1
|
Velásquez-Orta SB, Yáñez-Noguez I, Ramírez IM, Ledesma MTO. Pilot-scale microalgae cultivation and wastewater treatment using high-rate ponds: a meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46994-47021. [PMID: 38985422 PMCID: PMC11297075 DOI: 10.1007/s11356-024-34000-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024]
Abstract
Microalgae cultivation in wastewater has been widely researched under laboratory conditions as per its potential to couple treatment with biomass production. Currently, only a limited number of published articles consider outdoor and long-term microalgae-bacteria cultivations in real wastewater environmental systems. The scope of this work is to describe microalgal cultivation steps towards high-rate algal pond (HRAP) scalability and identify key parameters that play a major role for biomass productivity under outdoor conditions and long-term cultivations. Reviewed pilot-scale HRAP literature is analysed using multivariate analysis to highlight key productivity parameters within environmental and operational factors. Wastewater treatment analysis indicated that HRAP can effectively remove 90% of NH4+, 70% of COD, and 50% of PO43-. Mean reference values of 210 W m-2 for irradiation, 18 °C for temperature, pH of 8.2, and HRT of 7.7 are derived from pilot-scale cultivations. Microalgae biomass productivity at a large scale is governed by solar radiation and NH4+ concentration, which are more important than retention time variations within investigated studies. Hence, selecting the correct type of location and a minimum of 70 mg L-1 of NH4+ in wastewater will have the greatest effect in microalgae productivity. A high nutrient wastewater content increases final biomass concentrations but not necessarily biomass productivity. Pilot-scale growth rates (~ 0.54 day-1) are half those observed in lab experiments, indicating a scaling-up bottleneck. Microalgae cultivation in wastewater enables a circular bioeconomy framework by unlocking microalgal biomass for the delivery of an array of products.
Collapse
Affiliation(s)
| | - Isaura Yáñez-Noguez
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.P. 04510, Ciudad de México, Alcaldía Coyoacán, México
| | - Ignacio Monje Ramírez
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.P. 04510, Ciudad de México, Alcaldía Coyoacán, México
| | - María Teresa Orta Ledesma
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.P. 04510, Ciudad de México, Alcaldía Coyoacán, México
| |
Collapse
|
2
|
Díaz S, Romero F, Suárez L, Ríos R, Alemán M, Venuleo M, Ortega Z. Characterization of Microalgae Biomass-Based Composites Obtained through Rotational Molding. Polymers (Basel) 2024; 16:1807. [PMID: 39000662 PMCID: PMC11243890 DOI: 10.3390/polym16131807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024] Open
Abstract
The wide range of applications and the numerous advantages of plastics have led to their excessive use, with subsequent damage to ecosystems. As an environmentally friendly alternative, biocomposites have gained much attention, and microalgae have become a potential source for their production. In this study, the use of washed and unwashed Spirulina in polyethylene-based composites has been evaluated as a way to prevent the thermooxidation of polyethylene, while at the same time, reducing the amount of virgin plastic used. Biocomposites were produced by rotomolding, testing different biomass contents and determining their mechanical and thermal performances as well as their water uptake level. Composites with up to 15% of biomass (by weight), a particularly high ratio for rotomolding, were satisfactorily produced. Using 5% of both biomasses did not significantly modify the behavior when compared with the neat PE samples' properties. For higher loadings, the use of non-washed biomass allowed us to obtain better properties, with added benefits related to using an unwashed biomass (less water consumption, lower costs and fewer environmental impacts). On the other hand, this study showed a promising beneficial effect on the thermooxidative resistance of composites, as the oxidation induction times were notably increased with biomass addition.
Collapse
Affiliation(s)
- Sara Díaz
- Departamento de Ingeniería de Procesos, Universidad de Las Palmas de Gran Canaria, Edificio de Fabricación Integrada, Parque Científico-Tecnológico de la ULPGC, Campus Universitario de Tafira Baja, 35017 Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Francisco Romero
- Departamento de Ingeniería de Procesos, Universidad de Las Palmas de Gran Canaria, Edificio de Fabricación Integrada, Parque Científico-Tecnológico de la ULPGC, Campus Universitario de Tafira Baja, 35017 Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Luis Suárez
- Departamento de Ingeniería de Procesos, Universidad de Las Palmas de Gran Canaria, Edificio de Fabricación Integrada, Parque Científico-Tecnológico de la ULPGC, Campus Universitario de Tafira Baja, 35017 Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Raúl Ríos
- Instituto Tecnológico de Canarias (ITC), Playa de Pozo Izquierdo, s/n, 35119 Santa Lucía, Las Palmas, Spain
| | - Monserrat Alemán
- Instituto Tecnológico de Canarias (ITC), Playa de Pozo Izquierdo, s/n, 35119 Santa Lucía, Las Palmas, Spain
| | - Marianna Venuleo
- Instituto Tecnológico de Canarias (ITC), Playa de Pozo Izquierdo, s/n, 35119 Santa Lucía, Las Palmas, Spain
| | - Zaida Ortega
- Departamento de Ingeniería de Procesos, Universidad de Las Palmas de Gran Canaria, Edificio de Fabricación Integrada, Parque Científico-Tecnológico de la ULPGC, Campus Universitario de Tafira Baja, 35017 Las Palmas de Gran Canaria, Las Palmas, Spain
| |
Collapse
|
3
|
Yin R, Zhuang G, Lei Y, Han J, Li Y, Zhang J, Yan X. Valorization of Nannochloropsis oceanica for integrated co-production of violaxanthin cycle carotenoids. BIORESOURCE TECHNOLOGY 2024; 399:130597. [PMID: 38493940 DOI: 10.1016/j.biortech.2024.130597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
The development of integrated co-production of multiple high-purity carotenoids from microalgal cells holds considerable significance for the valorization of microalgae. In this study, the economical microalga Nannochloropsis oceanica was identified as an accumulator of violaxanthin cycle carotenoids, including violaxanthin, antheraxanthin, and zeaxanthin. Notably, a novel and competent approach for the integrated co-production of violaxanthin cycle carotenoids was explored, encompassing four steps: microalgal cultivation, solvent extraction, octadecylsilyl open-column chromatography, and ethanol precipitation. Under optimal co-production conditions, the purities of the obtained violaxanthin, antheraxanthin, and zeaxanthin all exceeded 92%, with total recovery rates of approximately 51%, 40%, and 60%, respectively. Utilizing nuclear magnetic resonance techniques, the purified violaxanthin, antheraxanthin, and zeaxanthin were identified as all-trans-violaxanthin, all-trans-antheraxanthin, and all-trans-zeaxanthin, respectively. This method held significance for the multiproduct biorefinery of the microalga N. oceanica and carried potential future implications for the violaxanthin cycle carotenoids.
Collapse
Affiliation(s)
- Rui Yin
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - GengJie Zhuang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Yuhui Lei
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Jichang Han
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Yanrong Li
- Ningbo Institute of Oceanography, Ningbo, Zhejiang 315832, China
| | - Jinrong Zhang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China.
| | - Xiaojun Yan
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| |
Collapse
|
4
|
Machado MD, Soares EV. Features of the microalga Raphidocelis subcapitata: physiology and applications. Appl Microbiol Biotechnol 2024; 108:219. [PMID: 38372796 PMCID: PMC10876740 DOI: 10.1007/s00253-024-13038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/20/2024]
Abstract
The microalga Raphidocelis subcapitata was isolated from the Nitelva River (Norway) and subsequently deposited in the collection of the Norwegian Institute of Water Research as "Selenastrum capricornutum Printz". This freshwater microalga, also known as Pseudokirchneriella subcapitata, acquired much of its notoriety due to its high sensitivity to different chemical species, which makes it recommended by different international organizations for the assessment of ecotoxicity. However, outside this scope, R. subcapitata continues to be little explored. This review aims to shed light on a microalga that, despite its popularity, continues to be an "illustrious" unknown in many ways. Therefore, R. subcapitata taxonomy, phylogeny, shape, size/biovolume, cell ultra-structure, and reproduction are reviewed. The nutritional and cultural conditions, chronological aging, and maintenance and preservation of the alga are summarized and critically discussed. Applications of R. subcapitata, such as its use in aquatic toxicology (ecotoxicity assessment and elucidation of adverse toxic outcome pathways) are presented. Furthermore, the latest advances in the use of this alga in biotechnology, namely in the bioremediation of effluents and the production of value-added biomolecules and biofuels, are highlighted. To end, a perspective regarding the future exploitation of R. subcapitata potentialities, in a modern concept of biorefinery, is outlined. KEY POINTS: • An overview of alga phylogeny and physiology is critically reviewed. • Advances in alga nutrition, cultural conditions, and chronological aging are presented. • Its use in aquatic toxicology and biotechnology is highlighted.
