1
|
Semenova MA, Bochkova ZV, Smirnova OM, Maksimov GV, Kirpichnikov MP, Dolgikh DA, Brazhe NA, Chertkova RV. Charged Amino Acid Substitutions Affect Conformation of Neuroglobin and Cytochrome c Heme Groups. Curr Issues Mol Biol 2024; 46:3364-3378. [PMID: 38666941 PMCID: PMC11049214 DOI: 10.3390/cimb46040211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Neuroglobin (Ngb) is a cytosolic heme protein that plays an important role in protecting cells from apoptosis through interaction with oxidized cytochrome c (Cyt c) released from mitochondria. The interaction of reduced Ngb and oxidized Cyt c is accompanied by electron transfer between them and the reduction in Cyt c. Despite the growing number of studies on Ngb, the mechanism of interaction between Ngb and Cyt c is still unclear. Using Raman spectroscopy, we studied the effect of charged amino acid substitutions in Ngb and Cyt c on the conformation of their hemes. It has been shown that Ngb mutants E60K, K67E, K95E and E60K/E87K demonstrate changed heme conformations with the lower probability of the heme planar conformation compared to wild-type Ngb. Moreover, oxidized Cyt c mutants K25E, K72E and K25E/K72E demonstrate the decrease in the probability of methyl-radicals vibrations, indicating the higher rigidity of the protein microenvironment. It is possible that these changes can affect electron transfer between Ngb and Cyt c.
Collapse
Affiliation(s)
- Marina A. Semenova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia; (M.A.S.); (Z.V.B.); (O.M.S.); (M.P.K.); (D.A.D.)
| | - Zhanna V. Bochkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia; (M.A.S.); (Z.V.B.); (O.M.S.); (M.P.K.); (D.A.D.)
- Biophysics Department, Biological Faculty, Lomonosov Moscow State University, Leninskie Gory, 1/12, 119899 Moscow, Russia;
| | - Olga M. Smirnova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia; (M.A.S.); (Z.V.B.); (O.M.S.); (M.P.K.); (D.A.D.)
| | - Georgy V. Maksimov
- Biophysics Department, Biological Faculty, Lomonosov Moscow State University, Leninskie Gory, 1/12, 119899 Moscow, Russia;
| | - Mikhail P. Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia; (M.A.S.); (Z.V.B.); (O.M.S.); (M.P.K.); (D.A.D.)
- Biology Department, Lomonosov Moscow State University, Leninskie Gory, 1/12, 119899 Moscow, Russia
| | - Dmitry A. Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia; (M.A.S.); (Z.V.B.); (O.M.S.); (M.P.K.); (D.A.D.)
- Biology Department, Lomonosov Moscow State University, Leninskie Gory, 1/12, 119899 Moscow, Russia
| | - Nadezda A. Brazhe
- Biophysics Department, Biological Faculty, Lomonosov Moscow State University, Leninskie Gory, 1/12, 119899 Moscow, Russia;
| | - Rita V. Chertkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St. 16/10, 117997 Moscow, Russia; (M.A.S.); (Z.V.B.); (O.M.S.); (M.P.K.); (D.A.D.)
