1
|
Reyad-Ul-Ferdous M, Gul I, Raheem MA, Pandey V, Qin P. Mitochondrial UCP1: Potential thermogenic mechanistic switch for the treatment of obesity and neurodegenerative diseases using natural and epigenetic drug candidates. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155672. [PMID: 38810549 DOI: 10.1016/j.phymed.2024.155672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/28/2024] [Accepted: 04/21/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Brown fat is known to provide non-shivering thermogenesis through mitochondrial uncoupling mediated by uncoupling protein 1 (UCP1). Non-shivering is not dependent on UCP2, UCP4, and BMCP1/UCP5 genes, which are distinct from UCP1 in a way that they are not constitutive uncouplers. Although they are susceptible to free fatty acid and free radical activation, their functioning has a significant impact on the performance of neurons. METHODOLOGY Using subject-specific keywords (Adipose tissue; Adipocytes; Mitochondria; Obesity; Thermogenesis; UCP's in Neurodegeneration; Alzheimer's disease; Parkinson's disease), research articles and reviews were retrieved from Web of Science, ScienceDirect, Google Scholar, and PubMed. This article includespublications published between 2018 and 2023. The drugs that upregulate UCP1 are included in the study while the drugs that do not impact UCP1 are were not included. RESULTS Neuronal UCPs have a direct impact on synaptic plasticity, neurodegenerative processes, and neurotransmission, by modulating calcium flux, mitochondrial biogenesis, local temperature, and free radical generation. Numerous significant advances in the study of neuronal UCPs and neuroprotection are still to be made. Identification of the tissue-dependent effects of UCPs is essential first. Pharmacologically targeting neuronal UCPs is a key strategy for preventing both neurodegenerative diseases and physiological aging. Given that UCP2 has activities that are tissue-specific, it will be essential to develop treatments without harmful side effects. The triggering of UCPs by CoQ, an essential cofactor, produces nigral mitochondrial uncoupling, reduces MPTP-induced toxicity, and may even decrease the course of Parkinson's disease, according to early indications. CONCLUSION Herein, we explore the potential of UCP1 as a therapeutic target for treating obesity, neurodegenerative diseases as well as a potential activator of both synthetic and natural drugs. A deeper knowledge of synaptic signaling and neurodegeneration may pave the way to new discoveries regarding the functioning and controlling of these genes.
Collapse
Affiliation(s)
- Md Reyad-Ul-Ferdous
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Ijaz Gul
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Muhammad Akmal Raheem
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Vijay Pandey
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
2
|
Stauffer WT, Goodman AZ, Gallay PA. Cyclophilin inhibition as a strategy for the treatment of human disease. Front Pharmacol 2024; 15:1417945. [PMID: 39045055 PMCID: PMC11264201 DOI: 10.3389/fphar.2024.1417945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/14/2024] [Indexed: 07/25/2024] Open
Abstract
Cyclophilins (Cyps), characterized as peptidyl-prolyl cis-trans isomerases (PPIases), are highly conserved and ubiquitous, playing a crucial role in protein folding and cellular signaling. This review summarizes the biochemical pathways mediated by Cyps, including their involvement in pathological states such as viral replication, inflammation, and cancer progression, to underscore the therapeutic potential of Cyp inhibition. The exploration of Cyp inhibitors (CypI) in this review, particularly non-immunosuppressive cyclosporine A (CsA) derivatives, highlights their significance as therapeutic agents. The structural and functional nuances of CsA derivatives are examined, including their efficacy, mechanism of action, and the balance between therapeutic benefits and off-target effects. The landscape of CypI is evaluated to emphasize the clinical need for targeted approaches to exploit the complex biology of Cyps and to propose future directions for research that may enhance the utility of non-immunosuppressive CsA derivatives in treating diseases where Cyps play a key pathological role.