Collapse
Affiliation(s)
- Manuela D Machado
- Bioengineering Laboratory - CIETI, ISEP-School of Engineering, Polytechnic Institute of Porto, Rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Eduardo V Soares
- Bioengineering Laboratory - CIETI, ISEP-School of Engineering, Polytechnic Institute of Porto, Rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal.
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
5
|
Makay K, Griehl C, Grewe C. Development of a high-performance thin-layer chromatography-based method for targeted glycerolipidome profiling of microalgae. Anal Bioanal Chem 2024; 416:1149-1164. [PMID: 38172195 PMCID: PMC10850188 DOI: 10.1007/s00216-023-05101-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
The conditionally essential very-long-chain polyunsaturated fatty acids (VLC-PUFAs), such as eicosapentaenoic acid (EPA, C20:5 n-3), play a vital role in human nutrition. Their biological activity is thereby greatly influenced by the distinct glycerolipid molecule that they are esterified to. Here, microalgae differ from the conventional source, fish oil, both in quantity and distribution of VLC-PUFAs among the glycerolipidome. Therefore, the aim of this study was to develop a fast and reliable one-dimensional high-performance thin-layer chromatography (HPTLC)-based method that allows the separation and quantification of the main microalgal glycerolipid classes (e.g., monogalactosyldiacylglycerol (MGDG), sulfoquinovosyl diacylglycerol (SQDG), phosphatidylglycerol (PG)), as well as the subsequent analysis of their respective fatty acid distribution via gas chromatography (GC) coupled to mass spectrometry (MS). Following optimization, method validation was carried out for 13 different lipid classes, based on the International Conference on Harmonization (ICH) guidelines. In HPTLC, linearity was effective between 100 and 2100 ng, with a limit of quantification between 62.99 and 90.09 ng depending on the glycerolipid class, with strong correlation coefficients (R2 > 0.995). The recovery varied between 93.17 and 108.12%, while the inter-day precision measurements showed coefficients of variation of less than 8.85%, close to the limit of detection. Applying this method to crude lipid extracts of four EPA producing microalgae of commercial interest, the content of different glycerolipid classes was assessed together with the respective FA distribution subsequent to band elution. The results showed that the described precise and accurate HPTLC method offers the possibility to be used routinely to follow variations in the glycerolipid class levels throughout strain screening, cultivation, or bioprocessing. Thus, additional quantitative analytical information on the complex lipidome of microalgae can be obtained, especially for n-3 and n-6 enriched lipid fractions.
Collapse
Affiliation(s)
- Kolos Makay
- Research Group of Bioprocess Engineering, Center of Life Sciences of Anhalt University of Applied Sciences, Bernburger Str. 55, 06366, Köthen, Germany
| | - Carola Griehl
- Competence Center Algal Biotechnology, Anhalt University of Applied Sciences, Bernburger Str. 55, 06366, Köthen, Germany
| | - Claudia Grewe
- Research Group of Bioprocess Engineering, Center of Life Sciences of Anhalt University of Applied Sciences, Bernburger Str. 55, 06366, Köthen, Germany.
| |
Collapse
|
6
|
Gao Y, Bernard O, Fanesi A, Perré P, Lopes F. The effect of light intensity on microalgae biofilm structures and physiology under continuous illumination. Sci Rep 2024; 14:1151. [PMID: 38212356 PMCID: PMC10784318 DOI: 10.1038/s41598-023-50432-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024] Open
Abstract
The interest by biofilm-based microalgae technologies has increased lately due to productivity improvement, energy consumption reduction and easy harvesting. However, the effect of light, one key factor for system's operation, received less attention than for planktonic cultures. This work assessed the impact of Photon Flux Density (PFD) on Chlorella vulgaris biofilm dynamics (structure, physiology, activity). Microalgae biofilms were cultivated in a flow-cell system with PFD from 100 to 500 [Formula: see text]. In the first stage of biofilm development, uniform cell distribution was observed on the substratum exposed to 100 [Formula: see text] while cell clusters were formed under 500 [Formula: see text]. Though similar specific growth rate in exponential phase (ca. 0.3 [Formula: see text]) was obtained under all light intensities, biofilm cells at 500 [Formula: see text] seem to be ultimately photoinhibited (lower final cell density). Data confirm that Chlorella vulgaris showed a remarkable capability to cope with high light. This was marked for sessile cells at 300 [Formula: see text], which reduce very rapidly (in 2 days) their chlorophyll-a content, most probably to reduce photodamage, while maintaining a high final cell density. Besides cellular physiological adjustments, our data demonstrate that cellular spatial organization is light-dependent.
Collapse
Affiliation(s)
- Yan Gao
- CentraleSupélec, LGPM, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
- Inria Sophia Antipolis Méditerranée, Biocore, Université Nice Côte d'Azur, 06902, Valbonne, France
| | - Olivier Bernard
- Inria Sophia Antipolis Méditerranée, Biocore, Université Nice Côte d'Azur, 06902, Valbonne, France
| | - Andrea Fanesi
- CentraleSupélec, LGPM, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Patrick Perré
- CentraleSupélec, LGPM, CEBB, Université Paris-Saclay, 51110, Pomacle, France
| | - Filipa Lopes
- CentraleSupélec, LGPM, Université Paris-Saclay, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
7
|
Singh S, Singh L, Kumar V, Ali W, Ramamurthy PC, Singh Dhanjal D, Sivaram N, Angurana R, Singh J, Chandra Pandey V, Khan NA. Algae-based approaches for Holistic wastewater management: A low-cost paradigm. CHEMOSPHERE 2023; 345:140470. [PMID: 37858768 DOI: 10.1016/j.chemosphere.2023.140470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/22/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023]
Abstract
Aquatic algal communities demonstrated their appeal for diverse industrial applications due to their vast availability, ease of harvest, lower production costs, and ability to biosynthesize valuable molecules. Algal biomass is promising because it can multiply in water and on land. Integrated algal systems have a significant advantage in wastewater treatment due to their ability to use phosphorus and nitrogen, simultaneously accumulating heavy metals and toxic substances. Several species of microalgae have adapted to thrive in these harsh environmental circumstances. The potential of algal communities contributes to achieving the United Nations' sustainable development goals in improving aquaculture, combating climate change, reducing carbon dioxide (CO2) emissions, and providing biomass as a biofuel feedstock. Algal-based biomass processing technology facilitates the development of a circular bio-economy that is both commercially and ecologically viable. An integrated bio-refinery process featuring zero waste discharge could be a sustainable solution. In the current review, we will highlight wastewater management by algal species. In addition, designing and optimizing algal bioreactors for wastewater treatment have also been incorporated.
