1
|
Deng X, Cheng L, Qiao Y, Liu X, Zhou Y, Liu H, Wang L. Rutin ameliorates HCD-induced cholesterol metabolism disorder in zebrafish larvae revealed by transcriptome and metabolome analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156058. [PMID: 39341124 DOI: 10.1016/j.phymed.2024.156058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/26/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
Changes in modern lifestyles have led to an increase in obesity rates. Excessive lipid accumulation leads to abnormal cholesterol metabolism, and maintaining a balanced cholesterol metabolism is essential for the normal functioning of cells and the body. Rutin belongs to the group of flavonoids with hypolipidemic, anti-inflammatory and antioxidant effects. The aim of this study was to investigate the role of rutin in cholesterol metabolism disorders induced by a high cholesterol diet in zebrafish larvae. The trial was divided into five groups: Normal diet (ND), 5 % high cholesterol diet (HCD), 5 % high cholesterol diet with 80 μg/g ezetimibe diet (EZE), 5 % high cholesterol diet with 5 % rutin diet (RL-HCD), and 5 % high cholesterol diet with 10 % rutin diet (RH-HCD). Zebrafish larvae at 5 dpf were randomly divided into five groups and continuously fed different diets for 10 days, after 10 days zebrafish samples were collected for subsequent experiments. Body length, body width, oil red O, and Nile red staining were measured to detect biochemical indexes, analyze inflammatory response and lipid accumulation. Vascular endothelial injury was assessed by stereofluorescence microscopy and ELISA. In order to study the protective effect of rutin in zebrafish with cholesterol metabolism disorder induced by HCD, RNA-seq and LC-MS/MS nontargeted metabolomics were employed. The results indicate that HCD led to an increase in the body length and width of zebrafish. The HCD group induced an increase in body length and width, lipid accumulation, and exacerbated inflammation. Additionally, vascular damage and abnormal expression of endothelial cell markers were observed. Rutin lowered lipid levels in zebrafish fed an HCD, reduced inflammation, and protected endothelial cells. The RNA-seq and metabolomic analysis combined demonstrated that rutin effectively ameliorates the disorder of cholesterol metabolism in vivo by reducing cholesterol synthesis and promoting cholesterol transport.
Collapse
Affiliation(s)
- Xinxin Deng
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Lin Cheng
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Ying Qiao
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Xuan Liu
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Yongbing Zhou
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Hui Liu
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, PR China.
| | - Li Wang
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China.
| |
Collapse
|
2
|
Nechchadi H, Nadir Y, Benhssaine K, Alem C, Sellam K, Boulbaroud S, Berrougui H, Ramchoun M. Hypolipidemic activity of phytochemical combinations: A mechanistic review of preclinical and clinical studies. Food Chem 2024; 459:140264. [PMID: 39068825 DOI: 10.1016/j.foodchem.2024.140264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Hyperlipidemia, a condition characterized by elevated levels of lipids in the blood, poses a significant risk factor for various health disorders, notably cardiovascular diseases. Phytochemical compounds are promising alternatives to the current lipid-lowering drugs, which cause many undesirable effects. Based on in vivo and clinical studies, combining phytochemicals with other phytochemicals, prebiotics, and probiotics and their encapsulation in nanoparticles is more safe and effective for managing hyperlipidemia than monotherapy. To this end, the results obtained and the mechanisms of action of these combinations were examined in detail in this review.
Collapse
Affiliation(s)
- Habiba Nechchadi
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco.
