1
|
Wagle SR, Kovacevic B, Foster T, Ionescu CM, Jones M, Mikov M, Wise A, Mooranian A, Al-Salami H. Probucol-bile acid nanoparticles: a novel approach and promising solution to prevent cellular oxidative stress in sensorineural hearing loss. J Drug Target 2024; 32:737-755. [PMID: 38758361 DOI: 10.1080/1061186x.2024.2349111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
The use of antioxidants could thus prove an effective medication to prevent or facilitate recovery from oxidative stress-induced sensorineural hearing loss (SNHL). One promising strategy to prevent SNHL is developing probucol (PB)-based nanoparticles using encapsulation technology and administering them to the inner ear via the established intratympanic route. The preclinical, clinical and epidemiological studies support that PB is a proven antioxidant that could effectively prevent oxidative stress in different study models. Such findings suggest its applicability in preventing oxidative stress within the inner ear and its associated neural cells. However, several hurdles, such as overcoming the blood-labyrinth barrier, ensuring sustained release, minimising systemic side effects and optimising targeted delivery in the intricate inner ear structures, must be overcome to efficiently deliver PB to the inner ear. This review explores the background and pathogenesis of hearing loss, the potential of PB in treating oxidative stress and its cellular mechanisms, and the obstacles linked to inner ear drug delivery for effectively introducing PB to the inner ear.
Collapse
Affiliation(s)
- Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Western Australia, Australia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Western Australia, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Western Australia, Australia
| | - Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Western Australia, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | | | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Western Australia, Australia
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
2
|
Zhang J, Zhao D, Zang Z, Ruan Z, Fu Q, Zhang K. miR-200a-3p-enriched MSC-derived extracellular vesicles reverse erectile function in diabetic rats by targeting Keap1. Biomed Pharmacother 2024; 177:116964. [PMID: 38959607 DOI: 10.1016/j.biopha.2024.116964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND The administration of mesenchymal stem cells (MSCs) through intracavernous injection is a potential therapeutic approach for managing diabetes mellitus-induced erectile dysfunction (DMED). However, pulmonary embolism and tumorigenicity are fatal adverse events that limit the clinical application of MSCs. In this study, we examined the therapeutic efficacy and potential mechanism of MSC-derived extracellular vesicles (MSC-EVs). METHODS In this study, forty 8-week-old male SpragueDawley (SD) rats were utilised. In the control group, ten rats were administered an intraperitoneal injection of PBS. STZ (60 mg/kg) was intraperitoneally injected into the remaining rats to establish a diabetes mellitus (DM) model. Afterwards, the diabetic rats were divided into three groups at random: the DM group (intracavernosal injection of PBS), the EVs group (intracavernosal injection of MSC-EVs), and the EVs-200a group (intracavernosal injection of miR-200a-3p-enriched extracellular vesicles). Erectile function was determined by measuring intracavernous pressure in real time and utilising electrical stimulation of the cavernous nerves. The smooth muscle content was evaluated through the investigation of penile tissue using immunofluorescence staining, Masson's trichrome staining, and western blotting after euthanasia. Superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) levels in the corpus cavernosum were measured via ELISA. In vitro, hydrogen peroxide (H2O2) was used to induce oxidative stress. The viability of corpus cavernosum smooth muscle cells (ccSMCs) incubated with or without H2O2 was measured using a CCK8 assay. Flow cytometry was used to assess the levels of reactive oxygen species (ROS) and apoptosis in ccSMCs. Furthermore, a dual-luciferase reporter assay was performed to validate the relationship between miR-200a-3p and Keap1. RESULTS Reversal of erectile function was observed in the EVs groups, especially in the EVs-200a group. DM increased the MDA level and decreased the SOD and GSH levels. In the DM group, the expression of alpha-smooth muscle actin (α-SMA) and smooth muscle 22 alpha (SM22α) was decreased, and the expression of osteopontin (OPN) was increased. Western blotting revealed decreased Nrf2, HO-1, and Bcl2 expression and increased Keap1, Bax and cleaved caspase3 expression in the cavernous tissue. miR-200a-3p-enriched extracellular vesicles (EVs-200a) reversed these changes and inhibited the loss of smooth muscle content and cavernous fibrosis. In vitro, H2O2 induced high ROS levels in ccSMCs and increased apoptosis, and these effects reversed by EVs-200a. H2O2 reduced Nrf2, HO-1, and Bcl2 expression and increased Keap1, Bax and cleaved caspase-3 expression, and these effects were reversed by MSC-EVs, especially EVs-200a. The of dual-luciferase reporter assay results indicated that miR-200a-3p directly targeted Keap1 in a negative manner. CONCLUSION MSC-EVs, especially EVs-200a, alleviated erectile dysfunction in diabetic rats through the regulation of phenotypic switching, apoptosis and fibrosis. Mechanistically, miR-200a-3p targeted the Keap1/Nrf2 pathway to attenuate oxidative stress in diabetic rats.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Danfeng Zhao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250199, China
| | - Zhenjie Zang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Zheng Ruan
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China; Department of Urology, Tai'an City Central Hospital, Tai'an 271099, China
| | - Qiang Fu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China; College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250199, China; Key Laboratory of Urinary Diseases in Universities of Shandong, Shandong First Medical University, Jinan 250021, China.
| | - Keqin Zhang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China.
| |
Collapse
|
3
|
Wagle SR, Kovacevic B, Ionescu CM, Foster T, Lim P, Brunet A, McLenachan S, Carvalho L, Mikov M, Mooranian A, Al-Salami H. Polymer-Based Nanoparticles with Probucol and Lithocholic Acid: A Novel Therapeutic Approach for Oxidative Stress-Induced Retinopathies. Mol Pharm 2024; 21:3566-3576. [PMID: 38899552 DOI: 10.1021/acs.molpharmaceut.4c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Oxidative stress is pivotal in retinal disease progression, causing dysfunction in various retinal components. An effective antioxidant, such as probucol (PB), is vital to counteract oxidative stress and emerges as a potential candidate for treating retinal degeneration. However, the challenges associated with delivering lipophilic drugs such as PB to the posterior segment of the eye, specifically targeting photoreceptor cells, necessitate innovative solutions. This study uses formulation-based spray dry encapsulation technology to develop polymer-based PB-lithocholic acid (LCA) nanoparticles and assesses their efficacy in the 661W photoreceptor-like cell line. Incorporating LCA enhances nanoparticles' biological efficacy without compromising PB stability. In vitro studies demonstrate that PB-LCA nanoparticles prevent reactive oxygen species (ROS)-induced oxidative stress by improving cellular viability through the nuclear erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. These findings propose PB-LCA nanoparticles as a promising therapeutic strategy for oxidative stress-induced retinopathies.
