1
|
Li Y, Lu Y, Zhao Y, Zhang N, Zhang Y, Fu Y. Deciphering the Wound-Healing Potential of Collagen Peptides and the Molecular Mechanisms: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26007-26026. [PMID: 39405278 DOI: 10.1021/acs.jafc.4c02960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Collagen peptides have been reported to display various bioactivities and high bioavailability. Recently, increasing evidence has revealed the excellent wound-healing activity of collagen peptides, but their molecular mechanisms remain incompletely elucidated. This review systematically evaluates the therapeutic efficacy of collagen peptides from diverse sources based on various wound models. Furthermore, the structure-activity relationships of collagen peptides and wound-healing mechanisms are discussed and summarized. Characterized by their low molecular weight and abundant imino acids, collagen peptides facilitate efficient absorption by the body to deliver nutrition throughout the wound-healing process. The specific mechanism of collagen peptide for wound healing is mainly through up-regulation of related cytokines and participation in the activation of relevant signaling pathways, such as TGF-β/Smad and PI3K/Akt/mTOR, which can promote cell proliferation, angiogenesis, collagen synthesis and deposition, re-epithelialization, and ECM remodeling, ultimately achieving the effect of wound healing. Collagen peptides can offer a potential therapeutic approach for treating incision and excision wounds, mucosal injuries, burn wounds, and pressure ulcers, improving the efficiency of wound healing by about 10%-30%. The present review contributes to understanding of the wound-healing potential of collagen peptides and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Yunying Li
- College of Food Science, Southwest University, Chongqing 400715, China
- Westa College, Southwest University, Chongqing 400715, China
| | - Yujia Lu
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, 677 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Yuchen Zhao
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, 677 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| |
Collapse
|
2
|
Ng WJ, Wong FC, Abd Manan F, Chow YL, Ooi AL, Ong MK, Zhang X, Chai TT. Antioxidant Peptides and Protein Hydrolysates from Tilapia: Cellular and In Vivo Evidences for Human Health Benefits. Foods 2024; 13:2945. [PMID: 39335873 PMCID: PMC11431209 DOI: 10.3390/foods13182945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Antioxidant peptides derived from aquatic organisms have attracted tremendous research interest due to their potential applications in human health. Tilapia is one of the most widely farmed aquaculture species globally. The current understanding of tilapia-derived antioxidant peptides is gradually expanding. This review discusses the current knowledge of peptides and protein hydrolysates derived from tilapia muscle, skin, and scales, whose antioxidant capacity has been validated in various cellular and in vivo models. To date, at least 16 peptides and several hydrolysates have been identified from tilapia that protect human and non-human cell models against oxidative injury. Tilapia hydrolysates and peptide mixtures have also shown protective effects in animal models of oxidative stress-associated diseases and exercise-induced oxidative injury and fatigue. The key mechanisms of tilapia hydrolysates and peptide mixtures involve enhancing antioxidant enzyme activities and suppressing radical production. Notably, such hydrolysates also exerted additional in vivo functions, such as anti-inflammatory, anti-diabetic, wound healing, and antiaging properties. Taken together, tilapia-derived antioxidant peptides and hydrolysates represent a valuable source of functional ingredients for applications in functional food, dietary supplements, and therapeutic applications. Continued research into their health benefits is warranted in the future.
Collapse
Affiliation(s)
- Wen-Jie Ng
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia;
- Centre for Biomedical and Nutrition Research, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - Fai-Chu Wong
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia;
- Center for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia; (Y.-L.C.); (A.-L.O.); (M.-K.O.)
| | - Fazilah Abd Manan
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia;
| | - Yit-Lai Chow
- Center for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia; (Y.-L.C.); (A.-L.O.); (M.-K.O.)
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - Ai-Lin Ooi
- Center for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia; (Y.-L.C.); (A.-L.O.); (M.-K.O.)
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia
| | - Mei-Kying Ong
- Center for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia; (Y.-L.C.); (A.-L.O.); (M.-K.O.)
