine the expression levels of Collagen I (Col I) and Collagen III (Col III) in bone matrix, and Col II in cartilage matrix. Immunohistochemistry assessed the relative expression levels of ALP and proteins associated with the Wnt/β-catenin/RUNX2 signaling pathway. RESULTS APOE-/- exacerbates ovariectomy -induced osteoporosis (OP) in condylar of mice. Actein and AC significantly reversed OP, improved bone mineral density (BMD), increased bone microarchitecture, and restored abnormal calcium and phosphorus metabolism in the blood and urine. Morphologically, APOE-/- and ovariectomy reduced condylar cartilage thickness, disrupted chondrocyte arrangement, chondrocyte cleavage, and clustered aggregation, resembling osteoarthritis (OA)-like changes. Actein and AC partially restored the disrupted chondrocyte arrangement, smoothed chondrocyte cleavage, and up-regulated the levels of chondrocyte matrix (Col II, aggrecan) and bone matrix (Col III, ALP). Actein reversed the OA process, potentially through the Wnt/β-catenin/RUNX2 signaling pathway. CONCLUSION APOE-/- and ovariectomy induced OP, leading to OA-like lesions in condylar of mice. Actein promoted cartilage repair and trabecular bone recovery by increasing extracellular matrix synthesis (Col II, Col III, aggrecan), reversing the OA process, possibly through the Wnt/β-catenin/RUNX2 signaling pathway.
Collapse
Affiliation(s)
- Linyi Zhou
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| | - Yuqian Li
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Jinjin Ma
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| | - Qi Zhang
- Central Laboratories, Qingdao Municipal Hospital, Qingdao, Shandong 266071, China
| | - Shuhui Tang
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Kaiao Zou
- Institute of Orthopaedics and Traumatology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, China
| | - Qinghe Zeng
- Institute of Orthopaedics and Traumatology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, China
| | - Haipeng Huang
- Institute of Orthopaedics and Traumatology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, China
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, China
| | - Qiaoyan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| | - Jianying Feng
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
3
|
Shanbhag S, Al-Sharabi N, Fritz-Wallace K, Kristoffersen EK, Bunæs DF, Romandini M, Mustafa K, Sanz M, Gruber R. Proteomic Analysis of Human Serum Proteins Adsorbed onto Collagen Barrier Membranes. J Funct Biomater 2024; 15:302. [PMID: 39452600 PMCID: PMC11508515 DOI: 10.3390/jfb15100302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
Collagen barrier membranes are frequently used in guided tissue and bone regeneration. The aim of this study was to analyze the signature of human serum proteins adsorbed onto collagen membranes using a novel protein extraction method combined with mass spectrometry. Native porcine-derived collagen membranes (Geistlich Bio-Gide®, Wolhusen, Switzerland) were exposed to pooled human serum in vitro and, after thorough washing, subjected to protein extraction either in conjunction with protein enrichment or via a conventional surfactant-based method. The extracted proteins were analyzed via liquid chromatography with tandem mass spectrometry. Bioinformatic analysis of global profiling, gene ontology, and functional enrichment of the identified proteins was performed. Overall, a total of 326 adsorbed serum proteins were identified. The enrichment and conventional methods yielded similar numbers of total (315 vs. 309), exclusive (17 vs. 11), and major bone-related proteins (18 vs. 14). Most of the adsorbed proteins (n = 298) were common to both extraction groups and included several growth factors, extracellular matrix (ECM) proteins, cell adhesion molecules, and angiogenesis mediators involved in bone regeneration. Functional analyses revealed significant enrichment of ECM, exosomes, immune response, and cell growth components. Key proteins [transforming growth factor-beta 1 (TGFβ1), insulin-like growth factor binding proteins (IGFBP-5, -6, -7)] were exclusively detected with the enrichment-based method. In summary, native collagen membranes exhibited a high protein adsorption capacity in vitro. While both extraction methods were effective, the enrichment-based method showed distinct advantages in detecting specific bone-related proteins. Therefore, the use of multiple extraction methods is advisable in studies investigating protein adsorption on biomaterials.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, 5009 Bergen, Norway
- Department of Periodontology, Faculty of Dentistry, University of Oslo, 0455 Oslo, Norway
| | - Niyaz Al-Sharabi
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
| | - Katarina Fritz-Wallace
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway
| | - Einar K. Kristoffersen
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, 5009 Bergen, Norway
- Department of Clinical Medicine, University of Bergen, 5009 Bergen, Norway
| | - Dagmar Fosså Bunæs
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
| | - Mario Romandini
- Department of Periodontology, Faculty of Dentistry, University of Oslo, 0455 Oslo, Norway
| | - Kamal Mustafa
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
| | - Mariano Sanz
- Department of Periodontology, Faculty of Dentistry, University of Oslo, 0455 Oslo, Norway
- ETEP Research Group, University Complutense of Madrid, 28040 Madrid, Spain
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
4
|
France Štiglic A, Stajnko A, Sešek Briški A, Snoj Tratnik J, Mazej D, Jerin A, Skitek M, Horvat M, Marc J, Falnoga I. Associations between APOE genotypes, urine 8-isoprostane and blood trace elements in middle-aged mothers (CROME study). ENVIRONMENT INTERNATIONAL 2024; 193:109034. [PMID: 39447471 DOI: 10.1016/j.envint.2024.109034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND There is almost no data on the combined associations between apolipoprotein E gene (APOE) genotypes, trace elements (TEs), and lipid peroxidation in vivo. The aim of our study was to evaluate the association between APOE genotypes and TE levels in blood (B-TEs) and erythrocytes (E-TEs), and 8-isoprostane in urine (U-8-isoprostane) in women with low exposure to potentially toxic TEs and with adequate supply of essential TEs. METHODS B-TEs, E-TEs and U-8-isoprostane were determined in 172 healthy women of childbearing age (30.1-51.4 years) using ICP-MS and ELISA competitive assay, respectively. All women were divided into three APOE genotype groups according to the presence of the ɛ4 allele, ɛ2 allele or ɛ3 homozygotic allele. The associations between B-TEs, E-TE, U-8-isoprostane, and the APOE genotype groups were estimated by multiple variable linear regression models with relevant explanatory variables (e.g., age, BMI, and seafood). RESULTS All TE and U-8-isoprostane levels were inside the reference ranges for the healthy population. In the multiple variable linear regression models, our results showed that urine 8-isoprostane levels increased by up to 43.3% in the APOE4 group compared to the APOE3 group and a negligible negative modifying effect for essential TEs. However, the APOE genotype groups were associated also with some TEs. A clear positive association was found between the APOE2 and APOE4 groups (vs. APOE3) with B-molybdenum. CONCLUSIONS Our study suggests that the APOE4 genotype played an important role in 8-isoprostane variability in a population with an adequate supply of essential and with low exposure to potentially toxic TEs. Adequate copper, zinc and selenium status seemed to be protective against, while the levels of nonessential TEs were probably too low to play a decisive role in 8-isoprostane formation. The observed impact of the APOE2 and APOE4 groups on increased B-molybdenum opens a new research topic.