| | - Youssef Nadir
- Laboratory of Biological Engineering, Faculty of Sciences and Techniques, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Khalid Benhssaine
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Chakib Alem
- Biochemistry of Natural Products Team, Faculty of Sciences and Techniques, Moulay Ismail University, 52000 Errachidia, Morocco
| | - Khalid Sellam
- Biology, Environment and Health Team, Faculty of sciences and Techniques, Moulay Ismail University, 52000 Errachidia, Morocco
| | - Samira Boulbaroud
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Hicham Berrougui
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Mhamed Ramchoun
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| |
Collapse
|
3
|
Mo L, Wan S, Zékány-Nagy T, Luo X, Yang X. The Effect of Curcumin on Glucolipid Metabolic Disorders: A Review. FOOD REVIEWS INTERNATIONAL 2024:1-35. [DOI: 10.1080/87559129.2024.2405654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Lifen Mo
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, PR China
| | - Siyu Wan
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, PR China
| | - Tekla Zékány-Nagy
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, PR China
| | - Xiaoyi Luo
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, PR China
| | - Xingfen Yang
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, PR China
| |
Collapse
|
4
|
Ren C, Hong B, Zhang S, Yuan D, Feng J, Shan S, Zhang J, Guan L, Zhu L, Lu S. Autoclaving-treated germinated brown rice relieves hyperlipidemia by modulating gut microbiota in humans. Front Nutr 2024; 11:1403200. [PMID: 38826585 PMCID: PMC11140153 DOI: 10.3389/fnut.2024.1403200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/30/2024] [Indexed: 06/04/2024] Open
Abstract
Introduction Germinated brown rice is a functional food with a promising potential for alleviating metabolic diseases. This study aimed to explore the hypolipidemic effects of autoclaving-treated germinated brown rice (AGBR) and the underlying mechanisms involving gut microbiota. Methods Dietary intervention with AGBR or polished rice (PR) was implemented in patients with hyperlipidemia for 3 months, and blood lipids were analyzed. Nutritional characteristics of AGBR and PR were measured and compared. Additionally, 16S rDNA sequencing was performed to reveal the differences in gut microbiota between the AGBR and PR groups. Results AGBR relieves hyperlipidemia in patients, as evidenced by reduced levels of triglycerides, total cholesterol, low-density lipoprotein cholesterol, and apolipoprotein-B, and elevated levels of high-density lipoprotein cholesterol and apolipoprotein-A1. In terms of nutrition, AGBR had significantly higher concentrations of free amino acids (10/16 species), γ-aminobutyric acid, resistant starch, soluble dietary fiber, and flavonoids (11/13 species) than PR. In addition, higher microbial abundance, diversity, and uniformity were observed in the AGBR group than in the PR group. At the phylum level, AGBR reduced Firmicutes, Proteobacteria, Desulfobacterota, and Synergistota, and elevated Bacteroidota and Verrucomicrobiota. At the genus level, AGBR elevated Bacteroides, Faecalibacterium, Dialister, Prevotella, and Bifidobacterium, and reduced Escherichia-Shigella, Blautia, Romboutsia, and Turicibacter. Discussion AGBR contributes to the remission of hyperlipidemia by modulating the gut microbiota.
Collapse
Affiliation(s)
- Chuanying Ren
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin, China
| | - Bin Hong
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Shan Zhang
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Di Yuan
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Junran Feng
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Shan Shan
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Jingyi Zhang
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Lijun Guan
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Ling Zhu
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Shuwen Lu
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
5
|
Wang G, Jiang X, Torabian P, Yang Z. Investigating autophagy and intricate cellular mechanisms in hepatocellular carcinoma: Emphasis on cell death mechanism crosstalk. Cancer Lett 2024; 588:216744. [PMID: 38431037 DOI: 10.1016/j.canlet.2024.216744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 03/05/2024]
Abstract
Hepatocellular carcinoma (HCC) stands as a formidable global health challenge due to its prevalence, marked by high mortality and morbidity rates. This cancer type exhibits a multifaceted etiology, prominently linked to viral infections, non-alcoholic fatty liver disease, and genomic mutations. The inherent heterogeneity of HCC, coupled with its proclivity for developing drug resistance, presents formidable obstacles to effective therapeutic interventions. Autophagy, a fundamental catabolic process, plays a pivotal role in maintaining cellular homeostasis, responding to stressors such as nutrient deprivation. In the context of HCC, tumor cells exploit autophagy, either augmenting or impeding its activity, thereby influencing tumorigenesis. This comprehensive review underscores the dualistic role of autophagy in HCC, acting as both a pro-survival and pro-death mechanism, impacting the trajectory of tumorigenesis. The anti-carcinogenic potential of autophagy is evident in its ability to enhance apoptosis and ferroptosis in HCC cells. Pertinently, dysregulated autophagy fosters drug resistance in the carcinogenic context. Both genomic and epigenetic factors can regulate autophagy in HCC progression. Recognizing the paramount importance of autophagy in HCC progression, this review introduces pharmacological compounds capable of modulating autophagy-either inducing or inhibiting it, as promising avenues in HCC therapy.
Collapse
Affiliation(s)
- Gang Wang
- Department of Interventional, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China
| | - Xiaodi Jiang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, 110020, PR China
| | - Pedram Torabian
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada; Department of Medical Sciences, University of Calgary, Calgary, AB, T2N 4Z6, Canada.
| | - Zhi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China.