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar 31900, Malaysia
| | - Xuewu Zhang
- College of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China;
- Era Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518115, China
| | - Tsun-Thai Chai
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia;
- Center for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia; (Y.-L.C.); (A.-L.O.); (M.-K.O.)
| |
Collapse
|
3
|
Ramachandran T, Mohanraj KG, Mary Martin T, K MS. Enhanced Wound Healing With β-Chitosan-Zinc Oxide Nanoparticles: Insights From Zebrafish Models. Cureus 2024; 16:e69861. [PMID: 39435246 PMCID: PMC11493322 DOI: 10.7759/cureus.69861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/21/2024] [Indexed: 10/23/2024] Open
Abstract
INTRODUCTION Wound healing is a complex physiological process essential for the restoration of tissue integrity and function. Novel therapeutic approaches are urgently needed to enhance wound-healing outcomes. Nanotechnology, particularly zinc oxide nanoparticles, has shown promise due to its antimicrobial, anti-inflammatory, and regenerative properties. β-chitosan, derived from squid pens, possesses superior solubility and bioactivity compared to α-chitosan, making it a valuable biomaterial for biomedical applications. Through the integration of β-chitosan and zinc oxide nanoparticles, this study seeks to use the complementary properties of both substances to overcome present constraints in wound care treatments. METHODS β-chitosan was extracted from squid pens and characterized for its molecular weight, degree of deacetylation, and solubility properties. Further characterization of the synthesized zinc oxide nanoparticles involved Fourier transform infrared spectroscopy to analyze chemical bonding and functional groups, ultraviolet-visible spectroscopy to determine optional properties such as band gap energy, X-ray diffraction spectroscopy to confirm the crystalline phase and calculate crystallite size, and the size was confirmed with the scanning electron microscope. Each technique provided complementary information, ensuring a comprehensive understanding of the synthesized nanoparticles' properties and their potential applications. Adult zebrafish (six to eight months old) were employed as a model organism due to their genetic similarity to humans and regenerative capabilities. Zebrafish were wounded and divided into treatment and control groups, with β-chitosan and β-chitosan-derived zinc nanoparticles treatments administrated at 50 µg/ml, while control groups received 0.05% phosphate buffer saline. The treatments, conducted in triplicate, enabled a comparative analysis of wound closure activity between β-chitosan-derived zinc nanoparticles' healing effects against standard and baseline treatments. Further, gene expression analysis on Bax, BCl-2, IL-2, IL-6, and tumor necrosis factor-alpha (TNF-a) was done using reverse transcriptase polymerase chain reaction. RESULTS Characterization studies confirmed the successful synthesis of β-chitosan-derived zinc oxide nanoparticles and a crystalline structure corresponding to zinc oxide. Treatment with β-chitosan-derived zinc oxide nanoparticles significantly accelerated wound closure compared to controls and other treatment groups. Microscopic analysis demonstrated enhanced epithelialization, reduced inflammatory cell infiltration, increased collagen deposition, and improved tissue organization in wounds treated with β-chitosan-derived zinc oxide nanoparticles. Gene expression analysis revealed downregulation of inflammation-causing genes such as BCl-2, IL-2, IL-6, and TNF-a, hence it showed wound-healing activity. The results were statistically significant (p < 0.05). CONCLUSION β-chitosan-derived zinc oxide nanoparticles show promising potential as a novel therapeutic strategy for enhancing wound healing. The synergistic effects of β-chitosan and zinc oxide nanoparticles address multiple aspects of wound healing, including antimicrobial activity, inflammation modulation, and tissue regeneration. This study highlights the advantages of nanotechnology in wound care and underscores the need for further research to optimize nanoparticle formulations for clinical applications.