Collapse
Affiliation(s)
- Alenka France Štiglic
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Anja Stajnko
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| | - Alenka Sešek Briški
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, 1000 Ljubljana, Slovenia.
| | - Janja Snoj Tratnik
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| | - Darja Mazej
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| | - Aleš Jerin
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Milan Skitek
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| | - Janja Marc
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Ingrid Falnoga
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| |
Collapse
|
5
|
Farup PG. Changes in bone turnover markers 6-12 months after bariatric surgery. Sci Rep 2024; 14:14844. [PMID: 38937532 PMCID: PMC11211350 DOI: 10.1038/s41598-024-65952-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/25/2024] [Indexed: 06/29/2024] Open
Abstract
A rise in bone turnover markers (BTM) after bariatric surgery predicts poor bone health years later. This study explored factors associated with BTM and changes in BTM after bariatric surgery. Inclusion criteria were subjects 18 to 65 years of age with morbid obesity undergoing bariatric surgery. All data were measured before and 6 and 12 months after surgery. The study included 104 subjects: women/men: 83/21; mean age 43.1 (SD 8.4) years; BMI: 38.8 kg/m2 (SD 3.8). Surgery with Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG) was performed in 84 (81%) and 20 (19%) subjects, respectively. From before to 6-12 months after surgery, procollagen type 1 N-terminal propeptid (P1NP) increased by 45.6 µg/L (95% CI 41.5-50.0, p < 0.001), and alkaline phosphatase (ALP) by 10 U/L (95% CI 7-14, p < 0.001). The increases were significantly larger after RYGB than after SG. The APOE- Ɛ3 allele was associated with low levels of BTM and high levels of leptin. There was an unfavourable increase in BTM after bariatric surgery. SG compared to RYGB and the presence of the APOE-Ɛ3 allele were associated with less unfavourable effects. The study emphasises the importance of optimal prophylactic interventions after bariatric surgery to prevent osteoporosis.
Collapse
Affiliation(s)
- Per G Farup
- Department of Research, Innlandet Hospital Trust, PB 104, 2381, Brumunddal, Norway.
| |
Collapse
|
6
|
Cai L, Lv X, Li X, Wang X, Ma H, Heianza Y, Qi L, Zhou T. Association of white matter hyperintensities with BMD, incident fractures, and falls in the UK Biobank cohort. J Bone Miner Res 2024; 39:408-416. [PMID: 38477810 PMCID: PMC11262152 DOI: 10.1093/jbmr/zjae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/26/2024] [Accepted: 02/10/2024] [Indexed: 03/14/2024]
Abstract
Osteoporosis is the most common metabolic bone disease globally, which increases the healthcare service burden. Recent studies have linked higher white matter hyperintensities (WMH) to reduced BMD, increasing the risk of fractures and falls in older adults. However, limited evidence exists regarding the dose-response relationship between WMH and bone health in a larger and younger population. Our study aimed to examine the association of WMH volume with BMD, incident fractures and falls, focusing on dose-response relationship with varying levels of WMH volume. We included 26 410 participants from the UK Biobank. The association between WMH volume and BMD was analyzed using multiple linear regression. Cox regression models were used to estimate the hazard ratios of incident fractures and falls. Restricted cubic spline (RCS) fitted for linear and Cox regression models were employed to explore potential non-linearity. Over a mean follow-up time of 3.8 yr, we documented 59 hip fractures, 392 all fractures, and 375 fall incidents. When applying RCS, L-shaped relationships were identified between WMH volume and BMD across all 4 sites. Compared with those in the lowest fifth of WMH volume, individuals in the second to the highest fifths were associated with a reduction of 0.0102-0.0305 g/cm2 in femur neck BMD, 0.0075-0.0273 g/cm2 in femur troch BMD, 0.0173-0.0345 g/cm2 in LS BMD, and 0.0141-0.0339 g/cm2 in total body BMD. The association was more pronounced among women and younger participants under age 65 (Pinteraction < .05). Per 1 SD increment of WMH volume was associated with 36.9%, 20.1%, and 14.3% higher risks of incident hip fractures, all fractures, and falls. Genetically determined WMH or apolipoprotein E genotypes did not modify these associations. We demonstrated that a greater WMH was associated with BMD in an L-shaped dose-response manner, especially in women and those under 65 yr.
Collapse
Affiliation(s)
- Lishan Cai
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-sen University, Guangming District, Shenzhen 518107, China
| | - Xingyu Lv
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-sen University, Guangming District, Shenzhen 518107, China
| | - Xiang Li
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, United States
| | - Xuan Wang
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, United States
| | - Hao Ma
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, United States
| | - Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, United States
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, United States
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
| | - Tao Zhou
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-sen University, Guangming District, Shenzhen 518107, China
| |
Collapse
|
7
|
Seo JW, Yoon SK, Lim HH, Shin W, Kim W, Min YK, Yoon BK. Modulation of Bone Mineral Density and Its Response to Menopausal Hormone Therapy according to the Apolipoprotein E Genotype in Postmenopausal Korean Women. J Menopausal Med 2024; 30:37-43. [PMID: 38714492 PMCID: PMC11103072 DOI: 10.6118/jmm.23033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/31/2023] [Accepted: 01/15/2024] [Indexed: 05/10/2024] Open
Abstract
OBJECTIVES Genetic factors are a major cause of osteoporosis. The present study evaluated the association of the apolipoprotein E (ApoE) genotype with bone mineral density (BMD) and its response to menopausal hormone therapy (MHT) in postmenopausal Korean women. METHODS This retrospective cohort study included 172 postmenopausal women with no endocrine diseases, medications, or lifestyles that would affect bone metabolism and who were continuously treated with MHT for at least 2 years. BMDs were measured at baseline and periodically. RESULTS Linear regression analysis demonstrated similar baseline BMDs at the lumbar spine, but significantly lower at the femur neck and total hip in the ApoE ε4 carrier than in the noncarrier group, after controlling for age, body mass index, and history of MHT usage. Overall, the Wilcoxon signed rank test demonstrated that MHT increased the BMD percentage change at all three regions, and the Generalized Estimating Equation (GEE) demonstrated significant time trends at the lumbar spine and femur neck. ApoE ε4 noncarriers exhibited a significant time trend in BMD changes at the femur neck, whereas ε4 carriers exhibited a time trend at the lumbar spine. However, BMD changes at each time point were comparable at all regions between the groups. Notably, GEE adjusted for baseline characteristics and BMD revealed a significant interaction effect of time and ApoE ε4 allele in BMD changes at the femur neck. CONCLUSIONS Postmenopausal Korean women carrying the ApoE ε4 allele demonstrated a lower hip BMD compared with ε4 noncarriers. Furthermore, the ε4 allele may modulate hip BMD responses to MHT.