| |
Collapse
|
6
|
Nagano K, Nakao T, Takeda M, Hirai H, Maekita H, Nakamura M, Imakawa N, Egawa A, Fujiwara T, Gao JQ, Kinoshita K, Sakata M, Nishino M, Yamashita T, Yoshida T, Harada K, Tachibana K, Doi T, Hirata K, Tsujino H, Higashisaka K, Tsutsumi Y. Polyglycerol fatty acid ester contributes to the improvement and maintenance of water solubility of amorphous curcumin by suppressing the intermolecular interaction and the diffusion rate of curcumin. Food Chem 2024; 437:137866. [PMID: 37931447 DOI: 10.1016/j.foodchem.2023.137866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/15/2022] [Accepted: 10/24/2023] [Indexed: 11/08/2023]
Abstract
Curcumin (CUR), a polyphenol, is an attractive component of functional foods, owing to various physiological activities. However, CUR is highly hydrophobic, insoluble in water, and difficult to absorb in the body. Here, we report an amorphous CUR formulation containing the dispersant polyglycerol fatty acid ester (PGFE), demonstrating high and stable water solubility. Improved water solubility enhanced the absorbability of CUR in our amorphous formulation along with enhanced triglyceride inhibition, compared to that in a commercial formulation. Nuclear Overhauser effect spectroscopy (NOESY) analysis revealed that PGFE reduced CUR-CUR interaction, resulting in higher dispersion and improved solubility of CUR. Taylor dispersion analysis showed a lower diffusion coefficient of CUR in the highly water-soluble formulation (with PGFE) than that in the low water-soluble formulation (without PGFE), which prevents recontact and recrystallization of CUR, which is trapped by PGFE. Overall, the amorphous CUR with high solubility could be used as a promising functional food.
Collapse
Affiliation(s)
- Kazuya Nagano
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichibancho, Wakayama, Wakayama 640-8156, Japan.
| | - Tomohiro Nakao
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; San-Ei Gen F. F. I., Inc, 1-1-11 Sanwa-cho, Toyonaka, Osaka 561-8588, Japan
| | - Mariko Takeda
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Haruna Hirai
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hikaru Maekita
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Michiko Nakamura
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Naoki Imakawa
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ayako Egawa
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshimichi Fujiwara
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Jian-Qing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Keigo Kinoshita
- San-Ei Gen F. F. I., Inc, 1-1-11 Sanwa-cho, Toyonaka, Osaka 561-8588, Japan
| | - Makoto Sakata
- San-Ei Gen F. F. I., Inc, 1-1-11 Sanwa-cho, Toyonaka, Osaka 561-8588, Japan
| | - Masayuki Nishino
- San-Ei Gen F. F. I., Inc, 1-1-11 Sanwa-cho, Toyonaka, Osaka 561-8588, Japan
| | - Takuya Yamashita
- School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichibancho, Wakayama, Wakayama 640-8156, Japan
| | - Takuya Yoshida
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuo Harada
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Keisuke Tachibana
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takefumi Doi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazumasa Hirata
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichibancho, Wakayama, Wakayama 640-8156, Japan
| | - Hirofumi Tsujino
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; The Museum of Osaka University, 1-13 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kazuma Higashisaka
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Institute for Advanced Co-Creation Studies, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuo Tsutsumi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, 1-6, Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
7
|
Küçükler S, Çelik O, Özdemir S, Aydın Ş, Çomaklı S, Dalkılınç E. Effects of rutin against deltamethrin-induced testicular toxicity in rats: Biochemical, molecular, and pathological studies. Food Chem Toxicol 2024; 186:114562. [PMID: 38432437 DOI: 10.1016/j.fct.2024.114562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Affiliation(s)
- Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Orhan Çelik
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Şeyma Aydın
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Selim Çomaklı
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Elif Dalkılınç
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
8
|
Zhang X, Zhao Q, Li B. Current and promising therapies based on the pathogenesis of Graves' ophthalmopathy. Front Pharmacol 2023; 14:1217253. [PMID: 38035032 PMCID: PMC10687425 DOI: 10.3389/fphar.2023.1217253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Graves' ophthalmopathy (GO) is a hyperthyroidism-related and immune-mediated disease that poses a significant threat to human health. The pathogenesis of GO primarily involves T cells, B cells, and fibroblasts, suggesting a pivotal role for the thyrotropin-antibody-immunocyte-fibroblast axis. Traditional treatment approaches for Graves' disease (GD) or GO encompass antithyroid drugs (ATDs), radioactive iodine, and beta-blockers. However, despite decades of treatment, there has been limited improvement in the global incidence of GO. In recent years, promising therapies, including immunotherapy, have emerged as leading contenders, demonstrating substantial benefits in clinical trials by inhibiting the activation of immune cells like Th1 and B cells. Furthermore, the impact of diet, gut microbiota, and metabolites on GO regulation has been recognized, suggesting the potential of non-pharmaceutical interventions. Moreover, as traditional Chinese medicine (TCM) components have been extensively explored and have shown effective results in treating autoimmune diseases, remarkable progress has been achieved in managing GO with TCM. In this review, we elucidate the pathogenesis of GO, summarize current and prospective therapies for GO, and delve into the mechanisms and prospects of TCM in its treatment.