Collapse
Affiliation(s)
- Tharansia Ramachandran
- Department of Anatomy, Zebrafish Facility, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Karthik Ganesh Mohanraj
- Department of Anatomy, Zebrafish Facility, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Taniya Mary Martin
- Department of Anatomy, Zebrafish Facility, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Meenakshi Sundaram K
- Department of Anatomy, Zebrafish Facility, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
4
|
Xin M, Bi F, Wang C, Huang Y, Xu Y, Liang S, Cai T, Xu X, Dong L, Li T, Wang X, Fang Y, Xu Z, Wang C, Wang M, Song X, Zheng Y, Sun W, Li L. The circadian rhythm: A new target of natural products that can protect against diseases of the metabolic system, cardiovascular system, and nervous system. J Adv Res 2024:S2090-1232(24)00133-4. [PMID: 38631431 DOI: 10.1016/j.jare.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/17/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND The treatment of metabolic system, cardiovascular system, and nervous system diseases remains to be explored. In the internal environment of organisms, the metabolism of substances such as carbohydrates, lipids and proteins (including biohormones and enzymes) exhibit a certain circadian rhythm to maintain the energy supply and material cycle needed for the normal activities of organisms. As a key factor for the health of organisms, the circadian rhythm can be disrupted by pathological conditions, and this disruption accelerates the progression of diseases and results in a vicious cycle. The current treatments targeting the circadian rhythm for the treatment of metabolic system, cardiovascular system, and nervous system diseases have certain limitations, and the identification of safer and more effective circadian rhythm regulators is needed. AIM OF THE REVIEW To systematically assess the possibility of using the biological clock as a natural product target for disease intervention, this work reviews a range of evidence on the potential effectiveness of natural products targeting the circadian rhythm to protect against diseases of the metabolic system, cardiovascular system, and nervous system. This manuscript focuses on how natural products restore normal function by affecting the amplitude of the expression of circadian factors, sleep/wake cycles and the structure of the gut microbiota. KEY SCIENTIFIC CONCEPTS OF THE REVIEW This work proposes that the circadian rhythm, which is regulated by the amplitude of the expression of circadian rhythm-related factors and the sleep/wake cycle, is crucial for diseases of the metabolic system, cardiovascular system and nervous system and is a new target for slowing the progression of diseases through the use of natural products. This manuscript provides a reference for the molecular modeling of natural products that target the circadian rhythm and provides a new perspective for the time-targeted action of drugs.
Collapse
Affiliation(s)
- Meiling Xin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China
| | - Fangjie Bi
- Heart Center, Zibo Central Hospital, Zibo, Shandong 255000, China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yuhong Huang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yujia Xu
- Department of Echocardiography, Zibo Central Hospital, Zibo, Shandong 255000, China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Tianxing Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xueke Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yini Fang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China; Basic Medical College, Zhejiang Chinese Medical University, Hangzhou 310053 China
| | - Zhengbao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Meng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China.
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China.
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China.
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100000, China.
| |
Collapse
|
5
|
Sudhakar MP, Ali S, Chitra S. Scrutinizing the effect of rGO-cuttlefish bone hydroxyapatite composite infused carrageenan membrane towards wound reconstruction. Int J Biol Macromol 2024; 262:130155. [PMID: 38365153 DOI: 10.1016/j.ijbiomac.2024.130155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/01/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Carrageenan is an emerging biopolymer for wound healing and regenerative applications. In this study, reduced graphene oxide (rGO) and hydroxyapatite (HAp) nano-composites infused carrageenan bioactive membrane was fabricated. Here, hydroxyapatite was synthesized from cuttlefish bone (CF-HAp) and its properties were compared with that of chemically synthesized HAp. Crystalline Ca5(PO4)3(OH) and Ca3(PO4)2) phases were obtained in cuttlefish bone derived HAp. Reduced graphene oxide was synthesized and composites were prepared with chemical HAp and CF-HAp. FT-IR spectral analysis showed the imprints of hydroxyapatite on the membrane and also nano-structured particles were evident through morphological estimations that confirm the distribution of nano-particles on the carrageenan membrane. Nano-particulates infused carrageenan membrane showed the maximum tensile strength, in which graphene incorporated carrageenan bioactive membrane showed highest stability of 15.26 MPa. The contact angle of chemical HAp infused carrageenan membrane (CAR-HAp) showed more hydrophilic in nature (48.63° ± 7.47°) compared to control (61.77° ± 1.28°). Bio-compatibility features enunciate the optimal compatibility of fabricated bioactive membrane with fibroblast cell line; simultaneously, CAR-rGO-CF-HAp showed tremendous wound healing behavior with zebrafish model. Hence, fabricated bioactive membrane with the infusion of rGO- hydroxyapatite derived from cuttlefish bone was found to be a versatile biopolymer membrane for wound healing application.
