1
|
Vadolas J, Nualkaew T, Voon HPJ, Vilcassim S, Grigoriadis G. Interplay between α-thalassemia and β-hemoglobinopathies: Translating genotype-phenotype relationships into therapies. Hemasphere 2024; 8:e78. [PMID: 38752170 PMCID: PMC11094674 DOI: 10.1002/hem3.78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
α-Thalassemia represents one of the most important genetic modulators of β-hemoglobinopathies. During this last decade, the ongoing interest in characterizing genotype-phenotype relationships has yielded incredible insights into α-globin gene regulation and its impact on β-hemoglobinopathies. In this review, we provide a holistic update on α-globin gene expression stemming from DNA to RNA to protein, as well as epigenetic mechanisms that can impact gene expression and potentially influence phenotypic outcomes. Here, we highlight defined α-globin targeted strategies and rationalize the use of distinct molecular targets based on the restoration of balanced α/β-like globin chain synthesis. Considering the therapies that either increase β-globin synthesis or reactivate γ-globin gene expression, the modulation of α-globin chains as a disease modifier for β-hemoglobinopathies still remains largely uncharted in clinical studies.
Collapse
Affiliation(s)
- Jim Vadolas
- Centre for Cancer ResearchHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Tiwaporn Nualkaew
- Centre for Cancer ResearchHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Present address:
Department of Medical Technology, School of Allied Health SciencesWalailak UniversityNakhon Si ThammaratThailand
| | - Hsiao P. J. Voon
- Department of Biochemistry and Molecular Biology, Cancer Program, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| | - Shahla Vilcassim
- Centre for Cancer ResearchHudson Institute of Medical ResearchClaytonVictoriaAustralia
- School of Clinical Sciences at Monash HealthMonash UniversityClaytonAustralia
| | - George Grigoriadis
- Centre for Cancer ResearchHudson Institute of Medical ResearchClaytonVictoriaAustralia
- School of Clinical Sciences at Monash HealthMonash UniversityClaytonAustralia
| |
Collapse
|
2
|
Zurlo M, Zuccato C, Cosenza LC, Gamberini MR, Finotti A, Gambari R. Increased Expression of α-Hemoglobin Stabilizing Protein (AHSP) mRNA in Erythroid Precursor Cells Isolated from β-Thalassemia Patients Treated with Sirolimus (Rapamycin). J Clin Med 2024; 13:2479. [PMID: 38731008 PMCID: PMC11084795 DOI: 10.3390/jcm13092479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Background/Objectives: in β-thalassemia, important clinical complications are caused by the presence of free α-globin chains in the erythroid cells of β-thalassemia patients. These free α-globin chains are present in excess as a result of the lack of β-globin chains to bind with; they tend to aggregate and precipitate, causing deleterious effects and overall cytotoxicity, maturation arrest of the erythroid cells and, ultimately, ineffective erythropoiesis. The chaperone protein α-hemoglobin-stabilizing protein (AHSP) reversibly binds with free α-globin; the resulting AHSP-αHb complex prevents aggregation and precipitation. Sirolimus (rapamycin) has been previously demonstrated to induce expression of fetal hemoglobin and decrease the excess of free α-globin chain in the erythroid cells of β-thalassemia patients. The objective of this study was to verify whether sirolimus is also able to upregulate AHSP expression in erythroid precursor cells (ErPCs) isolated from β-thalassemia patients. Methods: the expression of AHSP genes was analyzed by measuring the AHSP mRNA content by real-time quantitative PCR (RT-qPCR) and the AHSP protein production by Western blotting. Results: AHSP gene expression was found to be higher in ErPCs of β-thalassemia patients in comparison to ErPCs isolated from healthy subjects. In addition, AHSP expression was further induced by treatment of β-thalassemia ErPCs with sirolimus. Finally, AHSP mRNA was expressed at an increased level in ErPCs of sirolimus-treated β-thalassemia patients participating in the NCT03877809 Sirthalaclin clinical trial. Conclusions: this exploratory study suggests that AHSP expression should be considered as an endpoint in clinical trials based on sirolimus.
Collapse
Affiliation(s)
- Matteo Zurlo
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy; (M.Z.); (C.Z.); (L.C.C.)
| | - Cristina Zuccato
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy; (M.Z.); (C.Z.); (L.C.C.)
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy;
| | - Lucia Carmela Cosenza
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy; (M.Z.); (C.Z.); (L.C.C.)
| | - Maria Rita Gamberini
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy;
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy; (M.Z.); (C.Z.); (L.C.C.)
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy;
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy; (M.Z.); (C.Z.); (L.C.C.)
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy;
| |
Collapse
|
3
|
Kumari N, Ahmad A, Berto-Junior C, Ivanov A, Wen F, Lin X, Diaz S, Okpala I, Taylor JG, Jerebtsova M, Nekhai S. Antiviral response and HIV-1 inhibition in sickle cell disease. iScience 2024; 27:108813. [PMID: 38318349 PMCID: PMC10839265 DOI: 10.1016/j.isci.2024.108813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/03/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Sickle cell disease (SCD) is characterized by hemolysis, vaso-occlusion, and ischemia. HIV-1 infection was previously shown to be suppressed in SCD PBMCs. Here, we report that HIV-1 suppression is attributed to the increased expression of iron, hypoxia, and interferon-induced innate antiviral factors. Inhibition of upregulated antiviral genes, HMOX-1, CDKN1A, and CH25H, increased HIV-1 replication in SCD PBMCs, suggesting their critical role in HIV-1 suppression. Levels of IFN-β were elevated in SCD patients. Sickle cell hemoglobin (HbS) treatment of THP-1-derived and primary monocyte-derived macrophages induced production of IFN-β, upregulated antiviral gene expression, and suppressed HIV-1 infection. Infection with mouse-adapted EcoHIV was suppressed in the SCD mice that also exhibited elevated levels of antiviral restriction factors. Our findings suggest that hemolysis and release of HbS leads to the induction of IFN-β production, induction of cellular antiviral state by the expression of iron and IFN-driven factors, and suppression of HIV-1 infection.
Collapse
Affiliation(s)
- Namita Kumari
- Center for Sickle Cell Disease, Howard University, Washington, DC, USA
- Department of Medicine, Howard University, Washington, DC, USA
| | - Asrar Ahmad
- Center for Sickle Cell Disease, Howard University, Washington, DC, USA
| | - Clemilson Berto-Junior
- Center for Sickle Cell Disease, Howard University, Washington, DC, USA
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrey Ivanov
- Center for Sickle Cell Disease, Howard University, Washington, DC, USA
| | - Fayuan Wen
- Center for Sickle Cell Disease, Howard University, Washington, DC, USA
| | - Xionghao Lin
- Center for Sickle Cell Disease, Howard University, Washington, DC, USA
| | - Sharmin Diaz
- Center for Sickle Cell Disease, Howard University, Washington, DC, USA
| | | | - James G. Taylor
- Center for Sickle Cell Disease, Howard University, Washington, DC, USA
- Department of Medicine, Howard University, Washington, DC, USA
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| | | | - Sergei Nekhai
- Center for Sickle Cell Disease, Howard University, Washington, DC, USA
- Department of Medicine, Howard University, Washington, DC, USA
- Department of Microbiology, Howard University, Washington, DC, USA
| |
Collapse
|
4
|
Almeida LEF, Smith ML, Kamimura S, Vogel S, Quezado ZMN. Calcium flux alterations in erythrocytes from sickle cell mice: The relevance of mean corpuscular volume. Blood Cells Mol Dis 2024; 104:102800. [PMID: 37951090 PMCID: PMC10842784 DOI: 10.1016/j.bcmd.2023.102800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/13/2023]
Abstract
Red blood cells (RBC) from patients with sickle cell disease (SCD) have elevated calcium levels at baseline, which are further elevated upon deoxygenation. Here we examined baseline calcium levels and calcium flux in RBCs from a mouse model of SCD mice. We found that akin to humans with SCD, sickle (HbSS) Townes mice, have higher baseline levels and increased calcium flux in RBCs compared to control (HbAA) animals. As HbSS mice, unlike humans with SCD, have high mean corpuscular volume compared with HbAA, we highlight the importance of adjusting biochemical results to number of RBCs rather than hematocrit during the analysis and interpretation of the results. Our findings add to the face validity of humanized sickle cell mice and support its use for studies of RBC calcium flux in SCD.
Collapse
Affiliation(s)
- Luis E F Almeida
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Meghann L Smith
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sayuri Kamimura
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sebastian Vogel
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zenaide M N Quezado
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Zurlo M, Zuccato C, Cosenza LC, Gasparello J, Gamberini MR, Stievano A, Fortini M, Prosdocimi M, Finotti A, Gambari R. Decrease in α-Globin and Increase in the Autophagy-Activating Kinase ULK1 mRNA in Erythroid Precursors from β-Thalassemia Patients Treated with Sirolimus. Int J Mol Sci 2023; 24:15049. [PMID: 37894732 PMCID: PMC10606773 DOI: 10.3390/ijms242015049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
The β-thalassemias are hereditary monogenic diseases characterized by a low or absent production of adult hemoglobin and excess in the content of α-globin. This excess is cytotoxic for the erythroid cells and responsible for the β-thalassemia-associated ineffective erythropoiesis. Therefore, the decrease in excess α-globin is a relevant clinical effect for these patients and can be realized through the induction of fetal hemoglobin, autophagy, or both. The in vivo effects of sirolimus (rapamycin) and analogs on the induction of fetal hemoglobin (HbF) are of key importance for therapeutic protocols in a variety of hemoglobinopathies, including β-thalassemias. In this research communication, we report data showing that a decrease in autophagy-associated p62 protein, increased expression of ULK-1, and reduction in excess α-globin are occurring in erythroid precursors (ErPCs) stimulated in vitro with low dosages of sirolimus. In addition, increased ULK-1 mRNA content and a decrease in α-globin content were found in ErPCs isolated from β-thalassemia patients recruited for the NCT03877809 clinical trial and treated with 0.5-2 mg/day sirolimus. Our data support the concept that autophagy, ULK1 expression, and α-globin chain reduction should be considered important endpoints in sirolimus-based clinical trials for β-thalassemias.
Collapse
Affiliation(s)
- Matteo Zurlo
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy; (M.Z.); (C.Z.); (L.C.C.); (J.G.)
| | - Cristina Zuccato
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy; (M.Z.); (C.Z.); (L.C.C.); (J.G.)
