1
|
Noguchi S, Kajimoto T, Kumamoto T, Shingai M, Narasaki S, Urabe T, Imamura S, Harada K, Hide I, Tanaka S, Yanase Y, Nakamura SI, Tsutsumi YM, Sakai N. Features and mechanisms of propofol-induced protein kinase C (PKC) translocation and activation in living cells. Front Pharmacol 2023; 14:1284586. [PMID: 38026993 PMCID: PMC10662334 DOI: 10.3389/fphar.2023.1284586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background and purpose: In this study, we aimed to elucidate the action mechanisms of propofol, particularly those underlying propofol-induced protein kinase C (PKC) translocation. Experimental approach: Various PKCs fused with green fluorescent protein (PKC-GFP) or other GFP-fused proteins were expressed in HeLa cells, and their propofol-induced dynamics were observed using confocal laser scanning microscopy. Propofol-induced PKC activation in cells was estimated using the C kinase activity receptor (CKAR), an indicator of intracellular PKC activation. We also examined PKC translocation using isomers and derivatives of propofol to identify the crucial structural motifs involved in this process. Key results: Propofol persistently translocated PKCα conventional PKCs and PKCδ from novel PKCs (nPKCs) to the plasma membrane (PM). Propofol translocated PKCδ and PKCη of nPKCs to the Golgi apparatus and endoplasmic reticulum, respectively. Propofol also induced the nuclear translocation of PKCζ of atypical PKCs or proteins other than PKCs, such that the protein concentration inside and outside the nucleus became uniform. CKAR analysis revealed that propofol activated PKC in the PM and Golgi apparatus. Moreover, tests using isomers and derivatives of propofol predicted that the structural motifs important for the induction of PKC and nuclear translocation are different. Conclusion and implications: Propofol induced the subtype-specific intracellular translocation of PKCs and activated PKCs. Additionally, propofol induced the nuclear translocation of PKCs and other proteins, probably by altering the permeability of the nuclear envelope. Interestingly, propofol-induced PKC and nuclear translocation may occur via different mechanisms. Our findings provide insights into the action mechanisms of propofol.
Collapse
Affiliation(s)
- Soma Noguchi
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Taketoshi Kajimoto
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takuya Kumamoto
- Department of Synthetic Organic Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masashi Shingai
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Soshi Narasaki
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Anesthesiology and Critical Care, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoaki Urabe
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Anesthesiology and Critical Care, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Serika Imamura
- Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kana Harada
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Izumi Hide
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Sigeru Tanaka
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuhki Yanase
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shun-Ichi Nakamura
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuo M. Tsutsumi
- Department of Anesthesiology and Critical Care, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
2
|
Brown CR, Foster JD. Palmitoylation Regulates Human Serotonin Transporter Activity, Trafficking, and Expression and Is Modulated by Escitalopram. ACS Chem Neurosci 2023; 14:3431-3443. [PMID: 37644775 DOI: 10.1021/acschemneuro.3c00319] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
In the central nervous system, serotonergic signaling modulates sleep, mood, and cognitive control. During serotonergic transmission, the synaptic concentration of serotonin is tightly controlled in a spatial and temporal manner by the serotonin transporter (SERT). Dysregulation of this process is implicated in the pathogenesis of major-depressive, obsessive-compulsive, and autism-spectrum disorders, which makes SERT a primary target for prescription therapeutics, most notably selective serotonin reuptake inhibitors (SSRIs). S-Palmitoylation, the reversible addition of a 16-carbon fatty acid to proteins, is an increasingly recognized dynamic post-translational modification responsible for modulating protein kinetics, trafficking, and localization patterns in response to physiologic/cellular stimuli. In this study, we reveal that human SERTs are a target for palmitoylation, and using the irreversible palmitoyl acyltransferase inhibitor 2-bromopalmitate (2BP), we have identified several associated functions. Using a lower dose of 2BP in shorter time frames, inhibition of palmitoylation was associated with reductions in SERT Vmax, without changes in Km or surface expression. With higher doses of 2BP for longer time intervals, inhibition of palmitoylation was consistent with the loss of cell surface and total SERT protein, suggesting palmitoylation is an important mechanism in regulating SERT trafficking and maintenance of SERT protein through biogenic or anti-degradative processes. Additionally, we have identified that treatment with the SSRI escitalopram decreases SERT palmitoylation analogous to 2BP, reducing SERT surface expression and transport capacity. Ultimately, these results reveal that palmitoylation is a major regulatory mechanism for SERT kinetics and trafficking and may be the mechanism responsible for escitalopram-induced internalization and ultimately decreased cellular SERT protein levels.