Collapse
Affiliation(s)
- Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Lav Singh
- Department of Botany, University of Lucknow, Uttar Pradesh, India
| | - Vijay Kumar
- Department of Chemistry, CCRAS-CARI, Jhansi, U.P., 284003, India
| | - Wahid Ali
- Department of Chemical Engineering Technology, College of Applied Industrial Technology (CAIT), Jazan University, Kingdom of Saudi Arabia
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bengaluru, Karnataka, 560012, India.
| | - Daljeet Singh Dhanjal
- Department of Biotechnology, Lovely Professional University, Jalandhar, Punjab, 144111, India
| | - Nikhita Sivaram
- Department of Civil, Construction and Environmental Engineering, North Carolina State University, USA
| | - Ruby Angurana
- Department of Biotechnology, Lovely Professional University, Jalandhar, Punjab, 144111, India
| | - Joginder Singh
- Department of Biotechnology, Lovely Professional University, Jalandhar, Punjab, 144111, India; Department of Botany, Nagaland University, Lumami, Nagaland 798627, India
| | - Vimal Chandra Pandey
- CSIR-National Botanical Research Institute Lucknow, 226001, Uttar Pradesh, India.
| | - Nadeem A Khan
- Interdisciplinary Research Centre for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
8
|
Eilertsen HC, Strømholt J, Bergum JS, Eriksen GK, Ingebrigtsen R. Mass Cultivation of Microalgae: II. A Large Species Pulsing Blue Light Concept. BIOTECH 2023; 12:biotech12020040. [PMID: 37218757 DOI: 10.3390/biotech12020040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023] Open
Abstract
If mass cultivation of photoautotrophic microalgae is to gain momentum and find its place in the new "green future", exceptional optimizations to reduce production costs must be implemented. Issues related to illumination should therefore constitute the main focus, since it is the availability of photons in time and space that drives synthesis of biomass. Further, artificial illumination (e.g., LEDs) is needed to transport enough photons into dense algae cultures contained in large photobioreactors. In the present research project, we employed short-term O2 production and 7-day batch cultivation experiments to evaluate the potential to reduce illumination light energy by applying blue flashing light to cultures of large and small diatoms. Our results show that large diatom cells allow more light penetration for growth compared to smaller cells. PAR (400-700 nm) scans yielded twice as much biovolume-specific absorbance for small biovolume (avg. 7070 μm3) than for large biovolume (avg. 18,703 μm3) cells. The dry weight (DW) to biovolume ratio was 17% lower for large than small cells, resulting in a DW specific absorbance that was 1.75 times higher for small cells compared to large cells. Blue 100 Hz square flashing light yielded the same biovolume production as blue linear light in both the O2 production and batch experiments at the same maximum light intensities. We therefore suggest that, in the future, more focus should be placed on researching optical issues in photobioreactors, and that cell size and flashing blue light should be central in this.
Collapse
Affiliation(s)
- Hans Chr Eilertsen
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
- Finnfjord AS, N-9305 Finnsnes, Norway
| | | | | | - Gunilla Kristina Eriksen
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Richard Ingebrigtsen
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
9
|
Nordic microalgae produce biostimulant for the germination of tomato and barley seeds. Sci Rep 2023; 13:3509. [PMID: 36864186 PMCID: PMC9981563 DOI: 10.1038/s41598-023-30707-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/28/2023] [Indexed: 03/04/2023] Open
Abstract
Microalgal biomass may have biostimulating effects on plants and seeds due to its phytohormonal content, and harnessing this biostimulating effect could contribute to sustainable agriculture. Two Nordic strains of freshwater microalgae species Chlorella vulgaris and Scenedesmus obliquus were each cultivated in a photobioreactor receiving untreated municipal wastewater. The algal biomass and the supernatant after algal cultivation were tested on tomato and barley seeds for biostimulating effects. Intact algal cells, broken cells, or harvest supernatant were applied to the seeds, and germination time, percentage and germination index were evaluated. Seeds treated with C. vulgaris, in particular intact cells or supernatant, had up to 25 percentage units higher germination percentage after 2 days and an overall significantly faster germination time (germinated on average between 0.5 and 1 day sooner) than seeds treated with S. obliquus or the control (water). The germination index was higher in C. vulgaris treatments than in the control for both tomato and barley, and this was observed for both broken and intact cells as well as supernatant. The Nordic strain of C. vulgaris cultivated in municipal wastewater thus shows potential for use as biostimulant in agriculture, adding novel economic and sustainability benefits.
Collapse
|
10
|
Bioprocessing to Preserve and Improve Microalgae Nutritional and Functional Potential: Novel Insight and Perspectives. Foods 2023; 12:foods12050983. [PMID: 36900500 PMCID: PMC10001325 DOI: 10.3390/foods12050983] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Microalgae are aquatic unicellular microorganisms and, although various species are approved for human consumption, Arthrospira and Chlorella are the most widespread. Several nutritional and functional properties have been bestowed to microalgae principal micro- and macro-nutrients, with antioxidant, immunomodulatory and anticancer being the most common. The many references to their potential as a food of the future is mainly ascribed to the high protein and essential amino acid content, but they are also a source of pigments, lipids, sterols, polysaccharides, vitamins, and phenolic compounds with positive effects on human health. Nevertheless, microalgae use is often hindered by unpleasant color and flavor and several strategies have been sought to minimize such challenges. This review provides an overview of the strategies so far proposed and the main nutritional and functional characteristic of microalgae and the foods made thereof. Processing treatments have been used to enrich microalgae-derived substrates in compounds with antioxidant, antimicrobial, and anti-hypertensive properties. Extraction, microencapsulation, enzymatic treatments, and fermentation are the most common, each with their own pros and cons. Yet, for microalgae to be the food of the future, more effort should be put into finding the right pre-treatments that can allow the use of the whole biomass and be cost-effective while bringing about features that go beyond the mere increase of proteins.
Collapse
|
11
|
Li D, Zhao Q. Study of carbon fixation and carbon partitioning of evolved Chlorella sp.'s strain under different carbon dioxide conditions. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
12
|
Sun H, Wang Y, He Y, Liu B, Mou H, Chen F, Yang S. Microalgae-Derived Pigments for the Food Industry. Mar Drugs 2023; 21:md21020082. [PMID: 36827122 PMCID: PMC9967018 DOI: 10.3390/md21020082] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
In the food industry, manufacturers and customers have paid more attention to natural pigments instead of the synthetic counterparts for their excellent coloring ability and healthy properties. Microalgae are proven as one of the major photosynthesizers of naturally derived commercial pigments, gaining higher value in the global food pigment market. Microalgae-derived pigments, especially chlorophylls, carotenoids and phycobiliproteins, have unique colors and molecular structures, respectively, and show different physiological activities and health effects in the human body. This review provides recent updates on characteristics, application fields, stability in production and extraction processes of chlorophylls, carotenoids and phycobiliproteins to standardize and analyze their commercial production from microalgae. Potential food commodities for the pigment as eco-friendly colorants, nutraceuticals, and antioxidants are summarized for the target products. Then, recent cultivation strategies, metabolic and genomic designs are presented for high pigment productivity. Technical bottlenecks of downstream processing are discussed for improved stability and bioaccessibility during production. The production strategies of microalgal pigments have been exploited to varying degrees, with some already being applied at scale while others remain at the laboratory level. Finally, some factors affecting their global market value and future prospects are proposed. The microalgae-derived pigments have great potential in the food industry due to their high nutritional value and competitive production cost.
Collapse
Affiliation(s)
- Han Sun
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Carbon Neutrality, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Yuxin Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Bin Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Carbon Neutrality, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Haijin Mou
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Carbon Neutrality, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
- Correspondence: (F.C.); (S.Y.)
| | - Shufang Yang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Carbon Neutrality, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
- Correspondence: (F.C.); (S.Y.)
| |
Collapse
|
13
|
Effects of Treatment and Pre-treatment of Ethanolamine on Production of Metabolites in Haematococcus pluvialis. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS A: SCIENCE 2022. [DOI: 10.1007/s40995-022-01378-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
14
|
Díaz V, Leyva-Díaz JC, Almécija MC, Poyatos JM, Del Mar Muñío M, Martín-Pascual J. Microalgae bioreactor for nutrient removal and resource recovery from wastewater in the paradigm of circular economy. BIORESOURCE TECHNOLOGY 2022; 363:127968. [PMID: 36115507 DOI: 10.1016/j.biortech.2022.127968] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Every day, large quantities of wastewater are discharged from various sources that could be reused. Wastewater contains nutrients such as nitrogen or phosphorus, which can be recovered. Microalgae-based technologies have attracted attention in this sector, as they are able to bioremediate wastewater, harnessing its nutrients and generating algal biomass useful for different downstream uses, as well as having other advantages. There are multiple species of microalgae capable of growing in wastewater, achieving nutrient removal efficiencies surpassing 70%. On the other hand, microalgae contain lipids that can be extracted for energy recovery in biodiesel. Currently, there are several methods of lipid extraction from microalgae. Other biofuels can also be obtained from microalgae biomass, such as bioethanol, biohydrogen or biogas. This review also provides information on bioenergy products and products in the agri-food industry as well as in the field of human health based on microalgae biomass within the concept of circular bioeconomy.
