1
|
Anderson MJ, Carton TP, Salvini CLA, Crawford JJ, Pairaudeau G, Waring MJ. Micelle-Promoted Reductive Amination of DNA-Conjugated Amines for DNA-Encoded Library Synthesis. Chemistry 2024; 30:e202400239. [PMID: 38251309 DOI: 10.1002/chem.202400239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/23/2024]
Abstract
DNA-encoded libraries (DELs) have become a leading technology for hit identification in drug discovery projects as large, diverse libraries can be generated. DELs are commonly synthesised via split-and-pool methodology; thus, chemical transformations utilised must be highly efficient, proceeding with high conversions. Reactions performed in DEL synthesis also require a broad substrate scope to produce diverse, drug-like libraries. Many pharmaceutical compounds incorporate multiple C-N bonds, over a quarter of which are synthesised via reductive aminations. However, few on-DNA reductive amination procedures have been developed. Herein is reported the application of the micelle-forming surfactant, TPGS-750-M, to the on-DNA reductive amination of DNA-conjugated amines, yielding highly efficient conversions with a broad range of aldehydes, including medicinally relevant heterocyclic and aliphatic substrates. The procedure is compatible with DNA amplification and sequencing, demonstrating its applicability to DEL synthesis.
Collapse
Affiliation(s)
- Matthew J Anderson
- Cancer Research UK Newcastle Drug Discovery Unit, Chemistry, School of Natural and Environmental Sciences, Newcastle University, Bedson Building, Newcastle upon Tyne, NE1 7RU, UK
| | - Thomas P Carton
- Cancer Research UK Newcastle Drug Discovery Unit, Chemistry, School of Natural and Environmental Sciences, Newcastle University, Bedson Building, Newcastle upon Tyne, NE1 7RU, UK
| | - Catherine L A Salvini
- Cancer Research UK Newcastle Drug Discovery Unit, Chemistry, School of Natural and Environmental Sciences, Newcastle University, Bedson Building, Newcastle upon Tyne, NE1 7RU, UK
| | | | | | - Michael J Waring
- Cancer Research UK Newcastle Drug Discovery Unit, Chemistry, School of Natural and Environmental Sciences, Newcastle University, Bedson Building, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
2
|
Sala D, Batebi H, Ledwitch K, Hildebrand PW, Meiler J. Targeting in silico GPCR conformations with ultra-large library screening for hit discovery. Trends Pharmacol Sci 2023; 44:150-161. [PMID: 36669974 PMCID: PMC9974811 DOI: 10.1016/j.tips.2022.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/20/2023]
Abstract
The use of deep machine learning (ML) in protein structure prediction has made it possible to easily access a large number of annotated conformations that can potentially compensate for missing experimental structures in structure-based drug discovery (SBDD). However, it is still unclear whether the accuracy of these predicted conformations is sufficient for screening chemical compounds that will effectively interact with a protein target for pharmacological purposes. In this opinion article, we examine the potential benefits and limitations of using state-annotated conformations for ultra-large library screening (ULLS) in light of the growing size of ultra-large libraries (ULLs). We believe that targeting different conformational states of common drug targets like G-protein-coupled receptors (GPCRs), which can regulate human physiology by switching between different conformations, can offer multiple advantages.
Collapse
Affiliation(s)
- D Sala
- Institute of Drug Discovery, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - H Batebi
- Institute of Medical Physics and Biophysics, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - K Ledwitch
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - P W Hildebrand
- Institute of Medical Physics and Biophysics, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - J Meiler
- Institute of Drug Discovery, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany; Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
3
|
Gironda-Martínez A, Donckele EJ, Samain F, Neri D. DNA-Encoded Chemical Libraries: A Comprehensive Review with Succesful Stories and Future Challenges. ACS Pharmacol Transl Sci 2021; 4:1265-1279. [PMID: 34423264 PMCID: PMC8369695 DOI: 10.1021/acsptsci.1c00118] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 12/27/2022]
Abstract
DNA-encoded chemical libraries (DELs) represent a versatile and powerful technology platform for the discovery of small-molecule ligands to protein targets of biological and pharmaceutical interest. DELs are collections of molecules, individually coupled to distinctive DNA tags serving as amplifiable identification barcodes. Thanks to advances in DNA-compatible reactions, selection methodologies, next-generation sequencing, and data analysis, DEL technology allows the construction and screening of libraries of unprecedented size, which has led to the discovery of highly potent ligands, some of which have progressed to clinical trials. In this Review, we present an overview of diverse approaches for the generation and screening of DEL molecular repertoires. Recent success stories are described, detailing how novel ligands were isolated from DEL screening campaigns and were further optimized by medicinal chemistry. The goal of the Review is to capture some of the most recent developments in the field, while also elaborating on future challenges to further improve DEL technology as a therapeutic discovery platform.
