1
|
Qiu D, Yan B, Xue H, Xu Z, Tan G, Liu Y. Perspectives of exosomal ncRNAs in the treatment of bone metabolic diseases: Focusing on osteoporosis, osteoarthritis, and rheumatoid arthritis. Exp Cell Res 2025; 446:114457. [PMID: 39986599 DOI: 10.1016/j.yexcr.2025.114457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/13/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Bone metabolic disorders, constituting a group of prevalent and grave conditions, currently have a scarcity of therapeutic alternatives. Over the recent past, exosomes have been at the forefront of research interest, owing to their nanoparticulate nature and potential for therapeutic intervention. ncRNAs are a class of heterogeneous transcripts that they lack protein-encoding capacity, yet they can modulate the expression of other genes through multiple mechanisms. Mounting evidence underscores the intricate role of exosomes as ncRNAs couriers implicated in the pathogenesis of bone metabolic disorders. In this review, we endeavor to elucidate recent insights into the roles of three ncRNAs - miRNAs, lncRNAs, and circRNAs - in bone metabolic ailments such as osteoporosis, osteoarthritis, and rheumatoid arthritis. Additionally, we examine the viability of exosomal ncRNAs as innovative, cell-free modalities in the diagnosis and therapeutic management of bone metabolic disorders. We aim to uncover the critical function of exosomal ncRNAs within the context of bone metabolic diseases.
Collapse
Affiliation(s)
- Daodi Qiu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Binghan Yan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Haipeng Xue
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Zhanwang Xu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Guoqing Tan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yajuan Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250300, China.
| |
Collapse
|
2
|
Shariati K, Bedar M, Huang KX, Moghadam S, Mirzaie S, LaGuardia JS, Chen W, Kang Y, Ren X, Lee JC. Biomaterial Cues for Regulation of Osteoclast Differentiation and Function in Bone Regeneration. ADVANCED THERAPEUTICS 2025; 8:2400296. [PMID: 39867107 PMCID: PMC11756815 DOI: 10.1002/adtp.202400296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Indexed: 01/28/2025]
Abstract
Tissue regeneration involves dynamic dialogue between and among different cells and their surrounding matrices. Bone regeneration is specifically governed by reciprocity between osteoblasts and osteoclasts within the bone microenvironment. Osteoclast-directed resorption and osteoblast-directed formation of bone are essential to bone remodeling, and the crosstalk between these cells is vital to curating a sequence of events that culminate in the creation of bone tissue. Among bone biomaterial strategies, many have investigated the use of different material cues to direct the development and activity of osteoblasts. However, less attention has been given to exploring features that similarly target osteoclast formation and activity, with even fewer strategies demonstrating or integrating biomaterial-directed modulation of osteoblast-osteoclast coupling. This review aims to describe various biomaterial cues demonstrated to influence osteoclastogenesis and osteoclast function, emphasizing those that enhance a material construct's ability to achieve bone healing and regeneration. Additionally discussed are approaches that influence the communication between osteoclasts and osteoblasts, particularly in a manner that takes advantage of their coupling. Deepening our understanding of how biomaterial cues may dictate osteoclast differentiation, function, and influence on the microenvironment may enable the realization of bone-replacement interventions with enhanced integrative and regenerative capacities.
Collapse
Affiliation(s)
- Kaavian Shariati
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Meiwand Bedar
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Kelly X. Huang
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Shahrzad Moghadam
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Sarah Mirzaie
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Jonnby S. LaGuardia
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Wei Chen
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Youngnam Kang
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Xiaoyan Ren
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Justine C. Lee
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
- Department of Orthopaedic Surgery, Los Angeles, CA, 90095, USA
- UCLA Molecular Biology Institute, Los Angeles, CA, 90095, USA
| |
Collapse
|
3
|
Lu L, Li J, Liu L, Wang C, Xie Y, Yu X, Tian L. Grape seed extract prevents oestrogen deficiency-induced bone loss by modulating the gut microbiota and metabolites. Microb Biotechnol 2024; 17:e14485. [PMID: 38850270 PMCID: PMC11162104 DOI: 10.1111/1751-7915.14485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/07/2024] [Accepted: 05/09/2024] [Indexed: 06/10/2024] Open
Abstract
Proanthocyanidin-rich grape seed extract (GSE) has been shown to have the potential to protect bones, although the underlying mechanism remains unknown. The current study aims to explore GSE's preventive and therapeutic impact on bone loss induced by oestrogen deficiency and the underlying mechanism through the gut microbiota (GM) and metabolomic responses. In oestrogen-deficient ovariectomized (OVX) mice, GSE ameliorated bone loss by inhibiting the expansion of bone marrow adipose tissue (BMAT), restoring BMAT lipolysis and promoting bone formation. GSE regulated OVX-induced GM dysbiosis by reducing the abundance of opportunistic pathogenic bacteria, such as Alistipes, Turicibacter and Romboutsia, while elevating the abundance of beneficial bacteria, such as Bifidobacterium. The modified GM primarily impacted lipid and amino acid metabolism. Furthermore, the serum metabolites of GSE exhibited a significant enrichment in lipid metabolism. In summary, GSE shows potential as a functional food for preventing oestrogen deficiency-induced bone loss by modulating GM and metabolite-mediated lipid metabolism.
Collapse
Affiliation(s)
- Lingyun Lu
- Division of Internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China HospitalSichuan UniversityChengduChina
| | - Jiao Li
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China HospitalSichuan UniversityChengduChina
| | - Lu Liu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, West China HospitalSichuan UniversityChengduChina
| | - Cui Wang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, West China HospitalSichuan UniversityChengduChina
| | - Ying Xie
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, West China HospitalSichuan UniversityChengduChina
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, West China HospitalSichuan UniversityChengduChina
| | - Li Tian
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
4
|
Shou Z, Bai Z, Zhou H, Shen Y, Huang X, Meng H, Xu C, Wu S, Li N, Chen C. Engineering tunable dual peptide hybrid coatings promote osseointegration of implants. Mater Today Bio 2024; 24:100921. [PMID: 38226017 PMCID: PMC10788622 DOI: 10.1016/j.mtbio.2023.100921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
Utilizing complementary bioactive peptides is a promising surface engineering strategy for bone regeneration on osteogenesis. In this study, we designed block peptides, (Lysine)6-capped RGD (K6-(linker-RGD)3) and OGP (K6-linker-(YGFGG)2), which were mildly grafted onto PC/Fe-MPNs through supramolecular interactions between K6 and PC residues on the MPNs surface to form a dual peptide coating, named PC/Fe@K6-RGD/OGP. The properties of the block peptides coating, including mechanics, hydrophilicity, chemical composition, etc., were detailly characterized by various techniques (ellipsometry, quartz crystal microbalance, X-ray photoelectron spectroscopy, water contact angle, scanning electronic microscopy and atomic force microscopy). Importantly, the RGD/OGP ratio can be well adjusted, which allowed optimizing the RGD/OGP ratio to endow significantly enhanced osteogenic activity of MC3T3-E1 cells through the Wnt/β-catenin pathway, while also promoting cell adhesion, immune regulation, inhibiting osteoclast differentiation and oxidative stress reduction. In vivo, the optimized RGD/OGP coatings promoted bone regeneration and osseointegration around implants in rats with bone defects. In conclusion, rationally designed PC/Fe@K6-RGD/OGP coating integrated RGD and OGP bioactivities, providing a convenient approach to enhance bioinert implant surfaces for bone regeneration.