Collapse
Affiliation(s)
- Verónica Díaz
- Department of Chemical Engineering, University of Granada 18071, Granada, Spain
| | - Juan Carlos Leyva-Díaz
- Department of Civil Engineering, University of Granada 18071, Granada, Spain; Institute of Water Research, University of Granada 18071, Granada, Spain.
| | | | - José Manuel Poyatos
- Department of Civil Engineering, University of Granada 18071, Granada, Spain; Institute of Water Research, University of Granada 18071, Granada, Spain
| | - María Del Mar Muñío
- Department of Chemical Engineering, University of Granada 18071, Granada, Spain
| | - Jaime Martín-Pascual
- Department of Civil Engineering, University of Granada 18071, Granada, Spain; Institute of Water Research, University of Granada 18071, Granada, Spain
| |
Collapse
|
15
|
Caetano PA, do Nascimento TC, Fernandes AS, Nass PP, Vieira KR, Maróstica Junior MR, Jacob-Lopes E, Zepka LQ. Microalgae-based polysaccharides: Insights on production, applications, analysis, and future challenges. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Yadav K, Vasistha S, Nawkarkar P, Kumar S, Rai MP. Algal biorefinery culminating multiple value-added products: recent advances, emerging trends, opportunities, and challenges. 3 Biotech 2022; 12:244. [PMID: 36033914 PMCID: PMC9402873 DOI: 10.1007/s13205-022-03288-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/29/2022] [Indexed: 11/01/2022] Open
Abstract
Algal biorefinery is rising as a prominent solution to economically fulfill the escalating global requirement for nutrition, feed, fuel, and medicines. In recent years, scientific productiveness associated with microalgae-based studies has elaborated in multiplied aspects, while translation to the commercial level continues to be missing. The present microalgal biorefinery has a challenge in long-term viability due to escalated market price of algal-mediated biofuels and bioproducts. Advancements are required in a few aspects like improvement in algae processing, energy investment, and cost analysis of microalgae biorefinery. Therefore, it is essential to recognize the modern work by understanding the knowledge gaps and hotspots driving business scale up. The microalgae biorefinery integrated with energy-based products, bioactive and green compounds, focusing on a circular bioeconomy, is urgently needed. A detailed investigation of techno-economic analysis (TEA) and life cycle assessment (LCA) is important to increase the market value of algal products. This review discusses the valorization of algal biomass for the value-added application that holds a sustainable approach and cost-competitive algal biorefinery. The current industries, policies, technology transfer trends, challenges, and future economic outlook are discussed. This study is an overview through scientometric investigation attempt to describe the research development contributing to this rising field.
Collapse
Affiliation(s)
- Kushi Yadav
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh 201313 India
| | - Shrasti Vasistha
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh 201313 India
| | - Prachi Nawkarkar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| | - Shashi Kumar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| | - Monika Prakash Rai
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh 201313 India
| |
Collapse
|
17
|
Srimongkol P, Sangtanoo P, Songserm P, Watsuntorn W, Karnchanatat A. Microalgae-based wastewater treatment for developing economic and environmental sustainability: Current status and future prospects. Front Bioeng Biotechnol 2022; 10:904046. [PMID: 36159694 PMCID: PMC9489850 DOI: 10.3389/fbioe.2022.904046] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Over the last several decades, concerns about climate change and pollution due to human activity has gained widespread attention. Microalgae have been proposed as a suitable biological platform to reduce carbon dioxide, a major greenhouse gas, while also creating commercial sources of high-value compounds such as medicines, cosmetics, food, feed, and biofuel. Industrialization of microalgae culture and valorization is still limited by significant challenges in scaling up the production processes due to economic constraints and productivity capacities. Therefore, a boost in resource usage efficiency is required. This enhancement not only lowers manufacturing costs but also enhancing the long-term viability of microalgae-based products. Using wastewater as a nutrient source is a great way to reduce manufacturing costs. Furthermore, water scarcity is one of the most important global challenges. In recent decades, industrialization, globalization, and population growth have all impacted freshwater resources. Moreover, high amounts of organic and inorganic toxins in the water due to the disposal of waste into rivers can have severe impacts on human and animal health. Microalgae cultures are a sustainable solution to tertiary and quaternary treatments since they have the ability to digest complex contaminants. This review presents biorefineries based on microalgae from all angles, including the potential for environmental pollution remediation as well as applications for bioenergy and value-added biomolecule production. An overview of current information about microalgae-based technology and a discussion of the associated hazards and opportunities for the bioeconomy are highlighted.
Collapse
Affiliation(s)
- Piroonporn Srimongkol
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Papassara Sangtanoo
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Pajareeya Songserm
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Wannapawn Watsuntorn
- Panyapiwat Institute of Management Demonstration School, Pakkred, Nonthaburi, Thailand
| | - Aphichart Karnchanatat
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
- *Correspondence: Aphichart Karnchanatat,
| |
Collapse
|
18
|
Huang Z, Guo S, Guo Z, He Y, Chen B. Integrated green one-step strategy for concurrent recovery of phycobiliproteins and polyunsaturated fatty acids from wet Porphyridium biomass. Food Chem 2022; 389:133103. [DOI: 10.1016/j.foodchem.2022.133103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/31/2022] [Accepted: 04/26/2022] [Indexed: 12/19/2022]
|
19
|
Vyas S, Patel A, Nabil Risse E, Krikigianni E, Rova U, Christakopoulos P, Matsakas L. Biosynthesis of microalgal lipids, proteins, lutein, and carbohydrates using fish farming wastewater and forest biomass under photoautotrophic and heterotrophic cultivation. BIORESOURCE TECHNOLOGY 2022; 359:127494. [PMID: 35724910 DOI: 10.1016/j.biortech.2022.127494] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Biorefineries enable the circular, sustainable, and economic use of waste resources if value-added products can be recovered from all the generated fractions at a large-scale. In the present studies the comparison and assessment for the production of value-added compounds (e.g., proteins, lutein, and lipids) by the microalga Chlorella sorokiniana grown under photoautotrophic or heterotrophic conditions was performed. Photoautotrophic cultivation generated little biomass and lipids, but abundant proteins (416.66 mg/gCDW) and lutein (6.40 mg/gCDW). Heterotrophic conditions using spruce hydrolysate as a carbon source favored biomass (8.71 g/L at C/N 20 and 8.28 g/L at C/N 60) and lipid synthesis (2.79 g/L at C/N 20 and 3.61 g/L at C/N 60) after 72 h of cultivation. Therefore, heterotrophic cultivation of microalgae using spruce hydrolysate instead of glucose offers a suitable biorefinery concept at large-scale for biodiesel-grade lipids production, whereas photoautotrophic bioreactors are recommended for sustainable protein and lutein biosynthesis.
Collapse
Affiliation(s)
- Sachin Vyas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden.