| |
Collapse
|
2
|
Williams MD, Ragireddy V, Dent MR, Tejero J. Engineering neuroglobin nitrite reductase activity based on myoglobin models. Biochem Biophys Rep 2023; 36:101560. [PMID: 37929291 PMCID: PMC10623171 DOI: 10.1016/j.bbrep.2023.101560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 11/07/2023] Open
Abstract
Neuroglobin is a hemoprotein expressed in several nervous system cell lineages with yet unknown physiological functions. Neuroglobin presents a very similar structure to that of the related globins hemoglobin and myoglobin, but shows an hexacoordinate heme as compared to the pentacoordinated heme of myoglobin and hemoglobin. While several reactions of neuroglobin have been characterized in vitro, the relative importance of most of those reactions in vivo is yet undefined. Neuroglobin, like other heme proteins, can reduce nitrite to nitric oxide, providing a possible route to generate nitric oxide in vivo in low oxygen conditions. The reaction kinetics are highly dependent on the nature of the distal residue, and replacement of the distal histidine His64(E7) can increase the reaction rate constants by several orders of magnitude. However, mutation of other distal pocket positions such as Phe28(B10) or Val68(E11) has more limited impact on the rates. Computational analysis using myoglobin as template, guided by the structure of dedicated nitrite reductases like cytochrome cd1 nitrite reductase, has pointed out that combined mutations of the residues B10 and CD1 could increase the nitrite reductase activity of myoglobin, by mimicking the environment of the distal heme pocket in cytochrome cd1 nitrite reductase. As neuroglobin shows high sequence and structural homology with myoglobin, we hypothesized that such mutations (F28H and F42Y in neuroglobin) could also modify the nitrite reductase activity of neuroglobin. Here we study the effect of these mutations. Unfortunately, we do not observe in any case an increase in the nitrite reduction rates. Our results provide some further indications of nitrite reductase regulation in neuroglobin and highlight the minor but critical differences between the structure of penta- and hexacoordinate globins.
Collapse
Affiliation(s)
- Mark D. Williams
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Venkata Ragireddy
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Matthew R. Dent
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Jesús Tejero
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
3
|
Semenova MA, Chertkova RV, Kirpichnikov MP, Dolgikh DA. Molecular Interactions between Neuroglobin and Cytochrome c: Possible Mechanisms of Antiapoptotic Defense in Neuronal Cells. Biomolecules 2023; 13:1233. [PMID: 37627298 PMCID: PMC10452090 DOI: 10.3390/biom13081233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Neuroglobin, which is a heme protein from the globin family that is predominantly expressed in nervous tissue, can promote a neuronal survivor. However, the molecular mechanisms underlying the neuroprotective function of Ngb remain poorly understood to this day. The interactions between neuroglobin and mitochondrial cytochrome c may serve as at least one of the mechanisms of neuroglobin-mediated neuroprotection. Interestingly, neuroglobin and cytochrome c possibly can interact with or without electron transfer both in the cytoplasm and within the mitochondria. This review provides a general picture of molecular interactions between neuroglobin and cytochrome c based on the recent experimental and computational work on neuroglobin and cytochrome c interactions.
Collapse
Affiliation(s)
- Marina A. Semenova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya St. 16/10, 117997 Moscow, Russia
| | - Rita V. Chertkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya St. 16/10, 117997 Moscow, Russia
| | - Mikhail P. Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya St. 16/10, 117997 Moscow, Russia
- Biology Department, Lomonosov Moscow State University, Leninskie Gory, 119899 Moscow, Russia
| | - Dmitry A. Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya St. 16/10, 117997 Moscow, Russia
- Biology Department, Lomonosov Moscow State University, Leninskie Gory, 119899 Moscow, Russia
| |
Collapse
|
4
|
Chan ASY, Tun SBB, Lynn MN, Ho C, Tun TA, Girard MJA, Sultana R, Barathi VA, Aung T, Aihara M. Intravitreal Neuroglobin Mitigates Primate Experimental Glaucomatous Structural Damage in Association with Reduced Optic Nerve Microglial and Complement 3-Astrocyte Activation. Biomolecules 2023; 13:961. [PMID: 37371541 DOI: 10.3390/biom13060961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Current management of glaucomatous optic neuropathy is limited to intraocular pressure control. Neuroglobin (Ngb) is an endogenous neuroprotectant expressed in neurons and astrocytes. We recently showed that exogenous intravitreal Ngb reduced inflammatory cytokines and microglial activation in a rodent model of hypoxia. We thus hypothesised that IVT-Ngb may also be neuroprotective in experimental glaucoma (EG) by mitigating optic nerve (ON) astrogliosis and microgliosis as well as structural damage. In this study using a microbead-induced model of EG in six Cynomolgus primates, optical coherence imaging showed that Ngb-treated EG eyes had significantly less thinning of the peripapillary minimum rim width, retinal nerve fibre layer thickness, and ON head cupping than untreated EG eyes. Immunohistochemistry confirmed that ON astrocytes overexpressed Ngb following Ngb treatment. A reduction in complement 3 and cleaved-caspase 3 activated microglia and astrocytes was also noted. Our findings in higher-order primates recapitulate the effects of neuroprotection by Ngb treatment in rodent EG studies and suggest that Ngb may be a potential candidate for glaucoma neuroprotection in humans.