Collapse
Affiliation(s)
- Xin Zhang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Ophthalmology, Chengdu Integrated TCM and Western Medicine Hospital/Chengdu First People’s Hospital, Chengdu, China
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qixiang Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Bei Li
- Department of Ophthalmology, Chengdu Integrated TCM and Western Medicine Hospital/Chengdu First People’s Hospital, Chengdu, China
| |
Collapse
|
9
|
Asfour MH, Salama AAA. Coating with tripolyphosphate-crosslinked chitosan as a novel approach for enhanced stability of emulsomes following oral administration: Rutin as a model drug with improved anti-hyperlipidemic effect in rats. Int J Pharm 2023; 644:123314. [PMID: 37579826 DOI: 10.1016/j.ijpharm.2023.123314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/21/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
The aim of the current study is to preserve the emulsomal vesicles against the harsh condition of gastrointestinal tract (GIT), after oral administration, employing tripolyphosphate (TPP)-crosslinked chitosan as a protective coating layer. Rutin was used as a model drug with evaluation of anti-hyperlipidemic activity in rats. The rutin loaded unmodified emulsomes were prepared using tripalmitin and soybean phosphatidylcholine (SPC), by thin film method. Drug loading for the prepared formulations ranged between 6.80 and 15.50 %. The selected formulation (RT-Emuls-6) comprised tripalmitin and SPC, molar ratio 1:1, and exhibited particle size (PS) and zeta potential (ZP) of 150.40 nm and -35.35 mV, respectively. RT-Emuls-6 was then modified by coating with either solely chitosan (RT-Emuls-6-Ch) or TPP-crosslinked chitosan (RT-Emuls-6-Ch-TPP-1). The latter exhibited PS and ZP values of 269.60 nm and 37.17 mV, respectively. Transmission electron microscopy of RT-Emuls-6-Ch-TPP-1 showed a dense pale greyish layer of a coating layer of chitosan crosslinked with TPP surrounding SPC bilayers. Fourier transform infrared spectroscopy analysis along with X-ray powder diffraction confirmed cross-linking between chitosan and TPP. Stability study in the simulated GIT fluids revealed that the order of rutin retained percentage was RT-Emuls-6-Ch-TPP-1 > RT-Emuls-6-Ch > RT-Emuls-6 (80.02, 50.66 and 44.41 %, respectively for simulated gastric fluid and 63.50, 55.66 and 24.00 %, respectively for simulated intestinal fluid, after 2 h incubation). Anti-hyperlipidemic activity of rutin loaded emulsomes was evaluated, after oral administration, in a high fat diet-induced hyperlipidemia in rats. The order of activity was as follows: RT-Emuls-6-Ch-TPP-1 > RT-Emuls-6-Ch > RT-Emuls-6 > free rutin. These findings revealed the potential of TPP-crosslinked chitosan as a protective coating layer for enhancing the stability of emulsomes against the harsh condition of GIT. RT-Emuls-6-Ch-TPP-1 had a potent anti-hyperlipidemic activity via regulation of lipids, oxidative stress, irisin and uncoupling protein 1.
Collapse
Affiliation(s)
- Marwa Hasanein Asfour
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth Street, Dokki, Cairo 12622, Egypt.
| | - Abeer A A Salama
- Pharmacology Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt
| |
Collapse
|
10
|
Dadkhah Tehrani S, Shojaei M, Bagherniya M, Pirro M, Sahebkar A. The effects of phytochemicals on serum triglycerides in subjects with hypertriglyceridemia: A systematic review of randomized controlled trials. Phytother Res 2023; 37:1640-1662. [PMID: 36756995 DOI: 10.1002/ptr.7763] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/02/2022] [Accepted: 01/22/2023] [Indexed: 02/10/2023]
Abstract
This systematic review aimed to evaluate the efficacy of phytochemicals on lipid parameters in patients with hypertriglyceridemia (HTG). A comprehensive search was performed in PubMed/Medline, Scopus, ISI Web of Science, and Google Scholar from inception up to October 2021 to recognize randomized controlled trials (RCTs) assessing the effects of phytochemicals on lipid profiles in patients with HTG. Forty-eight RCTs including 53 arms and comprising 3,478 HTG patients met the eligibility criteria. Phytochemicals significantly reduced the serum levels of triglycerides in 32 out 53 arms, total cholesterol in 22 out of 51, low-density lipoprotein cholesterol in 21 out of 48, very low-density lipoprotein cholesterol in 1 out of 5, apolipoprotein B in 2 out of 4, and lipoprotein(a) levels in 2 out of 4 arms. Furthermore, phytochemicals supplementation increased the levels of high-density lipoprotein cholesterol in 15 out of 48 arms. In brief, phytochemicals supplementation might have beneficial effects on HTG. In most of the studies, phytochemicals had a favorable effect on at least one of the lipid parameters.