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Ferrara University, 44121 Ferrara, Italy
| | - Lucia Carmela Cosenza
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy; (M.Z.); (C.Z.); (L.C.C.); (J.G.)
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy; (M.Z.); (C.Z.); (L.C.C.); (J.G.)
| | - Maria Rita Gamberini
- Thalassemia Unit, Arcispedale S. Anna, 44121 Ferrara, Italy; (M.R.G.); (A.S.); (M.F.)
| | - Alice Stievano
- Thalassemia Unit, Arcispedale S. Anna, 44121 Ferrara, Italy; (M.R.G.); (A.S.); (M.F.)
| | - Monica Fortini
- Thalassemia Unit, Arcispedale S. Anna, 44121 Ferrara, Italy; (M.R.G.); (A.S.); (M.F.)
| | | | - Alessia Finotti
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy; (M.Z.); (C.Z.); (L.C.C.); (J.G.)
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Ferrara University, 44121 Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Ferrara University, 44121 Ferrara, Italy; (M.Z.); (C.Z.); (L.C.C.); (J.G.)
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Ferrara University, 44121 Ferrara, Italy
| |
Collapse
|
6
|
Gambari R, Zuccato C, Cosenza LC, Zurlo M, Gasparello J, Finotti A, Gamberini MR, Prosdocimi M. The Long Scientific Journey of Sirolimus (Rapamycin): From the Soil of Easter Island (Rapa Nui) to Applied Research and Clinical Trials on β-Thalassemia and Other Hemoglobinopathies. BIOLOGY 2023; 12:1202. [PMID: 37759601 PMCID: PMC10525103 DOI: 10.3390/biology12091202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
In this review article, we present the fascinating story of rapamycin (sirolimus), a drug able to induce γ-globin gene expression and increased production of fetal hemoglobin (HbF) in erythroid cells, including primary erythroid precursor cells (ErPCs) isolated from β-thalassemia patients. For this reason, rapamycin is considered of great interest for the treatment of β-thalassemia. In fact, high levels of HbF are known to be highly beneficial for β-thalassemia patients. The story of rapamycin discovery began in 1964, with METEI, the Medical Expedition to Easter Island (Rapa Nui). During this expedition, samples of the soil from different parts of the island were collected and, from this material, an antibiotic-producing microorganism (Streptomyces hygroscopicus) was identified. Rapamycin was extracted from the mycelium with organic solvents, isolated, and demonstrated to be very active as an anti-bacterial and anti-fungal agent. Later, rapamycin was demonstrated to inhibit the in vitro cell growth of tumor cell lines. More importantly, rapamycin was found to be an immunosuppressive agent applicable to prevent kidney rejection after transplantation. More recently, rapamycin was found to be a potent inducer of HbF both in vitro using ErPCs isolated from β-thalassemia patients, in vivo using experimental mice, and in patients treated with this compound. These studies were the basis for proposing clinical trials on β-thalassemia patients.
Collapse
Affiliation(s)
- Roberto Gambari
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.Z.); (M.R.G.)
| | - Cristina Zuccato
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.Z.); (M.R.G.)
| | - Lucia Carmela Cosenza
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (L.C.C.); (M.Z.); (J.G.)
| | - Matteo Zurlo
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (L.C.C.); (M.Z.); (J.G.)
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (L.C.C.); (M.Z.); (J.G.)
| | - Alessia Finotti
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.Z.); (M.R.G.)
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (L.C.C.); (M.Z.); (J.G.)
| | - Maria Rita Gamberini
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.Z.); (M.R.G.)
| | | |
Collapse
|
7
|
Almeida LEF, Smith ML, Kamimura S, Vogel S, de Souza Batista CM, Quezado ZMN. Nitrite decreases sickle hemoglobin polymerization in vitro independently of methemoglobin formation. Toxicol Appl Pharmacol 2023; 473:116606. [PMID: 37336294 PMCID: PMC10387360 DOI: 10.1016/j.taap.2023.116606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
The root cause of sickle cell disease (SCD) is the polymerization of sickle hemoglobin (HbS) leading to sickling of red blood cells (RBC). Earlier studies showed that in patients with SCD, high-dose nitrite inhibited sickling, an effect originally attributed to HbS oxidation to methemoglobin-S even though the anti-sickling effect did not correlate with methemoglobin-S levels. Here, we examined the effects of nitrite on HbS polymerization and on methemoglobin formation in a SCD mouse model. In vitro, at concentrations higher than physiologic (>1 μM), nitrite increased the delay time for polymerization of deoxygenated HbS independently of methemoglobin-S formation, which only occurred at much higher concentrations (>300 μM). In vitro, higher nitrite concentrations oxidized 100% of normal hemoglobin A (HbA), but only 70% of HbS. Dimethyl adipimidate, an anti-polymerization agent, increased the fraction of HbS oxidized by nitrite to 82%, suggesting that polymerized HbS partially contributed to the oxidation-resistant fraction of HbS. At low concentrations (10 μM-1 mM), nitrite did not increase the formation of reactive oxygen species but at high concentrations (10 mM) it decreased sickle RBC viability. In SCD mice, 4-week administration of nitrite yielded no significant changes in methemoglobin or nitrite levels in plasma and RBC, however, it further increased leukocytosis. Overall, these data suggest that nitrite at supra-physiologic concentrations has anti-polymerization properties in vitro and that leukocytosis is a potential nitrite toxicity in vivo. Therefore, to determine whether the anti-polymerization effect of nitrite observed in vitro underlies the decreases in sickling observed in patients with SCD, administration of higher nitrite doses is required.
Collapse
Affiliation(s)
- Luis E F Almeida
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Meghann L Smith
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sayuri Kamimura
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sebastian Vogel
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Celia M de Souza Batista
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zenaide M N Quezado
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Ehlers VL, Sadler KE, Stucky CL. Peripheral transient receptor potential vanilloid type 4 hypersensitivity contributes to chronic sickle cell disease pain. Pain 2023; 164:1874-1886. [PMID: 36897169 PMCID: PMC10363186 DOI: 10.1097/j.pain.0000000000002889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/08/2022] [Indexed: 03/11/2023]
Abstract
ABSTRACT Debilitating pain affects the lives of patients with sickle cell disease (SCD). Current pain treatment for patients with SCD fail to completely resolve acute or chronic SCD pain. Previous research indicates that the cation channel transient receptor potential vanilloid type 4 (TRPV4) mediates peripheral hypersensitivity in various inflammatory and neuropathic pain conditions that may share similar pathophysiology with SCD, but this channel's role in chronic SCD pain remains unknown. Thus, the current experiments examined whether TRPV4 regulates hyperalgesia in transgenic mouse models of SCD. Acute blockade of TRPV4 alleviated evoked behavioral hypersensitivity to punctate, but not dynamic, mechanical stimuli in mice with SCD. TRPV4 blockade also reduced the mechanical sensitivity of small, but not large, dorsal root ganglia neurons from mice with SCD. Furthermore, keratinocytes from mice with SCD showed sensitized TRPV4-dependent calcium responses. These results shed new light on the role of TRPV4 in SCD chronic pain and are the first to suggest a role for epidermal keratinocytes in the heightened sensitivity observed in SCD.
Collapse
Affiliation(s)
- Vanessa L Ehlers
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | | |
Collapse
|
9
|
Finotti A, Gambari R. Combined approaches for increasing fetal hemoglobin (HbF) and de novo production of adult hemoglobin (HbA) in erythroid cells from β-thalassemia patients: treatment with HbF inducers and CRISPR-Cas9 based genome editing. Front Genome Ed 2023; 5:1204536. [PMID: 37529398 PMCID: PMC10387548 DOI: 10.3389/fgeed.2023.1204536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023] Open
Abstract
Genome editing (GE) is one of the most efficient and useful molecular approaches to correct the effects of gene mutations in hereditary monogenetic diseases, including β-thalassemia. CRISPR-Cas9 gene editing has been proposed for effective correction of the β-thalassemia mutation, obtaining high-level "de novo" production of adult hemoglobin (HbA). In addition to the correction of the primary gene mutations causing β-thalassemia, several reports demonstrate that gene editing can be employed to increase fetal hemoglobin (HbF), obtaining important clinical benefits in treated β-thalassemia patients. This important objective can be achieved through CRISPR-Cas9 disruption of genes encoding transcriptional repressors of γ-globin gene expression (such as BCL11A, SOX6, KLF-1) or their binding sites in the HBG promoter, mimicking non-deletional and deletional HPFH mutations. These two approaches (β-globin gene correction and genome editing of the genes encoding repressors of γ-globin gene transcription) can be, at least in theory, combined. However, since multiplex CRISPR-Cas9 gene editing is associated with documented evidence concerning possible genotoxicity, this review is focused on the possibility to combine pharmacologically-mediated HbF induction protocols with the "de novo" production of HbA using CRISPR-Cas9 gene editing.
Collapse
Affiliation(s)
- Alessia Finotti
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, University of Ferrara, Ferrara, Italy
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Roberto Gambari
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, University of Ferrara, Ferrara, Italy
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
10
|
Gamberini MR, Zuccato C, Zurlo M, Cosenza LC, Finotti A, Gambari R. Effects of Sirolimus Treatment on Fetal Hemoglobin Production and Response to SARS-CoV-2 Vaccination: A Case Report Study. Hematol Rep 2023; 15:432-439. [PMID: 37489374 PMCID: PMC10366771 DOI: 10.3390/hematolrep15030044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023] Open
Abstract
The β-thalassemias are a group of monogenic hereditary hematological disorders caused by deletions and/or mutations of the β-globin gene, leading to low or absent production of adult hemoglobin (HbA). For β-thalassemia, sirolimus has been under clinical consideration in two trials (NCT03877809 and NCT04247750). A reduced immune response to anti-SARS-CoV-2 vaccination has been reported in organ recipient patients treated with the immunosuppressant sirolimus. Therefore, there was some concern regarding the fact that monotherapy with sirolimus would reduce the antibody response after SARS-CoV-2 vaccination. In the representative clinical case reported in this study, sirolimus treatment induced the expected increase of fetal hemoglobin (HbF) but did not prevent the production of anti-SARS-CoV-2 IgG after vaccination with mRNA-1273 (Moderna). In our opinion, this case report should stimulate further studies on β-thalassemia patients under sirolimus monotherapy in order to confirm the safety (or even the positive effects) of sirolimus with respect to the humoral response to anti-SARS-CoV-2 vaccination. In addition, considering the extensive use of sirolimus for the treatment of other human pathologies (for instance, in organ transplantation, systemic lupus erythematosus, autoimmune cytopenia, and lymphangioleiomyomatosis), this case report study might be of general interest, as large numbers of patients are currently under sirolimus treatment.