| | - Eric Nabil Risse
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Eleni Krikigianni
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| |
Collapse
|
20
|
Makay K, Griehl C, Grewe C. Downstream Process Development for Multiproduct Recovery of High‐Value Lead Compounds from Marine Microalgae. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202255193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- K. Makay
- Anhalt University of Applied Sciences Applied Biosciences and Process Engineering Bernburger Str. 55 06366 Köthen Germany
| | - C. Griehl
- Anhalt University of Applied Sciences Applied Biosciences and Process Engineering Bernburger Str. 55 06366 Köthen Germany
- Competence Center Algal Biotechnology Bernburger Str. 55 06366 Köthen Germany
| | - C. Grewe
- Anhalt University of Applied Sciences Applied Biosciences and Process Engineering Bernburger Str. 55 06366 Köthen Germany
| |
Collapse
|
21
|
Sarwer A, Hussain M, Al‐Muhtaseb AH, Inayat A, Rafiq S, Khurram MS, Ul‐Haq N, Shah NS, Alaud Din A, Ahmad I, Jamil F. Suitability of Biofuels Production on Commercial Scale from Various Feedstocks: A Critical Review. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202100049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Asma Sarwer
- COMSATS University Islamabad CUI Department of Chemical Engineering Lahore Pakistan
| | - Murid Hussain
- COMSATS University Islamabad CUI Department of Chemical Engineering Lahore Pakistan
| | - Ala'a H. Al‐Muhtaseb
- Sultan Qaboos University Department Department of Petroleum and Chemical Engineering College of Engineering Muscat Oman
| | - Abrar Inayat
- University of Sharjah Department of Sustainable and Renewable Energy Engineering 27272 Sharjah United Arab Emirates
| | - Sikander Rafiq
- University of Engineering and Technology Department of Chemical, Polymer and Composite Materials Engineering New Campus Lahore Pakistan
| | - M. Shahzad Khurram
- COMSATS University Islamabad CUI Department of Chemical Engineering Lahore Pakistan
| | - Noaman Ul‐Haq
- COMSATS University Islamabad CUI Department of Chemical Engineering Lahore Pakistan
| | - Noor Samad Shah
- COMSATS University Islamabad Department of Environmental Sciences Campus 61100 Vehari Pakistan
| | - Aamir Alaud Din
- National University of Sciences and Technology (NUST) Institute of Environmental Sciences and Engineering (IESE) School of Civil and Environmental Engineering (SCEE) H-12 Campus 44000 Islamabad Pakistan
| | - Ishaq Ahmad
- University of Engineering and Technology Peshawar Department of Mining Engineering Peshwar Pakistan
| | - Farrukh Jamil
- COMSATS University Islamabad CUI Department of Chemical Engineering Lahore Pakistan
- Sultan Qaboos University Department Department of Petroleum and Chemical Engineering College of Engineering Muscat Oman
| |
Collapse
|
22
|
Desjardins SM, Laamanen CA, Basiliko N, Senhorinho GNA, Scott JA. Dark stress for improved lipid quantity and quality in bioprospected acid-tolerant green microalgae. FEMS Microbiol Lett 2022; 369:6615457. [PMID: 35746875 DOI: 10.1093/femsle/fnac057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/26/2022] [Accepted: 06/18/2022] [Indexed: 11/14/2022] Open
Abstract
The cost of microalgae cultivation is one of the largest limitations to achieving sustainable, large-scale microalgae production of commercially desirable lipids. Utilizing CO2 as a 'free' carbon source from waste industrial flue gas emissions can offer wide-ranging cost savings. However, these gas streams typically create acidic environments, in which most microalgae cannot survive due to the concentration of CO2 and the presence of other acidic gasses such as NO2 and SO2. To address this situation, we investigated growth of a mixed acid-tolerant green microalgal culture (91% dominated by a single Coccomyxa sp. taxon) bioprospected at pH 2.8 from an acid mine drainage impacted water body. The culture was grown at pH 2.5 and fed with a simulated flue gas containing 6% CO2 and 94% N2. On reaching the end of the exponential growth phase, the culture was exposed to either continued light-dark cycle conditions or continual dark conditions. After three days in the dark, the biomass consisted of 28% of lipids, which was 42% higher than at the end of the exponential phase and 55% higher than the maximum lipid content achieved under light/dark conditions. The stress caused by being continually in the dark also favoured the production of omega-3 and omega-6 polyunsaturated fatty acids (PUFAs; 19.47% and 21.04%, respectively, after 7 days) compared to 7-days of light-dark treatment (1.94% and 9.53%, respectively) and showed an increase in nitrogen content (C:N ratio of 6.4) compared to light-dark treatment (C:N ratio of 11.9). The results of the research indicate that use of acid tolerant microalgae overcomes issues using flue gasses that will create an acidic environment and that applying dark stress is a low-cost stressor stimulates production of desirable dietary lipids.
Collapse
Affiliation(s)
- Sabrina M Desjardins
- School of Engineering, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON P3E 2C6, Canada
| | - Corey A Laamanen
- School of Engineering, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON P3E 2C6, Canada
| | - Nathan Basiliko
- Department of Biology, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON P3E 2C6, Canada
| | - Gerusa N A Senhorinho
- School of Engineering, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON P3E 2C6, Canada
| | - John A Scott
- School of Engineering, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
23
|
Wang S, Mukhambet Y, Esakkimuthu S, Abomohra AELF. Integrated microalgal biorefinery – Routes, energy, economic and environmental perspectives. JOURNAL OF CLEANER PRODUCTION 2022; 348:131245. [DOI: 10.1016/j.jclepro.2022.131245] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
24
|
Roy Chong JW, Tan X, Khoo KS, Ng HS, Jonglertjunya W, Yew GY, Show PL. Microalgae-based bioplastics: Future solution towards mitigation of plastic wastes. ENVIRONMENTAL RESEARCH 2022; 206:112620. [PMID: 34968431 DOI: 10.1016/j.envres.2021.112620] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Global demand for plastic materials has severely harm the environment and marine sea life. Therefore, bioplastics have emerged as an environmentally friendly alternative due to sustainability, minimal carbon footprint, less toxicity and high degradability. This review highlights the sustainable and environmentally friendly approach towards bioplastic production by utilizing microalgae as a feed source in several ways. First, the microalgae biomass obtained through the biorefinery approach can be processed into PHA under certain nutrient limitations. Additionally, microalgae biomass can act as potential filler and reinforcement towards the enhancement of bioplastic either blending with conventional bioplastic or synthetic polymer. The downstream processing of microalgae via suitable extraction and pre-treatment of bioactive compounds such as lipids and cellulose are found to be promising for the production of bioplastics. Moving on, the intermediate processing of bioplastic via lactic acid synthesized from microalgae has favoured the microwave-assisted synthesis of polylactic acid due to cost efficiency, minimum solvent usage, low energy consumption, and fast rate of reaction. Moreover, the reliability and effectiveness of microalgae-based bioplastics are further evaluated in terms of techno-economic analysis and degradation mechanism. Future improvement and recommendations are listed towards proper genetic modification of algae strains, large-scale biofilm technology, low-cost cultivation medium, and novel avocado seed-microalgae bioplastic blend.
Collapse
Affiliation(s)
- Jun Wei Roy Chong
- College of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin, 150050, People's Republic of China; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Xuefei Tan
- College of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin, 150050, People's Republic of China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China.
| | - Kuan Shiong Khoo
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, 56000, Kuala Lumpur, Malaysia.
| | - Hui Suan Ng
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Woranart Jonglertjunya
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Salaya, Putthamonthon, Nakorn Pathom, Thailand
| | - Guo Yong Yew
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
25
|
Delfau-Bonnet G, Imatoukene N, Clément T, Lopez M, Allais F, Hantson AL. Evaluation of the Potential of Lipid-Extracted Chlorella vulgaris Residue for Yarrowia lipolytica Growth at Different pH Levels. Mar Drugs 2022; 20:md20040264. [PMID: 35447937 PMCID: PMC9024751 DOI: 10.3390/md20040264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/25/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022] Open
Abstract
Projections show that the cultivation of microalgae will extend to the production of bio-based compounds, such as biofuels, cosmetics, and medicines. This will generate co-products or residues that will need to be valorized to reduce the environmental impact and the cost of the process. This study explored the ability of lipid-extracted Chlorella vulgaris residue as a sole carbon and nitrogen source for growing oleaginous yeasts without any pretreatment. Both wild-type Yarrowia lipolytica W29 and mutant JMY3501 (which was designed to accumulate more lipids without their remobilization or degradation) showed a similar growth rate of 0.28 h−1 at different pH levels (3.5, 5.5, and 7.5). However, the W29 cell growth had the best cell number on microalgal residue at a pH of 7.5, while three times fewer cells were produced at all pH levels when JMY3501 was grown on microalgal residue. The JMY3501 growth curves were similar at pH 3.5, 5.5, and 7.5, while the fatty-acid composition differed significantly, with an accumulation of α-linolenic acid on microalgal residue at a pH of 7.5. Our results demonstrate the potential valorization of Chlorella vulgaris residue for Yarrowia lipolytica growth and the positive effect of a pH of 7.5 on the fatty acid profile.
