1
|
Bai B, Liu C, Zhang C, He X, Wang H, Peng W, Zheng C. Trichoderma species from plant and soil: An excellent resource for biosynthesis of terpenoids with versatile bioactivities. J Adv Res 2022:S2090-1232(22)00212-0. [PMID: 36195283 DOI: 10.1016/j.jare.2022.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/28/2022] [Accepted: 09/24/2022] [Indexed: 10/06/2022] Open
Abstract
BACKGROUND Trichoderma species are rich source of bioactive secondary metabolites. In the past decades, a series of secondary metabolites were reported from different Trichoderma fungi, among which terpenoids possessing versatile structural diversities and extensive pharmacological activities are one of the particularly important categories. AIM OF REVIEW The review aims to summarize the terpenoids isolated from Trichoderma species regarding their structural diversities, biological activities, and promising biosynthetic potentials. KEY SCIENTIFIC CONCEPTS OF REVIEW So far, a total of 253 terpenoids, including 202 sesquiterpenes, 48 diterpenes, 2 monoterpenes and 1 meroterpenoid, were isolated and identified from Trichoderma species between 1948 and 2022. Pharmacological investigations of Trichoderma terpenoids mainly focused on their antibacterial activities, antifungal activities, inhibitory activities on marine plankton species and cytotoxic activities, indicating that Trichoderma species are important microbial agents for drug discovery and environmentally friendly agrochemicals development. Intriguing chemistry and enzymology involved in the biosynthesis of Trichoderma terpenoids were also presented to facilitate further precise genome mining-guided novel structure discovery. Taken together, the abundance of novel skeletons, bioactivities and biosynthetic potentials presents new opportunities for drug and agrochemicals discovery, genome mining and enzymology exploration from Trichoderma species. The work will provide references for the profound study of terpenoids derived from Trichoderma, and facilitate further studies on Trichoderma species in the areas of chemistry, medicine, agriculture and microbiology.
Collapse
Affiliation(s)
- Bingke Bai
- Faculty of Pharmacy, Naval Medical University, Shanghai 200433, PR China
| | - Chang Liu
- Faculty of Pharmacy, Naval Medical University, Shanghai 200433, PR China
| | - Chengzhong Zhang
- Faculty of Pharmacy, Naval Medical University, Shanghai 200433, PR China
| | - Xuhui He
- Faculty of Pharmacy, Naval Medical University, Shanghai 200433, PR China
| | - Hongrui Wang
- Faculty of Pharmacy, Naval Medical University, Shanghai 200433, PR China
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China.
| | - Chengjian Zheng
- Faculty of Pharmacy, Naval Medical University, Shanghai 200433, PR China.
| |
Collapse
|
2
|
Bansal R, Sethy SK, Khan Z, Shaikh N, Banerjee K, Mukherjee PK. Genetic Evidence in Favor of a Polyketide Origin of Acremeremophilanes, the Fungal "Sesquiterpene" Metabolites. Microbiol Spectr 2022; 10:e0179322. [PMID: 35938791 PMCID: PMC9430172 DOI: 10.1128/spectrum.01793-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/18/2022] [Indexed: 12/02/2022] Open
Abstract
Eremophilanes are a large group of "sesquiterpenes" produced by plants and fungi, with more than 180 compounds being known in fungi alone. Many of these compounds are phytotoxic, antimicrobial, anticancer and immunomodulators, and hence are of great economic values. Acremeremophilanes A to O have earlier been reported in a marine isolate of Acremonium sp. We report here the presence of Acremeremophilane I, G, K, N, and O, in a plant beneficial fungus Trichoderma virens, in a strain-specific manner. We also describe a novel, P strain-specific polyketide synthase (PKS) gene cluster in T. virens. This gene cluster, designated amm cluster, is absent in the genome of a Q strain of T. virens, and in other Trichoderma spp.; instead, a near identical cluster is present in the genome of the toxic mold Stachybotrys chartarum. Using gene knockout, we provide evidence that acremeremophilanes are biosynthesized via a polyketide route, and not via the mevalonate/terpene synthesis route as believed. We propose here that the 10-carbon skeleton is a product of polyketide synthase, to which a five-carbon isoprene unit is added by a prenyl transferase (PT), a gene for which is present next to the PKS gene in the genome. Based on this evidence, we propose that at least some of the eremophilanes classified in literature as sesquiterpenes (catalyzed by terpene cyclase) are actually meroterpenes (catalyzed by PKSs and PTs), and that the core moiety is not a sesquiterpene, but a hybrid polyketide/isoprene unit. IMPORTANCE The article contradicts the established fact that acremeremophilane metabolites produced by fungi are sesquiterpenes; instead, our findings suggest that at least some of these well-studied metabolites are of polyketide origin. Acremeremophilane metabolites are of medicinal significance, and the present findings have implications for the metabolic engineering of these metabolites and also their overproduction in microbial cell factories.