Collapse
Affiliation(s)
| | | | - Philippe A. Gallay
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
3
|
Lu H. Inflammatory liver diseases and susceptibility to sepsis. Clin Sci (Lond) 2024; 138:435-487. [PMID: 38571396 DOI: 10.1042/cs20230522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/09/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Patients with inflammatory liver diseases, particularly alcohol-associated liver disease and metabolic dysfunction-associated fatty liver disease (MAFLD), have higher incidence of infections and mortality rate due to sepsis. The current focus in the development of drugs for MAFLD is the resolution of non-alcoholic steatohepatitis and prevention of progression to cirrhosis. In patients with cirrhosis or alcoholic hepatitis, sepsis is a major cause of death. As the metabolic center and a key immune tissue, liver is the guardian, modifier, and target of sepsis. Septic patients with liver dysfunction have the highest mortality rate compared with other organ dysfunctions. In addition to maintaining metabolic homeostasis, the liver produces and secretes hepatokines and acute phase proteins (APPs) essential in tissue protection, immunomodulation, and coagulation. Inflammatory liver diseases cause profound metabolic disorder and impairment of energy metabolism, liver regeneration, and production/secretion of APPs and hepatokines. Herein, the author reviews the roles of (1) disorders in the metabolism of glucose, fatty acids, ketone bodies, and amino acids as well as the clearance of ammonia and lactate in the pathogenesis of inflammatory liver diseases and sepsis; (2) cytokines/chemokines in inflammatory liver diseases and sepsis; (3) APPs and hepatokines in the protection against tissue injury and infections; and (4) major nuclear receptors/signaling pathways underlying the metabolic disorders and tissue injuries as well as the major drug targets for inflammatory liver diseases and sepsis. Approaches that focus on the liver dysfunction and regeneration will not only treat inflammatory liver diseases but also prevent the development of severe infections and sepsis.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| |
Collapse
|
4
|
Yang M, Wang Z, Xie J, Reyad‐ul‐Ferdous M, Li S, Song Y. Cyclophilin D as a potential therapeutic target of liver ischemia/reperfusion injury by mediating crosstalk between apoptosis and autophagy. Chronic Dis Transl Med 2023; 9:238-249. [PMID: 37711863 PMCID: PMC10497823 DOI: 10.1002/cdt3.78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/05/2023] [Accepted: 05/24/2023] [Indexed: 09/16/2023] Open
Abstract
Background Liver ischemia/reperfusion (I/R) injury is a complex and multifactorial pathophysiological process. It is well recognized that the membrane permeability transition pore (mPTP) opening of mitochondria plays a crucial role in cell death after I/R injury. Cyclophilin D (CypD) is a critical positive regulator of mPTP. However, the effect of CypD on the pathogenesis of liver I/R injury and whether CypD is a potential therapeutic target are still unclear. Methods We constructed liver-specific CypD knockout and AAV8-peptidyl prolyl isomerase F (PPIF) overexpression mice. Then, a 70% liver I/R injury model was established in mice, with 90 min of ischemia and 6 h of reperfusion. The liver function was detected by the level of serum glutamic pyruvic transaminase (alanine transaminase) and glutamic oxaloacetic transaminase (aspartate aminotransferase), the liver damage score and degree of necrosis were measured by hematoxylin and eosin (H&E) staining of liver tissues. Reactive oxygen species (ROS) staining, apoptosis, and autophagy-related molecules were used to detect apoptosis and autophagy during liver I/R. Results The liver-specific knockout of CypD alleviated necrosis and dysfunction in liver I/R injury, by reducing the excessive production of ROS, and inhibiting cell apoptosis and autophagy. On the contrary, overexpression of CypD exacerbated I/R-induced liver damage. Conclusion We found that the downregulation of CypD expression alleviated liver I/R injury by reducing apoptosis and autophagy through caspase-3/Beclin1 crosstalk; in contrast, the upregulation of CypD expression aggravated liver I/R injury. Therefore, interfering with the expression of CypD seems to be a promising treatment for liver I/R injury.