Collapse
Affiliation(s)
- Anita S Y Chan
- Singapore Eye Research Institute, Singapore 169856, Singapore
- Singapore National Eye Centre, Singapore 168751, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Sai B B Tun
- Singapore Eye Research Institute, Singapore 169856, Singapore
| | - Myoe N Lynn
- Singapore Eye Research Institute, Singapore 169856, Singapore
| | - Candice Ho
- Singapore Eye Research Institute, Singapore 169856, Singapore
| | - Tin A Tun
- Singapore Eye Research Institute, Singapore 169856, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Michaël J A Girard
- Singapore Eye Research Institute, Singapore 169856, Singapore
- Ophthalmic Engineering & Innovation Laboratory (OEIL), Singapore Eye Research Institute, Singapore 169856, Singapore
| | | | - Veluchamy A Barathi
- Singapore Eye Research Institute, Singapore 169856, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Tin Aung
- Singapore Eye Research Institute, Singapore 169856, Singapore
- Singapore National Eye Centre, Singapore 168751, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Makoto Aihara
- Department of Ophthalmology, University of Tokyo, Tokyo 113-8654, Japan
| |
Collapse
|
5
|
Exertier C, Sebastiani F, Freda I, Gugole E, Cerutti G, Parisi G, Montemiglio LC, Becucci M, Viappiani C, Bruno S, Savino C, Zamparelli C, Anselmi M, Abbruzzetti S, Smulevich G, Vallone B. Probing the Role of Murine Neuroglobin CDloop-D-Helix Unit in CO Ligand Binding and Structural Dynamics. ACS Chem Biol 2022; 17:2099-2108. [PMID: 35797699 PMCID: PMC9396615 DOI: 10.1021/acschembio.2c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We produced a neuroglobin variant, namely, Ngb CDless,
with the
excised CDloop- and D-helix, directly joining the C- and E-helices.
The CDless variant retained bis-His hexacoordination, and we investigated
the role of the CDloop–D-helix unit in controlling the CO binding
and structural dynamics by an integrative approach based on X-ray
crystallography, rapid mixing, laser flash photolysis, resonance Raman
spectroscopy, and molecular dynamics simulations. Rapid mixing and
laser flash photolysis showed that ligand affinity was unchanged with
respect to the wild-type protein, albeit with increased on and off
constants for rate-limiting heme iron hexacoordination by the distal
His64. Accordingly, resonance Raman spectroscopy highlighted a more
open distal pocket in the CO complex that, in agreement with MD simulations,
likely involves His64 swinging inward and outward of the distal heme
pocket. Ngb CDless displays a more rigid overall structure with respect
to the wild type, abolishing the structural dynamics of the CDloop–D-helix
hypothesized to mediate its signaling role, and it retains ligand
binding control by distal His64. In conclusion, this mutant may represent
a tool to investigate the involvement of CDloop–D-helix in
neuroprotective signaling in a cellular or animal model.