Collapse
Affiliation(s)
- Zeyu Shou
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, People's Republic of China
| | - Zhibiao Bai
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Han Zhou
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Yizhe Shen
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Xiaojing Huang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Hongming Meng
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Chenwei Xu
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Shaohao Wu
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Na Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, People's Republic of China
| | - Chun Chen
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, 325000, Zhejiang, People's Republic of China
- Zhejiang Engineering Research Center for Hospital Emergency and Process Digitization, Wenzhou, Zhejiang, 325000, People's Republic of China
| |
Collapse
|
5
|
Wahyuningtyas ED, Triwardhani A, Ardani IGAW, Surboyo MDC. The Effect of Grape Seed Extract on the Alveolar, Jaw, and Skeletal Bone Remodeling: A Scoping Review. Eur J Dent 2024; 18:73-85. [PMID: 37311556 PMCID: PMC10959605 DOI: 10.1055/s-0043-1768975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023] Open
Abstract
Herbal medicine has an important part in promoting and maintaining human health. One of them was grape seed extract (GSE). Various potentials of GSE in human health have been explored, and its potential for maintaining bone health is promising. Some initial research has provided evidence that the GSE was able to affect bone remodeling (bone resorption and bone formation). This scoping review analyzed and discussed all the reports on the effect of GSE on bone healing and bone remodeling in animals in the alveolar bone, jaw bone, and skeletal bone. The further purpose is to give an opportunity to research and development of supplementation of GSE for humans.The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) 2020 guidelines were used to compose this scoping review through database on Scopus, PubMed, Science Direct, Web of Science, Embase, and manual search until December 2022. The inclusion criteria were a study that analyzed the effect of supplementation GSE on all bones.All included study was in vivo study with supplementation of GSE. The supplementation of GSE affects the alveolar bone, jaw bones, and skeletal bone by promoting bone formation and inhibiting bone resorption by suppressing inflammation, apoptosis pathways, and osteoclastogenesis. It not only supports bone remodeling in bone inflammation, osteonecrosis, osteoporosis, and arthritis but also the GSE increases bone health by increasing the density and mineral deposition in trabecula and cortical bone.The supplementation of GSE supports bone remodeling by interfering with the inflammation process and bone formation not only by preventing bone resorption but also by maintaining bone density.
Collapse
Affiliation(s)
| | - Ari Triwardhani
- Department of Orthodontic, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - I Gusti Aju Wahju Ardani
- Department of Orthodontic, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | |
Collapse
|
6
|
Rattajak P, Aroonkesorn A, Smythe C, Wititsuwannakul R, Pitakpornpreecha T. 5'-Methylthioadenosine strongly suppresses RANKL-induced osteoclast differentiation and function via inhibition of RANK-NFATc1 signalling pathways. Heliyon 2023; 9:e22365. [PMID: 38099006 PMCID: PMC10720268 DOI: 10.1016/j.heliyon.2023.e22365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023] Open
Abstract
Excessive osteoclast-mediated bone resorption is a critical cause of osteoporosis affecting many aging people worldwide. 5'-Methylthioadenosine (MTA) is a natural sulfur-containing nucleoside normally produced in prokaryotes, plants, yeast, and higher eukaryotes via polyamine metabolism. MTA affects various physiological responses particularly the inflammatory pathway in both normal and cancerous cells and modulates the activation of nuclear factor-κB involved in the osteoclastogenesis signalling process. While several studies have reported that natural products possess anti-osteoclastogenesis phenolics and flavonoids, the effect of nucleoside derivatives on osteoclastogenesis remains limited. Therefore, this study aimed to explore the molecular mechanisms by which MTA affects pre-osteoclastic RAW 264.7 cells as a potential alleviation compound for inflammation-mediated bone loss. Osteoclasts were established by incubating RAW264.7 macrophage cells with receptor activator of nuclear factor kappa B ligand (RANKL) and macrophage colony-stimulating factor, the vital cytokines for activation of osteoclast differentiation. Cell viability was measured using MTT assays at 24, 48, and 72 h. The suppressive effect of MTA on RANKL-induced osteoclast differentiation and function was assessed using tartrate-resistant acid phosphatase (TRAP) analysis, qRT-PCR, and pit formation, Western blot, and immunofluorescence assays. MTA showed dose-dependent anti-osteoclastogenic activity by inhibiting TRAP-positive cell and pit formation and reducing essential digestive enzymes, including TRAP, cathepsin K, and matrix metallopeptidase 9. MTA was observed to suppress the osteoclast transduction pathway through (RANKL)-induced nuclear factor kappa-light-chain-enhancer of activated B cells (NFƘB); it attenuated NFƘB-P65 expression and down-regulated cFos proto-oncogene and nuclear factor of activated T cell c1 (NFATc1), the main regulators of osteoclasts. Moreover, the suppression of RANK (the initial receptor triggering several osteoclastogenic transduction pathways) was observed. Thus, this study highlights the potential of MTA as an effective therapeutic compound for restoring bone metabolic disease by inhibiting the RANK-NFATc1 signal pathway.
Collapse
Affiliation(s)
- Purithat Rattajak
- Division of Health and Applied Science (Biochemistry), Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, 90110, Thailand
| | - Aratee Aroonkesorn
- Division of Health and Applied Science (Biochemistry), Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, 90110, Thailand
- Center for Natural Rubber Latex Biotechnology Research and Innovation Development, Prince of Songkla University, Hat-Yai, Songkhla, 90110, Thailand
| | - Carl Smythe
- Department of Biomedical Science, University of Sheffield, Sheffield, England S10 2TN, UK
| | - Rapepun Wititsuwannakul
- Center for Natural Rubber Latex Biotechnology Research and Innovation Development, Prince of Songkla University, Hat-Yai, Songkhla, 90110, Thailand
| | - Thanawat Pitakpornpreecha
- Division of Health and Applied Science (Biochemistry), Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, 90110, Thailand
- Center for Natural Rubber Latex Biotechnology Research and Innovation Development, Prince of Songkla University, Hat-Yai, Songkhla, 90110, Thailand
| |
Collapse
|
7
|
Marcucci G, Domazetovic V, Nediani C, Ruzzolini J, Favre C, Brandi ML. Oxidative Stress and Natural Antioxidants in Osteoporosis: Novel Preventive and Therapeutic Approaches. Antioxidants (Basel) 2023; 12:antiox12020373. [PMID: 36829932 PMCID: PMC9952369 DOI: 10.3390/antiox12020373] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
This review reports in detail the cellular and molecular mechanisms which regulate the bone remodeling process in relation to oxidative stress (OS), inflammatory factors, and estrogen deficiency. OS is considered an important pathogenic factor of osteoporosis, inducing osteocyte apoptosis and varying levels of specific factors, such as receptor activator κB ligand (RANKL), sclerostin, and, according to recent evidence, fibroblast growth factor 23, with consequent impairment of bone remodeling and high bone resorption. Bone loss increases the risk of fragility fractures, and the most commonly used treatments are antiresorptive drugs, followed by anabolic drugs or those with a double effect. In addition, recent data show that natural antioxidants contained in the diet are efficient in preventing and reducing the negative effects of OS on bone remodeling and osteocytes through the involvement of sirtuin type 1 enzyme. Indeed, osteocytes and some of their molecular factors are considered potential biological targets on which antioxidants can act to prevent and reduce bone loss, as well as to promote bone anabolic and regenerative processes by restoring physiological bone remodeling. Several data suggest including antioxidants in novel therapeutic approaches to develop better management strategies for the prevention and treatment of osteoporosis and OS-related bone diseases. In particular, anthocyanins, as well as resveratrol, lycopene, oleuropein, some vitamins, and thiol antioxidants, could have protective and therapeutic anti-osteoporotic effects.
Collapse
Affiliation(s)
- Gemma Marcucci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Vladana Domazetovic
- Department of Paediatric Haematology-Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy
| | - Chiara Nediani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
- Correspondence:
| | - Jessica Ruzzolini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Claudio Favre
- Department of Paediatric Haematology-Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy
| | | |
Collapse
|
8
|
Teng Y, He J, Zhong Q, Zhang Y, Lu Z, Guan T, Pan Y, Luo X, Feng W, Ou C. Grape exosome-like nanoparticles: A potential therapeutic strategy for vascular calcification. Front Pharmacol 2022; 13:1025768. [PMID: 36339605 PMCID: PMC9634175 DOI: 10.3389/fphar.2022.1025768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/07/2022] [Indexed: 02/12/2024] Open
Abstract
Vascular calcification (VC) is prevalent in hypertension, diabetes mellitus, chronic kidney disease, and aging and has been identified as an important predictor of adverse cardiovascular events. With the complicated mechanisms involved in VC, there is no effective therapy. Thus, a strategy for attenuating the development of VC is of clinical importance. Recent studies suggest that grape exosome-like nanoparticles (GENs) are involved in cell-cell communication as a means of regulating oxidative stress, inflammation, and apoptosis, which are known to modulate VC development. In this review, we discuss the roles of GENs and their potential mechanisms in the development of VC.