Collapse
Affiliation(s)
- Mengjiao Yang
- Department of EndocrinologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Shandong Key Laboratory of Endocrinology and Lipid MetabolismJinanShandongChina
- Shandong Institute of Endocrine and Metabolic DiseasesJinanShandongChina
| | - Zhihui Wang
- Department of EndocrinologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Shandong Key Laboratory of Endocrinology and Lipid MetabolismJinanShandongChina
- Shandong Institute of Endocrine and Metabolic DiseasesJinanShandongChina
| | - Jin Xie
- Shandong Key Laboratory of Endocrinology and Lipid MetabolismJinanShandongChina
| | - Md. Reyad‐ul‐Ferdous
- Shandong Key Laboratory of Endocrinology and Lipid MetabolismJinanShandongChina
- Shandong Institute of Endocrine and Metabolic DiseasesJinanShandongChina
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Siying Li
- Shandong Institute of Endocrine and Metabolic DiseasesJinanShandongChina
- Department of Endocrinology and MetabolismCentral Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Yongfeng Song
- Department of EndocrinologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Shandong Key Laboratory of Endocrinology and Lipid MetabolismJinanShandongChina
- Shandong Institute of Endocrine and Metabolic DiseasesJinanShandongChina
- Department of Endocrinology and MetabolismCentral Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| |
Collapse
|
5
|
Gegunde S, Alfonso A, Cifuentes JM, Alvariño R, Pérez-Fuentes N, Vieytes MR, Botana LM. Cyclophilins modify their profile depending on the organ or tissue in a murine inflammatory model. Int Immunopharmacol 2023; 120:110351. [PMID: 37235965 DOI: 10.1016/j.intimp.2023.110351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023]
Abstract
Inflammation is the leading subjacent cause of many chronic diseases. Despite several studies in the last decades, the molecular mechanism involving its pathophysiology is not fully known. Recently, the implication of cyclophilins in inflammatory-based diseases has been demonstrated. However, the main role of cyclophilins in these processes remains elusive. Hence, a mouse model of systemic inflammation was used to better understand the relationship between cyclophilins and their tissue distribution. To induce inflammation, mice were fed with high-fat diet for 10 weeks. In these conditions, serum levels of interleukins 2 and 6, tumour necrosis factor-α, interferon-ϒ, and the monocyte chemoattractant protein 1 were elevated, evidencing a systemic inflammatory state. Then, in this inflammatory model, cyclophilins and CD147 profiles in the aorta, liver, and kidney were studied. The results demonstrate that, upon inflammatory conditions, cyclophilins A and C expression levels were increased in the aorta. Cyclophilins A and D were augmented in the liver, meanwhile, cyclophilins B and C were diminished. In the kidney, cyclophilins B and C levels were elevated. Furthermore, CD147 receptor was also increased in the aorta, liver, and kidney. In addition, when cyclophilin A was modulated, serum levels of inflammatory mediators were decreased, indicating a reduction in systemic inflammation. Besides, the expression levels of cyclophilin A and CD147 were also reduced in the aorta and liver, when cyclophilin A was modulated. Therefore, these results suggest that each cyclophilin has a different profile depending on the tissue, under inflammatory conditions.
Collapse
Affiliation(s)
- Sandra Gegunde
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain; Grupo de investigación Biodiscovery (IDIS), Lugo, Spain
| | - Amparo Alfonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain; Grupo de investigación Biodiscovery (IDIS), Lugo, Spain.
| | - J Manuel Cifuentes
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Rebeca Alvariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain; Grupo de investigación Biodiscovery (IDIS), Lugo, Spain
| | - Nadia Pérez-Fuentes
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain; Grupo de investigación Biodiscovery (IDIS), Lugo, Spain
| | - Mercedes R Vieytes
- Departamento de Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain; Grupo de investigación Biodiscovery (IDIS), Lugo, Spain.