Collapse
Affiliation(s)
- Cécile Exertier
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza, Università di Roma, Piazzale A. Moro 5, I-00185 Rome, Italy
| | - Federico Sebastiani
- Dipartimento di Chimica ″Ugo Schiff″, Università di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Italy
| | - Ida Freda
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza, Università di Roma, Piazzale A. Moro 5, I-00185 Rome, Italy
| | - Elena Gugole
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza, Università di Roma, Piazzale A. Moro 5, I-00185 Rome, Italy
| | - Gabriele Cerutti
- Zuckerman Mind Brain Behavior Institute, Columbia University, 3227 Broadway, New York, New York 10027, United States
| | - Giacomo Parisi
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena, 291, I-00161 Rome, Italy
| | - Linda Celeste Montemiglio
- Institute of Molecular Biology and Pathology, National Research Council, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Maurizio Becucci
- Dipartimento di Chimica ″Ugo Schiff″, Università di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Italy
| | - Cristiano Viappiani
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze, 7/A, I-43124 Parma, Italy
| | - Stefano Bruno
- Department of Food and Drugs, University of Parma, Parco Area delle Scienze 27/A, I-43124 Parma, Italy
| | - Carmelinda Savino
- Institute of Molecular Biology and Pathology, National Research Council, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Carlotta Zamparelli
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza, Università di Roma, Piazzale A. Moro 5, I-00185 Rome, Italy
| | - Massimiliano Anselmi
- Theoretical Physics and Center for Biophysics, Saarland University, Campus E2 6, 66123 Saarbrücken, Germany
| | - Stefania Abbruzzetti
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze, 7/A, I-43124 Parma, Italy
| | - Giulietta Smulevich
- Dipartimento di Chimica ″Ugo Schiff″, Università di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Italy
| | - Beatrice Vallone
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza, Università di Roma, Piazzale A. Moro 5, I-00185 Rome, Italy
| |
Collapse
|
6
|
Kaliszuk SJ, Morgan NI, Ayers TN, Sparacino Watkins CE, DeMartino AW, Bocian K, Ragireddy V, Tong Q, Tejero J. Regulation of nitrite reductase and lipid binding properties of cytoglobin by surface and distal histidine mutations. Nitric Oxide 2022; 125-126:12-22. [PMID: 35667547 PMCID: PMC9283305 DOI: 10.1016/j.niox.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/21/2022] [Accepted: 06/01/2022] [Indexed: 12/30/2022]
Abstract
Cytoglobin is a hemoprotein widely expressed in fibroblasts and related cell lineages with yet undefined physiological function. Cytoglobin, as other heme proteins, can reduce nitrite to nitric oxide (NO) providing a route to generate NO in vivo in low oxygen conditions. In addition, cytoglobin can also bind lipids such as oleic acid and cardiolipin with high affinity. These two processes are potentially relevant to cytoglobin function. Little is known about how specific amino acids contribute to nitrite reduction and lipid binding. Here we investigate the role of the distal histidine His81 (E7) and several surface residues on the regulation of nitrite reduction and lipid binding. We observe that the replacement of His81 (E7) greatly increases heme reactivity towards nitrite, with nitrite reduction rate constants of up to 1100 M-1s-1 for the His81Ala mutant. His81 (E7) mutation causes a small decrease in lipid binding affinity, however experiments on the presence of imidazole indicate that His81 (E7) does not compete with the lipid for the binding site. Mutations of the surface residues Arg84 and Lys116 largely impair lipid binding. Our results suggest that dissociation of His81 (E7) from the heme mediates the formation of a hydrophobic cavity in the proximal heme side that can accommodate the lipid, with important contributions of the hydrophobic patch around residues Thr91, Val105, and Leu108, whereas the positive charges from Arg84 and Lys116 stabilize the carboxyl group of the fatty acid. Gain and loss-of-function mutations described here can serve as tools to study in vivo the physiological role of these putative cytoglobin functions.