Collapse
Affiliation(s)
- Yintong Teng
- Department of Cardiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Dongguan Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiaqi He
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qingping Zhong
- Department of Cardiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Dongguan Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yangmei Zhang
- Department of Cardiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Dongguan Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenxing Lu
- Department of Cardiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Dongguan Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tianwang Guan
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuxuan Pan
- Department of Cardiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Dongguan Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaodi Luo
- Department of Cardiothoracic Surgery, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, China
| | - Weijing Feng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Caiwen Ou
- Department of Cardiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Dongguan Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Cheng X, Zhu Y, Tang S, Lu R, Zhang X, Li N, Zan X. Material priority engineered metal-polyphenol networks: mechanism and platform for multifunctionalities. J Nanobiotechnology 2022; 20:255. [PMID: 35658870 PMCID: PMC9164710 DOI: 10.1186/s12951-022-01438-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/25/2022] [Indexed: 12/05/2022] Open
Abstract
Engineering the surface of materials with desired multifunctionalities is an effective way to fight against multiple adverse factors during tissue repair process. Recently, metal-polyphenol networks (MPNs) have gained increasing attention because of their rapid and simple deposition process onto various substrates (silicon, quartz, gold and polypropylene sheets, etc.). However, the coating mechanism has not been clarified, and multifunctionalized MPNs remain unexplored. Herein, the flavonoid polyphenol procyanidin (PC) was selected to form PC-MPN coatings with Fe3+, and the effects of different assembly parameters, including pH, molar ratio between PC and Fe3+, and material priority during coating formation, were thoroughly evaluated. We found that the material priority (addition sequence of PC and Fe3+) had a great influence on the thickness of the formed PC-MPNs. Various surface techniques (e.g., ultraviolet–visible spectrophotometry, quartz crystal microbalance, X-ray photoelectron spectroscopy, atomic force microscopy, and scanning electron microscopy) were used to investigate the formation mechanism of PC-MPNs. Then PC-MPNs were further engineered with multifunctionalities (fastening cellular attachment in the early stage, promoting long-term cellular proliferation, antioxidation and antibacterial activity). We believe that these findings could further reveal the coating formation mechanism of MPNs and guide the future design of MPN coatings with multifunctionalities, thereby greatly broadening their application prospects, such as in sensors, environments, drug delivery, and tissue engineering.
Collapse
Affiliation(s)
- Xinxiu Cheng
- Oujiang Laboratory (Zhejiang Lab for Rengerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Jinlian Rd. 1, Wenzhou, 325001, People's Republic of China.,Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Yaxin Zhu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Sicheng Tang
- Oujiang Laboratory (Zhejiang Lab for Rengerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Jinlian Rd. 1, Wenzhou, 325001, People's Republic of China
| | - Ruofei Lu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Xiaoqiang Zhang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Na Li
- Oujiang Laboratory (Zhejiang Lab for Rengerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Jinlian Rd. 1, Wenzhou, 325001, People's Republic of China.
| | - Xingjie Zan
- Oujiang Laboratory (Zhejiang Lab for Rengerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Jinlian Rd. 1, Wenzhou, 325001, People's Republic of China. .,Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| |
Collapse
|
10
|
Liu YD, Liu JF, Liu B. N,N-Dimethylformamide inhibits high glucose-induced osteoporosis via attenuating MAPK and NF-κB signalling. Bone Joint Res 2022; 11:200-209. [PMID: 35369730 PMCID: PMC9057521 DOI: 10.1302/2046-3758.114.bjr-2020-0308.r2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Aims The role of N,N-dimethylformamide (DMF) in diabetes-induced osteoporosis (DM-OS) progression remains unclear. Here, we aimed to explore the effect of DMF on DM-OS development. Methods Diabetic models of mice, RAW 264.7 cells, and bone marrow macrophages (BMMs) were established by streptozotocin stimulation, high glucose treatment, and receptor activator of nuclear factor-κB ligand (RANKL) treatment, respectively. The effects of DMF on DM-OS development in these models were examined by micro-CT analysis, haematoxylin and eosin (H&E) staining, osteoclast differentiation of RAW 264.7 cells and BMMs, H&E and tartrate-resistant acid phosphatase (TRAP) staining, enzyme-linked immunosorbent assay (ELISA) of TRAP5b and c-terminal telopeptides of type 1 (CTX1) analyses, reactive oxygen species (ROS) analysis, quantitative reverse transcription polymerase chain reaction (qRT-PCR), Cell Counting Kit-8 (CCK-8) assay, and Western blot. Results The established diabetic mice were more sensitive to ovariectomy (OVX)-induced osteoporosis, and DMF treatment inhibited the sensitivity. OVX-treated diabetic mice exhibited higher TRAP5b and c-terminal telopeptides of type 1 (CTX1) levels, and DMF treatment inhibited the enhancement. DMF reduced RAW 264.7 cell viability. Glucose treatment enhanced the levels of TRAP5b, cathepsin K, Atp6v0d2, and H+-ATPase, ROS, while DMF reversed this phenotype. The glucose-increased protein levels were inhibited by DMF in cells treated with RANKL. The expression levels of antioxidant enzymes Gclc, Gclm, Ho-1, and Nqo1 were upregulated by DMF. DMF attenuated high glucose-caused osteoclast differentiation by targeting mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signalling in BMMs. Conclusion DMF inhibits high glucose-induced osteoporosis by targeting MAPK and NF-κB signalling. Cite this article: Bone Joint Res 2022;11(4):200–209.
Collapse
Affiliation(s)
- Ya Dong Liu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jian Feng Liu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, China
| | - Bin Liu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Effects and Mechanisms of Rhus chinensis Mill. Fruits on Suppressing RANKL-Induced Osteoclastogenesis by Network Pharmacology and Validation in RAW264.7 Cells. Nutrients 2022; 14:nu14051020. [PMID: 35267996 PMCID: PMC8912277 DOI: 10.3390/nu14051020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 01/11/2023] Open
Abstract
Rhus chinensis Mill. fruits are a kind of widely distributed edible seasoning, which have been documented to possess a variety of biological activities. However, its inhibitory effect on osteoclast formation has not been determined. The objective of this study was to evaluate the effect of the fruits on osteoclast differentiation of RAW264.7 cells, induced by receptor activator of nuclear factor-κB ligand (RANKL) and to illuminate the potential mechanisms using network pharmacology and western blots. Results showed that the extract containing two organic acids and twelve phenolic substances could effectively inhibit osteoclast differentiation in RANKL-induced RAW264.7 cells. Network pharmacology examination and western blot investigation showed that the concentrate essentially decreased the expression levels of osteoclast-specific proteins, chiefly through nuclear factor kappa-B, protein kinase B, and mitogen-activated protein kinase signaling pathways, particularly protein kinase B α and mitogen-activated protein kinase 1 targets. Moreover, the extract likewise directly down regulated the expression of cellular oncogene Fos and nuclear factor of activated T-cells cytoplasmic 1 proteins. Citric acid, quercetin, myricetin-3-O-galactoside, and quercetin-3-O-rhamnoside were considered as the predominant bioactive ingredients. Results of this work may provide a scientific basis for the development and utilization of R. chinensis fruits as a natural edible material to prevent and/or alleviate osteoporosis-related diseases.
Collapse
|
12
|
Huang JM, Wang CZ, Lu SY, Wang Z, Yan ZQ. Oroxin B Attenuates Ovariectomy-Induced Bone Loss by Suppressing Osteoclast Formation and Activity. Drug Des Devel Ther 2021; 15:4811-4825. [PMID: 34876805 PMCID: PMC8643139 DOI: 10.2147/dddt.s328238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022] Open
Abstract
Background Osteoclasts are the major players in bone resorption and have always been studied in the prevention and treatment of osteoporosis. Previous studies have confirmed that a variety of flavonoids inhibit osteoporosis and improve bone health mainly through inhibiting osteoclastogenesis. Oroxin B (OB) is a flavonoid compound extracted from traditional Chinese herbal medicine Oroxylum indicum (L.) Vent, exerts potent antitumor and anti-inflammation effect, but its effect on osteoclastogensis remains unknown. Methods We comprehensively evaluated the effect of OB on the formation and function of osteoclasts and the underling mechanism by bone marrow-derived macrophage in vitro. In vivo, we used mice ovariectomized model to verify the protective effect of OB. Results OB was found to inhibit osteoclast formation and bone resorption function in vitro, in a dose-dependent manner and the increased osteoclastic-related genes induced by RANKL (NFATc1, c-fos, cathepsin K, RANK, MMP9 and TRAP) were also attenuated following OB treatment. Mechanistical investigation showed OB abrogated the increased phosphorylation level of MAPK and NF-κB pathway, and diminished the expression of the vital transcription factors for osteoclastogenesis. OB also prevented ovariectomy (OVX)-induced bone loss by inhibiting osteoclast formation and activity in mice. Conclusion Our study demonstrated that OB may act as an anti-osteoporosis agent by inhibiting osteoclast maturation and attenuating bone resorption.