Collapse
Affiliation(s)
- Sahar Dadkhah Tehrani
- Student Research Committee, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrnaz Shojaei
- Student Research Committee, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, fahan, Iran
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Deng Q, Wang W, Zhang L, Chen L, Zhang Q, Zhang Y, He S, Li J. Gougunao tea polysaccharides ameliorate high-fat diet-induced hyperlipidemia and modulate gut microbiota. Food Funct 2023; 14:703-719. [PMID: 36511170 DOI: 10.1039/d2fo01828d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Many natural polysaccharides have been proven to have ameliorative effects on high-fat diet-induced hyperlipidemia with fewer side effects. However, similar data on Gougunao tea polysaccharides remain obscure. In this study, we aimed to investigate the role of Gougunao tea polysaccharides (GTP40) in the alleviation of hyperlipidemia and regulation of gut microbiota in C57BL/6J mice induced by a high-fat diet. The results indicated that GTP40 intervention inhibited the abnormal growth of body weight and the excessive accumulation of lipid droplets in the livers and ameliorated the biochemical parameters of serum/liver related to lipid metabolism in hyperlipidemia mice. The elevated levels of antioxidant enzyme and anti-inflammation cytokine in serum, as well as the up-regulating anti-inflammation gene in the liver, reflected that GTP40 might mitigate the oxidative and inflammatory stress induced by a high-fat diet. In addition, GTP40 could modulate the composition, abundance, and diversity of gut microbiota in hyperlipidemia mice. Besides, Spearman's correlation analysis implied that GTP40 intervention could enrich beneficial bacteria (e.g., Akkermansia, Bacteroides, Roseburia, and Alistipes), and decrease harmful bacteria (e.g., Blautia, Faecalibaculum, Streptococcus, and norank_f_Desulfovibrionaceae), which were correlated with the lipid metabolic parameters associated with hyperlipidemia. Moreover, it also indicated that there was a significant correlation between gut microbiota and SCFAs. Thus, GTP40 may be a novel strategy against fat accumulation, oxidative stress, and inflammation, as well as restoring the normal microbial balance of the gut in hyperlipidemia mice.
Collapse
Affiliation(s)
- Qihuan Deng
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Wenjun Wang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Lieyuan Zhang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China. .,Technical Center of Nanchang Customs, Nanchang 330038, China
| | - Lingli Chen
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Qingfeng Zhang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Ying Zhang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Sichen He
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Jingen Li
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
12
|
Atakisi O, Dalginli KY, Gulmez C, Kalacay D, Atakisi E, Zhumabaeva TT, Aşkar TK, Demirdogen RE. The Role of Reduced Glutathione on the Activity of Adenosine Deaminase, Antioxidative System, and Aluminum and Zinc Levels in Experimental Aluminum Toxicity. Biol Trace Elem Res 2022:10.1007/s12011-022-03503-0. [PMID: 36456741 DOI: 10.1007/s12011-022-03503-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
Aluminum (Al) is one of the most abundant element in the world. But aluminum exposure and accumulation causes serious diseases, related with free radicals. Reduced glutathione (GSH) is a tripeptide with intracellular antioxidant effects. This study aimed to investigate the role of GSH on adenosine deaminase (ADA), antioxidant system, and aluminum and zinc (Zn) levels in acute aluminum toxicity. In this study, Sprague-Dawley rats (n = 32) were used. The rats were divided into four equal groups (n = 8). Group I received 0.5 mL intraperitoneal injection of 0.9% saline solution (NaCI), Group II received single-dose AlCI3, Group III was given GSH for seven days, and Group IV was given AlCI3 single dose, and at the same time, 100 mg/kg GSH was given for seven days. At the end of the trial, blood samples were collected by cardiac puncture. Serum total antioxidant status (TAS) and Zn levels were lower in the aluminum-administered group than the control group. In contrast, plasma total oxidant status (TOS) and aluminum concentrations and ADA activity were found higher in the aluminum-administered group than in the control group. Unlike the other groups, group GSH administrated with aluminum was similar to the control group. As a result, GSH administration has a regulatory effect on ADA activity, antioxidant system, and Zn levels in experimental aluminum toxicity. In addition, GSH may reduce the oxidant capacity increased by Al administration and may have a tolerant role on the accumulated serum Al levels. But long-term experimental Al toxicity studies are needed to reach a firm conclusion.