Collapse
Affiliation(s)
- Christopher R Brown
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota 58202, United States
| | - James D Foster
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota 58202, United States
| |
Collapse
|
3
|
Narasaki S, Noguchi S, Urabe T, Harada K, Hide I, Tanaka S, Yanase Y, Kajimoto T, Uchida K, Tsutsumi YM, Sakai N. Identification of protein kinase C domains involved in its translocation induced by propofol. Eur J Pharmacol 2023; 955:175806. [PMID: 37230321 DOI: 10.1016/j.ejphar.2023.175806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/21/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
Propofol is widely used for general anesthesia and sedation; however, the mechanisms of its anesthetic and adverse effects are not fully understood. We have previously shown that propofol activates protein kinase C (PKC) and induces its translocation in a subtype-specific manner. The purpose of this study was to identify the PKC domains involved in propofol-induced PKC translocation. The regulatory domains of PKC consist of C1 and C2 domains, and the C1 domain is subdivided into the C1A and C1B subdomains. Mutant PKCα and PKCδ with each domain deleted were fused with green fluorescent protein (GFP) and expressed in HeLa cells. Propofol-induced PKC translocation was observed by time-lapse imaging using a fluorescence microscope. The results showed that persistent propofol-induced PKC translocation to the plasma membrane was abolished by the deletion of both C1 and C2 domains in PKCα and by the deletion of the C1B domain in PKCδ. Therefore, propofol-induced PKC translocation involves the C1 and C2 domains of PKCα and the C1B domain of PKCδ. We also found that treatment with calphostin C, a C1 domain inhibitor, abolished propofol-induced PKCδ translocation. In addition, calphostin C inhibited the propofol-induced phosphorylation of endothelial nitric oxide synthase (eNOS). These results suggest that it may be possible to modulate the exertion of propofol effects by regulating the PKC domains involved in propofol-induced PKC translocation.
Collapse
Affiliation(s)
- Soshi Narasaki
- Dept of Mol & Pharmacol Neurosci, Grad Sch of Biomed & Health Sci, Hiroshima Univ, Japan; Dept of Anesthesiology & Critical Care, Grad Sch of Biomed & Health Sci, Hiroshima Univ, Japan
| | - Soma Noguchi
- Dept of Mol & Pharmacol Neurosci, Grad Sch of Biomed & Health Sci, Hiroshima Univ, Japan
| | - Tomoaki Urabe
- Dept of Mol & Pharmacol Neurosci, Grad Sch of Biomed & Health Sci, Hiroshima Univ, Japan; Dept of Anesthesiology & Critical Care, Grad Sch of Biomed & Health Sci, Hiroshima Univ, Japan
| | - Kana Harada
- Dept of Mol & Pharmacol Neurosci, Grad Sch of Biomed & Health Sci, Hiroshima Univ, Japan
| | - Izumi Hide
- Dept of Mol & Pharmacol Neurosci, Grad Sch of Biomed & Health Sci, Hiroshima Univ, Japan
| | - Shigeru Tanaka
- Dept of Mol & Pharmacol Neurosci, Grad Sch of Biomed & Health Sci, Hiroshima Univ, Japan
| | - Yuhki Yanase
- Dept of Pharmacotherapy, Grad Sch of Biomed & Health Sci, Hiroshima Univ, Japan
| | - Taketoshi Kajimoto
- Div of Biochem, Dept of Biochem and Mol Biol, Kobe Univ Grad Sch of Med, Japan
| | - Kazue Uchida
- Dept of Dermatology, Grad Sch of Biomed & Health Sci, Hiroshima Univ, Japan
| | - Yasuo M Tsutsumi
- Dept of Anesthesiology & Critical Care, Grad Sch of Biomed & Health Sci, Hiroshima Univ, Japan
| | - Norio Sakai
- Dept of Mol & Pharmacol Neurosci, Grad Sch of Biomed & Health Sci, Hiroshima Univ, Japan.
| |
Collapse
|
4
|
Brown CR, Foster JD. Palmitoylation regulates human serotonin transporter activity, trafficking, and expression and is modulated by escitalopram. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540092. [PMID: 37214849 PMCID: PMC10197645 DOI: 10.1101/2023.05.09.540092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the central nervous system, serotonergic signaling modulates sleep, mood, and cognitive control. During neuronal transmission, the synaptic concentration of serotonin is tightly controlled in a spatial and temporal manner by the serotonin transporter (SERT). Dysregulation of serotonergic signaling is implicated in the pathogenesis of major-depressive, obsessive-compulsive, and autism-spectrum disorders, which makes SERT a primary target for prescription therapeutics, most notably selective-serotonin reuptake inhibitors (SSRIs). S-palmitoylation is an increasingly recognized dynamic post-translational modification, regulating protein kinetics, trafficking, and localization patterns upon physiologic/cellular stimuli. In this study, we reveal that human SERTs are a target for palmitoylation, and using the irreversible palmitoyl acyl-transferase inhibitor, 2-bromopalmitate (2BP) we have identified several associated functions. Using a lower dose of 2BP in shorter time frames, inhibition of palmitoylation was associated with reductions in SERT V max , without changes in K m or surface expression. With higher doses of 2BP for longer time intervals, inhibition of palmitoylation was consistent with the loss of cell surface and total SERT protein, suggesting palmitoylation is an important mechanism in regulating SERT trafficking and maintenance of SERT protein through biogenic or anti-degradative processes. Additionally, we have identified that treatment with the SSRI escitalopram decreases SERT palmitoylation analogous to 2BP, reducing SERT surface expression and transport capacity. Ultimately, these results reveal palmitoylation is a major regulatory mechanism for SERT kinetics and trafficking and may be the mechanism responsible for escitalopram-induced internalization and loss of total SERT protein.