Collapse
Affiliation(s)
- Maria Rita Gamberini
- Center "Chiara Gemmo and Elio Zago" for the Research on Thalassemia, Università degli Studi di Ferrara, 44121 Ferrara, Italy
- Unità Operativa Interdipartimentale di Day Hospital della Talassemia e delle Emoglobinopatie, Arcispedale S. Anna di Ferrara, 44124 Ferrara, Italy
| | - Cristina Zuccato
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Matteo Zurlo
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Lucia Carmela Cosenza
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Alessia Finotti
- Center "Chiara Gemmo and Elio Zago" for the Research on Thalassemia, Università degli Studi di Ferrara, 44121 Ferrara, Italy
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Roberto Gambari
- Center "Chiara Gemmo and Elio Zago" for the Research on Thalassemia, Università degli Studi di Ferrara, 44121 Ferrara, Italy
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
11
|
The rs368698783 (G>A) Polymorphism Affecting LYAR Binding to the Aγ-Globin Gene Is Associated with High Fetal Hemoglobin (HbF) in β-Thalassemia Erythroid Precursor Cells Treated with HbF Inducers. Int J Mol Sci 2023; 24:ijms24010776. [PMID: 36614221 PMCID: PMC9821710 DOI: 10.3390/ijms24010776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
The human homologue of mouse Ly-1 antibody reactive clone protein (LYAR) is a putative novel regulator of γ-globin gene transcription. The LYAR DNA-binding motif (5′-GGTTAT-3′) is located within the 5′-UTR of the Aγ-globin gene. The LYAR rs368698783 (G>A) polymorphism is present in β-thalassemia patients and decreases the LYAR binding efficiency to the Aγ-globin gene. The objective of this study was to stratify β-thalassemia patients with respect to the rs368698783 (G>A) polymorphism and to verify whether their erythroid precursor cells (ErPCs) differentially respond in vitro to selected fetal hemoglobin (HbF) inducers. The rs368698783 (G>A) polymorphism was detected by DNA sequencing, hemoglobin production by HPLC, and accumulation of globin mRNAs by RT-qPCR. We found that the LYAR rs368698783 (G>A) polymorphism is associated with high basal and induced production of fetal hemoglobin in β-thalassemia patients. The most striking association was found using rapamycin as an HbF inducer. The results presented here could be considered important not only for basic biomedicine but also in applied translational research for precision medicine in personalized therapy of β-thalassemia. Accordingly, our data suggest that the rs368698783 polymorphism might be considered among the parameters useful to recruit patients with the highest probability of responding to in vivo hydroxyurea (HU) treatment.
Collapse
|
12
|
Prosdocimi M, Zuccato C, Cosenza LC, Borgatti M, Lampronti I, Finotti A, Gambari R. A Rational Approach to Drug Repositioning in β-thalassemia: Induction of Fetal Hemoglobin by Established Drugs. Wellcome Open Res 2022; 7:150. [PMID: 36110836 PMCID: PMC9453112 DOI: 10.12688/wellcomeopenres.17845.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 12/27/2022] Open
Abstract
Drug repositioning and the relevance of orphan drug designation for β-thalassemia is reviewed. Drug repositioning and similar terms ('drug repurposing', 'drug reprofiling', 'drug redirecting', 'drug rescue', 'drug re-tasking' and/or 'drug rediscovery') have gained great attention, especially in the field or rare diseases (RDs), and represent relevant novel drug development strategies to be considered together with the "off-label" use of pharmaceutical products under clinical trial regimen. The most significant advantage of drug repositioning over traditional drug development is that the repositioned drug has already passed a significant number of short- and long-term toxicity tests, as well as it has already undergone pharmacokinetic and pharmacodynamic (PK/PD) studies. The established safety of repositioned drugs is known to significantly reduce the probability of project failure. Furthermore, development of repurposed drugs can shorten much of the time needed to bring a drug to market. Finally, patent filing of repurposed drugs is expected to catch the attention of pharmaceutical industries interested in the development of therapeutic protocols for RDs. Repurposed molecules that could be proposed as potential drugs for β-thalassemia, will be reported, with some of the most solid examples, including sirolimus (rapamycin) that recently has been tested in a pilot clinical trial.
Collapse
Affiliation(s)
- Marco Prosdocimi
- Rare Partners srl Impresa Sociale, Via G.Boccaccio 20, 20123 Milano, Italy,
| | - Cristina Zuccato
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Lucia Carmela Cosenza
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Monica Borgatti
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Ilaria Lampronti
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Alessia Finotti
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Roberto Gambari
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| |
Collapse
|
13
|
Prosdocimi M, Zuccato C, Cosenza LC, Borgatti M, Lampronti I, Finotti A, Gambari R. A Rational Approach to Drug Repositioning in β-thalassemia: Induction of Fetal Hemoglobin by Established Drugs. Wellcome Open Res 2022; 7:150. [PMID: 36110836 PMCID: PMC9453112 DOI: 10.12688/wellcomeopenres.17845.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2022] [Indexed: 12/27/2022] Open
Abstract
Drug repositioning and the relevance of orphan drug designation for β-thalassemia is reviewed. Drug repositioning and similar terms ('drug repurposing', 'drug reprofiling', 'drug redirecting', 'drug rescue', 'drug re-tasking' and/or 'drug rediscovery') have gained great attention, especially in the field or rare diseases (RDs), and represent relevant novel drug development strategies to be considered together with the "off-label" use of pharmaceutical products under clinical trial regimen. The most significant advantage of drug repositioning over traditional drug development is that the repositioned drug has already passed a significant number of short- and long-term toxicity tests, as well as it has already undergone pharmacokinetic and pharmacodynamic (PK/PD) studies. The established safety of repositioned drugs is known to significantly reduce the probability of project failure. Furthermore, development of repurposed drugs can shorten much of the time needed to bring a drug to market. Finally, patent filing of repurposed drugs is expected to catch the attention of pharmaceutical industries interested in the development of therapeutic protocols for RDs. Repurposed molecules that could be proposed as potential drugs for β-thalassemia, will be reported, with some of the most solid examples, including sirolimus (rapamycin) that recently has been tested in a pilot clinical trial.
Collapse
Affiliation(s)
- Marco Prosdocimi
- Rare Partners srl Impresa Sociale, Via G.Boccaccio 20, 20123 Milano, Italy,
| | - Cristina Zuccato
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Lucia Carmela Cosenza
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Monica Borgatti
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Ilaria Lampronti
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Alessia Finotti
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Roberto Gambari
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| |
Collapse
|
14
|
Prosdocimi M, Zuccato C, Cosenza LC, Borgatti M, Lampronti I, Finotti A, Gambari R. A Rational Approach to Drug Repositioning in β-thalassemia: Induction of Fetal Hemoglobin by Established Drugs. Wellcome Open Res 2022; 7:150. [PMID: 36110836 PMCID: PMC9453112 DOI: 10.12688/wellcomeopenres.17845.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 12/27/2022] Open
Abstract
Drug repositioning and the relevance of orphan drug designation for β-thalassemia is reviewed. Drug repositioning and similar terms ('drug repurposing', 'drug reprofiling', 'drug redirecting', 'drug rescue', 'drug re-tasking' and/or 'drug rediscovery') have gained great attention, especially in the field or rare diseases (RDs), and represent relevant novel drug development strategies to be considered together with the "off-label" use of pharmaceutical products under clinical trial regimen. The most significant advantage of drug repositioning over traditional drug development is that the repositioned drug has already passed a significant number of short- and long-term toxicity tests, as well as it has already undergone pharmacokinetic and pharmacodynamic (PK/PD) studies. The established safety of repositioned drugs is known to significantly reduce the probability of project failure. Furthermore, development of repurposed drugs can shorten much of the time needed to bring a drug to market. Finally, patent filing of repurposed drugs is expected to catch the attention of pharmaceutical industries interested in the development of therapeutic protocols for RDs. Repurposed molecules that could be proposed as potential drugs for β-thalassemia, will be reported, with some of the most solid examples, including sirolimus (rapamycin) that recently has been tested in a pilot clinical trial.
Collapse
Affiliation(s)
- Marco Prosdocimi
- Rare Partners srl Impresa Sociale, Via G.Boccaccio 20, 20123 Milano, Italy,
| | - Cristina Zuccato
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Lucia Carmela Cosenza
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Monica Borgatti
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Ilaria Lampronti
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Alessia Finotti
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Roberto Gambari
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| |
Collapse
|
15
|
Quezado ZMN, Kamimura S, Smith M, Wang X, Heaven MR, Jana S, Vogel S, Zerfas P, Combs CA, Almeida LEF, Li Q, Quezado M, Horkayne-Szakaly I, Kosinski PA, Yu S, Kapadnis U, Kung C, Dang L, Wakim P, Eaton WA, Alayash AI, Thein SL. Mitapivat increases ATP and decreases oxidative stress and erythrocyte mitochondria retention in a SCD mouse model. Blood Cells Mol Dis 2022; 95:102660. [PMID: 35366607 DOI: 10.1016/j.bcmd.2022.102660] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/25/2022]
Abstract
Polymerization of deoxygenated sickle hemoglobin (HbS) leads to erythrocyte sickling. Enhancing activity of the erythrocyte glycolytic pathway has anti-sickling potential as this reduces 2,3-diphosphoglycerate (2,3-DPG) and increases ATP, factors that decrease HbS polymerization and improve erythrocyte membrane integrity. These factors can be modulated by mitapivat, which activates erythrocyte pyruvate kinase (PKR) and improves sickling kinetics in SCD patients. We investigated mechanisms by which mitapivat may impact SCD by examining its effects in the Townes SCD mouse model. Control (HbAA) and sickle (HbSS) mice were treated with mitapivat or vehicle. Surprisingly, HbSS had higher PKR protein, higher ATP, and lower 2,3-DPG levels, compared to HbAA mice, in contrast with humans with SCD, in whom 2,3-DPG is elevated compared to healthy subjects. Despite our inability to investigate 2,3-DPG-mediated sickling and hemoglobin effects, mitapivat yielded potential benefits in HbSS mice. Mitapivat further increased ATP without significantly changing 2,3-DPG or hemoglobin levels, and decreased levels of leukocytosis, erythrocyte oxidative stress, and the percentage of erythrocytes that retained mitochondria in HbSS mice. These data suggest that, even though Townes HbSS mice have increased PKR activity, further activation of PKR with mitapivat yields potentially beneficial effects that are independent of changes in sickling or hemoglobin levels.