Collapse
Affiliation(s)
- Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Patrick Lim
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Alicia Brunet
- Centre for Ophthalmology and Visual Science (Incorporating the Lions Eye Institute), The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science (Incorporating the Lions Eye Institute), The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Livia Carvalho
- Centre for Ophthalmology and Visual Science (Incorporating the Lions Eye Institute), The University of Western Australia, Perth, Western Australia 6009, Australia
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, Novi Sad 21101, Serbia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia 6102, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago 9016, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia 6102, Australia
- Medical School, The University of Western Australia, Perth, Western Australia 6009, Australia
| |
Collapse
|
4
|
Besong EE, Ashonibare PJ, Akhigbe TM, Obimma JN, Akhigbe RE. Sodium acetate abates lead-induced sexual dysfunction by upregulating testosterone-dependent eNOS/NO/cGMP signaling and activating Nrf2/HO-1 in male Wistar rat. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1233-1243. [PMID: 37658211 DOI: 10.1007/s00210-023-02696-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
Oxidative stress has been linked with lead toxicity, including lead-induced sexual dysfunction. On the contrary, sodium acetate has been proven to exert antioxidant activity. However, the effect of sodium acetate on lead-induced sexual dysfunction has not been fully explored. This study investigated the effect of sodium acetate on lead-induced sexual dysfunction, exploring the involvement of testosterone, eNOS/NO/cGMP, and Nrf2/HO-1 signaling. Twenty male Wistar rats with similar weights were randomly assigned into four groups (n = 5 rats/group) after two weeks of acclimatization. Animals were vehicle-treated (0.5 ml/day of distilled water, per os), acetate-treated (200 mg/kg/day, per os), lead-treated (20 mg/kg/day, per os), or lead + acetate-treated. The results revealed that sodium acetate treatment attenuated lead-induced rise in penile lead, malondialdehyde and oxidized glutathione concentrations, and acetylcholinesterase activity. In addition, lead exposure prolonged mount, intromission, and ejaculation latency and reduced mount, intromission, and ejaculation frequency, as well as the motivation to mate and penile reflex, which were improved by acetate treatment. More so, acetate treatment ameliorated lead-induced reductions in absolute and relative penile weight, eNOS, NO, cGMP, luteinizing hormone, follicle-stimulating hormone, testosterone, dopamine, Nrf2, HO-1, and reduced glutathione concentrations, as well as glutathione reductase, glutathione peroxidase, glutathione-S-transferase, superoxide dismutase, and catalase activities. In conclusion, this study demonstrates that sodium acetate attenuated lead-induced sexual dysfunction by upregulating testosterone-dependent eNOS/NO/cGMP and Nrf2/HO-1 signaling. Despite the compelling data presented in this study, other possible associated mechanisms in the protective role of acetate should be explored.
Collapse
Affiliation(s)
- E E Besong
- Department of Physiology, Faculty of Basic Medical Sciences, Ebonyi State University, Abakaliki, Nigeria
| | - P J Ashonibare
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - T M Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Breeding and Plant Genetics Unit, Department of Agronomy, Osun State University, Osogbo, Osun State, Nigeria
| | - J N Obimma
- Department of Physiology, Faculty of Basic Medical Sciences, Ebonyi State University, Abakaliki, Nigeria
| | - R E Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria.
| |
Collapse
|
5
|
Sun L, Ding M, Chen F, Zhu D, Xie X. Long non‑coding RNA L13Rik promotes high glucose-induced mesangial cell hypertrophy and matrix protein expression by regulating miR-2861/CDKN1B axis. PeerJ 2023; 11:e16170. [PMID: 37868060 PMCID: PMC10586299 DOI: 10.7717/peerj.16170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/03/2023] [Indexed: 10/24/2023] Open
Abstract
Background Diabetic nephropathy (DN) is a frequent microvascular complication of diabetes. Glomerular mesangial cell (MC) hypertrophy occurs at the initial phase of DN and plays a critical role in the pathogenesis of DN. Given the role of long non coding RNA (lncRNA) in regulating MC hypertrophy and extracellular matrix (ECM) accumulation, our aim was to identify functional lncRNAs during MC hypertrophy. Methods Here, an lncRNA, C920021L13Rik (L13Rik for short), was identified to be up-regulated in DN progression. The expression of L13Rik in DN patients and diabetic mice was assessed using quantitative real-time PCR (qRT-PCR), and the function of L13Rik in regulating HG-induced MC hypertrophy and ECM accumulation was assessed through flow cytometry and western blotting analysis. Results The L13Rik levels were significantly increased while the miR-2861 levels were decreased in the peripheral blood of DN patients, the renal tissues of diabetic mice, and HG-treated MCs. Functionally, both L13Rik depletion and miR-2861 overexpression effectively reduced HG-induced cell hypertrophy and ECM accumulation. Mechanistically, L13Rik functioned as a competing endogenous RNA (ceRNA) to sponge miR-2861, resulting in the de-repression of cyclin-dependent kinase inhibitor 1B (CDKN1B), a gene known to regulate cell cycle and MC hypertrophy. Conclusions Collectively, the current results demonstrate that up-regulated L13Rik is correlated with DN and may be a hopeful therapeutic target for DN.
Collapse
Affiliation(s)
- Linlin Sun
- Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Miao Ding
- Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuhua Chen
- Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dingyu Zhu
- Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinmiao Xie
- Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Lu W, Yu L, Wang L, Liu S, Li M, Wu Z, Chen S, Hu R, Hao H. Metformin Hydrochloride Mucosal Nanoparticles-Based Enteric Capsule for Prolonged Intestinal Residence Time, Improved Bioavailability, and Hypoglycemic Effect. AAPS PharmSciTech 2022; 24:31. [PMID: 36577873 DOI: 10.1208/s12249-022-02402-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/22/2022] [Indexed: 12/29/2022] Open
Abstract
Metformin hydrochloride enteric-coated capsule (MH-EC) is a commonly used clinical drug for the treatment of type 2 diabetes. In this study, we described a metformin hydrochloride mucosal nanoparticles enteric-coated capsule (MH-MNPs-EC) based on metformin hydrochloride chitosan mucosal nanoparticles (MH-CS MNPs) and its preparation method to improve the bioavailability and hypoglycemic effect duration of MH-EC. In intestinal adhesion study, the residue rates of free drugs and mucosal nanoparticles were 10.52% and 67.27%, respectively after cleaned with PBS buffer. MH-CS MNPs could significantly improve the efficacy of MH and promote the rehabilitation of diabetes rats. In vitro release test of MH-MNPs-EC showed continuous release over 12 h, while commercial MH-EC released completely within about 1 h in intestinal environment (pH 6.8). Pharmacokinetic study was performed in beagle dogs compared to the commercial MH-EC. The durations of blood MH concentration above 2 μg/mL were 9 h for MH-MNPs-EC versus 2 h for commercial MH-EC. The relative bioavailability of MH-MNPs-EC was determined as 185.28%, compared with commercial MH-EC. In conclusion, MH-CS MNPs have good intestinal adhesion and can significantly prolong the residence time of MH in the intestine. MH-MNPs-EC has better treatment effect compared with MH-EC, and it is expected to be a potential drug product for the treatment of diabetes because of its desired characteristics.