Collapse
Affiliation(s)
- Guillaume Delfau-Bonnet
- Chemical and Biochemical Process Engineering Unit, Faculty of Engineering, University of Mons, 7000 Mons, Belgium;
- Unite Recherche et Developpement Agro-Biotechnologies Industrielles (URD ABI), Centre Europeen de Biotechnologie et Bieconomie (CEBB), AgroParisTech, 51110 Pomacle, France; (N.I.); (T.C.); (M.L.); (F.A.)
| | - Nabila Imatoukene
- Unite Recherche et Developpement Agro-Biotechnologies Industrielles (URD ABI), Centre Europeen de Biotechnologie et Bieconomie (CEBB), AgroParisTech, 51110 Pomacle, France; (N.I.); (T.C.); (M.L.); (F.A.)
| | - Tiphaine Clément
- Unite Recherche et Developpement Agro-Biotechnologies Industrielles (URD ABI), Centre Europeen de Biotechnologie et Bieconomie (CEBB), AgroParisTech, 51110 Pomacle, France; (N.I.); (T.C.); (M.L.); (F.A.)
| | - Michel Lopez
- Unite Recherche et Developpement Agro-Biotechnologies Industrielles (URD ABI), Centre Europeen de Biotechnologie et Bieconomie (CEBB), AgroParisTech, 51110 Pomacle, France; (N.I.); (T.C.); (M.L.); (F.A.)
| | - Florent Allais
- Unite Recherche et Developpement Agro-Biotechnologies Industrielles (URD ABI), Centre Europeen de Biotechnologie et Bieconomie (CEBB), AgroParisTech, 51110 Pomacle, France; (N.I.); (T.C.); (M.L.); (F.A.)
| | - Anne-Lise Hantson
- Chemical and Biochemical Process Engineering Unit, Faculty of Engineering, University of Mons, 7000 Mons, Belgium;
- Correspondence: ; Tel.: +32-65374419
| |
Collapse
|
26
|
Goswami RK, Mehariya S, Karthikeyan OP, Verma P. Influence of Carbon Sources on Biomass and Biomolecule Accumulation in Picochlorum sp. Cultured under the Mixotrophic Condition. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063674. [PMID: 35329358 PMCID: PMC8954116 DOI: 10.3390/ijerph19063674] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 11/18/2022]
Abstract
The major downfalls of the microalgal biorefinery are low volume of high value product accumulation, low biomass productivity and high cultivation costs. Here, we aimed to improve the biomass productivity of the industrially relevant Picochlorum sp. BDUG 100241 strain. The growth of Picochlorum sp. BDUG 100241 was investigated under different cultivations conditions, including photoautotrophic (with light), mixotrophic (1% glucose, with light) and heterotrophic (1% glucose, without light). Among them, Picochlorum sp. BDUG100241 showed the highest growth in the mixotrophic condition. Under different (1%) carbon sources’ supplementation, including glucose, sodium acetate, glycerol, citric acid and methanol, Picochlorum sp. BDUG100241 growth was tested. Among them, sodium acetate was found to be most suitable carbon source for Picochlorum sp. BDUG 100241 growth, biomass (1.67 ± 0.18 g/L) and biomolecule productivity. From the different concentrations of sodium acetate (0, 2.5, 5.0, 7.5 and 10 g/L) tested, the maximum biomass production of 2.40 ± 0.20 g/L with the biomass productivity of 95 ± 5.00 mg/L/d was measured from 7.5 g/L in sodium acetate. The highest total lipid (53.50 ± 1.70%) and total carotenoids (0.75 ± 0.01 µg/mL) contents were observed at the concentration of 7.5 g/L and 5.0 g/L of sodium acetate as a carbon source, respectively. In conclusion, the mixotrophic growth condition containing 7.5 g/L of sodium acetate showed the maximum biomass yield and biomolecule accumulation compared to other organic carbon sources.
Collapse
Affiliation(s)
- Rahul Kumar Goswami
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Kishangarh 305817, India;
| | - Sanjeet Mehariya
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Real Casa dell’Annunziata, Via Roma 29, 81031 Aversa, Italy;
| | - Obulisamy Parthiba Karthikeyan
- Department of Engineering Technology, College of Technology, University of Houston, Houston, TX 77400, USA;
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong, China
- Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Kishangarh 305817, India;
- Correspondence: ; Tel.: +91-1463-238734
| |
Collapse
|
27
|
Mass Cultivation of Microalgae: I. Experiences with Vertical Column Airlift Photobioreactors, Diatoms and CO2 Sequestration. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063082] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
From 2015 to 2021, we optimized mass cultivation of diatoms in our own developed vertical column airlift photobioreactors using natural and artificial light (LEDs). The project took place at the ferrosilicon producer Finnfjord AS in North Norway as a joint venture with UiT—The Arctic University of Norway. Small (0.1–6–14 m3) reactors were used for initial experiments and to produce inoculum cultures while upscaling experiments took place in a 300 m3 reactor. We here argue that species cultivated in reactors should be large since biovolume specific self-shadowing of light can be lower for large vs. small cells. The highest production, 1.28 cm3 L−1 biovolume (0.09–0.31 g DW day−1), was obtained with continuous culture at ca. 19% light utilization efficiency and 34% CO2 uptake. We cultivated 4–6 months without microbial contamination or biofouling, and this we argue was due to a natural antifouling (anti-biofilm) agent in the algae. In terms of protein quality all essential amino acids were present, and the composition and digestibility of the fatty acids were as required for feed ingredients. Lipid content was ca. 20% of ash-free DW with high EPA levels, and omega-3 and amino acid content increased when factory fume was added. The content of heavy metals in algae cultivated with fume was well within the accepted safety limits. Organic pollutants (e.g., dioxins and PCBs) were below the limits required by the European Union food safety regulations, and bioprospecting revealed several promising findings.
Collapse
|
28
|
Biodegradable Solvents: A Promising Tool to Recover Proteins from Microalgae. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The world will face a significant protein demand in the next few decades, and due to the environmental concerns linked to animal protein, new sustainable protein sources must be found. In this regard, microalgae stand as an outstanding high-quality protein source. However, different steps are needed to separate the proteins from the microalgae biomass and other biocompounds. The protein recovery from the disrupted biomass is usually the bottleneck of the process, and it typically employs organic solvents or harsh conditions, which are both detrimental to protein stability and planet health. Different techniques and methods are applied for protein recovery from various matrices, such as precipitation, filtration, chromatography, electrophoresis, and solvent extraction. Those methods will be reviewed in this work, discussing their advantages, drawbacks, and applicability to the microalgae biorefinery process. Special attention will be paid to solvent extraction performed with ionic liquids (ILs) and deep eutectic solvents (DESs), which stand as promising solvents to perform efficient protein separations with reduced environmental costs compared to classical alternatives. Finally, several solvent recovery options will be analyzed to reuse the solvent employed and isolate the proteins from the solvent phase.
Collapse
|
29
|
Yu BS, Lee SY, Sim SJ. Effective contamination control strategies facilitating axenic cultivation of Haematococcus pluvialis: Risks and challenges. BIORESOURCE TECHNOLOGY 2022; 344:126289. [PMID: 34748979 DOI: 10.1016/j.biortech.2021.126289] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
With industrialization, anthropogenic mishandlings have resulted in the discharge of abundant amount of CO2 into the atmosphere. This has triggered an unnatural warming that has dramatically increased the Earth's temperature in a short duration. This problem can be addressed by the biological conversion of CO2; several studies have been conducted using H. pluvialis culture that produces high value-added materials, such as astaxanthin and omega-3 fatty acids. However, although H. pluvialis has a high market value, the market size is quite small. Because H. pluvialis cells are susceptible to contamination due to its slow growth rate, hence large-scale culture of H. pluvialis without reliable contamination control strategies poses significant risks. This review comprehensively discusses the contamination that occurs during the culturing of H. pluvialis in various culture systems under different culture conditions. The review also discusses the strategies in controlling the biotic contaminants, such as bacteria and fungi.
Collapse
Affiliation(s)
- Byung Sun Yu
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - So Young Lee
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, South Korea.
| |
Collapse
|
30
|
Chandrasekhar K, Raj T, Ramanaiah SV, Kumar G, Banu JR, Varjani S, Sharma P, Pandey A, Kumar S, Kim SH. Algae biorefinery: a promising approach to promote microalgae industry and waste utilization. J Biotechnol 2021; 345:1-16. [PMID: 34954289 DOI: 10.1016/j.jbiotec.2021.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 01/17/2023]
Abstract
Microalgae have a number of intriguing characteristics that make them a viable raw material aimed at usage in a variety of applications when refined using a bio-refining process. They offer unique capabilities that allow them to be used in biotechnology-related applications. As a result, this review explores how to increase the extent to which microalgae may be integrated with various additional biorefinery uses in order to improve their maintainability. In this study, the use of microalgae as potential animal feed, manure, medicinal, cosmeceutical, ecological, and other biotechnological uses is examined in its entirety. It also includes information on the boundaries, openings, and improvements of microalgae and the possibilities of increasing the range of microalgae through techno-economic analysis. According to the findings of this review, financing supported research and shifting the focus of microalgal investigations from biofuels production to biorefinery co-products can help guarantee that they remain a viable resource. Furthermore, innovation collaboration is unavoidable if one wishes to avoid the high cost of microalgae biomass handling. This review is expected to be useful in identifying the possible role of microalgae in biorefinery applications in the future.