Collapse
Affiliation(s)
- Jong-Wook Seo
- Department of Obstetrics and Gynecology, National Health Insurance Ilsan Hospital, Goyang, Korea
| | - Sun-Kee Yoon
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, Korea
| | - Hyun Hye Lim
- Department of Obstetrics, Gynecology, and Women's Health, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Whan Shin
- Department of Obstetrics and Gynecology, CHA Bunding Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Woosun Kim
- Department of Obstetrics, Gynecology, and Women's Health, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yong-Ki Min
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Byung-Koo Yoon
- Department of Obstetrics, Gynecology, and Women's Health, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
8
|
Zheng H, Liu Y, Deng Y, Li Y, Liu S, Yang Y, Qiu Y, Li B, Sheng W, Liu J, Peng C, Wang W, Yu H. Recent advances of NFATc1 in rheumatoid arthritis-related bone destruction: mechanisms and potential therapeutic targets. Mol Med 2024; 30:20. [PMID: 38310228 PMCID: PMC10838448 DOI: 10.1186/s10020-024-00788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease characterized by inflammation of the synovial tissue and joint bone destruction, often leading to significant disability. The main pathological manifestation of joint deformity in RA patients is bone destruction, which occurs due to the differentiation and proliferation of osteoclasts. The transcription factor nuclear factor-activated T cell 1 (NFATc1) plays a crucial role in this process. The regulation of NFATc1 in osteoclast differentiation is influenced by three main factors. Firstly, NFATc1 is activated through the upstream nuclear factor kappa-B ligand (RANKL)/RANK signaling pathway. Secondly, the Ca2+-related co-stimulatory signaling pathway amplifies NFATc1 activity. Finally, negative regulation of NFATc1 occurs through the action of cytokines such as B-cell Lymphoma 6 (Bcl-6), interferon regulatory factor 8 (IRF8), MAF basic leucine zipper transcription factor B (MafB), and LIM homeobox 2 (Lhx2). These three phases collectively govern NFATc1 transcription and subsequently affect the expression of downstream target genes including TRAF6 and NF-κB. Ultimately, this intricate regulatory network mediates osteoclast differentiation, fusion, and the degradation of both organic and inorganic components of the bone matrix. This review provides a comprehensive summary of recent advances in understanding the mechanism of NFATc1 in the context of RA-related bone destruction and discusses potential therapeutic agents that target NFATc1, with the aim of offering valuable insights for future research in the field of RA. To assess their potential as therapeutic agents for RA, we conducted a drug-like analysis of potential drugs with precise structures.
Collapse
Affiliation(s)
- Hao Zheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yuexuan Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yasi Deng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yunzhe Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Shiqi Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yong Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yun Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Wenbing Sheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jinzhi Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Caiyun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Huanghe Yu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
9
|
Deng TT, Ding WY, Lu XX, Zhang QH, Du JX, Wang LJ, Yang MN, Yin Y, Liu FJ. Pharmacological and mechanistic aspects of quercetin in osteoporosis. Front Pharmacol 2024; 15:1338951. [PMID: 38333006 PMCID: PMC10851760 DOI: 10.3389/fphar.2024.1338951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Osteoporosis (OP) is a bone disease associated with increasing age. Currently, the most common medications used to treat OP are anabolic agents, anti-resorptive agents, and medications with other mechanisms of action. However, many of these medications have unfavorable adverse effects or are not intended for long-term use, potentially exerting a severe negative impact on a patient's life and career and placing a heavy burden on families and society. There is an urgent need to find new drugs that can replace these and have fewer adverse effects. Quercetin (Que) is a common flavonol in nature. Numerous studies have examined the therapeutic applications of Que. However, a comprehensive review of the anti-osteoporotic effects of Que has not yet been conducted. This review aimed to describe the recent studies on the anti-osteoporotic effects of Que, including its biological, pharmacological, pharmacokinetic, and toxicological properties. The outcomes demonstrated that Que could enhance OP by increasing osteoblast differentiation and activity and reducing osteoclast differentiation and activity via the pathways of Wnt/β-catenin, BMP/SMAD/RUNX2, OPG/RANKL/RANK, ERK/JNK, oxidative stress, apoptosis, and transcription factors. Thus, Que is a promising novel drug for the treatment of OP.
Collapse
Affiliation(s)
- Ting-Ting Deng
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Yu Ding
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, China
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xi-Xue Lu
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center, School of Biomedical Sciences, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qing-Hao Zhang
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center, School of Biomedical Sciences, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jin-Xin Du
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Li-Juan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center, School of Biomedical Sciences, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Mei-Na Yang
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Ying Yin
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fan-Jie Liu
- Bone Biomechanics Engineering Laboratory of Shandong Province, Shandong Medicinal Biotechnology Center, School of Biomedical Sciences, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
10
|
Wang YN, Yu L, Wang T, Liu S. Apolipoprotein E facilitates titanium implant osseointegration by regulating osteogenesis-lipogenesis balance. Int J Biol Macromol 2023; 236:123998. [PMID: 36906203 DOI: 10.1016/j.ijbiomac.2023.123998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Apolipoprotein E (ApoE), a protein closely related to various metabolic diseases, is recently considered to play an essential role in bone metabolism. However, the effect and mechanism of ApoE on implant osseointegration have not been clarified. This study aims to investigate the influence of additional ApoE supplementation in regulating the osteogenesis-lipogenesis balance on bone marrow mesenchymal stem cells (BMMSCs) cultured on titanium surface, and the effect of ApoE on the osseointegration of titanium implants. In vivo, the bone volume/total volume (BV/TV) and the bone-implant contact (BIC) significantly elevated in the exogenous supplement of ApoE group, compared with the Normal group. Meanwhile, the adipocyte area proportion around the implant dramatically decreased after 4-week healing. In vitro, the additional ApoE substantially drove the osteogenic differentiation of BMMSCs cultured on the titanium surface and inhibit their lipogenic differentiation as well as lipid droplet accumulation. These results suggest that ApoE, by mediating the differentiation of stem cells on the surface of titanium with this macromolecular protein, is deeply involved in facilitating titanium implant osseointegration, which reveals the potential mechanism and proposes a promising solution for further improving the osseointegration of titanium implants.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China
| | - Lu Yu
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China
| | - Ting Wang
- Department of General Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China
| | - Shiyue Liu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China; Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China.
| |
Collapse
|
11
|
Ghosh S, Rihan M, Ahmed S, Pande AH, Sharma SS. Immunomodulatory potential of apolipoproteins and their mimetic peptides in asthma: Current perspective. Respir Med 2022; 204:107007. [DOI: 10.1016/j.rmed.2022.107007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/03/2022] [Indexed: 10/31/2022]
|
12
|
Fehsel K, Christl J. Comorbidity of osteoporosis and Alzheimer's disease: Is `AKT `-ing on cellular glucose uptake the missing link? Ageing Res Rev 2022; 76:101592. [PMID: 35192961 DOI: 10.1016/j.arr.2022.101592] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/08/2023]
Abstract
Osteoporosis and Alzheimer's disease (AD) are both degenerative diseases. Osteoporosis often proceeds cognitive deficits, and multiple studies have revealed common triggers that lead to energy deficits in brain and bone. Risk factors for osteoporosis and AD, such as obesity, type 2 diabetes, aging, chemotherapy, vitamin deficiency, alcohol abuse, and apolipoprotein Eε4 and/or Il-6 gene variants, reduce cellular glucose uptake, and protective factors, such as estrogen, insulin, exercise, mammalian target of rapamycin inhibitors, hydrogen sulfide, and most phytochemicals, increase uptake. Glucose uptake is a fine-tuned process that depends on an abundance of glucose transporters (Gluts) on the cell surface. Gluts are stored in vesicles under the plasma membrane, and protective factors cause these vesicles to fuse with the membrane, resulting in presentation of Gluts on the cell surface. This translocation depends mainly on AKT kinase signaling and can be affected by a range of factors. Reduced AKT kinase signaling results in intracellular glucose deprivation, which causes endoplasmic reticulum stress and iron depletion, leading to activation of HIF-1α, the transcription factor necessary for higher Glut expression. The link between diseases and aging is a topic of growing interest. Here, we show that diseases that affect the same biochemical pathways tend to co-occur, which may explain why osteoporosis and/or diabetes are often associated with AD.