Collapse
Affiliation(s)
- Jun-Ming Huang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Chen-Zhong Wang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Shun-Yi Lu
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Zhe Wang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Zuo-Qin Yan
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| |
Collapse
|
13
|
Duan J, Hu X, Li T, Wu G, Dou P, Ouyang Z. Cimifugin Suppresses NF-κB Signaling to Prevent Osteoclastogenesis and Periprosthetic Osteolysis. Front Pharmacol 2021; 12:724256. [PMID: 34658863 PMCID: PMC8511420 DOI: 10.3389/fphar.2021.724256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/16/2021] [Indexed: 02/02/2023] Open
Abstract
Background: Aseptic loosening of prosthesis (ALP) is one of the most common long-term complications of knee and hip arthroplasty. Wear particle-induced osteoclastogenesis and subsequent periprosthetic osteolysis account for the morbidity of ALP. Here, we investigate the potential of cimifugin (CIM), a natural extract from Cimicifuga racemosa and Saposhnikovia divaricata, as a bone-protective drug in the treatment of ALP. Method: First, we performed cell viability and osteoclast formation assays to assess the effect of noncytotoxic CIM on osteoclast differentiation in vitro. Bone slice resorption and F-actin ring immunofluorescence assays were adopted to assess the effects of CIM on bone-resorption function. Then, quantitative real-time polymerase chain reaction (qRT–PCR) analysis was performed to further assess the repressive effects of CIM on osteoclastogenesis at the gene expression level. To elucidate the mechanisms underlying the above findings, Western blot and luciferase reporter gene assays were used to assess the regulatory effects of CIM on the NF-κB and MAPK signaling pathways. Moreover, a Ti particle-induced murine calvarial osteolysis model and subsequent histomorphometric analysis via micro-CT and immunohistochemical staining were used to elucidate the effect of CIM on periprosthetic osteolysis in vivo. Result: CIM dose-dependently inhibited both bone marrow-derived macrophage (BMM)- and RAW264.7 cell-derived osteoclastogenesis and bone resorption pit formation in vitro, which was further supported by the reduced expression of F-actin and osteoclast-specific genes. According to the Western blot analysis, inhibition of IκBα phosphorylation in the NF-κB signaling pathway, not the phosphorylation of MAPKs, was responsible for the suppressive effect of CIM on osteoclastogenesis. Animal experiments demonstrated that CIM alleviated Ti particle-induced bone erosion and osteoclast accumulation in murine calvaria. Conclusion: The current study suggested for the first time that CIM can inhibit RANKL-induced osetoclastogenesis by suppressing the NF-κB signaling pathway in vitro and prevent periprosthetic osteolysis in vivo. These findings suggest the potential of CIM as a therapeutic in ALP.
Collapse
Affiliation(s)
- Juan Duan
- Department of Geriatric Internal Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xuantao Hu
- Deparment of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tao Li
- Deparment of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Gen Wu
- Deparment of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Pengcheng Dou
- Deparment of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhengxiao Ouyang
- Deparment of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Rodríguez V, Rivoira M, Picotto G, de Barboza GD, Collin A, de Talamoni NT. Analysis of the molecular mechanisms by flavonoids with potential use for osteoporosis prevention or therapy. Curr Med Chem 2021; 29:2913-2936. [PMID: 34547992 DOI: 10.2174/0929867328666210921143644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Osteoporosis is the most common skeletal disorder worldwide. Flavonoids have the potential to alleviate bone alterations in osteoporotic patients with the advantage of being safer and less expensive than the conventional therapies. OBJECTIVE The main objective is to analyze the molecular mechanisms triggered in bone by different subclasses of flavonoids. In addition, this review provides an up-to-date overview on the cellular and molecular aspects of osteoporotic bones versus healthy bones, and a brief description of some epidemiological studies indicating that flavonoids could be useful for osteoporosis treatment. METHODS The PubMed database was searched in the range of years 2001- 2021 using the keywords osteoporosis, flavonoids, and their subclasses such as flavones, flavonols, flavanols, isoflavones, flavanones and anthocyanins, focusing the data on the molecular mechanisms triggered in bone. RESULTS Although flavonoids comprise many compounds that differ in structure, their effects on bone loss in postmenopausal women or in ovariectomized-induced osteoporotic animals are quite similar. Most of them increase bone mineral density and bone strength, which occur through enhancement of osteoblastogenesis and osteoclast apoptosis, decrease in osteoclastogenesis as well as increase in neovascularization on the site of the osteoporotic fracture. CONCLUSION Several molecules of signaling pathways are involved in the effect of flavonoids on osteoporotic bone. Whether all flavonoids have a common mechanism or they act as ligands of estrogen receptors remain to be established. More clinical trials are necessary to know better their safety, efficacy, delivery and bioavailability in humans, as well as comparative studies with conventional therapies.
Collapse
Affiliation(s)
- Valeria Rodríguez
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba. Argentina
| | - María Rivoira
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba. Argentina
| | - Gabriela Picotto
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba. Argentina
| | - Gabriela Díaz de Barboza
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba. Argentina
| | - Alejandro Collin
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba. Argentina
| | - Nori Tolosa de Talamoni
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do. Piso, Ciudad Universitaria, 5000 Córdoba. Argentina
| |
Collapse
|
15
|
Shi F, Ni L, Gao YM. Tetrandrine Attenuates Cartilage Degeneration, Osteoclast Proliferation, and Macrophage Transformation through Inhibiting P65 Phosphorylation in Ovariectomy-induced Osteoporosis. Immunol Invest 2020; 51:465-479. [PMID: 33140671 DOI: 10.1080/08820139.2020.1837864] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Osteoporosis is a common metabolic bone disease with high prevalence. Tetrandrine (TET) suppressed osteoclastogenesis, while the roles of TET in osteoporosis regulation remained unclear. Thus, the study aimed to investigate the effect of TET on osteoporosis and the underlying mechanism. METHODS The osteoporosis rabbit model was established through anterior cruciate ligament transection (ACLT) and bilateral ovariectomy (OVX). The degeneration of articular cartilage was assessed using HE staining and Alcian blue staining. The liver and kidney tissue injury was determined using HE staining. The activity of osteoclasts was evaluated using Tartrate-resistant acid phosphatase (TRAP) staining. The changes in bone structural parameters were determined through measuring the BMD, BV/TV, Tb.Th, Tb.N, and Tb.Sp, and the serum levels of calcium and phosphorus. Macrophage polarization was determined using Flow cytometry. RESULTS The bone structural parameters including BMD, BV/TV, Tb.N, Tb.Th and Tb.Sp were changed in osteoporosis rabbit, which was reversed by TET. Besides, TET suppressed the increased serum levels of calcium and phosphorus in osteoporosis rabbit. Furthermore, TET inhibited the degeneration of articular cartilage and the activity of osteoclasts induced by osteoporosis. Moreover, TET inhibited the levels of MMP-9, PPAR-γ, RANKL, β-CTX and TRACP-5b, and increased the levels of OPG, ALP and osteocalcin (OC) in osteoporosis. Additionally, TET promoted macrophage transformation from M1 to M2 in osteoporotic and inhibited the production of IL-1β, TNF-α, and IL-6. TET also inhibited the p65 phosphorylation in osteoporosis. Besides, TET reversed RANKL-induced osteoclasts proliferation, p65 phosphorylation, and the expression changes of RANKL, Ki67, PPAR-γ, ALP, OPG. CONCLUSION TET attenuated bone structural parameters including BMD, BV/TV, Tb.N, Tb.Th and Tb.Sp, inhibited articular cartilage degeneration, promoted bone formation, inhibited the inflammatory response, and promoted macrophage transformation from M1 to M2 via NF-κB inactivation in osteoporosis. TET may be a promising drug for osteoporosis therapy. ABBREVIATION TET: Tetrandrine; ACLT: anterior cruciate ligament transection; OVX: ovariectomy; TRAP: Tartrate-resistant acid phosphatase; BMD: bone mineral density; BV/TV: Bone volume/total volume; Tb.Th: trabecular thickness; Tb.N: trabecular number; Tb.Sp: trabecular separation; MMP-9: Matrix metallopeptidase 9; PPAR-γ: Peroxisome proliferator-activated receptor gamma; RANKL: Receptor activator of nuclear factor kappa-B ligand; OPG: Osteoprotegerin; ALP: alkaline phosphatase; OC: osteocalcin; β-CTX: β isomer of C-terminal telopeptide of type Ⅰ collagen; TRACP-5b: Tartrate-resistant acid phosphatase 5b; TNF-α: tumor necrosis factor-α; IL-1β: interleukin-1β; IL-6: interleukin 6; NF-κB: Nuclear factor kappa B; PKC-α: Protein kinase C alpha; qRT-PCR: Quantitative real-time polymerase chain reaction.