Collapse
Affiliation(s)
- Zenaide M N Quezado
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA; Sickle Cell Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Sayuri Kamimura
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Meghann Smith
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xunde Wang
- Sickle Cell Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael R Heaven
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Sirsendu Jana
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Sebastian Vogel
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Patricia Zerfas
- Office of Research Services, Office of the Director, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christian A Combs
- Light Microscopy Core, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luis E F Almeida
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Quan Li
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martha Quezado
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Iren Horkayne-Szakaly
- Neuropathology and Ophthalmic Pathology, Joint Pathology Center, Defense Health Agency, Silver Spring, MD 20910, USA
| | | | - Shaoxia Yu
- Agios Pharmaceuticals Inc, Cambridge, MA 02139, USA
| | | | - Charles Kung
- Agios Pharmaceuticals Inc, Cambridge, MA 02139, USA
| | - Lenny Dang
- Agios Pharmaceuticals Inc, Cambridge, MA 02139, USA
| | - Paul Wakim
- Biostatistics and Clinical Epidemiology Service, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA
| | - William A Eaton
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Abdu I Alayash
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Swee Lay Thein
- Sickle Cell Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
16
|
Zuccato C, Cosenza LC, Zurlo M, Gasparello J, Papi C, D’Aversa E, Breveglieri G, Lampronti I, Finotti A, Borgatti M, Scapoli C, Stievano A, Fortini M, Ramazzotti E, Marchetti N, Prosdocimi M, Gamberini MR, Gambari R. Expression of γ-globin genes in β-thalassemia patients treated with sirolimus: results from a pilot clinical trial (Sirthalaclin). Ther Adv Hematol 2022; 13:20406207221100648. [PMID: 35755297 PMCID: PMC9218916 DOI: 10.1177/20406207221100648] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Introduction β-thalassemia is caused by autosomal mutations in the β-globin gene, which induce the absence or low-level synthesis of β-globin in erythroid cells. It is widely accepted that a high production of fetal hemoglobin (HbF) is beneficial for patients with β-thalassemia. Sirolimus, also known as rapamycin, is a lipophilic macrolide isolated from a strain of Streptomyces hygroscopicus that serves as a strong HbF inducer in vitro and in vivo. In this study, we report biochemical, molecular, and clinical results of a sirolimus-based NCT03877809 clinical trial (a personalized medicine approach for β-thalassemia transfusion-dependent patients: testing sirolimus in a first pilot clinical trial, Sirthalaclin). Methods Accumulation of γ-globin mRNA was analyzed using reverse-transcription quantitative polymerase chain reaction (PCR), while the hemoglobin pattern was analyzed using high-performance liquid chromatography (HPLC). The immunophenotype was analyzed using a fluorescence-activated cell sorter (FACS), with antibodies against CD3, CD4, CD8, CD14, CD19, CD25 (for analysis of peripheral blood mononuclear cells), or CD71 and CD235a (for analysis of in vitro cultured erythroid precursors). Results The results were obtained in eight patients with the β+/β+ and β+/β0 genotypes, who were treated with a starting dosage of 1 mg/day sirolimus for 24-48 weeks. The first finding of this study was that the expression of γ-globin mRNA increased in the blood and erythroid precursor cells isolated from β-thalassemia patients treated with low-dose sirolimus. This trial also led to the important finding that sirolimus influences erythropoiesis and reduces biochemical markers associated with ineffective erythropoiesis (excess free α-globin chains, bilirubin, soluble transferrin receptor, and ferritin). A decrease in the transfusion demand index was observed in most (7/8) of the patients. The drug was well tolerated, with minor effects on the immunophenotype, and an only side effect of frequently occurring stomatitis. Conclusion The data obtained indicate that low doses of sirolimus modify hematopoiesis and induce increased expression of γ-globin genes in a subset of patients with β-thalassemia. Further clinical trials are warranted, possibly including testing of the drug in patients with less severe forms of the disease and exploring combination therapies.
Collapse
Affiliation(s)
- Cristina Zuccato
- Dipartimento di Scienze della Vita e Biotecnologie, Sezione di Biochimica e Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
| | - Lucia Carmela Cosenza
- Dipartimento di Scienze della Vita e Biotecnologie, Sezione di Biochimica e Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
| | - Matteo Zurlo
- Dipartimento di Scienze della Vita e Biotecnologie, Sezione di Biochimica e Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
| | - Jessica Gasparello
- Dipartimento di Scienze della Vita e Biotecnologie, Sezione di Biochimica e Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
| | - Chiara Papi
- Dipartimento di Scienze della Vita e Biotecnologie, Sezione di Biochimica e Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
| | - Elisabetta D’Aversa
- Dipartimento di Scienze della Vita e Biotecnologie, Sezione di Biochimica e Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
| | - Giulia Breveglieri
- Dipartimento di Scienze della Vita e Biotecnologie, Sezione di Biochimica e Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
| | - Ilaria Lampronti
- Dipartimento di Scienze della Vita e Biotecnologie, Sezione di Biochimica e Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
- Thal-LAB, Laboratorio di Ricerca Elio Zago sulla Terapia Farmacologica e Farmacogenomica della Talassemia, Università degli Studi di Ferrara, Ferrara, Italy
| | - Alessia Finotti
- Dipartimento di Scienze della Vita e Biotecnologie, Sezione di Biochimica e Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
- Thal-LAB, Laboratorio di Ricerca Elio Zago sulla Terapia Farmacologica e Farmacogenomica della Talassemia, Università degli Studi di Ferrara, Ferrara, Italy
| | - Monica Borgatti
- Dipartimento di Scienze della Vita e Biotecnologie, Sezione di Biochimica e Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
- Thal-LAB, Laboratorio di Ricerca Elio Zago sulla Terapia Farmacologica e Farmacogenomica della Talassemia, Università degli Studi di Ferrara, Ferrara, Italy
| | - Chiara Scapoli
- Dipartimento di Scienze della Vita e Biotecnologie, Sezione di Biologia ed Evoluzione, Università degli Studi di Ferrara, Ferrara, Italy
| | - Alice Stievano
- Unità Operativa Interdipartimentale di Day Hospital della Talassemia e delle Emoglobinopatie, Arcispedale S. Anna di Ferrara, Ferrara, Italy
| | - Monica Fortini
- Unità Operativa Interdipartimentale di Day Hospital della Talassemia e delle Emoglobinopatie, Arcispedale S. Anna di Ferrara, Ferrara, Italy
| | - Eric Ramazzotti
- Laboratorio Unico Metropolitano, Ospedale Maggiore, Azienda USL di Bologna, Bologna, Italy
| | - Nicola Marchetti
- Dipartimento di Scienze Chimiche, Farmaceutiche e Agrarie, Università degli Studi di Ferrara, Ferrara, Italy
| | | | - Maria Rita Gamberini
- Unità Operativa Interdipartimentale di Day Hospital della Talassemia e delle Emoglobinopatie, Arcispedale S. Anna di Ferrara, via Aldo Moro, 8, Ferrara 44124, Italy
| | - Roberto Gambari
- Dipartimento di Scienze della Vita e Biotecnologie, Sezione di Biochimica e Biologia Molecolare, Università degli Studi di Ferrara, via Fossato di Mortara, 74, Ferrara 44121, Italy
- Thal-LAB, Laboratorio di Ricerca Elio Zago sulla Terapia Farmacologica e Farmacogenomica della Talassemia, Università degli Studi di Ferrara, Ferrara, Italy
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Università degli Studi di Ferrara, Ferrara, Italy
| |
Collapse
|
17
|
Zuccato C, Cosenza LC, Zurlo M, Lampronti I, Borgatti M, Scapoli C, Gambari R, Finotti A. Treatment of Erythroid Precursor Cells from β-Thalassemia Patients with Cinchona Alkaloids: Induction of Fetal Hemoglobin Production. Int J Mol Sci 2021; 22:13433. [PMID: 34948226 PMCID: PMC8706579 DOI: 10.3390/ijms222413433] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/28/2021] [Accepted: 12/09/2021] [Indexed: 12/26/2022] Open
Abstract
β-thalassemias are among the most common inherited hemoglobinopathies worldwide and are the result of autosomal mutations in the gene encoding β-globin, causing an absence or low-level production of adult hemoglobin (HbA). Induction of fetal hemoglobin (HbF) is considered to be of key importance for the development of therapeutic protocols for β-thalassemia and novel HbF inducers need to be proposed for pre-clinical development. The main purpose on this study was to analyze Cinchona alkaloids (cinchonidine, quinidine and cinchonine) as natural HbF-inducing agents in human erythroid cells. The analytical methods employed were Reverse Transcription quantitative real-time PCR (RT-qPCR) (for quantification of γ-globin mRNA) and High Performance Liquid Chromatography (HPLC) (for analysis of the hemoglobin pattern). After an initial analysis using the K562 cell line as an experimental model system, showing induction of hemoglobin and γ-globin mRNA, we verified whether the two more active compounds, cinchonidine and quinidine, were able to induce HbF in erythroid progenitor cells isolated from β-thalassemia patients. The data obtained demonstrate that cinchonidine and quinidine are potent inducers of γ-globin mRNA and HbF in erythroid progenitor cells isolated from nine β-thalassemia patients. In addition, both compounds were found to synergize with the HbF inducer sirolimus for maximal production of HbF. The data obtained strongly indicate that these compounds deserve consideration in the development of pre-clinical approaches for therapeutic protocols of β-thalassemia.
Collapse
Affiliation(s)
- Cristina Zuccato
- Section of Biochemistry and Molecular Biology, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.Z.); (L.C.C.); (M.Z.); (I.L.); (M.B.)
| | - Lucia Carmela Cosenza
- Section of Biochemistry and Molecular Biology, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.Z.); (L.C.C.); (M.Z.); (I.L.); (M.B.)
| | - Matteo Zurlo
- Section of Biochemistry and Molecular Biology, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.Z.); (L.C.C.); (M.Z.); (I.L.); (M.B.)
| | - Ilaria Lampronti
- Section of Biochemistry and Molecular Biology, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.Z.); (L.C.C.); (M.Z.); (I.L.); (M.B.)