Collapse
Affiliation(s)
- M P Sudhakar
- Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (Govt. of India), Pallikaranai, Chennai 600 100, Tamil Nadu, India
| | - Saheb Ali
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - S Chitra
- Department of Biomaterials (Prosthodontics), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai 600 077, Tamil Nadu, India.
| |
Collapse
|
6
|
Li MF, Zhang HQ, Sun JS. A novel C1qDC (PoC1qDC) with a collagen domain in Paralichthys olivaceus mediates complement activation and against bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108472. [PMID: 36470404 DOI: 10.1016/j.fsi.2022.108472] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Complement C1q domain containing protein (C1qDC) is a vital recognition molecule and has an important effect on immunity. The C1qDCs exhibit opsonic activity in fish, while the mechanisms of C1qDCs in activation complement still remain unclear. This study explored immunological characteristics of a C1qDC from Japanese flounder (Paralichthys olivaceus) (PoC1qDC). PoC1qDC consists of 296 amino acid residues, possessing a collagen domain and a C1q domain. According to our results, PoC1qDC was expressed in 9 diverse tissue samples and showed up-regulation after bacterial challenge. Recombinant PoC1qDC (rPoC1qDC) activated normal serum bactericidal and hemolytic activities by interaction with Japanese flounder IgM, but not enhanced the complement activity of C3-depeleted serum. rPoC1qDC was significantly bound to various bacterial species and agglutination activity against Edwardsiella piscicida and Streptococcus iniae. Furthermore, rPoC1qDC showed direct interaction with peripheral blood leucocytes while enhancing phagocytic and chemotactic activity. When PoC1qDC was overexpressed in Japanese flounder before E. piscicida infection, bacterial replication was significantly inhibited in fish tissues. Consistently, when PoC1qDC expression in Japanese flounder was knocked down, bacterial replication was significantly enhanced. The above findings first suggested the role of PoC1qDC in teleost in mediating complement activation by interaction with IgM, which can positively influence bacterial infection.
Collapse
Affiliation(s)
- Mo-Fei Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China
| | - Hong-Qiang Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China
| | - Jin-Sheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China.
| |
Collapse
|
7
|
Gao Q, Shang Y, Zhou W, Deng S, Peng C. Marine collagen peptides: A novel biomaterial for the healing of oral mucosal ulcers. Dent Mater J 2022; 41:850-859. [PMID: 35934799 DOI: 10.4012/dmj.2021-323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The purpose of this study was to analyze the therapeutic effects of marine collagen peptides (MCPs) from tilapia skin on oral mucosal ulcers in a rat model. CCK-8 and wound healing assays were performed in vitro to evaluate proliferation and migration of L929 cells after treatment with MCPs. The effects of MCPs on the healing of oral mucosal ulcers in a rat model were macroscopically and microscopically analyzed in vivo. Results showed that MCPs promoted proliferation and migration of L929 cells. Moreover, 75%MCPs enhanced the ulcer healing process, suppressed inflammatory response and up-regulated the expression levels of vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF). MCPs are potentially used as a new therapeutic strategy for oral mucosal ulceration.