Collapse
Affiliation(s)
| | | | - Florent Samain
- Philochem
AG, Libernstrasse 3, CH-8112 Otelfingen, Switzerland
| | - Dario Neri
- Department
of Chemistry and Applied Biosciences, Swiss
Federal Institute of Technology, CH-8093 Zürich, Switzerland
- Philogen
S.p.A, 53100 Siena, Italy
| |
Collapse
|
4
|
Huang Y, Li X. Recent Advances on the Selection Methods of DNA-Encoded Libraries. Chembiochem 2021; 22:2384-2397. [PMID: 33891355 DOI: 10.1002/cbic.202100144] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/23/2021] [Indexed: 12/15/2022]
Abstract
DNA-encoded libraries (DEL) have come of age and become a major technology platform for ligand discovery in both academia and the pharmaceutical industry. Technological maturation in the past two decades and the recent explosive developments of DEL-compatible chemistries have greatly improved the chemical diversity of DELs and fueled its applications in drug discovery. A relatively less-covered aspect of DELs is the selection method. Typically, DEL selection is considered as a binding assay and the selection is conducted with purified protein targets immobilized on a matrix, and the binders are separated from the non-binding background via physical washes. However, the recent innovations in DEL selection methods have not only expanded the target scope of DELs, but also revealed the potential of the DEL technology as a powerful tool in exploring fundamental biology. In this Review, we first cover the "classic" DEL selection methods with purified proteins on solid phase, and then we discuss the strategies to realize DEL selections in solution phase. Finally, we focus on the emerging approaches for DELs to interrogate complex biological targets.
Collapse
Affiliation(s)
- Yiran Huang
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xiaoyu Li
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Health@InnoHK, Innovation and Technology Commission, Units 1503-1511, 15/F., Building 17W, Hong Kong Science and Technology Parks, New Territories, Hong Kong SAR, China
| |
Collapse
|
5
|
Ji Y, Dai D, Luo H, Shen S, Fan J, Wang Z, Chen M, Wan J, Li J, Ma H, Liu G. C-S Coupling of DNA-Conjugated Aryl Iodides for DNA-Encoded Chemical Library Synthesis. Bioconjug Chem 2021; 32:685-689. [PMID: 33720689 DOI: 10.1021/acs.bioconjchem.1c00076] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Thioethers have been widely found in biologically active compounds, including pharmaceuticals. In this report, a highly efficient approach to on-DNA construction of thioethers via Cu-promoted Ullmann cross-coupling between DNA-conjugated aryl iodides and thiols is developed. This methodology was demonstrated with medium to high yields, without obvious DNA damage. This reported reaction has strong potential for application in DNA-encoded chemical library synthesis.
Collapse
Affiliation(s)
- Yue Ji
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Dongliang Dai
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Huadong Luo
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Simin Shen
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Jing Fan
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Zhao Wang
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Min Chen
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Jinqiao Wan
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Jin Li
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Huiyong Ma
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Guansai Liu
- HitGen Inc., Building 6, No. 8 Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| |
Collapse
|
6
|
Catalano M, Moroglu M, Balbi P, Mazzieri F, Clayton J, Andrews KH, Bigatti M, Scheuermann J, Conway SJ, Neri D. Selective Fragments for the CREBBP Bromodomain Identified from an Encoded Self-assembly Chemical Library. ChemMedChem 2020; 15:1752-1756. [PMID: 32686307 DOI: 10.1002/cmdc.202000528] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 12/21/2022]
Abstract
DNA-encoded chemical libraries (DECLs) are collections of chemical moieties individually coupled to distinctive DNA barcodes. Compounds can be displayed either at the end of a single DNA strand (i. e., single-pharmacophore libraries) or at the extremities of two complementary DNA strands (i. e., dual-pharmacophore libraries). In this work, we describe the use of a dual-pharmacophore encoded self-assembly chemical (ESAC) library for the affinity maturation of a known 4,5-dihydrobenzodiazepinone ring (THBD) acetyl-lysine (KAc) mimic for the cyclic-AMP response element binding protein (CREB) binding protein (CREBBP or CBP) bromodomain. The new pair of fragments discovered from library selection showed a sub-micromolar affinity for the CREBBP bromodomain in fluorescence polarization and ELISA assays, and selectivity against BRD4(1).
Collapse
Affiliation(s)
- Marco Catalano
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Mustafa Moroglu
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Petra Balbi
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Federica Mazzieri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - James Clayton
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Katrina H Andrews
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | | | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Stuart J Conway
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| |
Collapse
|