- Research Laboratory “Elio Zago” on the Pharmacologic and Pharmacogenomic Therapy of Thalassemia (Thal-LAB), University of Ferrara, 44121 Ferrara, Italy
| | - Monica Borgatti
- Section of Biochemistry and Molecular Biology, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.Z.); (L.C.C.); (M.Z.); (I.L.); (M.B.)
- Research Laboratory “Elio Zago” on the Pharmacologic and Pharmacogenomic Therapy of Thalassemia (Thal-LAB), University of Ferrara, 44121 Ferrara, Italy
| | - Chiara Scapoli
- Section of Biology and Evolution, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy;
| | - Roberto Gambari
- Section of Biochemistry and Molecular Biology, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.Z.); (L.C.C.); (M.Z.); (I.L.); (M.B.)
- Research Laboratory “Elio Zago” on the Pharmacologic and Pharmacogenomic Therapy of Thalassemia (Thal-LAB), University of Ferrara, 44121 Ferrara, Italy
- Interuniversity Consortium for Biotechnology (C.I.B.), 34148 Trieste, Italy
| | - Alessia Finotti
- Section of Biochemistry and Molecular Biology, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.Z.); (L.C.C.); (M.Z.); (I.L.); (M.B.)
- Research Laboratory “Elio Zago” on the Pharmacologic and Pharmacogenomic Therapy of Thalassemia (Thal-LAB), University of Ferrara, 44121 Ferrara, Italy
- Interuniversity Consortium for Biotechnology (C.I.B.), 34148 Trieste, Italy
| |
Collapse
|
18
|
Mukherjee M, Rahaman M, Ray SK, Shukla PC, Dolai TK, Chakravorty N. Revisiting fetal hemoglobin inducers in beta-hemoglobinopathies: a review of natural products, conventional and combinatorial therapies. Mol Biol Rep 2021; 49:2359-2373. [PMID: 34822068 DOI: 10.1007/s11033-021-06977-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022]
Abstract
Beta-hemoglobinopathies exhibit a heterogeneous clinical picture with varying degrees of clinical severity. Pertaining to the limited treatment options available, where blood transfusion still remains the commonest mode of treatment, pharmacological induction of fetal hemoglobin (HbF) has been a lucrative therapeutic intervention. Till now more than 70 different HbF inducers have been identified. The practical usage of many pharmacological drugs has been limited due to safety concerns. Natural compounds, like Resveratrol, Ripamycin and Bergaptene, with limited cytotoxicity and high efficacy have started capturing the attention of researchers. In this review, we have summarized pharmacological drugs and bioactive compounds isolated from natural sources that have been shown to increase HbF significantly. It primarily discusses recently identified synthetic and natural compounds, their mechanism of action, and their suitable screening platforms, including high throughput drug screening technology and biosensors. It also delves into the topic of combinatorial therapy and drug repurposing for HbF induction. Overall, we aim to provide insights into where we stand in HbF induction strategies for treating β-hemoglobinopathies.
Collapse
Affiliation(s)
- Mandrita Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India
| | - Motiur Rahaman
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India
| | - Suman Kumar Ray
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India
| | - Praphulla Chandra Shukla
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India
| | - Tuphan Kanti Dolai
- Department of Hematology, Nil Ratan Sircar Medical College and Hospital, Kolkata, West Bengal, 700014, India
| | - Nishant Chakravorty
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
19
|
Brim H, Taylor J, Abbas M, Vilmenay K, Daremipouran M, Varma S, Lee E, Pace B, Song-Naba WL, Gupta K, Nekhai S, O’Neil P, Ashktorab H. The gut microbiome in sickle cell disease: Characterization and potential implications. PLoS One 2021; 16:e0255956. [PMID: 34432825 PMCID: PMC8386827 DOI: 10.1371/journal.pone.0255956] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/27/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Sickle Cell Disease (SCD) is an inherited blood disorder that leads to hemolytic anemia, pain, organ damage and early mortality. It is characterized by polymerized deoxygenated hemoglobin, rigid sickle red blood cells and vaso-occlusive crises (VOC). Recurrent hypoxia-reperfusion injury in the gut of SCD patients could increase tissue injury, permeability, and bacterial translocation. In this context, the gut microbiome, a major player in health and disease, might have significant impact. This study sought to characterize the gut microbiome in SCD. METHODS Stool and saliva samples were collected from healthy controls (n = 14) and SCD subjects (n = 14). Stool samples were also collected from humanized SCD murine models including Berk, Townes and corresponding control mice. Amplified 16S rDNA was used for bacterial composition analysis using Next Generation Sequencing (NGS). Pairwise group analyses established differential bacterial groups at many taxonomy levels. Bacterial group abundance and differentials were established using DeSeq software. RESULTS A major dysbiosis was observed in SCD patients. The Firmicutes/Bacteroidetes ratio was lower in these patients. The following bacterial families were more abundant in SCD patients: Acetobacteraceae, Acidaminococcaceae, Candidatus Saccharibacteria, Peptostreptococcaceae, Bifidobacteriaceae, Veillonellaceae, Actinomycetaceae, Clostridiales, Bacteroidacbactereae and Fusobacteriaceae. This dysbiosis translated into 420 different operational taxonomic units (OTUs). Townes SCD mice also displayed gut microbiome dysbiosis as seen in human SCD. CONCLUSION A major dysbiosis was observed in SCD patients for bacteria that are known strong pro-inflammatory triggers. The Townes mouse showed dysbiosis as well and might serve as a good model to study gut microbiome modulation and its impact on SCD pathophysiology.
Collapse
Affiliation(s)
- Hassan Brim
- Department of Pathology, Department of Medicine, Cancer Center, Microbiology and Center for Sickle Cell Disease, Howard University College of Medicine, Washington, DC, United States of America
| | - James Taylor
- Department of Pathology, Department of Medicine, Cancer Center, Microbiology and Center for Sickle Cell Disease, Howard University College of Medicine, Washington, DC, United States of America
| | - Muneer Abbas
- Department of Pathology, Department of Medicine, Cancer Center, Microbiology and Center for Sickle Cell Disease, Howard University College of Medicine, Washington, DC, United States of America
| | - Kimberly Vilmenay
- Department of Pathology, Department of Medicine, Cancer Center, Microbiology and Center for Sickle Cell Disease, Howard University College of Medicine, Washington, DC, United States of America
| | - Mohammad Daremipouran
- Department of Pathology, Department of Medicine, Cancer Center, Microbiology and Center for Sickle Cell Disease, Howard University College of Medicine, Washington, DC, United States of America
| | - Sudhir Varma
- Hithru Analytics, Laurel, MD, United States of America
| | - Edward Lee
- Department of Pathology, Department of Medicine, Cancer Center, Microbiology and Center for Sickle Cell Disease, Howard University College of Medicine, Washington, DC, United States of America
| | - Betty Pace
- University of Augusta, Augusta, GA, United States of America
| | - Waogwende L. Song-Naba
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States of America
| | - Kalpna Gupta
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States of America
- Hematology/Oncology, Department of Medicine, University of California Irvine, Irvine, CA, United States of America
- Southern California Institute for Research and Education, Long Beach VA Healthcare System, Long Beach, CA, United States of America
| | - Sergei Nekhai
- Department of Pathology, Department of Medicine, Cancer Center, Microbiology and Center for Sickle Cell Disease, Howard University College of Medicine, Washington, DC, United States of America
| | - Patricia O’Neil
- Food and Drug Administration, Silver Spring, MD, United States of America
| | - Hassan Ashktorab
- Department of Pathology, Department of Medicine, Cancer Center, Microbiology and Center for Sickle Cell Disease, Howard University College of Medicine, Washington, DC, United States of America
| |
Collapse
|
20
|
Pavan AR, Dos Santos JL. Advances in Sickle Cell Disease Treatments. Curr Med Chem 2021; 28:2008-2032. [PMID: 32520675 DOI: 10.2174/0929867327666200610175400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/23/2020] [Accepted: 05/07/2020] [Indexed: 11/22/2022]
Abstract
Sickle Cell Disease (SCD) is an inherited disorder of red blood cells that is caused by a single mutation in the β -globin gene. The disease, which afflicts millions of patients worldwide mainly in low income countries, is characterized by high morbidity, mortality and low life expectancy. The new pharmacological and non-pharmacological strategies for SCD is urgent in order to promote treatments able to reduce patient's suffering and improve their quality of life. Since the FDA approval of HU in 1998, there have been few advances in discovering new drugs; however, in the last three years voxelotor, crizanlizumab, and glutamine have been approved as new therapeutic alternatives. In addition, new promising compounds have been described to treat the main SCD symptoms. Herein, focusing on drug discovery, we discuss new strategies to treat SCD that have been carried out in the last ten years to discover new, safe, and effective treatments. Moreover, non-pharmacological approaches, including red blood cell exchange, gene therapy and hematopoietic stem cell transplantation will be presented.
Collapse
Affiliation(s)
- Aline Renata Pavan
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, Brazil
| | - Jean Leandro Dos Santos
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
21
|
Lei J, Paul J, Wang Y, Gupta M, Vang D, Thompson S, Jha R, Nguyen J, Valverde Y, Lamarre Y, Jones MK, Gupta K. Heme Causes Pain in Sickle Mice via Toll-Like Receptor 4-Mediated Reactive Oxygen Species- and Endoplasmic Reticulum Stress-Induced Glial Activation. Antioxid Redox Signal 2021; 34:279-293. [PMID: 32729340 PMCID: PMC7821434 DOI: 10.1089/ars.2019.7913] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aims: Lifelong pain is a hallmark feature of sickle cell disease (SCD). How sickle pathobiology evokes pain remains unknown. We hypothesize that increased cell-free heme due to ongoing hemolysis activates toll-like receptor 4 (TLR4), leading to the formation of reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress. Together, these processes lead to spinal microglial activation and neuroinflammation, culminating in acute and chronic pain. Results: Spinal heme levels, TLR4 transcripts, oxidative stress, and ER stress were significantly higher in sickle mice than controls. In vitro, TLR4 inhibition in spinal cord microglial cells attenuated heme-induced ROS and ER stress. Heme treatment led to a time-dependent increase in the characteristic features of sickle pain (mechanical and thermal hyperalgesia) in both sickle and control mice; this effect was absent in TLR4-knockout sickle and control mice. TLR4 deletion in sickle mice attenuated chronic and hypoxia/reoxygenation (H/R)-evoked acute hyperalgesia. Sickle mice treated with the TLR4 inhibitor resatorvid; selective small-molecule inhibitor of TLR4 (TAK242) had significantly reduced chronic hyperalgesia and had less severe H/R-evoked acute pain with quicker recovery. Notably, reducing ER stress with salubrinal ameliorated chronic hyperalgesia in sickle mice. Innovation: Our findings demonstrate the causal role of free heme in the genesis of acute and chronic sickle pain and suggest that TLR4 and/or ER stress are novel therapeutic targets for treating pain in SCD. Conclusion: Heme-induced microglial activation via TLR4 in the central nervous system contributes to the initiation and maintenance of sickle pain via ER stress in SCD. Antioxid. Redox Signal. 34, 279-293.