Collapse
Affiliation(s)
- Qiuying Gao
- Department of Stomatology, The Second Hospital of Tianjin Medical University
| | - Yuli Shang
- Department of Stomatology, The Second Hospital of Tianjin Medical University
| | - Weiwei Zhou
- Department of Stomatology, The Second Hospital of Tianjin Medical University
| | - Shu Deng
- Henry M Goldman School of Dental Medicine, Boston University
| | - Cheng Peng
- Department of Stomatology, The Second Hospital of Tianjin Medical University
| |
Collapse
|
8
|
Chen B, Yu L, Wu J, Qiao K, Cui L, Qu H, Su Y, Cai S, Liu Z, Wang Q. Effects of Collagen Hydrolysate From Large Hybrid Sturgeon on Mitigating Ultraviolet B-Induced Photodamage. Front Bioeng Biotechnol 2022; 10:908033. [PMID: 35832410 PMCID: PMC9271680 DOI: 10.3389/fbioe.2022.908033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Ultraviolet B (UVB) radiation leads to the excessive accumulation of reactive oxygen species (ROS), which subsequently promote inflammation, degradation of the extracellular matrix, and photoaging in skin. Thus antioxidant activity is particularly important when screening for active substances to prevent or repair photodamage. Marine fish-derived bioactive peptides have become a trend in cosmetics and functional food industries owing to their potential dermatological benefits. In this study, 1-diphenyl- 2-pycryl-hydrazyl (DPPH) scavenging activity was selected to optimize the hydrolysis conditions of sturgeon skin collagen peptides with antioxidant activity. The optimal hydrolysis conditions for sturgeon skin collagen hydrolysate (SSCH) were determined by response surface methodology, which comprised an enzyme dosage of flavorzyme at 6,068.4 U/g, temperature of 35.5°C, pH of 7, and hydrolysis time of 6 h. SSCH showed good radical-scavenging capacities with a DPPH scavenging efficiency of 95%. Then, the effect of low-molecular-weight SSCH fraction (SSCH-L) on UVB irradiation-induced photodamage was evaluated in mouse fibroblast L929 cells and zebrafish. SSCH-L reduced intracellular ROS levels and the malondialdehyde content, thereby alleviating the oxidative damage caused by UVB radiation. Moreover SSCH-L inhibited the mRNA expression of genes encoding the pro-inflammatory cytokines IL-1β, IL-6, TNF-α, and Cox-2. SSCH-L treatment further increased the collagen Ⅰα1 content and had a significant inhibitory effect on matrix metalloproteinase expression. The phosphorylation level of JNK and the expression of c-Jun protein were significantly reduced by SSCH-L. Additionally, SSCH-L increased the tail fin area at 0.125 and 0.25 mg/ml in a zebrafish UVB radiation model, which highlighted the potential of SSCH-L to repair UVB-irradiated zebrafish skin damage. Peptide sequences of SSCH-L were identified by liquid chromatography-tandem mass spectrometry. Based on the 3D-QSAR modeling prediction, six total peptides were selected to test the UVB-protective activity. Among these peptides, DPFRHY showed good UVB-repair activity, ROS-scavenging activity, DNA damage-protective activity and apoptosis inhibition activity. These results suggested that DPFRHY has potential applications as a natural anti-photodamage material in cosmetic and functional food industries.
Collapse
Affiliation(s)
- Bei Chen
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen, China
| | - Lei Yu
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Jingna Wu
- Xiamen Medical College, Xiamen, China
| | - Kun Qiao
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen, China
| | - Lulu Cui
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen, China
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai, China
| | - Haidong Qu
- College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Yongchang Su
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen, China
| | - Shuilin Cai
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen, China
| | - Zhiyu Liu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen, China
- *Correspondence: Zhiyu Liu, ; Qin Wang,
| | - Qin Wang
- School of Life Sciences, Xiamen University, Xiamen, China
- *Correspondence: Zhiyu Liu, ; Qin Wang,
| |
Collapse
|
9
|
Gusso D, Cruz FF, Fritsch PM, da Silva Gobbo MO, Morrone FB, Bonan CD. Pannexin channel 1, P2X7 receptors, and Dimethyl Sulfoxide mediate pain responses in zebrafish. Behav Brain Res 2022; 423:113786. [DOI: 10.1016/j.bbr.2022.113786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 12/15/2022]
|
10
|
Sharma S, Rai VK, Narang RK, Markandeywar TS. Collagen-based formulations for wound healing: A literature review. Life Sci 2021; 290:120096. [PMID: 34715138 DOI: 10.1016/j.lfs.2021.120096] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/26/2022]
Abstract
Wounds have always been the point of concern owing to the involvement of infections and the level of severity. Therefore, the management of wounds always requires additional effort for comprehensive healing and subsequent removal of the scar from the wound site. The role of biomaterials in the management of chronic wounds has been well established. One of such biomaterials is collagen (Col) that is considered to be the crucial component of most of the formulations being developed for wound healing. The role of Col extracted from marine invertebrates remains an unmarked origin of the proteinaceous constituent in the evolution of innovative pharmaceuticals. Col is a promising, immiscible, fibrous amino acid of indigenous origin that is ubiquitously present in extracellular matrices and connective tissues. There are different types of Col present in the body such as type I, II, III, IV, and V however the natural sources of Col are vegetables and marine animals. Its physical properties like high tensile strength, adherence nature, elasticity, and remodeling contribute significantly in the wound healing process. Col containing formulations such as hydrogels, sponges, creams, peptides, and composite nanofibers have been utilized widely in wound healing and tissue engineering purposes truly as the first line of defense. Here we present the recent advancements in Col based dosage forms for wound healing. The Col based market of topical preparations and the published reports identify Colas a useful biomaterial for the delivery of pharmaceuticals and a platform for tissue engineering.