Collapse
Affiliation(s)
- Stefan J Kaliszuk
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Natasha I Morgan
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Taylor N Ayers
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Courtney E Sparacino Watkins
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Anthony W DeMartino
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Kaitlin Bocian
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Venkata Ragireddy
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Qin Tong
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Jesús Tejero
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
7
|
Feng Y, Liu XC, Li L, Gao SQ, Wen GB, Lin YW. Naturally Occurring I81N Mutation in Human Cytochrome c Regulates Both Inherent Peroxidase Activity and Interactions with Neuroglobin. ACS OMEGA 2022; 7:11510-11518. [PMID: 35415373 PMCID: PMC8992277 DOI: 10.1021/acsomega.2c01256] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 05/24/2023]
Abstract
Human cytochrome c (hCyt c) is a crucial heme protein and plays an indispensable role in energy conversion and intrinsic apoptosis pathways. The sequence and structure of Cyt c were evolutionarily conserved and only a few naturally occurring mutants were detected in humans. Among those variable sites, position 81 was proposed to act as a peroxidase switch in the initiation stages of apoptosis. In this study, we show that Ile81 not only suppresses the intrinsic peroxidase activity but also is essential for Cyt c to interact with neuroglobin (Ngb), a potential protein partner. The kinetic assays showed that the peroxidase activity of the naturally occurring variant I81N was enhanced up to threefold under pH 5. The local stability of the Ω-loop D (residues 70-85) in the I81N variant was decreased. Moreover, the Alphafold2 program predicted that Ile81 forms stable contact with human Ngb. Meanwhile, the Ile81 to Asn81 missense mutation abolishes the interaction interface, resulting in a ∼40-fold decrease in binding affinity. These observations provide an insight into the structure-function relationship of the conserved Ile81 in vertebrate Cyt c.
Collapse
Affiliation(s)
- Yu Feng
- School
of Chemistry and Chemical Engineering, University
of South China, Hengyang 421001, China
| | - Xi-Chun Liu
- School
of Chemistry and Chemical Engineering, University
of South China, Hengyang 421001, China
| | - Lianzhi Li
- School
of Chemistry and Chemical Engineering, Liaocheng
University, Liaocheng 252059, China
| | - Shu-Qin Gao
- Key
Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China
| | - Ge-Bo Wen
- Key
Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China
| | - Ying-Wu Lin
- School
of Chemistry and Chemical Engineering, University
of South China, Hengyang 421001, China
- Key
Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China
| |
Collapse
|
8
|
Exertier C, Montemiglio LC, Freda I, Gugole E, Parisi G, Savino C, Vallone B. Neuroglobin, clues to function and mechanism. Mol Aspects Med 2021; 84:101055. [PMID: 34876274 DOI: 10.1016/j.mam.2021.101055] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/19/2022]
Abstract
Neuroglobin is expressed in vertebrate brain and belongs to a branch of the globin family that diverged early in evolution. Sequence conservation and presence in nervous cells of several taxa suggests a relevant role in the nervous system, with tight structural restraints. Twenty years after its discovery, a rich scientific literature provides convincing evidence of the involvement of neuroglobin in sustaining neuron viability in physiological and pathological conditions however, a full and conclusive picture of its specific function, or set of functions is still lacking. The difficulty of unambiguously assigning a precise mechanism and biochemical role to neuroglobin might arise from the participation to one or more cell mechanism that redundantly guarantee the functioning of the highly specialized and metabolically demanding central nervous system of vertebrates. Here we collect findings and hypotheses arising from recent biochemical, biophysical, structural, in cell and in vivo experimental work on neuroglobin, aiming at providing an overview of the most recent literature. Proteins are said to have jobs and hobbies, it is possible that, in the case of neuroglobin, evolution has selected for it more than one job, and support to cover for its occasional failings. Disentangling the mechanisms and roles of neuroglobin is thus a challenging task that might be achieved by considering data from different disciplines and experimental approaches.
Collapse
Affiliation(s)
- Cécile Exertier
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza, Università di Roma, P.le A. Moro 5, 00185, Rome, Italy
| | - Linda Celeste Montemiglio
- Institute of Molecular Biology and Pathology, National Research Council, P.le A. Moro 5, 00185, Rome, Italy
| | - Ida Freda
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza, Università di Roma, P.le A. Moro 5, 00185, Rome, Italy
| | - Elena Gugole
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza, Università di Roma, P.le A. Moro 5, 00185, Rome, Italy
| | - Giacomo Parisi
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | - Carmelinda Savino
- Institute of Molecular Biology and Pathology, National Research Council, P.le A. Moro 5, 00185, Rome, Italy.
| | - Beatrice Vallone
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza, Università di Roma, P.le A. Moro 5, 00185, Rome, Italy.