Collapse
|
13
|
Liu YD, Liu JF, Liu B. N,N-Dimethylformamide inhibits high glucose-induced osteoporosis via attenuating MAPK and NF-κB signalling. Bone Joint Res 2022; 11:200-209. [PMID: 35369730 PMCID: PMC9057521 DOI: 10.1302/2046-3758.114.bjr-2020-0308.r2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Aims The role of N,N-dimethylformamide (DMF) in diabetes-induced osteoporosis (DM-OS) progression remains unclear. Here, we aimed to explore the effect of DMF on DM-OS development. Methods Diabetic models of mice, RAW 264.7 cells, and bone marrow macrophages (BMMs) were established by streptozotocin stimulation, high glucose treatment, and receptor activator of nuclear factor-κB ligand (RANKL) treatment, respectively. The effects of DMF on DM-OS development in these models were examined by micro-CT analysis, haematoxylin and eosin (H&E) staining, osteoclast differentiation of RAW 264.7 cells and BMMs, H&E and tartrate-resistant acid phosphatase (TRAP) staining, enzyme-linked immunosorbent assay (ELISA) of TRAP5b and c-terminal telopeptides of type 1 (CTX1) analyses, reactive oxygen species (ROS) analysis, quantitative reverse transcription polymerase chain reaction (qRT-PCR), Cell Counting Kit-8 (CCK-8) assay, and Western blot. Results The established diabetic mice were more sensitive to ovariectomy (OVX)-induced osteoporosis, and DMF treatment inhibited the sensitivity. OVX-treated diabetic mice exhibited higher TRAP5b and c-terminal telopeptides of type 1 (CTX1) levels, and DMF treatment inhibited the enhancement. DMF reduced RAW 264.7 cell viability. Glucose treatment enhanced the levels of TRAP5b, cathepsin K, Atp6v0d2, and H+-ATPase, ROS, while DMF reversed this phenotype. The glucose-increased protein levels were inhibited by DMF in cells treated with RANKL. The expression levels of antioxidant enzymes Gclc, Gclm, Ho-1, and Nqo1 were upregulated by DMF. DMF attenuated high glucose-caused osteoclast differentiation by targeting mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signalling in BMMs. Conclusion DMF inhibits high glucose-induced osteoporosis by targeting MAPK and NF-κB signalling. Cite this article: Bone Joint Res 2022;11(4):200–209.
Collapse
Affiliation(s)
- Ya Dong Liu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jian Feng Liu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, China
| | - Bin Liu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Li Y, Yang C, Jia K, Wang J, Wang J, Ming R, Xu T, Su X, Jing Y, Miao Y, Liu C, Lin N. Fengshi Qutong capsule ameliorates bone destruction of experimental rheumatoid arthritis by inhibiting osteoclastogenesis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114602. [PMID: 34492323 DOI: 10.1016/j.jep.2021.114602] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bone destruction plays a key role in damaging the joint function of rheumatoid arthritis (RA). Fengshi Qutong capsule (FSQTC) consisting of 19 traditional Chinese medicines has been used for treating RA in China for many years. Preliminary studies show that FSQTC has analgesic activity and inhibits synovial angiogenesis of collagen-induced arthritis (CIA), but its role on bone destruction of RA is still unclear. AIM OF THE STUDY To explore the effect of FSQTC on bone destruction of RA and the possible mechanism of osteoclastogenesis in vivo and in vitro. MATERIALS AND METHODS LC-MS system was used to detect the quality control components of FSQTC. The anti-arthritic effect of FSQTC on CIA rats was evaluated by arthritis score, arthritis incidence and histopathology evaluation of inflamed joints. The effect of treatment with FSQTC on bone destruction of joint tissues was determined with X-ray and micro-CT quantification, and on bone resorption marker CTX-I and formation marker osteocalcin in sera were detected by ELISA. Then, osteoclast differentiation and mature were evaluated by TRAP staining, actin ring immunofluorescence and bone resorption assay both in joints and RANKL-induced RAW264.7 cells. In addition, RANKL, OPG, IL-1β and TNFα in sera were evaluated by ELISA. The molecular mechanisms of the inhibitions were elucidated by analyzing the protein and gene expression of osteoclastic markers CTSK, MMP-9 and β3-Integrin, transcriptional factors c-Fos and NFATc1, as well as phosphorylation of ERK1/2, JNK and P38 in joints and in RANKL-induced RAW264.7 cells using western blot and/or qPCR. RESULTS In this study, 12 major quality control components were identified. Our data showed that FSQTC significantly increased bone mineral density, volume fraction, trabecular thickness, and decreased trabecular separation of inflamed joints both at periarticular and extra-articular locations in CIA rats. FSQTC also diminished the level of CTX-I and simultaneously increased osteocalcin in sera of CIA rats. The effects were accompanied by reductions of osteoclast differentiation, bone resorption, and expression of osteoclastic markers (CTSK, MMP-9 and β3-Integrin) in joints. Interestingly, FSQTC treatment could reduce the protein level of RANKL, increase the expression of OPG, and decrease the ratio of RANKL to OPG in inflamed joints and sera of CIA rats. In addition, FSQTC inhibited the levels of pro-inflammatory cytokines implicated in bone resorption, such as IL-1β and TNFα in sera. When RAW264.7 cells were treated with RANKL, FSQTC inhibited the formation of TRAP + multinucleated cells, actin ring and the bone-resorbing activity in dose-dependent manners. Furthermore, FSQTC reduced the RANKL-induced expression of osteoclastic genes and proteins and transcriptional factors (c-Fos and NFATc1), as well as phosphorylation of mitogen-activated protein kinases (MAPKs). CONCLUSION FSQTC may inhibit bone destruction of RA by its anti-osteoclastogenic activity both in vivo and in vitro.
Collapse
Affiliation(s)
- Yiqun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chao Yang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Kexin Jia
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jinxia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jingxia Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ruirui Ming
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tengteng Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaohui Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Jing
- Tonghua Golden-Horse Pharmaceutical Industry Co.,Ltd, Beijing, 100028, China
| | - Yandong Miao
- Tonghua Golden-Horse Pharmaceutical Industry Co.,Ltd, Beijing, 100028, China
| | - Chunfang Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
15
|
Exploring the Effect of Jiawei Buguzhi Pills on TGF- β-Smad Pathway in Postmenopausal Osteoporosis Based on Integrated Pharmacological Strategy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5556653. [PMID: 34754316 PMCID: PMC8572597 DOI: 10.1155/2021/5556653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/27/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023]
Abstract
Objective To explore the effect of Jiawei Buguzhi Pills (JWBGZP) on the TGF-β-Smad pathway in postmenopausal osteoporosis (PMO) based on integrated pharmacological strategy. Method The ETCM database was used to collect JWBGZP. GeneCards and OMIM databases were utilized to obtain PMO-related genes. Cytoscape was used for network construction and analysis, and DAVID was used for GO and KEGG enrichment analysis of key targets. Animal experiments and cell experiments were conducted to further explore the mechanism. The bone mass density was detected by dual-energy X-ray bone densitometer. The TGF-β1 and Smad4 mRNA in bone tissue were detected by RT-qPCR. The TGF-β1 and Smad4 protein in bone tissue were detected by the western blot. The TGF-β1 and Smad4 protein in osteoblasts were determined by immunohistochemistry. Result A total of 721 JWBGZP potential targets and 385 PMO-related genes were obtained. The enrichment analysis showed that JWBGZP may regulate the TGF-beta signaling pathway, oxidation-reduction process, aging, response to hypoxia, response to ethanol, negative regulation of cell proliferation, PI3K-Akt, HIF-1, and other signaling pathways. The animal experiments showed that compared with the model group, the femoral bone mineral density and lumbar bone mineral density of the JWBGZP group increased (P < 0.05); the expression levels of TGF-β1 and Smad mRNA and proteins in the JWBGZP group were significantly higher (P < 0.05). The cell experiment results showed a large number of osteoblast stained blue-purple and orange-red calcified nodules. The expression levels of TGF-β1 and Smad proteins in the JWBGZP group were significantly higher than those in the blank control group and the sham operation group, and the protein expression levels in the model group were the lowest (P < 0.05). Conclusion JWBGZP may be involved in PI3K-Akt, HIF-1, estrogen, prolactin, and other signaling pathways and regulate MAPK1, AKT1, PIK3CA, JAK2, and other gene targets, regulate bone metabolism, and thereby treat PMO.