Collapse
Affiliation(s)
- Onur Atakisi
- Department of Chemistry, Faculty of Science and Letter, Kafkas University, Kars, Turkey.
| | - Kezban Yildiz Dalginli
- Department of Chemistry and Chemical Processing Technologies Kars Vocational School, Kafkas University, Kars, Turkey
| | - Canan Gulmez
- Department of Pharmacy Services, Tuzluca Vocational School, Igdir University, Igdir, Turkey
| | - Destan Kalacay
- Department of Chemistry and Chemical Processing Technologies Kars Vocational School, Kafkas University, Kars, Turkey
| | - Emine Atakisi
- Faculty of Veterinary Medicine Department of Biochemistry, Kafkas University, Kars, Turkey
| | | | - Tunay Kontaş Aşkar
- Department of Dietetics and Nutrition, Faculty of Health Sciences, Çankırı Karatekin University, Çankırı, Turkey
| | - Ruken Esra Demirdogen
- Deptartments of Chemistry Faculty of Science, Çankırı Karatekin University, Çankırı, Turkey
| |
Collapse
|
13
|
Elbaset MA, Nasr M, Ibrahim BMM, Ahmed-Farid OAH, Bakeer RM, Hassan NS, Ahmed RF. Curcumin nanoemulsion counteracts hepatic and cardiac complications associated with high-fat/high-fructose diet in rats. J Food Biochem 2022; 46:e14442. [PMID: 36165438 DOI: 10.1111/jfbc.14442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 01/14/2023]
Abstract
The relationship between the incidence of cardiovascular abnormalities and non-alcoholic fatty liver disease (NAFLD) has long been postulated. Curcumin (CUR) is a potential anti-atherosclerotic agent but its poor water solubility hinders its pharmacological use. Therefore, the present study aimed to investigate the effect of formulation of CUR nanoemulsion prepared using the spontaneous emulsification technique on high fat high fructose (HFHF)-induced hepatic and cardiac complications. Fifty Wistar rats were divided into five groups. CUR nanoemulsion at doses of 5 and 10 mg/kg and conventional powdered CUR at a dose of 50 mg/kg were orally administered daily to rats for two weeks, and compared with normal control and HFHF control. Results revealed that the high dose level of CUR nanoemulsion was superior to conventional CUR in ameliorating the HFHF-induced insulin resistance status and hyperlipidemia, with beneficial impact on rats' recorded electrocardiogram (ECG), serum aspartate aminotransferase (ALT) and alanine aminotransferase (AST) levels, leptin, adiponectin, creatine phosphokinase, lactate dehydrogenase and cardiac troponin-I. In addition, hepatic and cardiac oxidative and nitrosative stresses, oxidative DNA damage and disrupted cellular energy statuses were counteracted. Results were also confirmed by histopathological examination. PRACTICAL APPLICATIONS: The use of curcumin nanoemulsion could be beneficial in combating hepatic and cardiac complications resulting from HFHF diets.
Collapse
Affiliation(s)
- Marawan Abd Elbaset
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Bassant M M Ibrahim
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Omar A H Ahmed-Farid
- Department of Physiology, National Organization for Drug Control and Research, Giza, Egypt
| | - Rofanda M Bakeer
- Department of Pathology, Faculty of Medicine, Helwan University, Helwan, Egypt
| | - Nabila S Hassan
- Department of Pathology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Rania F Ahmed
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
14
|
Khursheed R, Singh SK, Wadhwa S, Gulati M, Jha NK, Gupta G, Devkota HP, Prasher P, Chellappan DK, Dua K. A sojourn into therapeutic and nutraceutical potential of curcumin and its novel drug delivery system: Current achievements and future perspectives. SOUTH AFRICAN JOURNAL OF BOTANY 2022; 149:944-962. [DOI: 10.1016/j.sajb.2022.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
15
|
Peng M, Gao Z, Liao Y, Guo J, Shan Y. Development of Functional Kiwifruit Jelly with chenpi (FKJ) by 3D Food Printing Technology and Its Anti-Obesity and Antioxidant Potentials. Foods 2022; 11:foods11131894. [PMID: 35804710 PMCID: PMC9265498 DOI: 10.3390/foods11131894] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
With the growing popularity of the concept of healthy diet, modern obesity treatment is gradually shifting from surgical or pharmacological treatment to nutritional intervention. As a safe and effective measure, natural product interventions are a potential strategy of obesity management. The present study aimed to develop a kind of functional food rich in bioactive compounds (chenpi, kiwifruit, and pectin as raw materials) and investigate their bioactive effects on a mouse model. For development of functional kiwifruit jelly with chenpi (FKJ), the results of single-factor and response surface experiments showed that the optimized formulation was composed of a 30.26% addition of chenpi, 35% addition of kiwifruit juice, and 2.88% addition of pectin. The FKJ obtained with the optimal formulation could be used as a 3D printing raw material to print the desired food shapes successfully. For bioactivity evaluation of FKJ, the results with a mouse model showed that the food intake, liver weight, and adipose tissue weight were significantly decreased after administration of FKJ with dose-dependent effect compared to the CON group (p < 0.05). Meanwhile, the serum levels of several inflammatory factors (TG, IL-6, and TNF-α) were decreased and the activities of several antioxidant-related enzymes (SOD, GSH-PX, and CAT) were increased. In short, a functional kiwifruit jelly with chenpi was developed in this study. It is a functional snack food rich in active phenolic compounds, low in calories, with antioxidant and anti-inflammatory activity, and prevents fat accumulation. FKJ could well meet the needs of modern people for nutrition and health and also promote the processing and utilization of natural products, and has good development prospects in the functional food industry.