Collapse
Affiliation(s)
- Shubham Sharma
- Department of Pharmaceutics, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Vineet Kumar Rai
- Department of Pharmaceutics, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Raj K Narang
- Department of Pharmaceutics, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Tanmay S Markandeywar
- Department of Pharmaceutics, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India; IK Gujral Punjab Technical University (IKGPTU), Kapurthala Highway, Jalandhar, Punjab 144603, India.
| |
Collapse
|
11
|
Naomi R, Bahari H, Yazid MD, Embong H, Othman F. Zebrafish as a Model System to Study the Mechanism of Cutaneous Wound Healing and Drug Discovery: Advantages and Challenges. Pharmaceuticals (Basel) 2021; 14:1058. [PMID: 34681282 PMCID: PMC8539578 DOI: 10.3390/ph14101058] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
In humans, cutaneous wounds may heal without scars during embryogenesis. However, in the adult phase, the similar wound may undergo a few events such as homeostasis, blood clotting, inflammation, vascularization, and the formation of granulation tissue, which may leave a scar at the injury site. In consideration of this, research evolves daily to improve the healing mechanism in which the wound may heal without scarring. In regard to this, zebrafish (Danio rerio) serves as an ideal model to study the underlying signaling mechanism of wound healing. This is an important factor in determining a relevant drug formulation for wound healing. This review scrutinizes the biology of zebrafish and how this favors the cutaneous wound healing relevant to the in vivo evidence. This review aimed to provide the current insights on drug discovery for cutaneous wound healing based on the zebrafish model. The advantages and challenges in utilizing the zebrafish model for cutaneous wound healing are discussed in this review. This review is expected to provide an idea to formulate an appropriate drug for cutaneous wound healing relevant to the underlying signaling mechanism. Therefore, this narrative review recapitulates current evidence from in vivo studies on the cutaneous wound healing mechanism, which favours the discovery of new drugs. This article concludes with the need for zebrafish as an investigation model for biomedical research in the future to ensure that drug repositions are well suited for human skin.
Collapse
Affiliation(s)
- Ruth Naomi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.N.); (H.B.)
| | - Hasnah Bahari
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.N.); (H.B.)
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Hashim Embong
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Fezah Othman
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
12
|
Yamada S, Yamamoto K, Nakazono A, Matsuura T, Yoshimura A. Functional roles of fish collagen peptides on bone regeneration. Dent Mater J 2021; 40:1295-1302. [PMID: 34334505 DOI: 10.4012/dmj.2020-446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fish collagen peptides (FCP) derived from the skin, bones and scales are commercially used as a functional food or dietary supplement for hypertension and diabetes. However, there is limited evidence on the effects of FCP on the osteoblast function in contrast to evidence of the effects on wound healing, diabetes and bone regeneration, which have been obtained from animal studies. In this narrative review, we expound on the availability of FCP by basic research using osteoblasts. Low-concentration FCP upregulates the expression of osteoblast proliferation, differentiation and collagen modifying enzyme-related genes. Furthermore, it could accelerate matrix mineralization. FCP may have potential utility as a biomaterial to improve collagen quality and promote mineralization through the mitogen-activated protein kinase and Smad cascades. However, there are few clinical studies on bone regeneration in human subjects. It is desirable to be applied clinically through clinical study as soon as possible, based on the results from basic research.