Collapse
Affiliation(s)
- Wenjie Lu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Lingfei Yu
- Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Key Laboratory of Xin'an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China
| | - Lujun Wang
- Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Key Laboratory of Xin'an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China
| | - Songlin Liu
- Anhui Huangshan Capsule Co. Ltd., Huangshan, 242700, Anhui, China
| | - Manman Li
- Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Key Laboratory of Xin'an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China
| | - Zijun Wu
- Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Key Laboratory of Xin'an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China
| | - Shengqi Chen
- Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Key Laboratory of Xin'an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China.
| | - Rongfeng Hu
- Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Key Laboratory of Xin'an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China.
| | - Haiping Hao
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
7
|
Cysteine-Rich Whey Protein Isolate (CR-WPI) Ameliorates Erectile Dysfunction by Diminishing Oxidative Stress via DDAH/ADMA/NOS Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8151917. [PMID: 35355865 PMCID: PMC8960025 DOI: 10.1155/2022/8151917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 12/02/2022]
Abstract
Nitric oxide synthase- (NOS-) dependent endothelial dysfunction induced by oxidative stress (OS) is assumed to play a pivotal role in the pathogenesis and progression of diabetes mellitus-related erectile dysfunction (DMED). Cysteine-rich whey protein isolate (CR-WPI) is a widely used protein supplement and has been confirmed to reduce reactive oxygen species (ROS) by increasing cellular antioxidant glutathione (GSH). However, it is currently unknown whether CR-WPI elicits therapeutic effects in DMED. Here, we provide diabetic rats with CR-WPI to determine its effect on DMED and the underlying mechanisms. The results suggest that CR-WPI supplementation increased GSH biosynthesis and reduced ROS content and simultaneously upregulated the dimethylarginine dimethylaminohydrolase (DDAH)/asymmetrical dimethylarginine (ADMA)/nitric oxide synthase (NOS) metabolic pathway. Evaluation of intracavernous pressure (ICP) also showed an improvement of penile erectile function in CR-WPI-treated rats. The results of the vitro cell culture showed that glutathione pretreatment protected corpus cavernosum smooth muscle cells (CCSMC) from H2O2-induced apoptosis by decreasing Caspase 9 and Caspase 3 expressions. These results augur well for the potential therapeutic application of dietary CR-WPI supplementation for treating diabetic erectile dysfunction.
Collapse
|
8
|
Fu L, Liu H, Cai W, Han D, Zhu X, Yang Y, Xie S. 4-Octyl Itaconate Supplementation Relieves Soybean Diet-Induced Liver Inflammation and Glycolipid Metabolic Disorders by Activating the Nrf2-Pparγ Pathway in Juvenile Gibel Carp. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:520-531. [PMID: 34881880 DOI: 10.1021/acs.jafc.1c05783] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Itaconate is a promising new candidate for anti-inflammatory and metabolic reprogramming, and 4-octyl itaconate (OI) is a cell-permeable itaconate derivative. To investigate the effect of OI in inflammatory response and glycolipid metabolism, we fed gibel carp with a 40% dietary soybean meal diet containing 0.1% OI (SBM + 0.1OI) or not (SBM) and compared these with fishmeal (FM) as reference. Compared with FM, dietary SBM decreased the growth performance, induced inflammation in the intestine and liver, and decreased the glucose utilization ability of the liver. However, 0.1% OI supplementation in SBM significantly increased the growth performance (from 20.11 ± 0.77 to 23.33 ± 0.45 g, P < 0.05), reduced inflammation in different organs through Nrf2 activation, and alleviated SBM-induced high plasma glucose (from 6.06 ± 0.23 to 4.37 ± 0.14 g, P < 0.05) and low crude body lipid (from 4.08 ± 0.17 to 4.91 ± 0.10 g, P < 0.05). Multi-omics revealed that OI had obvious effects on carbohydrate metabolism. OI regulates peroxisome proliferator-activated receptor gamma (ppar-γ), and its target genes (glut2 and gk) enhance liver glycolysis and lipid de novo lipogenesis, which are also dependent on Nrf2 activation. To conclude, dietary 0.1% OI can promote the growth of gibel carp and alleviate foodborne intestinal and hepatic inflammation and abnormal glycolipid metabolism by Nrf2-regulated Pparγ expression.