Collapse
|
16
|
Abstract
Apolipoprotein E (APOE) has three different isoforms, with APOE4 carriers representing a major risk factor for the development of Alzheimer’s disease (AD). AD is the most common form of dementia, and is a relentlessly progressive disorder that afflicts the aged, characterized by severe memory loss. Presently, AD does not have a cure, increasing the urgency for the development of novel therapeutics for the prevention/treatment of AD. The APOE4 isoform is associated with many pathological mechanisms, such as increased neuroinflammation and a reduction in β-amyloid (Aβ) clearance. The accumulation of Aβ plaques in the brain is a hallmark of AD. The presence of APOE4 can increase neuroinflammation via overactivation of the nuclear factor kappa B (NF-κB) pathway. The NF-κB pathway is a family of transcription factors involved with regulating over 400 genes involved with inflammation. AD is associated with sustained inflammation and an overactivation of the NF-κB pathway. Therefore, targeting the APOE4 isoform and suppressing the NF-κB pathway using anti-inflammatory compounds may result in the development of novel therapeutics for the prevention/treatment of AD.
Collapse
|
17
|
Apolipoprotein E is an effective biomarker for orthodontic tooth movement in patients treated with transmission straight wire appliances. Am J Orthod Dentofacial Orthop 2021; 161:255-262.e1. [PMID: 34756485 DOI: 10.1016/j.ajodo.2020.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 08/01/2020] [Accepted: 08/01/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Orthodontic tooth movement (OTM) is the core component of orthodontic treatment and is increasingly popular for treating malocclusions. In this study, we aimed to investigate the role of apolipoprotein E (ApoE) in OTM. METHODS Thirty patients treated with transmission straight wire technology were selected and longitudinally tracked at 2 different stages of orthodontic treatment (initial 2 months and 12 months of orthodontic treatment). Total saliva was collected and analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Western blotting was used to detect the difference in ApoE expression in the saliva samples of the 2 groups. The expression of ApoE was further verified by immunohistochemical staining in a mouse model of tooth movement. RESULTS The results of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry showed significant differences in the components of the salivary peptides in the 2 groups and peptides with a molecular weight of 2010.7 Da were predicted to be ApoE by database analysis. Western blotting further verified a significant difference in the expression of salivary ApoE in the 2 groups. In addition, an OTM model was successfully constructed in mice. The immunohistochemical staining results showed that ApoE expression significantly increased after force loading in the OTM model. CONCLUSIONS This study indicated that ApoE participated in and played a role during OTM in patients treated with transmission straight wire technology. This relationship might be related to alveolar bone reconstruction and root resorption. The results provide new ideas for research on the mechanism of tooth movement using precision medicine based on saliva detection.
Collapse
|
18
|
Zhu H, Chen H, Ding D, Wang S, Dai X, Zhu Y. Overexpression of PIK3R1 Promotes Bone Formation by Regulating Osteoblast Differentiation and Osteoclast Formation. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:2909454. [PMID: 34691235 PMCID: PMC8531831 DOI: 10.1155/2021/2909454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/20/2021] [Indexed: 11/23/2022]
Abstract
In an effort to bolster our understanding of regulation of bone formation in the context of osteoporosis, we screened out differentially expressed genes in osteoporosis patients with high and low bone mineral density by bioinformatics analysis. PIK3R1 is increasingly being nominated as a pivotal mediator in the differentiation of osteoblasts and osteoclasts that is closely related to bone formation. However, the specific mechanisms underlying the way that PIK3R1 affects bone metabolism are not fully elucidated. We intended to examine the potential mechanism by which PIK3R1 regulates osteoblast differentiation. Enrichment analysis was therefore carried out for differentially expressed genes. We noted that the estrogen signaling pathway, TNF signaling pathway, and osteoclast differentiation were markedly associated with ossification, and they displayed enrichment in PIK3R1. Based on western blot, qRT-PCR, and differentiation analysis in vitro, we found that upregulation of PIK3R1 enhanced osteoblastic differentiation, as evidenced by increased levels of investigated osteoblast-related genes as well as activities of ALP and ARS, while it notably decreased levels of investigated osteoclast-related genes. On the contrary, downregulation of PIK3R1 decreased levels of osteoblast-related genes and increased levels of osteoclast-related genes. Besides, in vitro experiments revealed that PIK3R1 facilitated proliferation and repressed apoptosis of osteoblasts but had an opposite impact on osteoclasts. In summary, PIK3R1 exhibits an osteoprotective effect via regulating osteoblast differentiation, which can be represented as a promising therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Haitao Zhu
- Department of Orthopedics, Sheyang County People's Hospital, Yancheng City, 224300 Jiangsu, China
| | - Hua Chen
- Department of Orthopedics, Sheyang County People's Hospital, Yancheng City, 224300 Jiangsu, China
| | - Degang Ding
- Department of Orthopedics, Sheyang County People's Hospital, Yancheng City, 224300 Jiangsu, China
| | - Shui Wang
- Department of Orthopedics, Sheyang County People's Hospital, Yancheng City, 224300 Jiangsu, China
| | - Xiaofeng Dai
- Department of Orthopedics, Sheyang County People's Hospital, Yancheng City, 224300 Jiangsu, China
| | - Yulong Zhu
- Department of Orthopedics, Sheyang County People's Hospital, Yancheng City, 224300 Jiangsu, China
| |
Collapse
|
19
|
Horsophonphong S, Sritanaudomchai H, Nakornchai S, Kitkumthorn N, Surarit R. Odontogenic gene expression profile of human dental pulp-derived cells under high glucose influence: a microarray analysis. J Appl Oral Sci 2021; 29:e20201074. [PMID: 34586189 PMCID: PMC8477757 DOI: 10.1590/1678-7757-2020-1074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 05/03/2021] [Accepted: 05/11/2021] [Indexed: 01/23/2023] Open
Abstract
Hyperglycemia, a major characteristic of diabetes, is considered to play a vital role in diabetic complications. High glucose levels have been found to inhibit the mineralization of dental pulp cells. However, gene expression associated with this phenomenon has not yet been reported. This is important for future dental therapeutic application. OBJECTIVE Our study aimed to investigate the effect of high glucose levels on mineralization of human dental pulp-derived cells (hDPCs) and identify the genes involved. METHODOLOGY hDPCs were cultured in mineralizing medium containing 25 or 5.5 mM D-glucose. On days 1 and 14, RNA was extracted and expression microarray performed. Then, differentially expressed genes (DEGs) were selected for further validation using the reverse transcription quantitative polymerase chain reaction (RT-qPCR) method. Cells were fixed and stained with alizarin red on day 21 to detect the formation of mineralized nodules, which was further quantified by acetic acid extraction. RESULTS Comparisons between high-glucose and low-glucose conditions showed that on day 1, there were 72 significantly up-regulated and 75 down-regulated genes in the high-glucose condition. Moreover, 115 significantly up- and 292 down-regulated genes were identified in the high-glucose condition on day 14. DEGs were enriched in different GO terms and pathways, such as biological and cellular processes, metabolic pathways, cytokine-cytokine receptor interaction and AGE-RAGE signaling pathways. RT-qPCR results confirmed the significant expression of pyruvate dehydrogenase kinase 3 (PDK3), cyclin-dependent kinase 8 (CDK8), activating transcription factor 3 (ATF3), fibulin-7 (Fbln-7), hyaluronan synthase 1 (HAS1), interleukin 4 receptor (IL-4R) and apolipoprotein C1 (ApoC1). CONCLUSIONS The high-glucose condition significantly inhibited the mineralization of hDPCs. DEGs were identified, and interestingly, HAS1 and Fbln-7 genes may be involved in the glucose inhibitory effect on hDPC mineralization.