Collapse
Affiliation(s)
- Jianxun Lei
- Vascular Biology Center, Division of Hematology, Oncology & Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jinny Paul
- Vascular Biology Center, Division of Hematology, Oncology & Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ying Wang
- Vascular Biology Center, Division of Hematology, Oncology & Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mihir Gupta
- Department of Neurosurgery, University of California San Diego, La Jolla, California, USA
| | - Derek Vang
- Vascular Biology Center, Division of Hematology, Oncology & Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Susan Thompson
- Vascular Biology Center, Division of Hematology, Oncology & Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ritu Jha
- Vascular Biology Center, Division of Hematology, Oncology & Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Julia Nguyen
- Vascular Biology Center, Division of Hematology, Oncology & Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yessenia Valverde
- Vascular Biology Center, Division of Hematology, Oncology & Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yann Lamarre
- Vascular Biology Center, Division of Hematology, Oncology & Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael K Jones
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, California, USA.,Southern California Institute for Research and Education, Long Beach, California, USA
| | - Kalpna Gupta
- Vascular Biology Center, Division of Hematology, Oncology & Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA.,Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, California, USA.,Southern California Institute for Research and Education, Long Beach, California, USA
| |
Collapse
|
22
|
Khaibullina A, Almeida LEF, Kamimura S, Zerfas PM, Smith ML, Vogel S, Wakim P, Vasconcelos OM, Quezado MM, Horkayne-Szakaly I, Quezado ZMN. Sickle cell disease mice have cerebral oxidative stress and vascular and white matter abnormalities. Blood Cells Mol Dis 2021; 86:102493. [PMID: 32927249 PMCID: PMC7686096 DOI: 10.1016/j.bcmd.2020.102493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
Abstract
Strokes are feared complications of sickle cell disease (SCD) and yield significant neurologic and neurocognitive deficits. However, even without detectable strokes, SCD patients have significant neurocognitive deficits in domains of learning and memory, processing speed and executive function. In these cases, mechanisms unrelated to major cerebrovascular abnormalities likely underlie these deficits. While oxidative stress and stress-related signaling pathways play a role in SCD pathophysiology, their role in cerebral injury remains unknown. We have shown that Townes and BERK SCD mice, while not having strokes, recapitulate neurocognitive deficits reported in humans. We hypothesized that cognitive deficits in SCD mice are associated with cerebral oxidative stress. We showed that SCD mice have increased levels of reactive oxygen species, protein carbonylation, and lipid peroxidation in hippocampus and cortex, thus suggesting increased cerebral oxidative stress. Further, cerebral oxidative stress was associated with caspase-3 activity alterations and vascular endothelial abnormalities, white matter changes, and disruption of the blood brain barrier, similar to those reported after ischemic/oxidative injury. Additionally, after repeated hypoxia/reoxygenation exposure, homozygous Townes had enhanced microglia activation. Our findings indicate that oxidative stress and stress-induced tissue damage is increased in susceptible brain regions, which may, in turn, contribute to neurocognitive deficits in SCD mice.
Collapse
Affiliation(s)
- Alfia Khaibullina
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Luis E F Almeida
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Sayuri Kamimura
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Patricia M Zerfas
- Office of Research Services, Office of the Director, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Meghann L Smith
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Sebastian Vogel
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Paul Wakim
- Biostatistics and Clinical Epidemiology Service, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Olavo M Vasconcelos
- Neuromuscular Clinic, Electromyography Laboratory, Intraoperative Neurophysiology Monitoring Sections, Veterans Health Administration Medical Center, Virginia Commonwealth University, Richmond, VA 23249, United States of America
| | - Martha M Quezado
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Iren Horkayne-Szakaly
- Neuropathology and Ophthalmic Pathology, Joint Pathology Center, Defense Health Agency, Silver Spring, MD 20910, United States of America
| | - Zenaide M N Quezado
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States of America.
| |
Collapse
|
23
|
Almeida LEF, Wang L, Kamimura S, Zerfas PM, Smith ML, Neto OLA, Vale T, Quezado MM, Horkayne-Szakaly I, Wakim P, Quezado ZMN. Locomotor mal-performance and gait adaptability deficits in sickle cell mice are associated with vascular and white matter abnormalities and oxidative stress in cerebellum. Brain Res 2020; 1746:146968. [PMID: 32533970 DOI: 10.1016/j.brainres.2020.146968] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/18/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022]
Abstract
Patients with sickle cell disease (SCD) can develop strokes and as a result, present neurologic and neurocognitive deficits. However, recent studies show that even without detectable cerebral parenchymal abnormalities on imaging studies, SCD patients can have significant cognitive and motor dysfunction, which can present as early as during infancy. As the cerebellum plays a pivotal role in motor and non-motor functions including sensorimotor processing and learning, we examined cerebellar behavior in humanized SCD mice using the Erasmus ladder. Homozygous (sickling) mice had significant locomotor malperformance characterized by miscoordination and impaired locomotor gait/stepping pattern adaptability. Conversely, Townes homozygous mice had no overall deficits in motor learning, as they were able to associate a conditioning stimulus (high-pitch warning tone) with the presentation of an obstacle and learned to decrease steptimes thereby increasing speed to avoid it. While these animals had no cerebellar strokes, these locomotor and adaptive gait/stepping patterns deficits were associated with oxidative stress, as well as cerebellar vascular endothelial and white matter abnormalities and blood brain barrier disruption, suggestive of ischemic injury. Taken together, these observations suggest that motor and adaptive locomotor deficits in SCD mice mirror some of those described in SCD patients and that ischemic changes in white matter and vascular endothelium and oxidative stress are biologic correlates of those deficits. These findings point to the cerebellum as an area of the central nervous system that is vulnerable to vascular and white matter injury and support the use of SCD mice for studies of the underlying mechanisms of cerebellar dysfunction in SCD.
Collapse
Affiliation(s)
- Luis E F Almeida
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Wang
- Center for Neuroscience Research and The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, School of Medicine and Health Sciences, George Washington University, Washington, DC 20010, USA
| | - Sayuri Kamimura
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Patricia M Zerfas
- Office of Research Services, Office of the Director, National Institutes of Health, Bethesda, MD 20892, USA
| | - Meghann L Smith
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Osorio L Abath Neto
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ticiana Vale
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martha M Quezado
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Iren Horkayne-Szakaly
- Neuropathology and Ophthalmic Pathology, Joint Pathology Center, Defense Health Agency, Silver Spring, MD 20910, USA
| | - Paul Wakim
- Biostatistics and Clinical Epidemiology Service, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA
| | - Zenaide M N Quezado
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
24
|
Almeida LEF, Kamimura S, de Souza Batista CM, Spornick N, Nettleton MY, Walek E, Smith ML, Finkel JC, Darbari DS, Wakim P, Quezado ZMN. Sickle cell disease subjects and mouse models have elevated nitrite and cGMP levels in blood compartments. Nitric Oxide 2019; 94:79-91. [PMID: 31689491 DOI: 10.1016/j.niox.2019.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 10/20/2019] [Accepted: 10/30/2019] [Indexed: 11/26/2022]
Abstract
The hypothesis of decreased nitric oxide (NO) bioavailability in sickle cell disease (SCD) proposes that multiple factors leading to decreased NO production and increased consumption contributes to vaso-occlusion, pulmonary hypertension, and pain. The anion nitrite is central to NO physiology as it is an end product of NO metabolism and serves as a reservoir for NO formation. However, there is little data on nitrite levels in SCD patients and its relationship to pain phenotype. We measured nitrite in SCD subjects and examined its relationship to SCD pain. In SCD subjects, median whole blood, red blood cell and plasma nitrite levels were higher than in controls, and were not associated with pain burden. Similarly, Townes and BERK homozygous SCD mice had elevated blood nitrite. Additionally, in red blood cells and plasma from SCD subjects and in blood and kidney from Townes homozygous mice, levels of cyclic guanosine monophosphate (cGMP) were higher compared to controls. In vitro, hemoglobin concentration, rather than sickle hemoglobin, was responsible for nitrite metabolism rate. In vivo, inhibition of NO synthases and xanthine oxidoreductase decreased nitrite levels in homozygotes but not in control mice. Long-term nitrite treatment in SCD mice further elevated blood nitrite and cGMP, worsened anemia, decreased platelets, and did not change pain response. These data suggest that SCD in humans and animals is associated with increased nitrite/NO availability, which is unrelated to pain phenotype. These findings might explain why multiple clinical trials aimed at increasing NO availability in SCD patients failed to improve pain outcomes.