Collapse
Affiliation(s)
- Lele Fu
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Haokun Liu
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wanjie Cai
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Han
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Hubei Engineering Research Center for Aquatic Animal Nutrition and Feed, Wuhan 430072, China
| | - Xiaoming Zhu
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Hubei Engineering Research Center for Aquatic Animal Nutrition and Feed, Wuhan 430072, China
| | - Yunxia Yang
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shouqi Xie
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Hubei Engineering Research Center for Aquatic Animal Nutrition and Feed, Wuhan 430072, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
9
|
Liu S, Zhao Z, Wang Z, Diao T, Zhang K, Zhang H, Sun D, Kong F, Fu Q. Establishing a Thermal Imaging Technology (IRT) Based System for Evaluating Rat Erectile Function. Sex Med 2022; 10:100475. [PMID: 34999483 PMCID: PMC8847846 DOI: 10.1016/j.esxm.2021.100475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/27/2022] Open
Abstract
Introduction Measurement of intra-cavernous pressure (ICP) is an internationally recognized method to evaluate erectile function of animals, however, this process is invasive, destructive, and cannot be repeated, leading to a daunting challenge for monitoring the changes in erectile function throughout the whole treatment duration. Aim To verify whether infrared ray thermography technology based system could be a good substitution of ICP for evaluating rat erectile function. Methods A novel thermal image-based method, infrared ray thermography technology (IRT) was employed to monitor erectile function in erectile dysfunction (ED) rats. To detect the sensitivity and specificity of this new technology, 4 ED rat models (Diabetic, nerve-injury, vascular-injury and aged ED models) were established and subjected to both ICP and IRT test. Outcomes Statistical comparisons were done to test the effectiveness of this new way for detecting and dynamically monitoring erectile function. Results Based on the data curves obtained from ICP and IRT, the IRT showed a similar trend (including peak value, climbing speed) as that of ICP. IRT is considered as a precise way to monitor the real-time changes of erectile function in all ED rat models. The AUC of peak temperature detected by IRT in DMED, aged ED, vascular-injury ED, the nerve-injury ED and total ED rat models were 0.9811,0.9836,0.9893,0.9989 and 0.9882, respectively. Meanwhile, the AUC of temperature climbing rate were 0.6486,0.8357,0.9184,0.8675and 0.8168.Also,it is a non-invasive process of dynamically monitoring erectile function of a same rat at different time points (before and after drug intervention). The data showed that the real-time recovery by tadalafil was obtained by IRT methods even after treatment for only 2 weeks in the diabetic ED (DMED) rat model. Conclusion A novel noninvasive method for monitoring erectile function in rat ED models was established, and can replace or supplement ICP test. Liu S, Zhao Z, Wang Z et al. Establishing a Thermal Imaging Technology (IRT) Based System for Evaluating Rat Erectile Function. Sex Med 2022;10:100475.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, SD, China; Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, SD, China
| | - Zhendong Zhao
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, SD, China; Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, SD, China
| | - Ziwen Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, SD, China
| | - Tongxiang Diao
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, SD, China
| | - Keqin Zhang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, SD, China
| | - Hui Zhang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, SD, China
| | - Dingqi Sun
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, SD, China
| | - Feng Kong
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, SD, China.
| | - Qiang Fu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, SD, China; Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, SD, China.
| |
Collapse
|
10
|
Hu LL, Zhang KQ, Tian T, Zhang H, Fu Q. Corrigendum to "Probucol improves erectile function via activation of Nrf2 and coordinates the HO-1 / DDAH / PPAR-γ/ eNOS pathways in streptozotocin-induced diabetic rats" [Biochem. Biophys. Res. Commun. 507(1-4) (2018) 9-14]. Biochem Biophys Res Commun 2021; 575:101-102. [PMID: 34384561 DOI: 10.1016/j.bbrc.2021.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Liang-Liang Hu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China; Department of Urology, Shandong Zaozhuang Municipal Hospital, Zaozhuang, 277000, PR China
| | - Ke-Qin Zhang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Tao Tian
- Department of Urology, Shandong Zaozhuang Municipal Hospital, Zaozhuang, 277000, PR China
| | - Hui Zhang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Qiang Fu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China.
| |
Collapse
|
11
|
A Review on Recent Advancement on Age-Related Hearing Loss: The Applications of Nanotechnology, Drug Pharmacology, and Biotechnology. Pharmaceutics 2021; 13:pharmaceutics13071041. [PMID: 34371732 PMCID: PMC8309044 DOI: 10.3390/pharmaceutics13071041] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/30/2022] Open
Abstract
Aging is considered a contributing factor to many diseases such as cardiovascular disease, Alzheimer’s disease, and hearing loss. Age-related hearing loss, also termed presbycusis, is one of the most common sensory impairments worldwide, affecting one in five people over 50 years of age, and this prevalence is growing annually. Associations have emerged between presbycusis and detrimental health outcomes, including social isolation and mental health. It remains largely untreatable apart from hearing aids, and with no globally established prevention strategies in the clinical setting. Hence, this review aims to explore the pathophysiology of presbycusis and potential therapies, based on a recent advancement in bile acid-based bio-nanotechnologies. A comprehensive online search was carried out using the following keywords: presbycusis, drugs, hearing loss, bile acids, nanotechnology, and more than 150 publications were considered directly relevant. Evidence of the multifaceted oxidative stress and chronic inflammation involvement in cellular damage and apoptosis that is associated with a loss of hair cells, damaged and inflamed stria vascularis, and neuronal signalling loss and apoptosis continues to emerge. New robust and effective therapies require drug delivery deeper into the various layers of the cochlea. Bile acid-based nanotechnology has gained wide interest in its permeation-enhancing ability and potential for numerous applications in treating presbycusis.
Collapse
|
12
|
Zhang KQ, Tian T, Hu LL, Wang HR, Fu Q. Effect of probucol on autophagy and apoptosis in the penile tissue of streptozotocin-induced diabetic rats. Asian J Androl 2021; 22:409-413. [PMID: 31464204 PMCID: PMC7406090 DOI: 10.4103/aja.aja_89_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Autophagy and apoptosis have been regarded as important processes in the development of diabetic erectile dysfunction (DMED). Probucol is considered to have anti-apoptotic effects, but its relationship with autophagy has not been reported. The aim of this study was to investigate the effects and mechanisms of probucol on erectile function. Thirty Sprague–Dawley (SD) male rats (12 weeks old) were fasted for 12 h. Twenty SD rats were injected with a single intraperitoneal injection of 60 mg kg−1 streptozotocin (STZ). Ten rats were given vehicle only and used as a sham group. After 72 h, 20 STZ-treated rats with random blood glucose concentrations consistently greater than 16.7 mmol l−1 were used as successfully established diabetic rats. The diabetic rats were divided randomly into two groups and treated with a daily gavage of probucol at a dose of 0 or 500 mg kg−1 for 12 weeks. After treatment, the intracavernous pressure (ICP) was used to measure erectile function upon electrical stimulation of the cavernous nerve. After euthanasia, penile tissue was examined using immunohistochemistry and Western blot to assess the protein levels of B-cell lymphoma-2 (Bcl-2), BCL2-associated X (Bax), microtubule-associated protein light chain 3-II (LC3-II), mammalian target of rapamycin (mTOR), and sequestosome 1 (P62). Caspase-3 activity was measured to determine apoptosis using a caspase-3 assay kit. After 12 weeks of treatment, the erectile function of the probucol group was significantly better than that of the DM group (P < 0.05). Bax and LC3-II protein expression and caspase-3 activity were significantly lower in the probucol group than those in the DM group (all P < 0.05), while Bcl-2, mTOR, and P62 protein expression levels were significantly higher than those in the DM group (all P < 0.05). We demonstrated that probucol inhibited apoptosis and autophagy in STZ-induced diabetic rats.