Collapse
Affiliation(s)
- Fang Shi
- Department of Traditional Chinese Medicine, Beijing JiShuitan Hospital, Beijing, China
| | - Lei Ni
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Ye-Mei Gao
- Department of Traditional Chinese Medicine, Beijing JiShuitan Hospital, Beijing, China
| |
Collapse
|
16
|
Kwak SC, Cheon YH, Lee CH, Jun HY, Yoon KH, Lee MS, Kim JY. Grape Seed Proanthocyanidin Extract Prevents Bone Loss via Regulation of Osteoclast Differentiation, Apoptosis, and Proliferation. Nutrients 2020; 12:nu12103164. [PMID: 33081167 PMCID: PMC7602819 DOI: 10.3390/nu12103164] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 11/20/2022] Open
Abstract
Dietary procyanidin has been shown to be an important bioactive component that regulates various pharmacological activities to maintain metabolic homeostasis. In particular, grape seed proanthocyanidin extract (GSPE) is a commercially available medicine for the treatment of venous and lymphatic dysfunction. This study aimed to investigate whether GSPE protects against lipopolysaccharide (LPS)-induced bone loss in vivo and the related mechanism of action in vitro. The administration of GSPE restored the inflammatory bone loss phenotype stimulated by acute systemic injection of LPS in vivo. GSPE strongly suppressed receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast differentiation and bone resorption activity of mature osteoclasts by decreasing the RANKL-induced nuclear factor-κB transcription activity. GSPE mediates this effect through decreased phosphorylation and degradation of NF-κB inhibitor (IκB) by IκB kinaseβ, subsequently inhibiting proto-oncogene cellular Fos and nuclear factor of activated T cells. Additionally, GSPE promotes osteoclast proliferation by increasing the phosphorylation of components of the Akt and mitogen-activated protein kinase signaling pathways and it also inhibits apoptosis by decreasing the activity of caspase-8, caspase-9, and caspase-3, as corroborated by a decrease in the Terminal deoxynucleotidyl transferase dUTP nick end labeling -positive cells. Our study suggests a direct effect of GSPE on the proliferation, differentiation, and apoptosis of osteoclasts and reveals the mechanism responsible for the therapeutic potential of GSPE in osteoclast-associated bone metabolism disease.
Collapse
Affiliation(s)
- Sung Chul Kwak
- Department of Anatomy, School of Medicine, Wonkwang University, Iksan 54538, Korea;
| | - Yoon-Hee Cheon
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, Iksan 54538, Korea; (Y.-H.C.); (C.H.L.)
| | - Chang Hoon Lee
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, Iksan 54538, Korea; (Y.-H.C.); (C.H.L.)
- Division of Rheumatology, Department of Internal Medicine, Wonkwang University Hospital, Iksan 54538, Korea
| | - Hong Young Jun
- Medical Convergence Research Center, Wonkwang University Hospital, Iksan 54538, Korea; (H.Y.J.); (K.-H.Y.)
| | - Kwon-Ha Yoon
- Medical Convergence Research Center, Wonkwang University Hospital, Iksan 54538, Korea; (H.Y.J.); (K.-H.Y.)
- Department of Radiology, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749, Korea
| | - Myeung Su Lee
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, Iksan 54538, Korea; (Y.-H.C.); (C.H.L.)
- Division of Rheumatology, Department of Internal Medicine, Wonkwang University Hospital, Iksan 54538, Korea
- Correspondence: (M.S.L.); (J.-Y.K.); Tel.: +82-63-859-2661 (M.S.L.); +82-63-850-6088 (J.-Y.K.)
| | - Ju-Young Kim
- Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, Iksan 54538, Korea; (Y.-H.C.); (C.H.L.)
- Correspondence: (M.S.L.); (J.-Y.K.); Tel.: +82-63-859-2661 (M.S.L.); +82-63-850-6088 (J.-Y.K.)
| |
Collapse
|
17
|
Liu Y, Xu Z, Wang Q, Jiang Y, Wang R, Chen S, Zhu J, Zhang Y, Chen J. Selective regulation of RANKL/RANK/OPG pathway by heparan sulfate through the binding with estrogen receptor β in MC3T3-E1 cells. Int J Biol Macromol 2020; 161:1526-1534. [DOI: 10.1016/j.ijbiomac.2020.07.308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/12/2020] [Accepted: 07/29/2020] [Indexed: 02/09/2023]
|
18
|
Yang D, Liu T, Jiang G, Hu X, Zheng T, Li T, Gao Z, Ouyang Z, Zhu B. Senkyunolide H attenuates osteoclastogenesis and postmenopausal osteoporosis by regulating the NF-κB, JNK and ERK signaling pathways. Biochem Biophys Res Commun 2020; 533:510-518. [PMID: 32977943 DOI: 10.1016/j.bbrc.2020.09.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/12/2020] [Indexed: 01/11/2023]
Abstract
Osteoporosis is a common disease characterized by reduced bone mineral density and impaired bone strength and is currently one of the leading causes of fracture and morbidity among the elderly worldwide. The pathological generation of osteoclasts is an important event in the development of extensive bone resorption. Thus, the development of a drug that targets osteoclasts may be beneficial in treating osteoporosis. Accordingly, in this study, we investigated the effects of senkyunolide H (SNH), an active component extracted from ligusticum chuanxiong Hort, on osteoporosis through a series of in vivo and in vitro experiments. First, we found that SNH had a therapeutic effect in ovariectomized mice by inhibiting osteoclast formation. Then, the inhibitory effect on osteoclast differentiation was confirmed in vitro. Further western blotting analysis revealed that SNH downregulated receptor activator of nuclear factor (NF)-κΒ ligand-induced NF-κB signaling activation, c-Jun N-terminal kinase (JNK) in the mitogen-activated protein kinase and extracellular signal-regulated kinase (ERK) signaling pathway. These data indicated that SNH may be a potential treatment for postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Daishui Yang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China
| | - Guangyao Jiang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China
| | - Xuantao Hu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China
| | - Tao Zheng
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China
| | - Tao Li
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China
| | - Zhi Gao
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China
| | - Zhengxiao Ouyang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, PR China.
| | - Baoyu Zhu
- Department of Orthopedics, The Affiliated Zhuzhou Hospital of Xiangya Medical College, Central South University, Zhuzhou, Hunan, 412007, China.