Collapse
Affiliation(s)
- Luis E F Almeida
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sayuri Kamimura
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | - Nicholas Spornick
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Margaret Y Nettleton
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Elizabeth Walek
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Research Institute, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20010, USA
| | - Meghann L Smith
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Julia C Finkel
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Research Institute, School of Medicine and Health Sciences, George Washington University, Washington, DC, 20010, USA
| | - Deepika S Darbari
- Division of Hematology, Center for Cancer and Blood Disorders, Children's National Hospital, Department of Pediatrics, George Washington University School of Medicine, Washington, DC, 20010, USA
| | - Paul Wakim
- Biostatistics and Clinical Epidemiology Service, National Institutes of Health Clinical Center, Bethesda, MD, 20892, USA
| | - Zenaide M N Quezado
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
25
|
Al-Khatti AA, Alkhunaizi AM. Additive effect of sirolimus and hydroxycarbamide on fetal haemoglobin level in kidney transplant patients with sickle cell disease. Br J Haematol 2018; 185:959-961. [PMID: 30407620 DOI: 10.1111/bjh.15665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Adil A Al-Khatti
- Haematology-oncology unit, Cancer Institute, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
| | - Ahmed M Alkhunaizi
- Nephrology unit, Specialty Internal Medicine Division, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
| |
Collapse
|
26
|
Gupta K, Jahagirdar O, Gupta K. Targeting pain at its source in sickle cell disease. Am J Physiol Regul Integr Comp Physiol 2018; 315:R104-R112. [PMID: 29590553 PMCID: PMC6087885 DOI: 10.1152/ajpregu.00021.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/02/2018] [Accepted: 03/20/2018] [Indexed: 01/14/2023]
Abstract
Sickle cell disease (SCD) is a genetic disorder associated with hemolytic anemia, end-organ damage, reduced survival, and pain. One of the unique features of SCD is recurrent and unpredictable episodes of acute pain due to vasoocclusive crisis requiring hospitalization. Additionally, patients with SCD often develop chronic persistent pain. Currently, sickle cell pain is treated with opioids, an approach limited by adverse effects. Because pain can start at infancy and continue throughout life, preventing the genesis of pain may be relatively better than treating the pain once it has been evoked. Therefore, we provide insights into the cellular and molecular mechanisms of sickle cell pain that contribute to the activation of the somatosensory system in the peripheral and central nervous systems. These mechanisms include mast cell activation and neurogenic inflammation, peripheral nociceptor sensitization, maladaptation of spinal signals, central sensitization, and modulation of neural circuits in the brain. In this review, we describe potential preventive/therapeutic targets and their targeting with novel pharmacologic and/or integrative approaches to ameliorate sickle cell pain.
Collapse
Affiliation(s)
- Kanika Gupta
- Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota , Minneapolis, Minnesota
| | - Om Jahagirdar
- Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota , Minneapolis, Minnesota
| | - Kalpna Gupta
- Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
27
|
Almeida LEF, Damsker JM, Albani S, Afsar N, Kamimura S, Pratt D, Kleiner DE, Quezado M, Gordish-Dressman H, Quezado ZMN. The corticosteroid compounds prednisolone and vamorolone do not alter the nociception phenotype and exacerbate liver injury in sickle cell mice. Sci Rep 2018; 8:6081. [PMID: 29666400 PMCID: PMC5904156 DOI: 10.1038/s41598-018-24274-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/28/2018] [Indexed: 01/19/2023] Open
Abstract
Clinicians often hesitate prescribing corticosteroids to treat corticosteroid-responsive conditions in sickle cell disease (SCD) patients because their use can be associated with complications (increased hospital readmission, rebound pain, strokes, avascular necrosis, acute chest syndrome). Consequently, SCD patients may receive suboptimal treatment for corticosteroid-responsive conditions. We conducted a preclinical trial of dissociative (vamorolone) and conventional (prednisolone) corticosteroid compounds to evaluate their effects on nociception phenotype, inflammation, and organ dysfunction in SCD mice. Prednisolone and vamorolone had no significant effects on nociception phenotype or anemia in homozygous mice. Conversely, prednisolone and vamorolone significantly decreased white blood cell counts and hepatic inflammation. Interestingly, the effects of vamorolone were milder than those of prednisolone, as vamorolone yielded less attenuation of hepatic inflammation compared to prednisolone. Compared to controls and heterozygotes, homozygotes had significant liver necrosis, which was significantly exacerbated by prednisolone and vamorolone despite decreased hepatic inflammation. These hepatic histopathologic changes were associated with increases in transaminases and alkaline phosphatase. Together, these results suggest that, even in the setting of decreasing hepatic inflammation, prednisolone and vamorolone were associated with significant hepatic toxicity in SCD mice. These findings raise the possibility that hepatic function deterioration could occur with the use of corticosteroids (conventional and dissociative) in SCD.
Collapse
Affiliation(s)
- Luis E F Almeida
- Department of Perioperatice Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Besthesda, MD, USA
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, Children's National Health System, Washington, DC, USA
| | | | - Sarah Albani
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, Children's National Health System, Washington, DC, USA
| | - Nina Afsar
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Besthesda, MD, USA
| | - Sayuri Kamimura
- Department of Perioperatice Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Besthesda, MD, USA
| | - Drew Pratt
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Besthesda, MD, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - David E Kleiner
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Besthesda, MD, USA
| | - Martha Quezado
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Besthesda, MD, USA
| | - Heather Gordish-Dressman
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Health System, Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Zenaide M N Quezado
- Department of Perioperatice Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Besthesda, MD, USA.
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, Children's National Health System, Washington, DC, USA.
| |
Collapse
|
28
|
Khaibullina A, Adjei EA, Afangbedji N, Ivanov A, Kumari N, Almeida LEF, Quezado ZMN, Nekhai S, Jerebtsova M. RON kinase inhibition reduces renal endothelial injury in sickle cell disease mice. Haematologica 2018. [PMID: 29519868 PMCID: PMC5927980 DOI: 10.3324/haematol.2017.180992] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Sickle cell disease patients are at increased risk of developing a chronic kidney disease. Endothelial dysfunction and inflammation associated with hemolysis lead to vasculopathy and contribute to the development of renal disease. Here we used a Townes sickle cell disease mouse model to examine renal endothelial injury. Renal disease in Townes mice was associated with glomerular hypertrophy, capillary dilation and congestion, and significant endothelial injury. We also detected substantial renal macrophage infiltration, and accumulation of macrophage stimulating protein 1 in glomerular capillary. Treatment of human cultured macrophages with hemin or red blood cell lysates significantly increased expression of macrophage membrane-associated protease that might cleave and activate circulating macrophage stimulating protein 1 precursor. Macrophage stimulating protein 1 binds to and activates RON kinase, a cell surface receptor tyrosine kinase. In cultured human renal glomerular endothelial cells, macrophage stimulating protein 1 induced RON downstream signaling, resulting in increased phosphorylation of ERK and AKT kinases, expression of Von Willebrand factor, increased cell motility, and re-organization of F-actin. Specificity of macrophage stimulating protein 1 function was confirmed by treatment with RON kinase inhibitor BMS-777607 that significantly reduced downstream signaling. Moreover, treatment of sickle cell mice with BMS-777607 significantly reduced glomerular hypertrophy, capillary dilation and congestion, and endothelial injury. Taken together, our findings demonstrated that RON kinase is involved in the induction of renal endothelial injury in sickle cell mice. Inhibition of RON kinase activation may provide a novel approach for prevention of the development of renal disease in sickle cell disease.
Collapse
Affiliation(s)
- Alfia Khaibullina
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, USA
| | - Elena A Adjei
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, USA.,Departments of Genetics and Human Genetics, College of Medicine, Howard University, Washington, DC, USA
| | - Nowah Afangbedji
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, USA
| | - Andrey Ivanov
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, USA
| | - Namita Kumari
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, USA
| | - Luis E F Almeida
- Department of Perioperative Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Zenaide M N Quezado
- Department of Perioperative Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Sergei Nekhai
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, USA.,Department of Medicine, College of Medicine, Howard University, Washington, DC, USA.,Department of Microbiology, College of Medicine, Howard University, Washington, DC, USA
| | - Marina Jerebtsova
- Department of Microbiology, College of Medicine, Howard University, Washington, DC, USA
| |
Collapse
|
29
|
Kos O, Alexander C, Brandenburg K, Chen Z, Heini A, Heumann D, Khatri I, Mach JP, Rietschel ET, Terskikh A, Ulmer AJ, Waelli T, Yu K, Zähringer U, Gorczynski RM. Regulation of fetal hemoglobin expression during hematopoietic stem cell development and its importance in bone metabolism and osteoporosis. Int Immunopharmacol 2018; 57:112-120. [PMID: 29477972 DOI: 10.1016/j.intimp.2018.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/07/2018] [Accepted: 02/13/2018] [Indexed: 11/19/2022]
Abstract
We have shown that an altered tissue redox environment in mice lacking either murine beta Hemoglobin major (HgbβmaKO) or minor (HgbβmiKO) regulates inflammation. The REDOX environment in marrow stem cell niches also control differentiation pathways. We investigated osteoclastogenesis (OC)/osteoblastogenesis (OB), in bone cultures derived from untreated or FSLE-treated WT, HgbβmaKO or HgbβmiKO mice. Marrow mesenchymal cells from 10d pre-cultures were incubated on an osteogenic matrix for 21d prior to analysis of inflammatory cytokine release into culture supernatants, and relative OC:OB using (TRAP:BSP, RANKL:OPG) mRNA expression ratios and TRAP or Von Kossa staining. Cells from WT and HgbβmaKO mice show decreased IL-1β,TNFα and IL-6 production and enhanced osteoblastogenesis with altered mRNA expression ratios and increased bone nodules (Von Kossa staining) in vitro after in vivo stimulation of mRNA expression of fetal Hgb genes (Hgbε and Hgbβmi) by a fetal liver extract (FSLE). Marrow from HgbβmiKO showed enhanced cytokine release and preferential enhanced osteoclastogenesis relative to similar cells from WT or HgbβmaKO mice, with no increased osteoblastogenesis after mouse treatment with FSLE. Pre-treatment of WT or HgbβmaKO, but not HgbβmiKO mice, with other molecules (rapamycin; hydroxyurea) which increase expression of fetal Hgb genes also augmented osteoblastogenesis and decreased cytokine production in cells differentiating in vitro. Infusion of rabbit anti- Hgbε or anti- Hgbβmi, but not anti-Hgbα or anti- Hgbβma into WT mice from day 13 gestation for 3 weeks led to attenuated osteoblastogenesis in cultured cells. We conclude that increased fetal hemoglobin expression, or use of agents which improve fetal hemoglobin expression, increases osteoblast bone differentiation in association with decreased inflammatory cytokine release.