Collapse
Affiliation(s)
- Ke-Qin Zhang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Tao Tian
- Department of Urology, Shandong Zaozhuang Municipal Hospital, Zaozhuang 277000, China
| | - Liang-Liang Hu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China.,Department of Urology, Shandong Zaozhuang Municipal Hospital, Zaozhuang 277000, China
| | - Hao-Ran Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Qiang Fu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| |
Collapse
|
13
|
de Oliveira AA, Nunes KP. Hypertension and Erectile Dysfunction: Breaking Down the Challenges. Am J Hypertens 2021; 34:134-142. [PMID: 32866225 DOI: 10.1093/ajh/hpaa143] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/15/2020] [Accepted: 08/29/2020] [Indexed: 02/07/2023] Open
Abstract
A diagnostic of hypertension increases the risk of erectile dysfunction (ED); likewise, ED can be an early sign of hypertension. In both cases, there is evidence that endothelial dysfunction is a common link between the 2 conditions. During hypertension, the sustained and widespread release of procontractile factors (e.g., angiotensin II, endothelin 1, and aldosterone) impairs the balance between vasoconstrictors and vasodilators and, in turn, detrimentally impacts vascular and erectile structures. This prohypertensive state associates with an enhancement in the generation of reactive oxygen species, which is not compensated by internal antioxidant mechanisms. Recently, the innate immune system, mainly via Toll-like receptor 4, has also been shown to actively contribute to the pathophysiology of hypertension and ED not only by inducing oxidative stress but also by sustaining a low-grade inflammatory state. Furthermore, some drugs used to treat hypertension can cause ED and, consequently, reduce compliance with the prescribed pharmacotherapy. To break down these challenges, in this review, we focus on discussing the well-established as well as the emerging mechanisms linking hypertension and ED with an emphasis on the signaling network of the vasculature and corpora cavernosa, the vascular-like structure of the penis.
Collapse
Affiliation(s)
- Amanda Almeida de Oliveira
- Laboratory of Vascular Physiology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| | - Kenia Pedrosa Nunes
- Laboratory of Vascular Physiology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| |
Collapse
|
14
|
Ruan Z, Wang H, Zhang K, Xu Z, Zang Z, Fu Q. Probucol improves erectile function by regulating endoplasmic reticulum stress in rats with streptozotocin-induced diabetes. Andrologia 2021; 53:e13999. [PMID: 33565104 DOI: 10.1111/and.13999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/02/2021] [Accepted: 01/14/2021] [Indexed: 11/30/2022] Open
Abstract
This study was to explore the effect and mechanism of Probucol on STZ-induced erectile dysfunction in diabetic rats. Thirty SD male rats aged 12 weeks were given intraperitoneal injection of STZ after fasting for 12 hr. Diabetic rats were haphazardly partitioned under two assemblies and administered 0 or 500 mg/kg probucol by oral gavage to 12 weeks. Control group was intraperitoneally injected with physiological saline, and saline was administered by oral gavage daily. Intracorporeal pressure was used to evaluate erectile function. Levels of proteins were detected using immunohistochemistry and Western blotting. α-SMA and vWF were detected using immunofluorescence staining. After treatment, erectile function in probucol group was significantly improved. Endoplasmic reticulum stress-related proteins were expressed higher in DM group than in sham group, while expression of these proteins decreased significantly in probucol group. However, α-SMA and vWF were expressed at lower levels in DM group than in sham group, and probucol treatment reversed this phenomenon. Finally, Bax and Caspase3 were expressed at higher levels and Bcl-2 was expressed at lower levels in DM group, while the opposite result was obtained in probucol group. In conclusions, probucol improves erectile function by reducing endothelial dysfunction and inhibiting PERK/ATF4/CHOP pathway in STZ-induced diabetic rats.
Collapse
Affiliation(s)
- Zheng Ruan
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China.,Tai'an City Central Hospital, Tai'an, P.R. China
| | - Haoran Wang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Keqin Zhang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Zhen Xu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Zhenjie Zang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Qiang Fu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
15
|
Ma JX, Wang B, Li HS, Yu J, Hu HM, Ding CF, Chen WQ. Uncovering the mechanisms of leech and centipede granules in the treatment of diabetes mellitus-induced erectile dysfunction utilising network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113358. [PMID: 32896625 DOI: 10.1016/j.jep.2020.113358] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/17/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetes mellitus-induced erectile dysfunction (DMED) is one of the most common complications of diabetes mellitus. Leech and centipede granules (LCG) have traditionally been used as blood-activating agents in various ethnomedicinal systems of East Asia, especially in China. It is often used to regulate bodily functions and considered as adjuvant therapy for promoting blood circulation, alleviating blood coagulation, activating meridians, and relieving stasis. AIM OF THE STUDY This study aimed to identify potential genes and mechanisms of LCG on DMED from the network pharmacological perspective. MATERIALS AND METHODS The active components of LCG were identified by UHPLC-Q-TOF-MS, TCMID, and the BATMAN-TCM databases, and the disease targets of DMED were obtained from the DisGeNET, CooLGeN, GeneCards databases. After identifying DMED targets of LCG, a protein-protein interaction (PPI) network was constructed. Hub genes and significant modules were identified via the MCODE plug-in of Cytoscape software. Then, significant signaling pathways of the modules were identified using the Metascape database. The probable interaction mode of compounds-hub genes is examined using Molecular Operating Environment (MOE) docking software. Besides, we investigated the effects and mechanisms of LCG on improving erectile function in the streptozotocin (STZ)-induced diabetic rats model. RESULTS Combined UHPLC-Q-TOF-MS analysis with network pharmacology study, 18 active compounds were selected for target prediction. There are 97 common target genes between LCG and DMED. Enrichment of the KEGG pathway mainly involves in the calcium signaling pathway, NF-kappa B signaling pathway, cGMP-PKG signaling pathway, HIF-1 signaling pathway, PI3K-Akt signaling pathway, and mTOR signaling pathway. Nine hub genes were regulated by LCG in DMED, including CXCL8, NOS3, CRH, TH, BDNF, DRD4, ACE, CNR1, and HTR1A. The results of molecular docking analysis showed that the tyrosin, ursolic acid, and L-Histidine has a relatively stable interaction with corresponding hub genes via generating hydrogen bonds, H-π, and π-π interactions. Significantly, the results in docking predicted a higher affinity of vardenafil to the hub genes compared to the tyrosin, ursolic acid, and L-Histidine. Furthermore, LCG increased the testosterone, erection frequency, the ratio of ICP and MAP, SOD, cGMP, cAMP as well as decreased the MDA, and AGEs expression levels. And, LCG ameliorated the histological change of penile tissues in DMED rats. Hence, LCG attenuates oxidative stress, increases NO production; For the mechanism exploration, LCG could significantly upregulate the mRNA and protein expression of CNR1, NOS3, CRH, TH, BDNF, and DRD4, whereas CXCL8, ACE, and HTR1A levels were significantly higher than those in the DMED group. Moreover, LCG activates the NO/cGMP/PKG pathway, PI3K/Akt/nNOS pathway, cAMP/PKA pathway, and inhibits the HIF-1α/mTOR pathway to improve erectile function. CONCLUSIONS Our results suggest that LCG maybe offer a new therapeutic basis for the treatment of DMED via altering the gene expression of involved metabolic pathways.