| |
Collapse
|
6
|
Park SJ, Garcia Diaz J, Um E, Hahn YS. Major roles of kupffer cells and macrophages in NAFLD development. Front Endocrinol (Lausanne) 2023; 14:1150118. [PMID: 37274349 PMCID: PMC10235620 DOI: 10.3389/fendo.2023.1150118] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an important public health problem with growing numbers of NAFLD patients worldwide. Pathological conditions are different in each stage of NAFLD due to various factors. Preclinical and clinical studies provide evidence for a crucial role of immune cells in NAFLD progression. Liver-resident macrophages, kupffer cells (KCs), and monocytes-derived macrophages are the key cell types involved in the progression of NAFLD, non-alcoholic steatohepatitis (NASH), and hepatocellular carcinoma (HCC). Their unique polarization contributes to the progression of NAFLD. KCs are phagocytes with self-renewal abilities and play a role in regulating and maintaining homeostasis. Upon liver damage, KCs are activated and colonized at the site of the damaged tissue. The secretion of inflammatory cytokines and chemokines by KCs play a pivotal role in initiating NAFLD pathogenesis. This review briefly describes the role of immune cells in the immune system in NAFLD, and focuses on the pathological role and molecular pathways of KCs and recruited macrophages. In addition, the relationship between macrophages and insulin resistance is described. Finally, the latest therapeutics that target KCs and macrophages are summarized for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Soo-Jeung Park
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Josefina Garcia Diaz
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Eugene Um
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Young S. Hahn
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
7
|
Reyad-ul-Ferdous M, Song Y. Histone deacetylase (HDAC) inhibitor Curcumin upregulates mitochondrial uncoupling protein1 (UCP1) and mitochondrial function in brown adipocytes, in-Silico study and screening natural drug library. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Reyad-ul-Ferdous M, Song Y. Baicalein modulates mitochondrial function by upregulating mitochondrial uncoupling protein-1 (UCP1) expression in brown adipocytes, cytotoxicity, and computational studies. Int J Biol Macromol 2022; 222:1963-1973. [DOI: 10.1016/j.ijbiomac.2022.09.285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
|
9
|
Ma H, Wu Y, Lv R, Chi H, Zhao Y, Li Y, Liu H, Ma Y, Zhu L, Guo X, Kong J, Wu J, Xing C, Zhang X, Min L. Cytochrome P450 mono-oxygenase CYP703A2 plays a central role in sporopollenin formation and ms5ms6 fertility in cotton. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2009-2025. [PMID: 35929662 DOI: 10.1111/jipb.13340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The double-recessive genic male-sterile (ms) line ms5 ms6 has been used to develop cotton (Gossypium hirsutum) hybrids for many years, but its molecular-genetic basis has remained unclear. Here, we identified the Ms5 and Ms6 loci through map-based cloning and confirmed their function in male sterility through CRISPR/Cas9 gene editing. Ms5 and Ms6 are highly expressed in stages 7-9 anthers and encode the cytochrome P450 mono-oxygenases CYP703A2-A and CYP703A2-D. The ms5 mutant carries a single-nucleotide C-to-T nonsense mutation leading to premature chain termination at amino acid 312 (GhCYP703A2-A312aa ), and ms6 carries three nonsynonymous substitutions (D98E, E168K, and G198R) and a synonymous mutation (L11L). Enzyme assays showed that GhCYP703A2 proteins hydroxylate fatty acids, and the ms5 (GhCYP703A2-A312aa ) and ms6 (GhCYP703A2-DD98E,E168K,G198R ) mutant proteins have decreased enzyme activities. Biochemical and lipidomic analyses showed that in ms5 ms6 plants, C12-C18 free fatty acid and phospholipid levels are significantly elevated in stages 7-9 anthers, while stages 8-10 anthers lack sporopollenin fluorescence around the pollen, causing microspore degradation and male sterility. Overall, our characterization uncovered functions of GhCYP703A2 in sporopollenin formation and fertility, providing guidance for creating male-sterile lines to facilitate hybrid cotton production and therefore exploit heterosis for improvement of cotton.