| |
Collapse
|
19
|
4-Acetylantroquinonol B Inhibits Osteoclastogenesis by Inhibiting the Autophagy Pathway in a Simulated Microgravity Model. Int J Mol Sci 2020; 21:ijms21186971. [PMID: 32971944 PMCID: PMC7555662 DOI: 10.3390/ijms21186971] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Astronauts suffer from 1–2% bone loss per month during space missions. Targeting osteoclast differentiation has been regarded as a promising strategy to prevent osteoporosis in microgravity (μXg). 4-acetylantroquinonol B (4-AAQB), a ubiquinone from Antrodia cinnamomea, has shown anti-inflammatory and anti-hepatoma activities. However, the effect of 4-AAQB on μXg-induced osteoclastogenesis remains unclear. In this study, we aimed to explore the mechanistic impact of 4-AAQB on osteoclast formation under μXg conditions. The monocyte/macrophage-like cell line RAW264.7 was exposed to simulated μXg (Rotary Cell Culture System; Synthecon, Houston, TX, USA) for 24 h and then treated with 4-AAQB or alendronate (ALN) and osteoclast differentiation factor receptor activator of nuclear factor kappa-B ligand (RANKL). Osteoclastogenesis, bone resorption activity, and osteoclast differentiation-related signaling pathways were analyzed using tartrate-resistant acid phosphatase (TRAP) staining, actin ring fluorescent staining, bone resorption, and western blotting assays. Based on the results of TRAP staining, actin ring staining, and bone resorption assays, we found that 4-AAQB significantly inhibited μXg-induced osteoclast differentiation. The critical regulators of osteoclast differentiation, including nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), c-Fos, and dendritic cell-specific transmembrane protein (DC-STAMP), were consistently decreased. Meanwhile, osteoclast apoptosis and cell cycle arrest were also observed along with autophagy suppression. Interestingly, the autophagy inhibitors 3-methyladenine (3-MA) and chloroquine (CQ) showed similar effects to 4-AAQB. In conclusion, we suggest that 4-AAQB may serve as a potential agent against μXg-induced osteoclast formation.
Collapse
|
20
|
Collagen Extract Derived from Yeonsan Ogye Chicken Increases Bone Microarchitecture by Suppressing the RANKL/OPG Ratio via the JNK Signaling Pathway. Nutrients 2020; 12:nu12071967. [PMID: 32630655 PMCID: PMC7400104 DOI: 10.3390/nu12071967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/21/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
Yeonsan Ogye is a traditional Korean chicken breed (Gallus domesticus, GD), with a dominant gene for fibromelanosis, showing entirely black fluffy head feathers, ear lobes, and pupils. GD collagen extract (78.6 g per 100 g total protein) was derived from the flesh of Yeonsan Ogye. The effects of GD collagen on bone mass, microarchitecture, osteogenic, osteoclastogenic differentiations, and function factor expression were investigated in ovariectomized (OVX) rats. GD collagen stimulated osteogenesis in OVX rats and increased tibial bone strength and calcium content. Micro-computed tomography analysis of tibia cross-sections revealed that GD collagen attenuated the OVX-induced changes in trabecular thickness, spacing, and number. GD collagen stimulated alkaline phosphatase activity, bone-specific matrix proteins (alkaline phosphatase (ALP), osteocalcin, collagen type I (COL-I)) and mineralization by activating bone morphogenetic protein 2 (BMP-2)/mothers against decapentaplegic homolog 5 (SMAD5)/runt-related transcription factor 2 (Runx2). GD collagen inhibited osteoclast differentiation and function gene markers (TRAP, cathepsin K) by interfering with the Wnt signaling, increasing OPG production, and reducing the expression of RANKL, TRAP, and cathepsin K. GD collagen promoted osteogenesis by activating the p38 signal pathway and prevented osteoclastogenesis by lowering the RANKL/OPG ratio and blocking the JNK signaling pathway. Dietary supplementation with GD collagen might inhibit osteoclastogenesis, stimulate osteoblastogenesis, and regulate bone metabolism.
Collapse
|
21
|
Jia L, Shi L, Li J, Zeng Y, Tang S, Liu W, Mo X, Liu X. Total flavonoids from celery suppresses RANKL-induced osteoclast differentiation and bone resorption function via attenuating NF-κB and p38 pathways in RAW264.7 cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
22
|
Hu X, Yin Z, Chen X, Jiang G, Yang D, Cao Z, Li S, Liu Z, Peng D, Dou P. Tussilagone Inhibits Osteoclastogenesis and Periprosthetic Osteolysis by Suppressing the NF-κB and P38 MAPK Signaling Pathways. Front Pharmacol 2020; 11:385. [PMID: 32317967 PMCID: PMC7146087 DOI: 10.3389/fphar.2020.00385] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/12/2020] [Indexed: 11/17/2022] Open
Abstract
Background Aseptic prosthetic loosening is one of the main factors causing poor prognosis of limb function after joint replacement and requires troublesome revisional surgery. It is featured by wear particle-induced periprosthetic osteolysis mediated by excessive osteoclasts activated in inflammatory cell context. Some natural compounds show antiosteoclast traits with high cost-efficiency and few side effects. Tussilagone (TUS), which is the main functional extract from Tussilago farfara generally used for relieving cough, asthma, and eliminating phlegm in traditional medicine has been proven to appease several RAW264.7-mediated inflammatory diseases via suppressing osteoclast-related signaling cascades. However, whether and how TUS can improve aseptic prosthetic loosening via modulating osteoclast-mediated bone resorption still needs to be answered. Methods We established a murine calvarial osteolysis model to detect the preventative effect of TUS on osteolysis in vivo. Micro-CT scanning and histomorphometric analysis were used to determine the variation of bone resorption and osteoclastogenesis. The anti–osteoclast-differentiation and anti–bone-resorption bioactivities of TUS in vitro were investigated using bone slice resorption pit evaluation, and interference caused by cytotoxicity of TUS was excluded according to the CCK-8 assay results. Quantitative polymerase chain reaction (qPCR) analysis was applied to prove the decreased expression of osteoclast-specific genes after TUS treatment. The inhibitory effect of TUS on NF-κB and p38 MAPK signaling pathways was testified by Western blot and NF-κB-linked luciferase reporter gene assay. Results TUS better protected bones against osteolysis in murine calvarial osteolysis model with reduced osteoclasts than those in the control group. In vitro studies also showed that TUS exerted antiosteoclastogenesis and anti–bone-resorption effects in both bone marrow macrophages (BMMs) and RAW264.7 cells, as evidenced by the decline of osteoclast-specific genes according to qPCR. Western blotting revealed that TUS treatment inhibited IκBα degradation and p38 phosphorylation. Conclusions Collectively, our studies proved for the first time that TUS inhibits osteoclastogenesis by suppressing the NF-κB and p38 MAPK signaling pathways, therefore serving as a potential natural compound to treat periprosthetic osteolysis-induced aseptic prosthetic loosening.
Collapse
Affiliation(s)
- Xuantao Hu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ziqing Yin
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xia Chen
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Guangyao Jiang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Daishui Yang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ziqin Cao
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shuai Li
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zicheng Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Dan Peng
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Pengcheng Dou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
23
|
Tang J, Chen L, Yan D, Shen Z, Wang B, Weng S, Wu Z, Xie Z, Shao J, Yang L, Shen L. Surface Functionalization with Proanthocyanidins Provides an Anti-Oxidant Defense Mechanism That Improves the Long-Term Stability and Osteogenesis of Titanium Implants. Int J Nanomedicine 2020; 15:1643-1659. [PMID: 32210558 PMCID: PMC7073973 DOI: 10.2147/ijn.s231339] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/17/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Aseptic loosening is a major complication after total joint replacement. Reactive oxygen species generated by local tissue cells and liberated from implant surfaces have been suggested to cause implant failures. Surface modification of titanium (Ti)-based implants with proanthocyanidins (PAC) is a promising approach for the development of anti-oxidant defense mechanism to supplement the mechanical functions of Ti implants. In this study, a controlled PAC release system was fabricated on the surface of Ti substrates using the layer-by-layer (LBL) assembly. MATERIALS AND METHODS Polyethyleneimine (PEI) base layer was fabricated to enable layer-by-layer (LBL) deposition of hyaluronic acid/chitosan (HA/CS) multi-layers without or with the PAC. Surface topography and wettability of the fabricated HA/CS-PAC substrates were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FTIR) and contact angle measurement. PAC release profiles were investigated using drug release assays. MC3T3-E1 pre-osteoblast cells were used to assess the osteo-inductive effects of HA/CS-PAC substrates under conditions H2O2-induced oxidative stress in vitro. A rat model of femoral intramedullary implantation evaluated the osseo-integration and osteo-inductive potential of the HA/CS-PAC coated Ti implants in vivo. RESULTS SEM, AFM, FTIR and contact angle measurements verified the successful fabrication of Ti surfaces with multi-layered HA/CS-PAC coating. Drug release assays revealed controlled and sustained release of PAC over 14 days. In vitro, cell-based assays showed high tolerability and enhanced the osteogenic potential of MC3T3-E1 cells on HA/CS-PAC substrates when under conditions of H2O2-induced oxidative stress. In vivo evaluation of femoral bone 14 days after femoral intramedullary implantation confirmed the enhanced osteo-inductive potential of the HA/CS-PAC coated Ti implants. CONCLUSION Multi-layering of HA/CS-PAC coating onto Ti-based surfaces by the LBL deposition significantly enhances implant osseo-integration and promotes osteogenesis under conditions of oxidative stress. This study provides new insights for future applications in the field of joint arthroplasty.