| |
Collapse
|
9
|
De Simone G, Sbardella D, Oddone F, Pesce A, Coletta M, Ascenzi P. Structural and (Pseudo-)Enzymatic Properties of Neuroglobin: Its Possible Role in Neuroprotection. Cells 2021; 10:cells10123366. [PMID: 34943874 PMCID: PMC8699588 DOI: 10.3390/cells10123366] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/17/2022] Open
Abstract
Neuroglobin (Ngb), the third member of the globin family, was discovered in human and murine brains in 2000. This monomeric globin is structurally similar to myoglobin (Mb) and hemoglobin (Hb) α and β subunits, but it hosts a bis-histidyl six-coordinated heme-Fe atom. Therefore, the heme-based reactivity of Ngb is modulated by the dissociation of the distal HisE7-heme-Fe bond, which reflects in turn the redox state of the cell. The high Ngb levels (~100–200 μM) present in the retinal ganglion cell layer and in the optic nerve facilitate the O2 buffer and delivery. In contrast, the very low levels of Ngb (~1 μM) in most tissues and organs support (pseudo-)enzymatic properties including NO/O2 metabolism, peroxynitrite and free radical scavenging, nitrite, hydroxylamine, hydrogen sulfide reduction, and the nitration of aromatic compounds. Here, structural and (pseudo-)enzymatic properties of Ngb, which are at the root of tissue and organ protection, are reviewed, envisaging a possible role in the protection from neuronal degeneration of the retina and the optic nerve.
Collapse
Affiliation(s)
- Giovanna De Simone
- Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, 00146 Roma, Italy;
| | | | | | - Alessandra Pesce
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16100 Genova, Italy;
| | - Massimo Coletta
- IRCCS Fondazione Bietti, 00198 Roma, Italy; (D.S.); (F.O.)
- Dipartmento di Scienze Cliniche e Medicina Traslazionale, Università di Roma “Tor Vergata”, Via Montpellier 1, 00133 Roma, Italy
- Correspondence: (M.C.); (P.A.); Tel.: +39-06-72596365 (M.C.); +39-06-57336321 (P.A.)
| | - Paolo Ascenzi
- Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, 00146 Roma, Italy;
- Accademia Nazionale dei Lincei, Via della Lungara 10, 00165 Roma, Italy
- Unità di Neuroendocrinologia, Metabolismo e Neurofarmacologia, IRCSS Fondazione Santa Lucia, 00179 Roma, Italy
- Correspondence: (M.C.); (P.A.); Tel.: +39-06-72596365 (M.C.); +39-06-57336321 (P.A.)
| |
Collapse
|
10
|
Cwerman-Thibault H, Lechauve C, Malko-Baverel V, Augustin S, Le Guilloux G, Reboussin É, Degardin-Chicaud J, Simonutti M, Debeir T, Corral-Debrinski M. Neuroglobin effectively halts vision loss in Harlequin mice at an advanced stage of optic nerve degeneration. Neurobiol Dis 2021; 159:105483. [PMID: 34400304 DOI: 10.1016/j.nbd.2021.105483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022] Open
Abstract
Mitochondrial diseases are among the most prevalent groups of inherited neurological disorders, affecting up to 1 in 5000 adults. Despite the progress achieved on the identification of gene mutations causing mitochondrial pathologies, they cannot be cured so far. Harlequin mice, a relevant model of mitochondrial pathology due to apoptosis inducing factor depletion, suffer from progressive disappearance of retinal ganglion cells leading to optic neuropathy. In our previous work, we showed that administering adeno-associated virus encompassing the coding sequences for neuroglobin, (a neuroprotective molecule belonging to the globin family) or apoptosis-inducing factor, before neurodegeneration onset, prevented retinal ganglion cell loss and preserved visual function. One of the challenges to develop an effective treatment for optic neuropathies is to consider that by the time patients become aware of their handicap, a large amount of nerve fibers has already disappeared. Gene therapy was performed in Harlequin mice aged between 4 and 5 months with either a neuroglobin or an apoptosis-inducing factor vector to determine whether the increased abundance of either one of these proteins in retinas could preserve visual function at this advanced stage of the disease. We demonstrated that gene therapy, by preserving the connectivity of transduced retinal ganglion cells and optic nerve bioenergetics, results in the enhancement of visual cortex activity, ultimately rescuing visual impairment. This study demonstrates that: (a) An increased abundance of neuroglobin functionally overcomes apoptosis-inducing factor absence in Harlequin mouse retinas at a late stage of neuronal degeneration; (b) The beneficial effect for visual function could be mediated by neuroglobin localization to the mitochondria, thus contributing to the maintenance of the organelle homeostasis.