Collapse
Affiliation(s)
- Shizuka Yamada
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
| | - Kohei Yamamoto
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
| | - Ayako Nakazono
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
| | - Takashi Matsuura
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
| | - Atsutoshi Yoshimura
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
| |
Collapse
|
13
|
Shi JW, Lai ZZ, Yang HL, Yang SL, Wang CJ, Ao D, Ruan LY, Shen HH, Zhou WJ, Mei J, Fu Q, Li MQ. Collagen at the maternal-fetal interface in human pregnancy. Int J Biol Sci 2020; 16:2220-2234. [PMID: 32549767 PMCID: PMC7294936 DOI: 10.7150/ijbs.45586] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
The survival and development of a semi-allogenic fetus during pregnancy require special immune tolerance microenvironment at the maternal fetal interface. During the establishment of a successful pregnancy, the endometrium undergoes a series of changes, and the extracellular matrix (ECM) breaks down and remodels. Collagen is one of the most abundant ECM. Emerging evidence has shown that collagen and its fragment are expressed at the maternal fetal interface. The regulation of expression of collagen is quite complex, and this process involves a multitude of factors. Collagen exerts a critical role during the successful pregnancy. In addition, the abnormal expressions of collagen and its fragments are associated with certain pathological states associated with pregnancy, including recurrent miscarriage, diabetes mellitus with pregnancy, preeclampsia and so on. In this review, the expression and potential roles of collagen under conditions of physiological and pathological pregnancy are systematically discussed.
Collapse
Affiliation(s)
- Jia-Wei Shi
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Zhen-Zhen Lai
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Hui-Li Yang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Shao-Liang Yang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Cheng-Jie Wang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Deng Ao
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Lu-Yu Ruan
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Hui-Hui Shen
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Wen-Jie Zhou
- Center of Reproductive Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jie Mei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, People's Republic of China
| | - Qiang Fu
- Department of Immunology, Binzhou Medical College, Yantai, 264003, People's Republic of China
| | - Ming-Qing Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| |
Collapse
|
14
|
Xiong X, Liang J, Xu Y, Liu J, Liu Y. The wound healing effects of the Tilapia collagen peptide mixture TY001 in streptozotocin diabetic mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2848-2858. [PMID: 31646634 DOI: 10.1002/jsfa.10104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 09/12/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The Tilapia collagen peptides mixture TY001 is effective in promoting wound healing in acetic acid-induced skin lesions in zebrafish and in protecting against lipopolysaccharide-induced inflammation and disruption of glucose metabolism in mice. The present study aimed to further examine the wound healing effects of TY001 in streptozotocin-induced diabetic mice. METHODS Full-thickness skin excision wounds were created with 8-mm biopsy punches and TY001 was administered via drinking water (15, 30 and 45 g L-1 in emulsion) for 15 days. RESULTS Wound healing was delayed in diabetic mice but was promoted by TY001 after 5, 10 or 15 days of treatment. Collagen deposition and tissue hydroxyproline contents were increased by TY001. The expressions of insulin growth factor-1, basic fibroblast growth factor, platelet-derived growth factor, transforming growth facts β1, vascular endothelial growth factor and epidermal growth factor were increased by TY001, as indicated by immunobiochemistry and a quantitative polymerase chain reaction. Diabetes-associated serum pro-inflammatory cytokines interleukin (IL)-1β and IL-8 were decreased, whereas anti-inflammatory IL-10 and nitric oxide were increased by TY001, along with increased tissue antioxidant superoxide dismutase and catalase activities. Diabetes-reduced serum protein levels were also recovered by TY001 CONCLUSION: Taken together, Tilapia collagen peptide mixture TY001 was effective with respect to enhancing diabetes-associated wound healing delay, probably via increasing growth factors and collagen deposition in the wound, attenuating diabetes-induced prolonged inflammation, increasing tissue antioxidants and providing nutritional support in diabetic mice. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoyun Xiong
- Yabao Pharmaceutical Group Co., Ltd, Fenglingdu, China
| | - Jun Liang
- Yabao Pharmaceutical Group Co., Ltd, Fenglingdu, China
| | - Yiqiao Xu
- Hunter Biotechnology, Inc., Hangzhou, China
| | - Jie Liu
- Zunyi Medical University, Zunyi, China
| | - Yi Liu
- The Center for Disease Control and Prevention of Shaanxi Province, Xi'an, China
| |
Collapse
|
15
|
Xiong XY, Liang J, Guo SY, Dai MZ, Zhou JL, Zhang Y, Liu Y. A natural complex product Yaocha reduces uric acid level in a live zebrafish model. J Pharmacol Toxicol Methods 2020; 102:106681. [DOI: 10.1016/j.vascn.2020.106681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/08/2019] [Accepted: 02/07/2020] [Indexed: 12/22/2022]
|
16
|
Xiong XY, Liang J, Xu YQ, Liu Y. The Tilapia collagen peptide mixture TY001 protects against LPS-induced inflammation, disruption of glucose metabolism, and aberrant expression of circadian clock genes in mice. Chronobiol Int 2019; 36:1013-1023. [PMID: 31060384 DOI: 10.1080/07420528.2019.1606821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/20/2019] [Accepted: 04/09/2019] [Indexed: 10/26/2022]
Abstract
The Tilapia collagen peptide mixture TY001 has been shown to accelerate wound healing in streptozotocin-induced diabetic mice and to protect against streptozotocin-induced inflammation and elevation in blood glucose. The goals of the present study are to further study TY001 effects on lipopolysaccharide (LPS)-induced inflammation and metabolic syndrome. LPS is known to disrupt circadian clock to produce toxic effects, the effects of TY001 on rhythmic alterations of serum cytokines and hepatic clock gene expressions were examined. Mice were given TY001 (30 g/L, ≈ 40 g/kg) through the drinking water for 30 days, and on the 21st day of TY001 supplementation, LPS (0.25 mg/kg, ip, daily) was given for 9 days to establish the inflammation model. Repeated LPS injections produced inflammation, impaired glucose metabolism, and suppressed the expression of circadian clock core genes Bmal1 and Clock; clock feedback gene Cry1, Cry2, Per1, and Per2; clock target gene Rev-erbα and RORα. TY001 prevented LPS-induced elevations of TNFα, IL-1β, IL-6, and IL-10 in the liver, along with improved histopathology. TY001 reduced LPS-elevated fasting blood glucose and increased LPS-reduced serum insulin levels, probably via increased glucose transporter GLUT2, enhanced insulin signaling p-Akt and p-IRS-1Try612. Importantly, LPS-induced circadian elevations of serum TNFα and IL-1β and aberrant expression of circadian clock genes in the liver were ameliorated by TY001. Immunohistochemistry revealed that the LPS decreased Bmal1 and Clock protein in the liver, which was recovered by TY001. Taken together, TY001 is effective against LPS-induced inflammation, disruption of glucose metabolism and disruption of circadian clock gene expressions. Abbreviations: TY001: Tilapia collagen peptide mixture; LPS: Lipopolysaccharide; TNFα: Tumor necrosis factor-α; IL-1β: Interleukin-1β; GLUT2: Glucose transporter 2.
Collapse
Affiliation(s)
- Xiao-Yun Xiong
- a Yabao Institute of Health Sciences , Yabao Pharmaceutical Group Co., Ltd , Fenglingdu , Shanxi , China
| | - Jun Liang
- b Yabao Production Center , Yabao Pharmaceutical Group Co., Ltd , Fenglingdu, Shanxi , China
| | - Yi-Qiao Xu
- c R&D department , Hunter Biotechnology, Inc , Hangzhou , Zhejiang , China
| | - Yi Liu
- d The Center for Disease Control and Prevention of Shaanxi Province , Xi'an , Shaanxi , China
| |
Collapse
|