Collapse
Affiliation(s)
- Jiahao Tang
- The Second School of Medicine Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
| | - Liang Chen
- The Second School of Medicine Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
| | - Deyi Yan
- The Second School of Medicine Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
| | - Zijian Shen
- The Second School of Medicine Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
| | - Bingzhang Wang
- The Second School of Medicine Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
| | - Sheji Weng
- The Second School of Medicine Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
| | - Zongyi Wu
- The Second School of Medicine Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
| | - Zhongjie Xie
- The Second School of Medicine Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
| | - Jiancan Shao
- The Second School of Medicine Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
| | - Lei Yang
- The Second School of Medicine Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
| | - Liyan Shen
- The Second School of Medicine Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang325000, People’s Republic of China
| |
Collapse
|
24
|
Meng B, Wu D, Cheng Y, Huang P, Liu Y, Gan L, Liu C, Cao Y. Interleukin-20 differentially regulates bone mesenchymal stem cell activities in RANKL-induced osteoclastogenesis through the OPG/RANKL/RANK axis and the NF-κB, MAPK and AKT signalling pathways. Scand J Immunol 2020; 91:e12874. [PMID: 32090353 DOI: 10.1111/sji.12874] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/31/2020] [Accepted: 02/20/2020] [Indexed: 12/30/2022]
Abstract
The immune and skeletal systems share common mechanisms, and the crosstalk between the two has been termed osteoimmunology. Osteoimmunology mainly focuses on diseases between the immune and bone systems including bone loss diseases, and imbalances in osteoimmune regulation affect skeletal homeostasis between osteoclasts and osteoblasts. The immune mediator interleukin-20 (IL-20), a member of the IL-10 family, enhances inflammation, chemotaxis and angiogenesis in diseases related to bone loss. However, it is unclear how IL-20 regulates the balance between osteoclastogenesis and osteoblastogenesis; therefore, we explored the mechanisms by which IL-20 affects bone mesenchymal stem cells (BMSCs) in osteoclastogenesis in primary cells during differentiation, proliferation, apoptosis and signalling. We initially found that IL-20 differentially regulated preosteoclast proliferation and apoptosis; BMSC-conditioned medium (CM) significantly enhanced osteoclast formation and bone resorption, which was dose-dependently regulated by IL-20; IL-20 inhibited OPG expression and promoted M-CSF, RANKL and RANKL/OPG expression; and IL-20 differentially regulated the expression of osteoclast-specific gene and transcription factors through the OPG/RANKL/RANK axis and the NF-kB, MAPK and AKT pathways. Therefore, IL-20 differentially regulates BMSCs in osteoclastogenesis and exerts its function by activating the OPG/RANKL/RANK axis and the NF-κB, MAPK and AKT pathways, which make targeting IL-20 a promising direction for targeted regulation in diseases related to bone loss.
Collapse
Affiliation(s)
- Bowen Meng
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Dongle Wu
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yangfan Cheng
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Peina Huang
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yuanbo Liu
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Lei Gan
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Chufeng Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yang Cao
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
25
|
Proanthocyanidins Promote Osteogenic Differentiation of Human Periodontal Ligament Fibroblasts in Inflammatory Environment Via Suppressing NF-κB Signal Pathway. Inflammation 2020; 43:892-902. [DOI: 10.1007/s10753-019-01175-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Ouyang Z, Tan T, Zhang X, Wan J, Zhou Y, Jiang G, Yang D, Guo X, Liu T. CircRNA hsa_circ_0074834 promotes the osteogenesis-angiogenesis coupling process in bone mesenchymal stem cells (BMSCs) by acting as a ceRNA for miR-942-5p. Cell Death Dis 2019; 10:932. [PMID: 31804461 PMCID: PMC6895238 DOI: 10.1038/s41419-019-2161-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
Bone tissue has a strong ability to repair itself. When treated properly, most fractures will heal well. However, some fractures are difficult to heal. When a fracture does not heal, it is called nonunion. Approximately, 5% of all fracture patients have difficulty healing. Because of the continuous movement of the fracture site, bone nonunion is usually accompanied by pain, which greatly reduces the quality of life of patients. Bone marrow mesenchymal stem cells (BMSCs) play an important role in the process of nonunion. Circular RNAs (circRNAs) are a unique kind of noncoding RNA and represent the latest research hotspot in the RNA field. At present, no studies have reported a role of circRNAs in the development of nonunion. After isolation of BMSCs from patients with nonunion, the expression of circRNAs in these cells was detected by using a circRNA microarray. Alkaline phosphatase and Alizarin red staining were used to detect the regulation of osteogenic differentiation of BMSCs by hsa_circ_0074834. The target gene of hsa_circ_0074834 was detected by RNA pull-down and double-luciferase reporter assay. The ability of hsa_circ_0074834 to regulate the osteogenesis of BMSCs in vivo was tested by heterotopic osteogenesis and single cortical bone defect experiments. The results showed that the expression of hsa_circ_0074834 in BMSCs from patients with nonunion was decreased. Hsa_circ_0074834 acts as a ceRNA to regulate the expression of ZEB1 and VEGF through microRNA-942-5p. Hsa_circ_0074834 can promote osteogenic differentiation of BMSCs and the repair of bone defects. These results suggest that circRNAs may be a key target for the treatment of nonunion.
Collapse
Affiliation(s)
- Zhengxiao Ouyang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P.R. China
| | - Tingting Tan
- Department of Immunology, Xiangya School of Medicine, Central South University, 88 Xiangya Rd., Changsha, Hunan, 410008, P.R. China
| | - Xianghong Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P.R. China
| | - Jia Wan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P.R. China
| | - Yanling Zhou
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P.R. China
| | - Guangyao Jiang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P.R. China
| | - Daishui Yang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P.R. China
| | - Xiaoning Guo
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P.R. China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P.R. China.
| |
Collapse
|
27
|
Guo S, Zhu W, Yin Z, Xiao D, Zhang Q, Liu T, Ni J, Ouyang Z, Xie H. Proanthocyanidins attenuate breast cancer-induced bone metastasis by inhibiting Irf-3/c-jun activation. Anticancer Drugs 2019; 30:998-1005. [PMID: 31625993 DOI: 10.1097/cad.0000000000000852] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
We have previously demonstrated the pivotal role of Jnk-mediated Irf-3/c-Jun in regulating nuclear factor kappa-Β ligand (RANKL)-induced osteoclastogenesis. Here, we demonstrated that proanthocyanidins (PACs) target Irf-3 to alleviate breast cancer-induced activation of osteoclasts. We also found that PACs induced apoptosis of osteoclast precursors by upregulating the ratio of bax/bcl-2 and activating caspase-3 activity. Such bone protective effect also could be observed in a bone metastasis model of breast cancer. These findings provided a novel therapeutic intervention targeting abnormal bone metabolism to alleviate bone metastasis of breast cancer.