Collapse
Affiliation(s)
- Ravindra Bansal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Sunil Kumar Sethy
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Zareen Khan
- National Referral Laboratory, ICAR–National Research Centre for Grapes, Pune, Maharashtra, India
| | - Nasiruddin Shaikh
- National Referral Laboratory, ICAR–National Research Centre for Grapes, Pune, Maharashtra, India
| | - Kaushik Banerjee
- National Referral Laboratory, ICAR–National Research Centre for Grapes, Pune, Maharashtra, India
| | - Prasun K. Mukherjee
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| |
Collapse
|
3
|
Gliotoxin, an Immunosuppressive Fungal Metabolite, Primes Plant Immunity: Evidence from Trichoderma virens-Tomato Interaction. mBio 2022; 13:e0038922. [PMID: 35862794 PMCID: PMC9426506 DOI: 10.1128/mbio.00389-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Beneficial interaction of members of the fungal genus Trichoderma with plant roots primes the plant immune system, promoting systemic resistance to pathogen infection. Some strains of Trichoderma virens produce gliotoxin, a fungal epidithiodioxopiperazine (ETP)-type secondary metabolite that is toxic to animal cells. It induces apoptosis, prevents NF-κB activation via the inhibition of the proteasome, and has immunosuppressive properties. Gliotoxin is known to be involved in the antagonism of rhizosphere microorganisms. To investigate whether this metabolite has a role in the interaction of Trichoderma with plant roots, we compared gliotoxin-producing and nonproducing T. virens strains. Both colonize the root surface and outer layers, but they have differential effects on root growth and architecture. The responses of tomato plants to a pathogen challenge were followed at several levels: lesion development, levels of ethylene, and reactive oxygen species. The transcriptomic signature of the shoot tissue in response to root interaction with producing and nonproducing T. virens strains was monitored. Gliotoxin producers provided stronger protection against foliar pathogens, compared to nonproducing strains. This was reflected in the transcriptomic signature, which showed the induction of defense-related genes. Two markers of plant defense response, PR1 and Pti-5, were differentially induced in response to pure gliotoxin. Gliotoxin thus acts as a microbial signal, which the plant immune system recognizes, directly or indirectly, to promote a defense response. IMPORTANCE A single fungal metabolite induces far-reaching transcriptomic reprogramming in the plant, priming immune responses and defense, in contrast to its immunosuppressive effect on animal cells. While the negative effects of gliotoxin-producing Trichoderma strains on growth may be observed only under a particular set of laboratory conditions, gliotoxin-linked molecular patterns, including the potential for limited cell death, could strongly prime plant defense, even in mature soil-grown plants in which the same Trichoderma strain promotes growth.
Collapse
|
4
|
Trichoderma and Its Products From Laboratory to Patient Bedside in Medical Science: An Emerging Aspect. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Bansal R, Pachauri S, Gururajaiah D, Sherkhane PD, Khan Z, Gupta S, Banerjee K, Kumar A, Mukherjee PK. Dual role of a dedicated GAPDH in the biosynthesis of volatile and non-volatile metabolites- novel insights into the regulation of secondary metabolism in Trichoderma virens. Microbiol Res 2021; 253:126862. [PMID: 34563853 DOI: 10.1016/j.micres.2021.126862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/16/2021] [Accepted: 09/06/2021] [Indexed: 11/25/2022]
Abstract
Trichoderma virens produces viridin/viridiol, heptelidic (koningic) acid, several volatile sesquiterpenes and gliotoxin (Q strains) or gliovirin (P strains). We earlier reported that deletion of the terpene cyclase vir4 and a glyceraldehyde-3-phosphate dehydrogenase (GAPDH, designated as vGPD) associated with the "vir" cluster abrogated the biosynthesis of several volatile sesquiterpene metabolites. Here we show that, the deletion of this GAPDH also impairs the biosynthesis of heptelidic acid (a non-volatile sesquiterpene), viridin (steroid) and gliovirin (non-ribosomal peptide), indicating regulation of non-volatile metabolite biosynthesis by this GAPDH that is associated with a secondary metabolism gene cluster. To gain further insights into the details of this novel form of regulation, we identified the terpene cyclase gene responsible for heptelidic acid biosynthesis (hereafter designated as has1) and prove that the expression of this gene is regulated by vGPD. Interestingly, deletion of has1 impaired biosynthesis of heptelidic acid (HA), viridin and gliovirin, but not of volatile sesquiterpenes. Deletion of the vir cluster associated terpene cyclase gene (vir4), located next to the vGPD gene, did not impair biosynthesis of HA, viridin or gliovirin. We thus unveil a novel circuitry of regulation of secondary metabolism where an HA-tolerant GAPDH isoform (vGPD) regulates HA biosynthesis through the transcriptional regulation of the HA-synthase gene (which is not part of the "vir" cluster). Interestingly, impairment of HA biosynthesis leads to the down-regulation of biosynthesis of other non-volatile secondary metabolites, but not of volatile secondary metabolites. We thus provide evidence that the "vir" cluster associated, HA-tolerant GAPDH in T. virens participates in the biosynthesis of volatile sesquiterpenes as a biosynthetic enzyme, and regulates the production of non-volatile metabolites via regulation of HA biosynthesis. The orthologue of the "vir" cluster in Aspergillus oryzae was earlier reported to synthesize HA by another group. Our study thus proves that the same gene cluster can code for unrelated metabolites in different species.