Collapse
Affiliation(s)
- Jian Xiong Ma
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang, China; Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; Department of Reproductive Medicine, Zhejiang Integrated Traditional and Western Medicine Hospital, Zhejiang, China
| | - Bin Wang
- Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hai Song Li
- Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Yu
- Department of Reproductive Medicine, Zhejiang Integrated Traditional and Western Medicine Hospital, Zhejiang, China
| | - Hui Min Hu
- Department of Reproductive Medicine, Zhejiang Integrated Traditional and Western Medicine Hospital, Zhejiang, China
| | - Cai Fei Ding
- Department of Reproductive Medicine, Zhejiang Integrated Traditional and Western Medicine Hospital, Zhejiang, China.
| | - Wang Qiang Chen
- Department of Reproductive Medicine, Zhejiang Integrated Traditional and Western Medicine Hospital, Zhejiang, China.
| |
Collapse
|
16
|
Yue XF, Shen CX, Wang JW, Dai LY, Fang Q, Long L, Zhi Y, Li XR, Wang YW, Shen GF, Liu ZJ, Shi CM, Li WB. The near-infrared dye IR-61 restores erectile function in a streptozotocin-induced diabetes model via mitochondrial protection. Asian J Androl 2021; 23:249-258. [PMID: 33402547 PMCID: PMC8152422 DOI: 10.4103/aja.aja_69_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
This study aimed to evaluate the therapeutic effect of IR-61, a novel mitochondrial heptamethine cyanine dye with antioxidant effects, on diabetes mellitus-induced erectile dysfunction (DMED). Eight-week-old male Sprague-Dawley rats were intraperitoneally injected with streptozotocin (STZ) to induce type 1 diabetes. Eight weeks after STZ injection, all rats were divided into three groups: the control group, DM group, and DM + IR-61 group. In the DM + IR-61 group, the rats were administered IR-61 (1.6 mg kg-1) twice a week by intravenous injection. At week 13, erectile function was evaluated by determining the ratio of the maximal intracavernous pressure to mean arterial pressure, and the penises were then harvested for fluorescent imaging, transmission electron microscopy, histological examinations, and Western blot analysis. Whole-body imaging suggested that IR-61 was highly accumulated in the penis after intravenous injection. IR-61 treatment significantly improved the maximal ICP of diabetic rats. Additionally, IR-61 ameliorated diabetes-induced inflammation, apoptosis, and phenotypic transition of corpus cavernosum smooth muscle cells (CCSMCs) in penile tissue. IR-61 also attenuated mitochondrial damage, reduced reactive oxygen species production in the corpus cavernosum and upregulated sirtuin1 (SIRT1), sirtuin3 (SIRT3), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and heme oxygenase expression in penile tissue. In conclusion, IR-61 represents a potential therapeutic option for DMED by protecting the mitochondria of CCSMCs, which may be mediated by activation of the SIRT1, SIRT3, and Nrf2 pathways.
Collapse
Affiliation(s)
- Xiao-Feng Yue
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing 401120, China
| | - Chong-Xing Shen
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing 401120, China
| | - Jian-Wu Wang
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing 401120, China
| | - Lin-Yong Dai
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing 401120, China
| | - Qiang Fang
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing 401120, China
| | - Lei Long
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Yi Zhi
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing 401120, China
| | - Xue-Ru Li
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing 401120, China
| | - Ya-Wei Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Gu-Fang Shen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Zu-Juan Liu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Chun-Meng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Wei-Bing Li
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing 401120, China
| |
Collapse
|
17
|
Ünver Saraydin S, Özdenoglu Kutlu B, Saraydın D. Effects of diabetes on apoptosis and mitosis in rat hippocampus. Biotech Histochem 2020; 96:460-467. [PMID: 32938250 DOI: 10.1080/10520295.2020.1818827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Diabetes contributes to neurological dysfunction including peripheral nerve diseases, stroke and dementia. We investigated the effects of diabetes on apoptosis and mitosis in the hippocampal CA1 region. Rats were given diabetes by injection of streptozotocin (STZ). The mass and blood glucose levels of the rats were measured until day 7 of the experiment. The loss of mass index was approximately 10%, and the diabetogenic index was approximately 330% between nondiabetic and diabetic groups. We investigated caspase-3, caspase-7 and Ki 67 levels immunohistochemically for mitotic activity, the TUNEL method for apoptosis and GFAP for astrocyte cell density in the hippocampal CA1 region. We found that apoptotic cells and the number of astrocytes and mitotic activity in the diabetic group were increased significantly compared to controls. Diabetes stimulates apoptosis and promotes cell proliferation in the hippocampal CA1 region, which may impair its homeostasis and function.