Collapse
Affiliation(s)
- Shuangfei Guo
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Jie S, Guo X, Ouyang Z. Tumor ablation using novel photothermal Na xWO 3 nanoparticles against breast cancer osteolytic bone metastasis. Int J Nanomedicine 2019; 14:7353-7362. [PMID: 31571856 PMCID: PMC6750009 DOI: 10.2147/ijn.s217974] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022] Open
Abstract
Backgrounds Profiting from the development of nanomaterials, photothermal therapy (PTT) has been discovered as efficient tumor ablation strategy for breast cancer. Materials and methods Novel oxygen vacancy-rich tungsten bronze nanoparticles (NaxWO3) were synthesized through a simple pyrogenic decomposition process. TEM, XRD, UV-vis-NIR, photothermal conversion ability, and photothermal stability were performed. The viabilities of 293T and 4T1 cells after treating with 200 μg/mL NaxWO3 nanoparticles for 24 or 48 hrs were both above 80%, which proved the good biosafety and cytotoxicity of NaxWO3 in vitro. Two in vivo breast cancer models, namely percutaneous and intratibial 4T1 models were established and NaxWO3 (20 mg/kg) with power intensity of 1.5 W/cm2 980 nm laser photothermal treatment was used in vivo. Results We successfully synthesized ~150 nm NaxWO3 nanoparticles with desirable PTT effects, as evidenced by the temperature increase from 25.8°C to 41.8°C in 5 mins under the irradiation of 980 nm laser (1 mg/mL). Also, cellular compatibility of NaxWO3 nanoparticles was found upon physiologic 293T cells, in contrast with significant cytotoxicity against breast cancer 4T1 cell in vitro dose-dependently. Besides, two in vivo breast cancer models showed the decent tumor ablation ability of NaxWO3 nanoparticles, demonstrating percutaneous 4T1 tumor elimination without recurrence during 2 weeks observation as well as intratibial breast cancer inhibition with decreased bone destruction and tumor volume after NaxWO3+PTT in vivo. Conclusion For the first time, we developed a novel oxygen vacancy-rich tungsten bronze nanoparticles (NaxWO3) through a simple pyrogenic decomposition process for PTT. Both in vitro and in vivo experiments showed the good PTT ability and tumor ablation effects of synthesized NaxWO3 nanoparticles against breast cancer osteolytic bone metastasis. Additionally, our oxygen-deficient NaxWO3 nanoparticles will expand the research horizons of PTT nanomaterials.
Collapse
Affiliation(s)
- Shuo Jie
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Xiaoning Guo
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Zhengxiao Ouyang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| |
Collapse
|
29
|
Gurger M, Yilmaz E, Yilmaz S, Once G, Konuk M, Kaya E, Say Y, Artas G, Artas H. Grape seed extract supplement increases bone callus formation and mechanical strength: an animal study. J Orthop Surg Res 2019; 14:206. [PMID: 31277691 PMCID: PMC6612225 DOI: 10.1186/s13018-019-1251-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/28/2019] [Indexed: 11/10/2022] Open
Abstract
Background The positive effects of grape seed proanthocyanidin extract (GSPE) on bone health, which is a potent antioxidant, are known but its effects on fracture healing are not sufficiently covered in the literature. This study aims to investigate the effects of GSPE on fracture healing and biomechanics of healing bone. Materials and methods Sixty-four adult Wistar-Albino male rats were divided into 8 groups of 8 animals in each group. Osteotomy was performed to the right femurs of all groups except the negative control (G1) and positive control (G2) groups, and intramedullary Kirchner wire was used for fixation. GSPE was given to half of the rats (G2-G4-G6-G8) 100 mg/kg/day by oral gavage. The rats were sacrificed on the tenth (G3–G4), twentieth (G5–G6), and thirtieth (G1–G2–G7–G8) days, respectively, and histopathological, radiological, and biomechanical examinations were performed. Results Histopathological examination of the specimens from the callus tissues revealed that bone healing was more prominent in the groups supplemented with GSPE (G4, G6, G8). There was a statistically significant improvement in radiological recovery scores and callus volumes in groups with GSPE. When biomechanical strengths were evaluated, it was found that GSPE increased bone strength not only in fracture groups but also in the positive control group (G2). Conclusions As a result, this study showed that GSPE, a potent anti-oxidant, had a positive effect on bone healing and improved mechanical strength of the healing bone.
Collapse
Affiliation(s)
- Murat Gurger
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Firat University, 23119, Elazig, Turkey.
| | - Erhan Yilmaz
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Firat University, 23119, Elazig, Turkey
| | - Seval Yilmaz
- Department of Biochemistry, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| | - Gokhan Once
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Firat University, 23119, Elazig, Turkey
| | - Mustafa Konuk
- Department of Orthopaedics and Traumatology, Tatvan State Hospital, 13200, Bitlis, Turkey
| | - Emre Kaya
- Department of Biochemistry, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| | - Yakup Say
- Department of Metallurgical and Materials Engineering, Tunceli University, 62000, Tunceli, Turkey
| | - Gokhan Artas
- Department of Medical Pathology, Faculty of Medicine, Firat University, 23190, Elazig, Turkey
| | - Hakan Artas
- Department of Radiology, Faculty of Medicine, Firat University, 23190, Elazığ, Turkey
| |
Collapse
|
30
|
Ouyang Z, Tan T, Liu C, Duan J, Wang W, Guo X, Zhang Q, Li Z, Huang Q, Dou P, Liu T. Targeted delivery of hesperetin to cartilage attenuates osteoarthritis by bimodal imaging with Gd 2(CO 3) 3@PDA nanoparticles via TLR-2/NF-κB/Akt signaling. Biomaterials 2019; 205:50-63. [PMID: 30903825 DOI: 10.1016/j.biomaterials.2019.03.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/16/2019] [Accepted: 03/14/2019] [Indexed: 02/05/2023]
Abstract
The progressive degeneration of cartilage marks the advancement of osteoarthritis (OA), which requires specific targeted treatment for effective cartilage repair. However, there is still no efficient cartilage delivery system or novel magnetic resonance (MR) contrast agent (CA). Herein, we report the synthesis of a novel class of MR CA, Gd2(CO3)3-based nanoparticles (NPs), from a simpler and "greener" approach than previous ones. After the coating of polydopamine (PDA) onto the Gd2(CO3)3 core, we further anchored a cartilage-targeting peptide and loaded hesperetin (Hes) into NPs (Hes-Gd2(CO3)3@PDA-PEG-DWpeptide, HGdPDW), showing excellent cartilage affinity and MR suitability. Additionally, the synthesized HGdPDW exerted significant protective effects against IL-1β stimulation, as shown by the decreased apoptosis and inflammation and increased maturation of chondrocytes in vitro. More importantly, RNA-seq analyses showed the significant reduction of TLR-2 in IL-1β-treated chondrocytes, and this reduction was followed by the inactivation of NF-κB/Akt signaling, leading to the protective effect of HGdPDW. By the establishment of anterior cruciate ligament transection (ACLT) OA mice, the bimodal MRI/IVIS imaging demonstrated the effective cartilage-binding ability of HGdPDW in OA knees with low cytotoxicity, which alleviated the gradual degeneration of articular cartilage in vivo by inhibiting TLR-2 in chondrocytes. Taken together, these results suggest that HGdPDW could target cartilage effectively, thereby protecting chondrocytes from apoptosis and inflammation via TLR-2/NF-κB/Akt signaling. We hope this new class of MRI CA could be applied in not only other fields using MRI technology but also the treatment of general cartilage-related diseases; this application will undoubtedly extend the treatment of OA clinically.
Collapse
Affiliation(s)
- Zhengxiao Ouyang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China
| | - Tingting Tan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Chunfeng Liu
- Department of Orthopedics, Suzhou Kowloon Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Suzhou, 215021, PR China
| | - Juan Duan
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Xiaoning Guo
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Qing Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Qianli Huang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China
| | - Pengcheng Dou
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China.
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China.
| |
Collapse
|
31
|
Urbanaviciute I, Liaudanskas M, Seglina D, Viskelis P. Japanese Quince Chaenomeles Japonica (Thunb.) Lindl. ex Spach Leaves a New Source of Antioxidants for Food. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1609984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ieva Urbanaviciute
- Biochemistry and Technology Laboratory, Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas, Lithuania
| | - Mindaugas Liaudanskas
- Institute of Pharmaceutical Technologies of the Faculty of Pharmacy of Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dalija Seglina
- Institute of Horticulture, Latvia University of Agriculture, Jelgava, Latvia
| | - Pranas Viskelis
- Biochemistry and Technology Laboratory, Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas, Lithuania
| |
Collapse
|