Collapse
Affiliation(s)
- Sivaporn Horsophonphong
- Mahidol University, Faculty of Dentistry, Department of Oral Biology, Thailand
- Mahidol University, Faculty of Dentistry, Department of Pediatric Dentistry, Thailand
| | | | - Siriruk Nakornchai
- Mahidol University, Faculty of Dentistry, Department of Pediatric Dentistry, Thailand
| | - Nakarin Kitkumthorn
- Mahidol University, Faculty of Dentistry, Department of Oral Biology, Thailand
| | - Rudee Surarit
- Mahidol University, Faculty of Dentistry, Department of Oral Biology, Thailand
| |
Collapse
|
20
|
Chen Y, Yang T, Gao X, Xu A. Hybrid deep learning model for risk prediction of fracture in patients with diabetes and osteoporosis. Front Med 2021; 16:496-506. [PMID: 34448125 DOI: 10.1007/s11684-021-0828-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/17/2020] [Indexed: 12/01/2022]
Abstract
The fracture risk of patients with diabetes is higher than those of patients without diabetes due to hyperglycemia, usage of diabetes drugs, changes in insulin levels, and excretion, and this risk begins as early as adolescence. Many factors including demographic data (such as age, height, weight, and gender), medical history (such as smoking, drinking, and menopause), and examination (such as bone mineral density, blood routine, and urine routine) may be related to bone metabolism in patients with diabetes. However, most of the existing methods are qualitative assessments and do not consider the interactions of the physiological factors of humans. In addition, the fracture risk of patients with diabetes and osteoporosis has not been further studied previously. In this paper, a hybrid model combining XGBoost with deep neural network is used to predict the fracture risk of patients with diabetes and osteoporosis, and investigate the effect of patients' physiological factors on fracture risk. A total of 147 raw input features are considered in our model. The presented model is compared with several benchmarks based on various metrics to prove its effectiveness. Moreover, the top 18 influencing factors of fracture risks of patients with diabetes are determined.
Collapse
Affiliation(s)
- Yaxin Chen
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China.,Shanghai Key Laboratory of Scalable Computing and Systems, Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tianyi Yang
- Shanghai Key Laboratory of Scalable Computing and Systems, Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaofeng Gao
- Shanghai Key Laboratory of Scalable Computing and Systems, Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Ajing Xu
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China. .,Clinical Research Unit, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China.
| |
Collapse
|
21
|
Kelly RR, Sidles SJ, LaRue AC. Effects of Neurological Disorders on Bone Health. Front Psychol 2020; 11:612366. [PMID: 33424724 PMCID: PMC7793932 DOI: 10.3389/fpsyg.2020.612366] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/11/2020] [Indexed: 01/10/2023] Open
Abstract
Neurological diseases, particularly in the context of aging, have serious impacts on quality of life and can negatively affect bone health. The brain-bone axis is critically important for skeletal metabolism, sensory innervation, and endocrine cross-talk between these organs. This review discusses current evidence for the cellular and molecular mechanisms by which various neurological disease categories, including autoimmune, developmental, dementia-related, movement, neuromuscular, stroke, trauma, and psychological, impart changes in bone homeostasis and mass, as well as fracture risk. Likewise, how bone may affect neurological function is discussed. Gaining a better understanding of brain-bone interactions, particularly in patients with underlying neurological disorders, may lead to development of novel therapies and discovery of shared risk factors, as well as highlight the need for broad, whole-health clinical approaches toward treatment.
Collapse
Affiliation(s)
- Ryan R. Kelly
- Research Services, Ralph H. Johnson VA Medical Center, Charleston, SC, United States
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Sara J. Sidles
- Research Services, Ralph H. Johnson VA Medical Center, Charleston, SC, United States
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Amanda C. LaRue
- Research Services, Ralph H. Johnson VA Medical Center, Charleston, SC, United States
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
22
|
Yuan J, Meloni BP, Shi T, Bonser A, Papadimitriou JM, Mastaglia FL, Zhang C, Zheng M, Gao J. The Potential Influence of Bone-Derived Modulators on the Progression of Alzheimer's Disease. J Alzheimers Dis 2020; 69:59-70. [PMID: 30932886 DOI: 10.3233/jad-181249] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bone, the major structural scaffold of the human body, has recently been demonstrated to interact with several other organ systems through the actions of bone-derived cells and bone-derived cell secretory proteins. Interestingly, the brain is one organ that appears to fall into this interconnected network. Furthermore, the fact that osteoporosis and Alzheimer's disease are two common age-related disorders raises the possibility that these two organ systems are interconnected in terms of disease pathogenesis. This review focuses on the latest evidence demonstrating the impact of bone-derived cells and bone-derived proteins on the central nervous system, and on how this may be relevant in the progression of Alzheimer's disease and for the identification of novel therapeutic approaches to treat this neurodegenerative disorder.
Collapse
Affiliation(s)
- Jun Yuan
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Bruno P Meloni
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| | - Tianxing Shi
- Department of Art as Applied to Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anne Bonser
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - John M Papadimitriou
- Pathwest Laboratories and Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| | - Changqing Zhang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Minghao Zheng
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Junjie Gao
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia.,Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
23
|
Dadras M, May C, Wagner JM, Wallner C, Becerikli M, Dittfeld S, Serschnitzki B, Schilde L, Guntermann A, Sengstock C, Köller M, Seybold D, Geßmann J, Schildhauer TA, Lehnhardt M, Marcus K, Behr B. Comparative proteomic analysis of osteogenic differentiated human adipose tissue and bone marrow-derived stromal cells. J Cell Mol Med 2020; 24:11814-11827. [PMID: 32885592 PMCID: PMC7579700 DOI: 10.1111/jcmm.15797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/24/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stromal cells are promising candidates for regenerative applications upon treatment of bone defects. Bone marrow‐derived stromal cells (BMSCs) are limited by yield and donor morbidity but show superior osteogenic capacity compared to adipose‐derived stromal cells (ASCs), which are highly abundant and easy to harvest. The underlying reasons for this difference on a proteomic level have not been studied yet. Human ASCs and BMSCs were characterized by FACS analysis and tri‐lineage differentiation, followed by an intraindividual comparative proteomic analysis upon osteogenic differentiation. Results of the proteomic analysis were followed by functional pathway analysis. 29 patients were included with a total of 58 specimen analysed. In these, out of 5148 identified proteins 2095 could be quantified in >80% of samples of both cell types, 427 in >80% of ASCs only and 102 in >80% of BMSCs only. 281 proteins were differentially regulated with a fold change of >1.5 of which 204 were higher abundant in BMSCs and 77 in ASCs. Integrin cell surface interactions were the most overrepresented pathway with 5 integrins being among the proteins with highest fold change. Integrin 11a, a known key protein for osteogenesis, could be identified as strongly up‐regulated in BMSC confirmed by Western blotting. The integrin expression profile is one of the key distinctive features of osteogenic differentiated BMSCs and ASCs. Thus, they represent a promising target for modifications of ASCs aiming to improve their osteogenic capacity and approximate them to that of BMSCs.