Collapse
Affiliation(s)
- O Kos
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - C Alexander
- Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - K Brandenburg
- Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Z Chen
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - A Heini
- Clinique La Prairie, Clarens-Montreux, Switzerland
| | - D Heumann
- Clinique La Prairie, Clarens-Montreux, Switzerland
| | - I Khatri
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - J P Mach
- Department of Biochemistry, University of Lausanne, Switzerland
| | | | - A Terskikh
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - A J Ulmer
- Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - T Waelli
- Clinique La Prairie, Clarens-Montreux, Switzerland
| | - K Yu
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - U Zähringer
- Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - R M Gorczynski
- Institute of Medical Sciences, University of Toronto, Toronto, Canada.
| |
Collapse
|
30
|
Targeting novel mechanisms of pain in sickle cell disease. Blood 2017; 130:2377-2385. [PMID: 29187376 DOI: 10.1182/blood-2017-05-782003] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/23/2017] [Indexed: 11/20/2022] Open
Abstract
Patients with sickle cell disease (SCD) suffer from intense pain that can start during infancy and increase in severity throughout life, leading to hospitalization and poor quality of life. A unique feature of SCD is vaso-occlusive crises (VOCs) characterized by episodic, recurrent, and unpredictable episodes of acute pain. Microvascular obstruction during a VOC leads to impaired oxygen supply to the periphery and ischemia reperfusion injury, inflammation, oxidative stress, and endothelial dysfunction, all of which may perpetuate a noxious microenvironment leading to pain. In addition to episodic acute pain, patients with SCD also report chronic pain. Current treatment of moderate to severe pain in SCD is mostly reliant upon opioids; however, long-term use of opioids is associated with multiple side effects. This review presents up-to-date developments in our understanding of the pathobiology of pain in SCD. To help focus future research efforts, major gaps in knowledge are identified regarding how sickle pathobiology evokes pain, pathways specific to chronic and acute sickle pain, perception-based targets of "top-down" mechanisms originating from the brain and neuromodulation, and how pain affects the sickle microenvironment and pathophysiology. This review also describes mechanism-based targets that may help develop novel therapeutic and/or preventive strategies to ameliorate pain in SCD.
Collapse
|
31
|
Tran H, Gupta M, Gupta K. Targeting novel mechanisms of pain in sickle cell disease. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:546-555. [PMID: 29222304 PMCID: PMC6142592 DOI: 10.1182/asheducation-2017.1.546] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Patients with sickle cell disease (SCD) suffer from intense pain that can start during infancy and increase in severity throughout life, leading to hospitalization and poor quality of life. A unique feature of SCD is vaso-occlusive crises (VOCs) characterized by episodic, recurrent, and unpredictable episodes of acute pain. Microvascular obstruction during a VOC leads to impaired oxygen supply to the periphery and ischemia reperfusion injury, inflammation, oxidative stress, and endothelial dysfunction, all of which may perpetuate a noxious microenvironment leading to pain. In addition to episodic acute pain, patients with SCD also report chronic pain. Current treatment of moderate to severe pain in SCD is mostly reliant upon opioids; however, long-term use of opioids is associated with multiple side effects. This review presents up-to-date developments in our understanding of the pathobiology of pain in SCD. To help focus future research efforts, major gaps in knowledge are identified regarding how sickle pathobiology evokes pain, pathways specific to chronic and acute sickle pain, perception-based targets of "top-down" mechanisms originating from the brain and neuromodulation, and how pain affects the sickle microenvironment and pathophysiology. This review also describes mechanism-based targets that may help develop novel therapeutic and/or preventive strategies to ameliorate pain in SCD.
Collapse
Affiliation(s)
- Huy Tran
- Vascular Biology Center, Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN; and
| | - Mihir Gupta
- Department of Neurosurgery, University of California San Diego, La Jolla, CA
| | - Kalpna Gupta
- Vascular Biology Center, Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN; and
| |
Collapse
|
32
|
Wardoyo AYP, Juswono UP, Noor JAE. A study of the correlation between ultrafine particle emissions in motorcycle smoke and mice erythrocyte damages. ACTA ACUST UNITED AC 2017; 69:649-655. [PMID: 28655429 DOI: 10.1016/j.etp.2017.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/24/2017] [Accepted: 06/06/2017] [Indexed: 02/07/2023]
Abstract
Sharply increasing of motor vehicles every year contributes to amounts of ultrafine particles (UFPs) in the air. Besides, the existence of UFPs in the blood may cause erythrocyte damages that subject to shape deformation. This study was aimed to investigate the influence of UFPs in the motorcycle smoke exposed to mice in different concentrations to the erythrocyte damages. The experiments were conducted by injecting the motorcycle smoke with the varied amounts in an experimental chamber (dimension of 30×20×20cm3) where the mice were put in advance for exposuring twice a day (100s). Total numbers of UFPs in the smoke were calculated by measuring the total concentrations multiplied by the smoke debit. They were measured using a TSI 8525 P-Trak UPC. The effects of the smoke exposures in the mice's erythrocytes related to the UFPs in the smoke were observed by a binocular CX-31 Computer Microscope after the 2nd, 4th, 6th, 8th, and 10th exposure days. The erythrocyte damages were calculated from the total abnormal erythrocytes divided by the total erythrocytes. Our results showed that more UFPs exposed to mice resulted in more the erythrocytes damages. Longer exposures caused more damages of the mice erythrocytes. This study found significant correlations between the numbers of UFPs exposed to mice and the erythrocyte damages. Our finding gives important evidence that motorcycle emissions especially UFPs affect on health.
Collapse
Affiliation(s)
- Arinto Y P Wardoyo
- Physics Department Brawijaya University, Jl. Veteran 65145, Malang, Indonesia.
| | - Unggul P Juswono
- Physics Department Brawijaya University, Jl. Veteran 65145, Malang, Indonesia.
| | - Johan A E Noor
- Physics Department Brawijaya University, Jl. Veteran 65145, Malang, Indonesia.
| |
Collapse
|
33
|
Gorczynski R, Alexander C, Brandenburg K, Chen Z, Heini A, Neumann D, Mach J, Rietschel E, Tersikh A, Ulmer A, Yu K, Zahringer U, Khatri I. An altered REDOX environment, assisted by over-expression of fetal hemoglobins, protects from inflammatory colitis and reduces inflammatory cytokine expression. Int Immunopharmacol 2017. [DOI: 10.1016/j.intimp.2017.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Gaudre N, Cougoul P, Bartolucci P, Dörr G, Bura-Riviere A, Kamar N, Del Bello A. Improved Fetal Hemoglobin With mTOR Inhibitor-Based Immunosuppression in a Kidney Transplant Recipient With Sickle Cell Disease. Am J Transplant 2017; 17:2212-2214. [PMID: 28276629 DOI: 10.1111/ajt.14263] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 02/17/2017] [Accepted: 02/22/2017] [Indexed: 01/25/2023]
Abstract
Fetal hemoglobin induction is a key point in the management of sickle cell disease (SCD). We report the case of a kidney transplant recipient with SCD who was treated with everolimus, a mammalian target of rapamycin inhibitor. At 10 months after initiating therapy, the patient's fetal hemoglobin level was dramatically increased (from 4.8% to 15%) and there was excellent tolerance to treatment.
Collapse
Affiliation(s)
- N Gaudre
- Department of Vascular Medicine, CHU Rangueil, Toulouse, France
| | - P Cougoul
- Department of Internal Medicine, Cancer University Institute of Toulouse-Oncopole, Toulouse, France
| | - P Bartolucci
- AP-HP, Groupe Hospitalier Henri Mondor-Albert Chenevier, Centre de Référence des Syndromes Drépanocytaires Majeurs, Créteil, France.,Laboratoire d'Excellence GRex, Département Hospitalo-Universitaire Ageing-Thorax-Vessels-Blood, Institut Mondor de Recherche Biomédicale, Université Paris-Est-Créteil, Créteil, France.,Service de Médecine Interne, AP-HP, Groupe Hospitalier Henri Mondor-Albert Chenevier, Créteil, France
| | - G Dörr
- Department of Nephrology and Organ Transplantation, CHU Rangueil, Toulouse, France.,Université Paul Sabatier, Toulouse, France
| | - A Bura-Riviere
- Department of Vascular Medicine, CHU Rangueil, Toulouse, France
| | - N Kamar
- Department of Nephrology and Organ Transplantation, CHU Rangueil, Toulouse, France.,Université Paul Sabatier, Toulouse, France.,INSERM U1043, IFR-BMT, CHU Purpan, Toulouse, France
| | - A Del Bello
- Department of Nephrology and Organ Transplantation, CHU Rangueil, Toulouse, France
| |
Collapse
|
35
|
Wang L, Almeida LEF, de Souza Batista CM, Khaibullina A, Xu N, Albani S, Guth KA, Seo JS, Quezado M, Quezado ZMN. Cognitive and behavior deficits in sickle cell mice are associated with profound neuropathologic changes in hippocampus and cerebellum. Neurobiol Dis 2015; 85:60-72. [PMID: 26462816 DOI: 10.1016/j.nbd.2015.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/31/2015] [Accepted: 10/08/2015] [Indexed: 01/11/2023] Open
Abstract
Strokes are perhaps the most serious complications of sickle cell disease (SCD) and by the fifth decade occur in approximately 25% of patients. While most patients do not develop strokes, mounting evidence indicates that even without brain abnormalities on imaging studies, SCD patients can present profound neurocognitive dysfunction. We sought to evaluate the neurocognitive behavior profile of humanized SCD mice (Townes, BERK) and to identify hematologic and neuropathologic abnormalities associated with the behavioral alterations observed in these mice. Heterozygous and homozygous Townes mice displayed severe cognitive deficits shown by significant delays in spatial learning compared to controls. Homozygous Townes also had increased depression- and anxiety-like behaviors as well as reduced performance on voluntary wheel running compared to controls. Behavior deficits observed in Townes were also seen in BERKs. Interestingly, most deficits in homozygotes were observed in older mice and were associated with worsening anemia. Further, neuropathologic abnormalities including the presence of large bands of dark/pyknotic (shrunken) neurons in CA1 and CA3 fields of hippocampus and evidence of neuronal dropout in cerebellum were present in homozygotes but not control Townes. These observations suggest that cognitive and behavioral deficits in SCD mice mirror those described in SCD patients and that aging, anemia, and profound neuropathologic changes in hippocampus and cerebellum are possible biologic correlates of those deficits. These findings support using SCD mice for studies of cognitive deficits in SCD and point to vulnerable brain areas with susceptibility to neuronal injury in SCD and to mechanisms that potentially underlie those deficits.
Collapse
Affiliation(s)
- Li Wang
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, United States
| | - Luis E F Almeida
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, United States
| | | | - Alfia Khaibullina
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, United States
| | - Nuo Xu
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, United States
| | - Sarah Albani
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, United States
| | - Kira A Guth
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, United States
| | - Ji Sung Seo
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, United States
| | - Martha Quezado
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Zenaide M N Quezado
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, United States; Divisions of Anesthesiology and Pain Medicine, Children's National Health System, United States; Center for Neuroscience Research, Children's Research Institute, Children's National Health System, School of Medicine and Health Sciences, George Washington University, Washington, DC 20010, United States.
| |
Collapse
|