Collapse
Affiliation(s)
| | - Christophe Lechauve
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | | | - Sébastien Augustin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | | | - Élodie Reboussin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | | | - Manuel Simonutti
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | | | | |
Collapse
|
11
|
Gorabi AM, Aslani S, Barreto GE, Báez-Jurado E, Kiaie N, Jamialahmadi T, Sahebkar A. The potential of mitochondrial modulation by neuroglobin in treatment of neurological disorders. Free Radic Biol Med 2021; 162:471-477. [PMID: 33166649 DOI: 10.1016/j.freeradbiomed.2020.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 01/18/2023]
Abstract
Neuroglobin is the third member of the globin family to be identified in 2000 in neurons of both human and mouse nervous systems. Neuroglobin is an oxygen-binding globin found in neurons within the central nervous system as well as in peripheral neurons, that produces a protective effect against hypoxic/ischemic damage induced by promoting oxygen availability within the mitochondria. Numerous investigations have demonstrated that impaired neuroglobin functioning is implicated in the pathogenesis of multiple neurodegenerative disorders. Several in vitro and animal studies have reported the potential of neuroglobin upregulation in improving the neuroprotection through modulation of mitochondrial functions, such as ATP production, clearing reactive oxygen species (ROS), promoting the dynamics of mitochondria, and controlling apoptosis. Neuroglobin acts as a stress-inducible globin, which has been associated hypoxic/ischemic insults where it acts to protect the heart and brain, providing a wide range of applicability in the treatment of human disorders. This review article discusses normal physiological functions of neuroglobin in mitochondria-associated pathways, as well as outlining how dysregulation of neuroglobin is associated with the pathogenesis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland
| | - Eliana Báez-Jurado
- Departamento de Química, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá D.C., Colombia
| | - Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Halal Research Center of IRI, FDA, Tehran, Iran.
| |
Collapse
|
12
|
Lessons from the post-genomic era: Globin diversity beyond oxygen binding and transport. Redox Biol 2020; 37:101687. [PMID: 32863222 PMCID: PMC7475203 DOI: 10.1016/j.redox.2020.101687] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022] Open
Abstract
Vertebrate hemoglobin (Hb) and myoglobin (Mb) were among the first proteins whose structures and sequences were determined over 50 years ago. In the subsequent pregenomic period, numerous related proteins came to light in plants, invertebrates and bacteria, that shared the myoglobin fold, a signature sequence motif characteristic of a 3-on-3 α-helical sandwich. Concomitantly, eukaryote and bacterial globins with a truncated 2-on-2 α-helical fold were discovered. Genomic information over the last 20 years has dramatically expanded the list of known globins, demonstrating their existence in a limited number of archaeal genomes, a majority of bacterial genomes and an overwhelming majority of eukaryote genomes. In vertebrates, 6 additional globin types were identified, namely neuroglobin (Ngb), cytoglobin (Cygb), globin E (GbE), globin X (GbX), globin Y (GbY) and androglobin (Adgb). Furthermore, functions beyond the familiar oxygen transport and storage have been discovered within the vertebrate globin family, including NO metabolism, peroxidase activity, scavenging of free radicals, and signaling functions. The extension of the knowledge on globin functions suggests that the original roles of bacterial globins must have been enzymatic, involved in defense against NO toxicity, and perhaps also as sensors of O2, regulating taxis away or towards high O2 concentrations. In this review, we aimed to discuss the evolution and remarkable functional diversity of vertebrate globins with particular focus on the variety of non-canonical expression sites of mammalian globins and their according impressive variability of atypical functions.
Collapse
|