Collapse
Affiliation(s)
- K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Tirath Raj
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - S V Ramanaiah
- Food and Biotechnology Research Lab, South Ural State University (National Research University), 454080 Chelyabinsk, Russian Federation
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, 4036 Stavanger, Norway
| | - J Rajesh Banu
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382 010, India
| | - Pooja Sharma
- CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur-440020, India
| | - Ashok Pandey
- Centre for Innovation and TranslationalResearch, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur-440020, India
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
31
|
Kselíková V, Singh A, Bialevich V, Čížková M, Bišová K. Improving microalgae for biotechnology - From genetics to synthetic biology - Moving forward but not there yet. Biotechnol Adv 2021; 58:107885. [PMID: 34906670 DOI: 10.1016/j.biotechadv.2021.107885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/28/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022]
Abstract
Microalgae are a diverse group of photosynthetic organisms that can be exploited for the production of different compounds, ranging from crude biomass and biofuels to high value-added biochemicals and synthetic proteins. Traditionally, algal biotechnology relies on bioprospecting to identify new highly productive strains and more recently, on forward genetics to further enhance productivity. However, it has become clear that further improvements in algal productivity for biotechnology is impossible without combining traditional tools with the arising molecular genetics toolkit. We review recent advantages in developing high throughput screening methods, preparing genome-wide mutant libraries, and establishing genome editing techniques. We discuss how algae can be improved in terms of photosynthetic efficiency, biofuel and high value-added compound production. Finally, we critically evaluate developments over recent years and explore future potential in the field.
Collapse
Affiliation(s)
- Veronika Kselíková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Anjali Singh
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Vitali Bialevich
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Mária Čížková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Kateřina Bišová
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic.
| |
Collapse
|
32
|
Singh S, Verma DK, Thakur M, Tripathy S, Patel AR, Shah N, Utama GL, Srivastav PP, Benavente-Valdés JR, Chávez-González ML, Aguilar CN. Supercritical fluid extraction (SCFE) as green extraction technology for high-value metabolites of algae, its potential trends in food and human health. Food Res Int 2021; 150:110746. [PMID: 34865764 DOI: 10.1016/j.foodres.2021.110746] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023]
Abstract
Application of high-value algal metabolites (HVAMs) in cosmetics, additives, pigments, foods and medicines are very important. These HVAMs can be obtained from the cultivation of micro- and macro-algae. These metabolites can benefit human and animal health in a physiological and nutritional manner. However, because of conventional extraction methods and their energy and the use of pollutant solvents, the availability of HVAMs from algae remains insufficient. Receiving their sustainability and environmental benefits have recently made green extraction technologies for HVAM extractions more desirable. But very little information is available about the technology of green extraction of algae from these HVAM. This review, therefore, highlights the supercritical fluid extraction (SCFE) as principal green extraction technologyand theirideal parameters for extracting HVAMs. In first, general information is provided concerning the HVAMs and their components of macro and micro origin. The review also includes a description of SCFE technology's properties, instrumentation operation, solvents used, and the merits and demerits. Moreover, there are several HVAMs associated with their numerous high-level biological activities which include high-level antioxidant, anti-inflammatory, anticancer and antimicrobial activity and have potential health-beneficial effects in humans since they are all HVAMs, such as foods and nutraceuticals. Finally, it provides future insights, obstacles, and suggestions for selecting the right technologies for extraction.
Collapse
Affiliation(s)
- Smita Singh
- Department of Nutrition and Dietetics, University Institute of Applied Health Sciences, Chandigarh University, Chandigarh 140413, Punjab, India.
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| | - Mamta Thakur
- Department of Food Technology, School of Sciences, ITM University, Gwalior 474001, Madhya Pradesh, India.
| | - Soubhagya Tripathy
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Ami R Patel
- Division of Dairy Microbiology, Mansinhbhai Institute of Dairy and Food Technology-MIDFT, Dudhsagar Dairy Campus, Mehsana 384 002, Gujarat, India
| | - Nihir Shah
- Division of Dairy Microbiology, Mansinhbhai Institute of Dairy and Food Technology-MIDFT, Dudhsagar Dairy Campus, Mehsana 384 002, Gujarat, India
| | - Gemilang Lara Utama
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia; Center for Environment and Sustainability Science, Universitas Padjadjaran, Bandung 40132, Indonesia
| | - Prem Prakash Srivastav
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Juan Roberto Benavente-Valdés
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo Campus, 25280 Coahuila, Mexico
| | - Mónica L Chávez-González
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo Campus, 25280 Coahuila, Mexico
| | - Cristobal Noe Aguilar
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo Campus, 25280 Coahuila, Mexico.
| |
Collapse
|
33
|
Fernandes T, Ferreira A, Cordeiro N. Comparative lipidomic analysis of Chlorella stigmatophora and Hemiselmis cf. andersenii in response to nitrogen-induced changes. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
de Lima Barizão AC, de Oliveira JP, Gonçalves RF, Cassini ST. Nanomagnetic approach applied to microalgae biomass harvesting: advances, gaps, and perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44795-44811. [PMID: 34244940 DOI: 10.1007/s11356-021-15260-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Microalgae biomass is a versatile option for a myriad of purposes, as it does not require farmable land for cultivation and due of its high CO2 fixation efficiency during growth. However, biomass harvesting is considered a bottleneck in the process because of its high cost. Magnetic harvesting is a promising method on account of its low cost, high harvesting speed, and efficiency, which can be used to improve the results of other harvesting methods. Here, we present the state of the art of the magnetic harvesting method. Detailed approaches involving different nanomaterials are described, including types, route of synthesis, and functionalization, variables that interfere with harvesting, and recycling methods of nanoparticles and medium. In addition to discussing the overall perspectives of the method, we provide a guideline for future research.
Collapse
Affiliation(s)
- Ana Carolina de Lima Barizão
- Department of Environmental Engineering, Federal University of Espírito Santo, Fernando Ferrari avenue, 514 - Goiabeiras, Vitória, ES, 29075-910, Brazil
| | - Jairo Pinto de Oliveira
- Department of Morphology, Federal University of Espírito Santo, Maruípe avenue, Vitória, ES, 29053-360, Brazil
| | - Ricardo Franci Gonçalves
- Department of Environmental Engineering, Federal University of Espírito Santo, Fernando Ferrari avenue, 514 - Goiabeiras, Vitória, ES, 29075-910, Brazil
| | - Sérvio Túlio Cassini
- Department of Environmental Engineering, Federal University of Espírito Santo, Fernando Ferrari avenue, 514 - Goiabeiras, Vitória, ES, 29075-910, Brazil.
| |
Collapse
|
35
|
Goswami RK, Agrawal K, Verma P. Phycoremediation of nitrogen and phosphate from wastewater using Picochlorum sp.: A tenable approach. J Basic Microbiol 2021; 62:279-295. [PMID: 34312905 DOI: 10.1002/jobm.202100277] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/22/2021] [Accepted: 07/04/2021] [Indexed: 11/11/2022]
Abstract
The wastewater originates from different industrial, municipal, and agriculture processes and contains different nitrogen sources, for example, nitrate, ammonium, nitrite, and phosphate such as inorganic and organic sources. The discharge of high nitrate and phosphate to the ecosystem or nearby water bodies can cause eutrophication which disbalances the aquatic ecosystem. Furthermore, ingestion of these pollutants can cause severe toxicity and disease to humans and animals. Thus, from an environmental and social perspective, its treatment is essential with no negative impact on the ecosystem. Microalgae are fundamental, mixotrophic microorganisms that treat different wastewater and utilize nitrate and phosphate in the medium as a source of nutrients. Among them, Picochlorum sp., have the potential to remove nitrogen and phosphate from wastewater. The biomass produced by Picochlorum sp. can be a promising candidate as a sustainable feedstock for biofuel and bioproducts formation. Thus, the present review provides a brief knowledge and understanding about the concentration of nitrogen and phosphate in different wastewater, their negative impacts, and the uptake mechanism of microalgae. Furthermore, the review also provides an insight into Picochlorum sp., and the effects of different physiological and nutritional factors on their growth, wastewater treatment efficacy, and biomass for value-added products and biorefinery applications. In addition, the review is useful to understand the potential of Picochlorum sp. for a tenable wastewater treatment process.