Collapse
Affiliation(s)
- Mingfang Peng
- Key Laboratory of Agro-Products Processing, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs of China, Beijing 100193, China;
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
| | - Zhipeng Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China;
| | - Yanfang Liao
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
| | - Jiajing Guo
- Key Laboratory of Agro-Products Processing, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs of China, Beijing 100193, China;
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
- Correspondence: (J.G.); (Y.S.)
| | - Yang Shan
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
- Correspondence: (J.G.); (Y.S.)
| |
Collapse
|
16
|
How Curcumin Targets Inflammatory Mediators in Diabetes: Therapeutic Insights and Possible Solutions. Molecules 2022; 27:molecules27134058. [PMID: 35807304 PMCID: PMC9268477 DOI: 10.3390/molecules27134058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus is a multifactorial chronic metabolic disorder, characterized by altered metabolism of macro-nutrients, such as fats, proteins, and carbohydrates. Diabetic retinopathy, diabetic cardiomyopathy, diabetic encephalopathy, diabetic periodontitis, and diabetic nephropathy are the prominent complications of diabetes. Inflammatory mediators are primarily responsible for these complications. Curcumin, a polyphenol derived from turmeric, is well known for its anti-oxidant, anti-inflammatory, and anti-apoptotic properties. The regulation of several signaling pathways effectively targets inflammatory mediators in diabetes. Curcumin’s anti-inflammatory and anti-oxidative activities against a wide range of molecular targets have been shown to have therapeutic potential for a variety of chronic inflammatory disorders, including diabetes. Curcumin’s biological examination has shown that it is a powerful anti-oxidant that stops cells from growing by releasing active free thiol groups at the target location. Curcumin is a powerful anti-inflammatory agent that targets inflammatory mediators in diabetes, and its resistant form leads to better therapeutic outcomes in diabetes complications. Moreover, Curcumin is an anti-oxidant and NF-B inhibitor that may be useful in treating diabetes. Curcumin has been shown to inhibit diabetes-related enzymes, such as a-glucosidase, aldose reductase and aldose reductase inhibitors. Through its anti-oxidant and anti-inflammatory effects, and its suppression of vascular endothelial development and nuclear transcription factors, curcumin has the ability to prevent, or reduce, the course of diabetic retinopathy. Curcumin improves insulin sensitivity by suppressing phosphorylation of ERK/JNK in HG-induced insulin-resistant cells and strengthening the PI3K-AKT-GSK3B signaling pathway. In the present article, we aimed to discuss the anti-inflammatory mechanisms of curcumin in diabetes regulated by various molecular signaling pathways.