Collapse
Affiliation(s)
- Serpil Ünver Saraydin
- Histology and Embryology Department, Medicine Faculty, Sivas Cumhuriyet University, Sivas, Turkey
| | - Berna Özdenoglu Kutlu
- Histology and Embryology Department, Medicine Faculty, Sivas Cumhuriyet University, Sivas, Turkey
| | - Dursun Saraydın
- Chemistry Department, Science Faculty, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
18
|
Wang H, Zhang K, Ruan Z, Sun D, Zhang H, Lin G, Hu L, Zhao S, Fu Q. Probucol enhances the therapeutic efficiency of mesenchymal stem cells in the treatment of erectile dysfunction in diabetic rats by prolonging their survival time via Nrf2 pathway. Stem Cell Res Ther 2020; 11:302. [PMID: 32693824 PMCID: PMC7374958 DOI: 10.1186/s13287-020-01788-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/09/2020] [Accepted: 06/23/2020] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Intracavernous injection of mesenchymal stem cells (MSCs) is a promising method for diabetic mellitus-induced erectile dysfunction (DMED), but short survival time of MSCs in cavernous is a fatal defect for therapy. This study investigated therapeutic efficiency and potential mechanism of probucol combined with MSCs. METHODS In vivo study, a total of forty-eight 10-week-old male Sprague-Dawley (SD) rats were used. Twelve rats received intraperitoneal injection of PBS as the sham group; the rest received intraperitoneal injection of 60 mg/kg streptozotocin to establish DM models. DM rats were randomly divided into three groups: received intracavernosal (IC) injection of either PBS (DM group), MSCs (M group), or administrated probucol after intracavernosal injection of MSCs (P + M group). Erectile function was assessed by electrical stimulation of the cavernous nerves with real-time intracavernous pressure measurement. After euthanasia, penile tissue was investigated for histologic examination and Western blotting. In in vitro experiment, H2O2 was used to create oxidative stress environment to detect changes in cell viability. CCK8 was used to measure cell viability of MSCs treated with or without probucol. Intracellular ROS changes were detected by flow cytometry. Autophagy and apoptosis were detected by Western blotting and confocal microscopy. RESULTS Recovery of erectile function was observed in the P + M group. The combination therapy decreased fibrosis and increased endothelial function compared with MSC therapy alone. Western blotting results confirmed the increased expression of Nrf2 and HO-1 in cavernous body. H2O2 induced high oxidative stress and reduced cell viability in vitro, which was gradually reversed with increased concentration of probucol. H2O2 reduced Nrf2 expression, which was reversed by probucol's intervention. Furthermore, the expression of Bax, Caspase3, and Cleaved-Caspase3 decreased, and the expression of Bcl-2 increased in a dose-dependent manner because of probucol's intervention. In addition, Beclin1 and LC3II both increased in a dose-dependent manner. Meanwhile, the expression of P62 decreased. In the study of autophagy flux, we found probucol did not block it. CONCLUSION Probucol enhanced therapeutic efficiency of MSCs in DMED by prolonging their survival time, which mediated through improving the transplanted microenvironment of MSCs, increasing self-antioxidant ability of MSCs, strengthening protective autophagy, and inhibiting apoptosis of MSCs via Nrf2 pathway. Schematic model showing combined probucol and MSCs to improve DMED. Probucol increases self-antioxidant ability of MSCs, strengthening protective autophagy and inhibiting apoptosis via Nrf2/HO-1 and Nrf2/autophagy pathways.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jingwuweiqi Road 324#, Jinan, 250021, Shandong, People's Republic of China
| | - Keqin Zhang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jingwuweiqi Road 324#, Jinan, 250021, Shandong, People's Republic of China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Zheng Ruan
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jingwuweiqi Road 324#, Jinan, 250021, Shandong, People's Republic of China
- Tai'an City Central Hospital, Tai'an, 271000, People's Republic of China
| | - Dingqi Sun
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jingwuweiqi Road 324#, Jinan, 250021, Shandong, People's Republic of China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Hui Zhang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jingwuweiqi Road 324#, Jinan, 250021, Shandong, People's Republic of China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China
| | - Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Liangliang Hu
- Department of Urology, Shandong Zaozhuang Municipal Hospital, Zaozhuang, 277000, People's Republic of China
| | - Shengtian Zhao
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jingwuweiqi Road 324#, Jinan, 250021, Shandong, People's Republic of China.
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China.
| | - Qiang Fu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jingwuweiqi Road 324#, Jinan, 250021, Shandong, People's Republic of China.
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China.
| |
Collapse
|
19
|
Grabacka M, Plonka PM, Reiss K. Melanoma-Time to fast or time to feast? An interplay between PPARs, metabolism and immunity. Exp Dermatol 2020; 29:436-445. [PMID: 31957066 DOI: 10.1111/exd.14072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/30/2019] [Accepted: 01/10/2020] [Indexed: 12/15/2022]
Abstract
Development and progression of melanoma can be accelerated by intensification of particular metabolic pathways, such as aerobic glycolysis and avid amino acid catabolism, and is accompanied by aberrant immune responses within the tumor microenvironment. Contrary to other cancer types, melanoma reveals some unique tissue-specific features, such as melanogenesis, which is intertwined with metabolism. Nuclear peroxisome proliferator-activated receptors (PPARs) take part in regulation of systemic and cellular metabolism, inflammation and melanogenesis. They appear as a focal regulatory point for these three distinct processes by occupying the intersection among AMP-dependent protein kinase (AMPK), mammalian target of rapamycin (mTOR) and PPAR gamma coactivator 1-alpha (PGC-1α) signalling pathways. When deregulated, they may accelerate melanoma malignant growth. Presenting the contribution of PPARα and PPARγ in melanoma biology, we attempt to ask how two contrasting metabolic states: obesity and fasting, can change progression of the disease and possible outcome of the treatment. This short essay is aimed to provoke a discussion about some practical implications for melanoma prevention and treatment, especially: how metabolic manipulation may be exploited to overcome immunosuppression and support immune checkpoint blockade efficacy.
Collapse
Affiliation(s)
- Maja Grabacka
- Department of Biotechnology and General Technology of Foods, Faculty of Food Technology, University of Agriculture, Kraków, Poland
| | - Przemyslaw M Plonka
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Krzysztof Reiss
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, USA
| |
Collapse
|
20
|
Couplet medicines of leech and centipede granules improve erectile dysfunction via inactivation of the CaSR/PLC/PKC signaling in streptozotocin-induced diabetic rats. Biosci Rep 2020; 40:221835. [PMID: 31922200 PMCID: PMC7000366 DOI: 10.1042/bsr20193845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 01/20/2023] Open
Abstract
Erectile dysfunction (ED) is one of the significant complications of diabetes mellitus (DM), and CASR plays an important role in cellular antiapoptosis and NO production in the vascular endothelium by activating PKC. The present study was aimed to investigate the efficacy of Leech and Centipede Granules (LCG) through the CaSR/PLC/PKC signaling. Fifty male Sprague-Dawley rats were treated with streptozotocin to induce the DM model. After 10 weeks, an apomorphine test was used to confirm DMED. Rats with DMED were administrated with LCG and U73122 for 4 weeks. Fasting blood glucose, body weight, insulin and glucagon levels were measured. Erectile function in rats was assessed by apomorphine. Serums were measured using enzyme-linked immunosorbent assay and flow cytometry, and penile tissues were harvested for histologic and the expression of related targets analyses. After treatment, fasting blood glucose, body weight, insulin, glucagon levels, and erectile function were significantly ameliorated in the LCG groups. The LOX-1, NOX, and EMPs concentrations were significantly decreased with LCG treatment. LCG also continuously increased NO and decreased ET-1 content in penile tissues. LCG and U73122 administration also improved penile fibrosis by significantly decreasing VCAM-1, ICAM-1, and CD62P. The data also showed that LCG reduced the apoptosis level in the penis. Furthermore, the inhibited activation of the CaSR/PLC/PKC pathway was observed in DMED rats with LCG treatment. Collectively, LCG significantly ameliorated erectile function of DMED rats via increased NO generation, inhibiting endothelial cells apoptosis and penile fibrosis, which might benefit from the suppression of CaSR/PLC/PKC pathway in DMED rats.