Collapse
Affiliation(s)
- Mehran Dadras
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Caroline May
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | | | - Christoph Wallner
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Mustafa Becerikli
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Stephanie Dittfeld
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Bochum, Germany
| | | | - Lukas Schilde
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Annika Guntermann
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Christina Sengstock
- Department of General and Trauma Surgery, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Manfred Köller
- Department of General and Trauma Surgery, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Dominik Seybold
- Department of General and Trauma Surgery, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Jan Geßmann
- Department of General and Trauma Surgery, BG University Hospital Bergmannsheil, Bochum, Germany
| | | | - Marcus Lehnhardt
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Bochum, Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Björn Behr
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Bochum, Germany
| |
Collapse
|
24
|
Huang J, Huang J, Hu W, Zhang Z. Heat shock protein 90 alpha and 14-3-3η in postmenopausal osteoporotic rats with varying levels of serum FSH. Climacteric 2020; 23:581-590. [PMID: 32420764 DOI: 10.1080/13697137.2020.1758055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE This study compared the severity of osteoporosis and screened differentially expressed proteins in postmenopausal osteoporotic rats with varying levels of serum follicle stimulating hormone (FSH). METHODS Thirty-six Sprague Dawley female rats were divided into four groups: sham operation (sham) group, ovariectomy (OVX) group, FSH and ovariectomy (OVX + FSH) group, and Leuprorelin (LE) and ovariectomy group (OVX + LE). Body weight, serum estradiol, FSH, tartrate-resistant acid phosphatase, alkaline phosphatase, and bone mineral density were measured. We randomly selected six rats each from the OVX and OVX + FSH groups to detect differentially expressed proteins by data-independent acquisition, and we verified the results in the remaining six rats by enzyme-linked immunosorbent assay (ELISA). RESULTS Nineteen proteins were upregulated and 36 proteins were downregulated in the OVX + FSH group. The expression of heat shock protein 90 alpha (Hsp90α) and 14-3-3η protein was significantly different between the OVX and OVX + FSH groups, and both were linearly correlated with bone trabecular area. Results were verified by ELISA and were found to be consistent with the results of data-independent acquisition. DISCUSSION In rats with high serum FSH, expression of Hsp90α protein was increased and expression of 14-3-3η protein was decreased. Both changes in protein expression were strongly correlated with bone trabecular area.
Collapse
Affiliation(s)
- Jianxia Huang
- Department of Gynecology, Nanjing Medical University, Affiliated Hangzhou Hospital (Hangzhou First People's Hospital, Hangzhou Obstetrics & Gynecology Hospital), Hangzhou, Zhejiang Province, China
| | - Jian Huang
- Department of Gynecology, Nanjing Medical University, Affiliated Hangzhou Hospital (Hangzhou First People's Hospital, Hangzhou Obstetrics & Gynecology Hospital), Hangzhou, Zhejiang Province, China
| | - Wensheng Hu
- Department of Obstetrics, Nanjing Medical University, Affiliated Hangzhou Hospital (Hangzhou First People's Hospital, Hangzhou Obstetrics & Gynecology Hospital), Hangzhou, Zhejiang Province, China
| | - Zhifen Zhang
- Department of Gynecology, Nanjing Medical University, Affiliated Hangzhou Hospital (Hangzhou First People's Hospital, Hangzhou Obstetrics & Gynecology Hospital), Hangzhou, Zhejiang Province, China
| |
Collapse
|
25
|
Wang Q, Shi D, Geng Y, Huang Q, Xiang L. Baicalin augments the differentiation of osteoblasts via enhancement of microRNA-217. Mol Cell Biochem 2020; 463:91-100. [PMID: 31606864 DOI: 10.1007/s11010-019-03632-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/25/2019] [Indexed: 12/17/2022]
Abstract
Baicalin (BAI), a sort of flavonoid monomer, acquires from Scutellaria baicalensis Georgi, which was forcefully reported in diversified ailments due to the pleiotropic properties. But, the functions of BAI in osteoblast differentiation have not been addressed. The intentions of this study are to attest the influences of BAI in the differentiation of osteoblasts. MC3T3-E1 cells or rat primary osteoblasts were exposed to BAI, and then cell viability, ALP activity, mineralization process, and Runx2 and Ocn expression were appraised through implementing CCK-8, p-nitrophenyl phosphate (pNPP), Alizarin red staining, western blot, and RT-qPCR assays. The microRNA-217 (miR-217) expression was evaluated in MC3T3-E1 cells or rat primary osteoblasts after BAI disposition; meanwhile, the functions of miR-217 in BAI-administrated MC3T3-E1 cells were estimated after miR-217 inhibitor transfection. The impacts of BAI and miR-217 inhibition on Wnt/β-catenin and MEK/ERK pathways were probed to verify the involvements in BAI-regulated the differentiation of osteoblasts. BAI accelerated cell viability, osteoblast activity, and Runx2 and Ocn expression in MC3T3-E1 cells or rat primary osteoblasts, and the phenomena were mediated via activations of Wnt/β-catenin and MEK/ERK pathways. Elevation of miR-217 was observed in BAI-disposed MC3T3-E1 cells or rat primary osteoblasts, and miR-217 repression annulled the functions of BAI in MC3T3-E1 cell viability and differentiation. Additionally, the activations of Wnt/β-catenin and MEK/ERK pathways evoked by BAI were both restrained by repression of miR-217. These explorations uncovered that BAI augmented the differentiation of osteoblasts via activations of Wnt/β-catenin and MEK/ERK pathways by ascending miR-217 expression.
Collapse
Affiliation(s)
- Qi Wang
- Department of Orthopaedics, Heze Municipal Hospital, No. 2888 Caozhou Road, Heze, 274031, China
| | - Donglei Shi
- Department of Orthopaedics, Heze Municipal Hospital, No. 2888 Caozhou Road, Heze, 274031, China
| | - Yuanyuan Geng
- Department of Comprehensive Medical, Heze Infectious Disease Hospital, No. 298 Juyang Road, Heze, 274029, China
| | - Qishan Huang
- Department of Orthopaedics, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan West Road, Wenzhou, 325000, China
| | - Longzhan Xiang
- Department of Orthopaedics, Heze Municipal Hospital, No. 2888 Caozhou Road, Heze, 274031, China.
| |
Collapse
|
26
|
Kim GH, Baek HK, Lee JS, Kim SJ, Yi SS. Chronic Oral Administration of Tenebrio molitor Extract Exhibits Inhibitory Effect on Glucocorticoid Receptor Overexpression in the Hippocampus of Ovariectomy-Induced Estrogen Deficient Mice. J Food Sci 2019; 84:687-694. [PMID: 30714630 DOI: 10.1111/1750-3841.14454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 12/22/2022]
Abstract
It has been reported that estrogen deficiency in female disrupts systemic endocrinologic regulatory mechanisms, finally leading to osteoporotic condition. Estrogen deficiency also down-regulates brain functions due to its deficits of its original roles in a number of neurological events. Therefore, it is necessary to find alternative materials that can prevent osteoporotic condition and maintain normal brain functions to correct such hormone deficiency. In the present study, we found that novel compounds originated from larvae of Tenebrio molitor (TM) possessed anti-osteoporotic effect. They could also prevent abnormal progressive brain function by deaccelerating enhanced HPA-axis negative feedback while maintaining neurogenesis in hippocampus. We daily administered TM to ovariectomized (OVX) ddY mice for 4 weeks and then performed histological and hormonal evaluations for its anti-osteoporotic effects. In addition, we investigated glucocorticoid receptor (GR) expression and neuroblast expression (DCX) in the hippocampal dentate gyrus morphologically by immunohistochemistry analysis. According to our results, TM has anti-osteoporotic effects. It also tends to bring interfered brain environment back to normal condition. These results suggest that TM might have anti-osteoporosis effect and enhancing effects on enrichment of environment in brain by being antidestroyed hormonal deficiency simultaneously. This is the first study to report that TM can be used as source of bioactive substance to prevent decreased neurogenesis and impaired HPA axis driven by high GR expression in the hippocampus in hormonal deficient female animals. PRACTICAL APPLICATION: Anti-osteoporosis effect and stress resistance due to improved brain function caused by the ingestion of Tenebrio molitor extract were observed in postmenopausal women. T. molitor is available as a nutritional supplement for bone and brain health, which menopausal women need most.