Collapse
Affiliation(s)
- Ravindra Bansal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Shikha Pachauri
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Deepa Gururajaiah
- Department of Plant Pathology, Jawaharlal Nehru Krishi Vishwa Vidyalaya, College of Agriculture, Jabalpur 482004, India
| | - Pramod D Sherkhane
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Zareen Khan
- National Referral Laboratory, ICAR- National Research Centre for Grapes, Pune 412307. India
| | - Sumit Gupta
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Kaushik Banerjee
- National Referral Laboratory, ICAR- National Research Centre for Grapes, Pune 412307. India
| | - Ashish Kumar
- Department of Plant Pathology, Jawaharlal Nehru Krishi Vishwa Vidyalaya, College of Agriculture, Jabalpur 482004, India
| | - Prasun K Mukherjee
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
6
|
Zhang L, Wang Z, Yuan X, Sui R, Falahati M. Evaluation of heptelidic acid as a potential inhibitor for tau aggregation-induced Alzheimer's disease and associated neurotoxicity. Int J Biol Macromol 2021; 183:1155-1161. [PMID: 33971235 DOI: 10.1016/j.ijbiomac.2021.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/13/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
Tau is a major component of protein plaques in tauopathies, especially Alzheimer's disease (AD). The purpose of the present study is to explore the inhibitory effects of heptelidic acid as a bioactive compound from fungus T. koningii on tau fibrillization and associated neurotoxicity. The influences of various concentrations of heptelidic acid on tau fibrillization and underlying neurotoxicity were explored by assessment of the biophysical (ThT/Nile red fluorescence, CR absorbance, CD, and TEM) and cellular (MTT, LDH, and caspase-3) assays. It was shown that heptelidic acid inhibited tau fibrillization in a concentration-dependent manner. On the other hand, cellular assays indicated that the viability, LDH release, and caspase-3 activity were regulated when neurons were exposed to tau samples co-incubated with heptelidic acid. In conclusion, it may be indicated that heptelidic acid inhibited tau fibrillization which was accompanied by formation of amorphous aggregated species of tau with much less neurotoxicity than tau amyloid alone. Thus, heptelidic acid can be considered as a potential candidate in preventive care studies to inhibit the formation of tau plaques as neurotoxic species.
Collapse
Affiliation(s)
- Lei Zhang
- School of Nursing, Jinzhou Medical University, Jinzhou 121099, China
| | - Zhuo Wang
- School of Nursing, Jinzhou Medical University, Jinzhou 121099, China
| | - Xueling Yuan
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121099, China
| | - Rubo Sui
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121099, China.
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
7
|
Shenouda ML, Cox RJ. Molecular methods unravel the biosynthetic potential of Trichoderma species. RSC Adv 2021; 11:3622-3635. [PMID: 35424278 PMCID: PMC8694227 DOI: 10.1039/d0ra09627j] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/10/2021] [Indexed: 12/14/2022] Open
Abstract
Members of the genus Trichoderma are a well-established and studied group of fungi, mainly due to their efficient protein production capabilities and their biocontrol activities. Despite the immense interest in the use of different members of this species as biopesticides and biofertilizers, the study of their active metabolites and their biosynthetic gene clusters has not gained significant attention until recently. Here we review the challenges and opportunities in exploiting the full potential of Trichoderma spp. for the production of natural products and new metabolic engineering strategies used to overcome some of these challenges.
Collapse
Affiliation(s)
- Mary L Shenouda
- OCI, BMWZ, Leibniz University of Hannover Schneiderberg 38 30167 Hannover Germany
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University 21521 Egypt
| | - Russell J Cox
- OCI, BMWZ, Leibniz University of Hannover Schneiderberg 38 30167 Hannover Germany
| |
Collapse
|