Collapse
|
21
|
Hammad ASA, Ahmed ASF, Heeba GH, Taye A. Heme oxygenase-1 contributes to the protective effect of resveratrol against endothelial dysfunction in STZ-induced diabetes in rats. Life Sci 2019; 239:117065. [PMID: 31751579 DOI: 10.1016/j.lfs.2019.117065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/01/2019] [Accepted: 11/12/2019] [Indexed: 12/28/2022]
Abstract
Endothelial dysfunction is a common complication of diabetes that mainly stems from increased reactive oxygen species, which makes antioxidants of great benefit. Resveratrol (RSV) is an antioxidant that shows protective effects in a variety of disease models where the ameliorative effect appears to be mediated, in part, via heme oxygenase-1 (HO-1) induction. However, the pathophysiological relevance of HO-1 in the ameliorative response of RSV in endothelial dysfunction is not clearly defined. The present study was conducted to investigate whether HO-1 plays a role in diabetes-induced vascular dysfunction. Streptozotocin-diabetic rats were treated with RSV (10 mg/kg) in presence or absence of an HO-1 blocker, Zinc protoporphyrin (ZnPP) to assess vascular function and indicators of disease status. We found that RSV treatment significantly abrogated diabetes induced vascular dysfunction. This improvement was associated with the ability of RSV to decrease oxidative stress markers alongside a reduction in the aortic TGF-β expression, elevation of NOS3 expression and aortic nitrite concentration as well as HO activity. These ameliorative effects were diminished when ZnPP was administered prior to RSV. Our results clearly demonstrate the protective effects of RSV in diabetes-associated endothelial dysfunction and verified a causal role of HO-1 in this setting.
Collapse
Affiliation(s)
- Asmaa S A Hammad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Egypt
| | - Al-Shaimaa F Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Egypt.
| | - Gehan H Heeba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Egypt
| | - Ashraf Taye
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, South Valley University, Egypt
| |
Collapse
|
22
|
Chen S, Zhu J, Wang M, Huang Y, Qiu Z, Li J, Chen X, Chen H, Xu M, Liu J, She M, Li H, Yang X, Wang Y, Cai X. Comparison of the therapeutic effects of adipose‑derived and bone marrow mesenchymal stem cells on erectile dysfunction in diabetic rats. Int J Mol Med 2019; 44:1006-1014. [PMID: 31257465 PMCID: PMC6658012 DOI: 10.3892/ijmm.2019.4254] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 06/13/2019] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to compare the effects of adipose‑derived mesenchymal stem cell (ADSC) and bone marrow mesenchymal stem cell (BMSC) transplantation into the corpora cavernosa of diabetic rats with erectile function. ADSCs and BMSCs were isolated and identified by flow cytometry. Rats with streptozocin‑induced diabetes were screened using apomorphine to obtain a rat model of diabetic erectile dysfunction, followed by transplantation of ADSCs and BMSCs into the corpora cavernosa. Two weeks later, the rats were again injected with apomorphine, the intracavernous pressure (ICP) and mean arterial pressure (MAP) of the penile tissue were measured, and the corpus cavernosum tissues were harvested. Angiogenic endothelial nitric oxide synthase (eNOS) expression was detected by western blotting and immunofluorescence analysis. The blood vessels in the corpus cavernosum were observed following hematoxylin and eosin (H&E) staining, and the expression of collagen was detected by Sirius Red staining. The cellular ultrastructure was examined by transmission electron microscopy. Intracavernous injection of ADSCs significantly increased ICP and ICP/MAP. Western blotting and immunofluorescence results revealed that ADSC treatment improved the expression of eNOS in the penile tissue of diabetic rats. The H&E staining results demonstrated that ADSC treatment promoted revascularization of the corpus cavernosum, and the results of Sirius Red staining revealed that ADSC treatment reduced penile collagen in diabetic rats. Transmission electron microscopy examination revealed that the ultrastructure of the tissues in the ADSC‑treated group was more complete compared with that in the untreated diabetic model group. In conclusion, ADSCs were found to be more effective compared with BMSCs in treating diabetes‑related erectile dysfunction.
Collapse
Affiliation(s)
- Sansan Chen
- Department of Urology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080
- Institute of Biotherapy, Southern Medical University, Guangzhou, Guangdong 510515
| | - Jianbin Zhu
- Technology Center, Guangdong Vitalife Bio-Tech Co., Ltd., Foshan, Guangdong 528200
| | - Mingzhu Wang
- Reproductive Center of Obstetrics and Gynecology, Southern Medical University, Guangzhou, Guangdong 510515
| | - Yanting Huang
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080
| | - Zhuolin Qiu
- Reproductive Center of Obstetrics and Gynecology, Southern Medical University, Guangzhou, Guangdong 510515
| | - Jingjing Li
- Technology Center, Guangdong Vitalife Bio-Tech Co., Ltd., Foshan, Guangdong 528200
| | - Xinglu Chen
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080
| | - Huiying Chen
- Institute of Biotherapy, Southern Medical University, Guangzhou, Guangdong 510515
| | - Mingyu Xu
- Institute of Biotherapy, Southern Medical University, Guangzhou, Guangdong 510515
| | - Jun Liu
- Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong 510091
| | - Miaoqin She
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510660
| | - Hongwei Li
- Institute of Biotherapy, Southern Medical University, Guangzhou, Guangdong 510515
| | - Xiaorong Yang
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080
- Correspondence to: Dr Xiangsheng Cai or Dr Xiaorong Yang, Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, 39 Nonglin Xia Road, Guangzhou, Guangdong 510080, P.R. China, E-mail: , E-mail:
| | - Yi Wang
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiangsheng Cai
- Institute of Biotherapy, Southern Medical University, Guangzhou, Guangdong 510515
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080
- Correspondence to: Dr Xiangsheng Cai or Dr Xiaorong Yang, Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, 39 Nonglin Xia Road, Guangzhou, Guangdong 510080, P.R. China, E-mail: , E-mail:
| |
Collapse
|