Collapse
|
5
|
Gariballa N, Kizhakkedath P, Akawi N, John A, Ali BR. Endoglin Wild Type and Variants Associated With Hereditary Hemorrhagic Telangiectasia Type 1 Undergo Distinct Cellular Degradation Pathways. Front Mol Biosci 2022; 9:828199. [PMID: 35281255 PMCID: PMC8916587 DOI: 10.3389/fmolb.2022.828199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/27/2022] [Indexed: 02/05/2023] Open
Abstract
Endoglin, also known as cluster of differentiation 105 (CD105), is an auxiliary receptor in the TGFβ signaling pathway. It is predominantly expressed in endothelial cells as a component of the heterotetrameric receptor dimers comprising type I, type II receptors and the binding ligands. Mutations in the gene encoding Endoglin (ENG) have been associated with hereditary hemorrhagic telangiectasia type 1 (HHT1), an autosomal dominant inherited disease that is generally characterized by vascular malformation. Secretory and many endomembrane proteins synthesized in the Endoplasmic reticulum (ER) are subjected to stringent quality control mechanisms to ensure that only properly folded and assembled proteins are trafficked forward through the secretory pathway to their sites of action. We have previously demonstrated that some Endoglin variants causing HHT1 are trapped in the ER and fail to traffic to their normal localization in plasma membrane, which suggested the possible involvement of ER associated protein degradation (ERAD) in their molecular pathology. In this study, we have investigated, for the first time, the degradation routes of Endoglin wild type and two mutant variants, P165L and V105D, and previously shown to be retained in the ER. Stably transfected HEK293 cells were treated with proteasomal and lysosomal inhibitors in order to elucidate the exact molecular mechanisms underlying the loss of function phenotype associated with these variants. Our results have shown that wild type Endoglin has a relatively short half-life of less than 2 hours and degrades through both the lysosomal and proteasomal pathways, whereas the two mutant disease-causing variants show high stability and predominantly degrades through the proteasomal pathway. Furthermore, we have demonstrated that Endoglin variants P165L and V105D are significantly accumulated in HEK293 cells deficient in HRD1 E3 ubiquitin ligase; a major ERAD component. These results implicate the ERAD mechanism in the pathology of HHT1 caused by the two variants. It is expected that these results will pave the way for more in-depth research studies that could provide new windows for future therapeutic interventions.
Collapse
Affiliation(s)
- Nesrin Gariballa
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Praseetha Kizhakkedath
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Nadia Akawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Anne John
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
6
|
Hirakawa H, Taguchi K, Murakawa S, Asano M, Noguchi S, Kikkawa S, Harada K, Adachi N, Ueyama T, Hide I, Tanaka S, Sakai N. Effects of flurbiprofen on the functional regulation of serotonin transporter and its misfolded mutant. J Pharmacol Sci 2021; 148:187-195. [PMID: 34924125 DOI: 10.1016/j.jphs.2021.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022] Open
Abstract
Flurbiprofen, a nonsteroidal anti-inflammatory drug, reportedly exhibits chemical chaperone activity. Herein, we investigated the role of flurbiprofen in regulating serotonin transporter (SERT) function via membrane trafficking. We used COS-7 cells transiently expressing wild-type (WT) SERT or a C-terminus-deleted mutant of SERT (SERTΔCT), a misfolded protein. Flurbiprofen treatment reduced the expression of immaturely glycosylated SERT and enhanced the expression of maturely glycosylated SERT. In addition, we observed increased serotonin uptake in SERT-expressing cells. These results suggest that flurbiprofen modulates SERT function by promoting membrane trafficking. In SERTΔCT-expressing cells, flurbiprofen reduced the protein expression and uptake activity of SERTΔCT. Furthermore, flurbiprofen inhibited the formation of SERTΔCT aggregates. Studies using flurbiprofen enantiomers suggested that these effects of flurbiprofen on SERT were not mediated via cyclooxygenase inhibition. The levels of GRP78/BiP, an endoplasmic reticulum (ER) stress marker, were assessed to elucidate whether flurbiprofen can ameliorate SERTΔCT-induced ER stress. Interestingly, flurbiprofen induced GRP78/BiP expression only under ER stress conditions and not under steady-state conditions. In HRD1 E3 ubiquitin ligase knockdown cells, flurbiprofen affected the ER-associated degradation system. Collectively, the findings suggest that flurbiprofen may function as an inducer of molecular chaperones, in addition to functioning as a chemical chaperone.
Collapse
Affiliation(s)
- Haruki Hirakawa
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Kei Taguchi
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Seiya Murakawa
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Masaya Asano
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Soma Noguchi
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Satoshi Kikkawa
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Kana Harada
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Naoko Adachi
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Izumi Hide
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Shigeru Tanaka
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kausmi, Minami-ku, Hiroshima 734-8551, Japan.
| |
Collapse
|