Collapse
Affiliation(s)
- Gwang-Ho Kim
- Dept. of Biomedical Lab. Science, College of Medical Sciences, Soonchunhyang Univ., Asan, 31538, Republic of Korea
| | - Hye Kyung Baek
- Dept. of Biomedical Lab. Science, College of Medical Sciences, Soonchunhyang Univ., Asan, 31538, Republic of Korea
| | - Jong Suk Lee
- Biocenter, Gyeonggido Business and Science Accelerator (GBSA), Suwon, 16229, Republic of Korea
| | - Sung-Jo Kim
- Dept. of Biotechnology, Hoseo Univ., Asan, 31499, Republic of Korea
| | - Sun Shin Yi
- Dept. of Biomedical Lab. Science, College of Medical Sciences, Soonchunhyang Univ., Asan, 31538, Republic of Korea
| |
Collapse
|
27
|
Combined treatment with vitamin K2 and PTH enhanced bone formation in ovariectomized rats and increased differentiation of osteoblast in vitro. Chem Biol Interact 2019; 300:101-110. [PMID: 30639440 DOI: 10.1016/j.cbi.2019.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 12/22/2018] [Accepted: 01/09/2019] [Indexed: 02/06/2023]
Abstract
Osteoporosis is accompanied by insufficient osteogenic capacity. Several lines of evidence suggested that solutions to enhance osteoblastogenesis were important strategies for osteoporotic bone defect repair. This study investigated the effect of combined treatment with vitamin K2 and PTH on bone formation in calvarial bone defect in osteoporotic rats and its influence on osteoblast in vitro. Bilateral ovariectomy was used in SPF Sprague Dawley rats to generate an osteoporosis model. Subsequently, a calvarial defect model was established and all osteoporotic rats were randomly assigned to the following groups: control, VK (vitamin K2, 30 mg/kg everyday), PTH (recombinant human PTH (1-34), 60 μg/kg, three times a week) or VK + PTH (vitamin K2, 30 mg/kg everyday plus PTH, 60 μg/kg three times a week) for 8 weeks. In vitro, bone marrow-derived stem cells (BMSCs) were cultured and treated with vitamin K2, PTH or vitamin K2+PTH. ALP staining and western blot were performed to observe the influence of combined treatment on BMSCs. Bone formation within calvarial defect were assessed by serum γ-carboxylated osteocalcin (Gla-OC), micro-CT, histological and immunofluorescent labeling. In this study, combined treatment of PTH and vitamin K2 showed positive effects on preventing bone loss in femurs in OVX rats. Combined treatment increased serum Gla-OC and promoted bone formation in osteoporotic calvarial bone defects. Immunohistochemistry showed that OCN and RUNX2 were more highly expressed in the VK + PTH group than in the control groups. In vitro studies results suggested that combined treatment with PTH and vitamin K2 increased expression of ALP, BMP2 and RUNX2 in BMSCs. Our data suggested that the combination of vitamin K2 and PTH increased differentiation of osteoblast and had a synergistic effect on bone formation in osteoporotic calvarial bone defect.
Collapse
|
28
|
He YQ, Zhang Q, Shen Y, Han T, Zhang QL, Zhang JH, Lin B, Song HT, Hsu HY, Qin LP, Xin HL, Zhang QY. Rubiadin-1-methyl ether from Morinda officinalis How. Inhibits osteoclastogenesis through blocking RANKL-induced NF-κB pathway. Biochem Biophys Res Commun 2018; 506:927-931. [PMID: 30392907 DOI: 10.1016/j.bbrc.2018.10.100] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/14/2022]
Abstract
Rubiadin-1-methyl ether (RBM) is a natural anthraquinone compound isolated from the root of Morinda officinalis How. In our previous study, RBM was found to have inhibitory effects on the TRAP activity of osteoclasts, which means that RBM may be a candidate for therapy of bone diseases characterized by enhanced bone resorption. However, the further effect of RBM on osteoclasts and the underlying mechanism remain unclear. In the present study, we investigated the effects of RBM isolated from Morinda officinalis How. on osteoclasts derived from bone marrow macrophages (BMMs) and the underlying mechanism in vitro. RBM at the dose that did not affect the viability of cells significantly inhibited RANKL-induced osteoclastogenesis and actin ring formation of osteoclast, while RBM performed a stronger effect at the early stage. In addition, RBM downregulated the expression of osteoclast-related proteins, including nuclear factor of activated T cells cytoplasmic 1 (NFATc1), cellular oncogene Fos (c-Fos), matrix metallopeptidase 9 (MMP-9) and cathepsin K (CtsK) as shown by Western blot. Furthermore, RBM inhibited the phosphorylation of NF-κB p65 and the degradation of IκBα as well as decreased the nuclear translocation of p65. Collectively, the results suggest that RBM inhibit osteoclastic bone resorption through blocking NF-κB pathway and may be a promising agent for the prevention and treatment of bone diseases characterized by excessive bone resorption.
Collapse
Affiliation(s)
- Yu-Qiong He
- Department of Pharmacognosy, Second Military Medical University School of Pharmacy, Shanghai, 200433, China; College of Pharmaceutical science, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Qi Zhang
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China
| | - Yi Shen
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China
| | - Ting Han
- Department of Pharmacognosy, Second Military Medical University School of Pharmacy, Shanghai, 200433, China
| | - Quan-Long Zhang
- College of Pharmaceutical science, Zhejiang Chinese Medical University, Hangzhou, 311402, China
| | - Jian-Hua Zhang
- Department of Pharmacognosy, Second Military Medical University School of Pharmacy, Shanghai, 200433, China
| | - Bing Lin
- Fuzhou General Hospital of Nanjing Military Region, Fuzhou, 350025, China
| | - Hong-Tao Song
- Fuzhou General Hospital of Nanjing Military Region, Fuzhou, 350025, China
| | - Hsien-Yeh Hsu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Lu-Ping Qin
- Department of Pharmacognosy, Second Military Medical University School of Pharmacy, Shanghai, 200433, China; College of Pharmaceutical science, Zhejiang Chinese Medical University, Hangzhou, 311402, China.
| | - Hai-Liang Xin
- Department of Pharmacognosy, Second Military Medical University School of Pharmacy, Shanghai, 200433, China.
| | - Qiao-Yan Zhang
- Department of Pharmacognosy, Second Military Medical University School of Pharmacy, Shanghai, 200433, China; College of Pharmaceutical science, Zhejiang Chinese Medical University, Hangzhou, 311402, China.
| |
Collapse
|