Collapse
Affiliation(s)
- Rahul K Goswami
- Department of Microbiology, Bioprocess, and Bioenergy Laboratory, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Komal Agrawal
- Department of Microbiology, Bioprocess, and Bioenergy Laboratory, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Pradeep Verma
- Department of Microbiology, Bioprocess, and Bioenergy Laboratory, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
36
|
Remize M, Brunel Y, Silva JL, Berthon JY, Filaire E. Microalgae n-3 PUFAs Production and Use in Food and Feed Industries. Mar Drugs 2021; 19:113. [PMID: 33670628 PMCID: PMC7922858 DOI: 10.3390/md19020113] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
N-3 polyunsaturated fatty acids (n-3 PUFAs), and especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are essential compounds for human health. They have been proven to act positively on a panel of diseases and have interesting anti-oxidative, anti-inflammatory or anti-cancer properties. For these reasons, they are receiving more and more attention in recent years, especially future food or feed development. EPA and DHA come mainly from marine sources like fish or seaweed. Unfortunately, due to global warming, these compounds are becoming scarce for humans because of overfishing and stock reduction. Although increasing in recent years, aquaculture appears insufficient to meet the increasing requirements of these healthy molecules for humans. One alternative resides in the cultivation of microalgae, the initial producers of EPA and DHA. They are also rich in biochemicals with interesting properties. After defining macro and microalgae, this review synthesizes the current knowledge on n-3 PUFAs regarding health benefits and the challenges surrounding their supply within the environmental context. Microalgae n-3 PUFA production is examined and its synthesis pathways are discussed. Finally, the use of EPA and DHA in food and feed is investigated. This work aims to define better the issues surrounding n-3 PUFA production and supply and the potential of microalgae as a sustainable source of compounds to enhance the food and feed of the future.
Collapse
Affiliation(s)
- Marine Remize
- GREENSEA, 3 Promenade du Sergent Jean-Louis Navarro, 34140 MÈZE, France; (M.R.); (Y.B.)
| | - Yves Brunel
- GREENSEA, 3 Promenade du Sergent Jean-Louis Navarro, 34140 MÈZE, France; (M.R.); (Y.B.)
| | - Joana L. Silva
- ALLMICROALGAE–Natural Products, Avenida 25 Abril, 2445-413 Pataias, Portugal;
| | | | - Edith Filaire
- GREENTECH, Biopôle Clermont-Limagne, 63360 SAINT BEAUZIRE, France;
- ECREIN Team, UMR 1019 INRA-UcA, UNH (Human Nutrition Unity), University Clermont Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|
37
|
Cesaro A. The valorization of the anaerobic digestate from the organic fractions of municipal solid waste: Challenges and perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111742. [PMID: 33308930 DOI: 10.1016/j.jenvman.2020.111742] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/12/2020] [Accepted: 11/24/2020] [Indexed: 05/12/2023]
Abstract
The anaerobic digestion is a well-established process for the treatment of organic solid waste, pursuing its conversion into a methane rich gas destined to energy generation. Research has largely dealt with the enhancement of the overall bioconversion yields, providing several strategies to maximize the production of bio-methane from the anaerobic processing of a wide variety of substrates. Nevertheless, the valorization of the process effluents should be pursued as well, especially if the anaerobic digestion is regarded in the light of the circular economy principles. Aim of this work is in identifying the state of the art of the strategies to manage the digestate from the anaerobic processing of the organic fractions of municipal solid waste. Conventional approaches are described and novel solutions are figured out in order to highlight their potential scale up as well as to address future research perspectives.
Collapse
Affiliation(s)
- Alessandra Cesaro
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, via Claudio 21, 80125, Napoli, Italy.
| |
Collapse
|
38
|
Barros de Medeiros VP, da Costa WKA, da Silva RT, Pimentel TC, Magnani M. Microalgae as source of functional ingredients in new-generation foods: challenges, technological effects, biological activity, and regulatory issues. Crit Rev Food Sci Nutr 2021; 62:4929-4950. [PMID: 33544001 DOI: 10.1080/10408398.2021.1879729] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microalgae feasibility as food ingredients or source of nutrients and/or bioactive compounds and their health effects have been widely studied. This review aims to provide an overview of the use of microalgae biomass in food products, the technological effects of its incorporation, and their use as a source of health-promoting bioactive compounds. In addition, it presents the regulatory aspects of commercialization and consumption, and the main trends and market challenges Microalgae have stood out as sources of nutritional compounds (polysaccharides, proteins, lipids, vitamins, minerals, and dietary fiber) and biologically active compounds (asthaxanthin, β-carotene, omega-3 fatty acids). The consumption of microalgae biomass proved to have several health effects, such as hypoglycemic activity, gastroprotective and anti-steatotic properties, improvements in neurobehavioral and cognitive dysfunction, and hypolipidemic properties. Its addition to food products can improve the nutritional value, aroma profile, and technological properties, with important alterations on the syneresis of yogurts, meltability in cheeses, overrun values and melting point in ice creams, physical properties and mechanical characteristics in crisps, and texture, cooking and color characteristics in pastas. However, more studies are needed to prove the health effects in humans, expand the market size, reduce the cost of production, and tighter constraints related to regulations.
Collapse
Affiliation(s)
- Viviane Priscila Barros de Medeiros
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, Brazil
| | - Whyara Karoline Almeida da Costa
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, Brazil
| | - Ruthchelly Tavares da Silva
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, Brazil
| | | | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, Brazil
| |
Collapse
|
39
|
Abril Bonett JE, de Sousa Geraldino P, Cardoso PG, de Freitas Coelho F, Duarte WF. Isolation of freshwater microalgae and outdoor cultivation using cheese whey as substrate. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Morales-Sánchez D, Schulze PS, Kiron V, Wijffels RH. Production of carbohydrates, lipids and polyunsaturated fatty acids (PUFA) by the polar marine microalga Chlamydomonas malina RCC2488. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Silva SC, Ferreira ICFR, Dias MM, Barreiro MF. Microalgae-Derived Pigments: A 10-Year Bibliometric Review and Industry and Market Trend Analysis. Molecules 2020; 25:E3406. [PMID: 32731380 PMCID: PMC7435790 DOI: 10.3390/molecules25153406] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/23/2022] Open
Abstract
Microalgae productive chains are gaining importance as sustainable alternatives to obtain natural pigments. This work presents a review on the most promising pigments and microalgal sources by gathering trends from a 10-year bibliometric survey, a patents search, and an industrial and market analysis built from available market reports, projects and companies' webpages. The performed analysis pointed out chlorophylls, phycocyanin, astaxanthin, and β-carotene as the most relevant pigments, and Chlorella vulgaris, Spirulina platensis, Haematococcus pluvialis, and Dunaliella salina, respectively, as the most studied sources. Haematococcus is referred in the highest number of patents, corroborating a high technological interest in this microalga. The biorefinery concept, investment in projects and companies related to microalgae cultivation and/or pigment extraction is increasingly growing, particularly, for phycocyanin from Spirulina platensis. These pieces of evidence are a step forward to consolidate the microalgal pigments market, which is expected to grow in the coming years, increasing the prospects of replacing synthetic pigments by natural counterparts.
Collapse
Affiliation(s)
- Samara C. Silva
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal; (S.C.S.); (I.C.F.R.F.)
- Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal;
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal; (S.C.S.); (I.C.F.R.F.)
| | - Madalena M. Dias
- Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal;
| | - M. Filomena Barreiro
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal; (S.C.S.); (I.C.F.R.F.)
| |
Collapse
|