Collapse
Affiliation(s)
- Huanhuan Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuanlong Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruiling Lv
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, China
| | - Huabin Chi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunlong Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanlong Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yizan Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoping Guo
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Kong
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Xinjiang, 830091, China
| | - Jianyong Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Chaozhu Xing
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ling Min
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
10
|
Koszegi B, Balogh G, Berente Z, Vranesics A, Pollak E, Molnar L, Takatsy A, Poor V, Wahr M, Antus C, Eros K, Vigh L, Gallyas F, Peter M, Veres B. Remodeling of Liver and Plasma Lipidomes in Mice Lacking Cyclophilin D. Int J Mol Sci 2022; 23:ijms231911274. [PMID: 36232575 PMCID: PMC9569465 DOI: 10.3390/ijms231911274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
In recent years, several studies aimed to investigate the metabolic effects of non-functioning or absent cyclophilin D (CypD), a crucial regulatory component of mitochondrial permeability transition pores. It has been reported that the lack of CypD affects glucose and lipid metabolism. However, the findings are controversial regarding the metabolic pathways involved, and most reports describe the effect of a high-fat diet on metabolism. We performed a lipidomic analysis of plasma and liver samples of CypD-/- and wild-type (WT) mice to reveal the lipid-specific alterations resulting from the absence of CypD. In the CypD-/- mice compared to the WT animals, we found a significant change in 52% and 47% of the measured 225 and 201 lipid species in liver and plasma samples, respectively. The higher total lipid content detected in these tissues was not accompanied by abdominal fat accumulation assessed by nuclear magnetic resonance imaging. We also documented characteristic changes in the lipid composition of the liver and plasma as a result of CypD ablation with the relative increase in polyunsaturated membrane lipid species. In addition, we did not observe remarkable differences in the lipid distribution of hepatocytes using histochemistry, but we found characteristic changes in the hepatocyte ultrastructure in CypD-/- animals using electron microscopy. Our results highlight the possible long-term effects of CypD inhibition as a novel therapeutic consideration for various diseases.
Collapse
Affiliation(s)
- Balazs Koszegi
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, 7624 Pecs, Hungary
| | - Gabor Balogh
- Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, 6726 Szeged, Hungary
| | - Zoltan Berente
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, 7624 Pecs, Hungary
- Research Group for Experimental Diagnostic Imaging, University of Pecs Medical School, 7624 Pecs, Hungary
| | - Anett Vranesics
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, 7624 Pecs, Hungary
- Research Group for Experimental Diagnostic Imaging, University of Pecs Medical School, 7624 Pecs, Hungary
| | - Edit Pollak
- Department of Comparative Anatomy and Developmental Biology, Institute of Biology, Faculty of Natural Sciences, University of Pecs, 7624 Pecs, Hungary
| | - Laszlo Molnar
- Department of Comparative Anatomy and Developmental Biology, Institute of Biology, Faculty of Natural Sciences, University of Pecs, 7624 Pecs, Hungary
- Ecophysiological and Environmental Toxicological Research Group, Balaton Limnological Research Institute, Eötvös Loránd Research Network, 8237 Tihany, Hungary
| | - Aniko Takatsy
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, 7624 Pecs, Hungary
| | - Viktoria Poor
- Institute of Bioanalysis, Medical School, University of Pecs, 7624 Pecs, Hungary
| | - Matyas Wahr
- Institute of Bioanalysis, Medical School, University of Pecs, 7624 Pecs, Hungary
| | - Csenge Antus
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, 7624 Pecs, Hungary
| | - Krisztian Eros
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, 7624 Pecs, Hungary
- Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary
| | - Laszlo Vigh
- Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, 6726 Szeged, Hungary
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, 7624 Pecs, Hungary
- Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary
- ELKH-UP Nuclear-Mitochondrial Interactions Research Group, 1245 Budapest, Hungary
| | - Maria Peter
- Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, 6726 Szeged, Hungary
| | - Balazs Veres
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, 7624 Pecs, Hungary
- Correspondence:
| |
Collapse
|
11
|
Reyad-ul-Ferdous M, Abdalla M, Xiaoling L, Bian W, Xie J, Song Y. Epigenetic drug (XL019) JAK2 inhibitor increases mitochondrial function in brown adipocyte by upregulating mitochondrial uncoupling protein 1 (UCP1), screening of epigenetic drug libraries, cell viability, and in-silico study. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|