Collapse
|
17
|
Elangovan A, Ramachandran J, Lakshmanan DK, Ravichandran G, Thilagar S. Ethnomedical, phytochemical and pharmacological insights on an Indian medicinal plant: The balloon vine (Cardiospermum halicacabum Linn.). JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115143. [PMID: 35227784 DOI: 10.1016/j.jep.2022.115143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cardiospermum halicacabum Linn. (C. halicacabum) is one of the well-known leafy green vegetables in India. It is an herbaceous climber from the Sapindaceae family which is found in almost every Continent and Oceania. In the traditional Indian medicine systems, this plant is used for the treatment of rheumatism, abdominal pain, orchitis, dropsy, lumbago, skin diseases, cough, nervous disorders, and hyperthermia. AIM OF THE REVIEW This review presents the current information about ethnomedical uses and progress on geographical distribution, pharmacological activities, phytochemistry, micropropagation, and toxicity of C. halicacabum. Also, critically summarizes the relationship between the reported pharmacological activities and the traditional usages along with the future perspectives for research on this medicinal plant. MATERIALS AND METHODS The data on C. halicacabum were collected using multiple internet sources such as Google Scholar, Science Direct, Taylor & Francis, PubMed, Web of Science, Springer Link, Wiley online, and plant databases. RESULTS Chemical characterization using LC-MS/MS, HPLC, and NMR exposed the presence of chlorogenic acid, caffeic acid, coumaric acid, luteolin-7-o-glucuronide, apigenin-7-o-glucuronide, and chrysoeriol in different parts of C. halicacabum. Based on the outcomes of this review, the main bioactive compounds found in C. halicacabum include phenols, phenolic acids, flavonoids, flavonoid glycosides, and flavonoid glucuronides. Besides the above-mentioned constituents, palmitic acid, oleic acid, stearic acid, linolenic acid, eicosenoic acid, and arachidic acid are the compounds that constitute the fatty acid profile of C. halicacabum seeds. Specifically, Cardiospermin, a bioactive compound isolated from the root extract of C. halicacabum has been recognized for its anxiolytic activity. Moreover, C. halicacabum showed a broad spectrum of pharmacological activities including anti-inflammatory, anti-arthritic, anti-diabetic, anxiolytic activity, antiulcer, apoptotic activity, antibacterial, antiviral, anti-diarrheal, antioxidant, hepatoprotective, and nephroprotective properties. However, the bioactive compounds responsible for most of the above therapeutic properties have not been elucidated till now. CONCLUSION Phytochemicals from C. halicacabum showed noticeable pharmacological effects against plethora of health disorders. Some of the traditional applications were supported by modern scientific studies, however, more pharmacological evaluations should be conducted to validate other traditional uses of C. halicacabum. Despite C. halicacabum's vast pharmacological activity, additional human clinical trials are needed to determine the potent and safe dosages for the treatment of various health abnormalities. Besides, bioassay-guided isolation of active constituents, pharmacokinetic evaluations and identification of their mode of action are recommended for future investigations on C. halicacabum to unveil its therapeutic drug leads. Overall, this review suggests that C. halicacabum could be a new source of functional foods.
Collapse
Affiliation(s)
- Abbirami Elangovan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Jeyadevi Ramachandran
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Dinesh Kumar Lakshmanan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India; Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - Guna Ravichandran
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Sivasudha Thilagar
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
| |
Collapse
|
18
|
Qi L, Jiang J, Zhang J, Zhang L, Wang T. Effect of maternal curcumin supplementation on intestinal damage and the gut microbiota in male mice offspring with intra-uterine growth retardation. Eur J Nutr 2022; 61:1875-1892. [PMID: 35059786 DOI: 10.1007/s00394-021-02783-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/09/2021] [Indexed: 12/23/2022]
Abstract
PURPOSE The present study investigated whether maternal curcumin supplementation might protect against intra-uterine growth retardation (IUGR) induced intestinal damage and modulate gut microbiota in male mice offspring. METHODS In total, 36 C57BL/6 mice (24 females and 12 males, 6-8 weeks old) were randomly divided into three groups based on the diet before and throughout pregnancy and lactation: (1) normal protein (19%), (2) low protein (8%), and (3) low protein (8%) + 600 mg kg-1 curcumin. Offspring were administered a control diet until postnatal day 35. RESULTS Maternal curcumin supplementation could normalize the maternal protein deficiency-induced decrease in jejunal SOD activity (NP = 200.40 ± 10.58 U/mg protein; LP = 153.30 ± 5.51 U/mg protein; LPC = 185.40 ± 9.52 U/mg protein; P < 0.05) and T-AOC content (NP = 138.90 ± 17.51 U/mg protein; LP = 84.53 ± 5.42 U/mg protein; LPC = 99.73 ± 12.88 U/mg protein; P < 0.05) in the mice offspring. Maternal curcumin supplementation increased the maternal low protein diet-induced decline in the ratio of villus height-to-crypt depth (NP = 2.23 ± 0.19; LP = 1.90 ± 0.06; LPC = 2.56 ± 0.20; P < 0.05), the number of goblet cells (NP = 12.72 ± 1.16; LP = 7.04 ± 0.53; LPC = 13.10 ± 1.17; P < 0.05), and the ratio of PCNA-positive cells (NP = 13.59 ± 1.13%; LP = 2.42 ± 0.74%; LPC = 6.90 ± 0.96%; P < 0.05). It also reversed the maternal protein deficiency-induced increase of the body weight (NP = 13.00 ± 0.48 g; LP = 16.49 ± 0.75 g; LPC = 10.65 ± 1.12 g; P < 0.05), the serum glucose levels (NP = 5.32 ± 0.28 mmol/L; LP = 6.82 ± 0.33 mmol/L; LPC = 4.69 ± 0.35 mmol/L; P < 0.05), and the jejunal apoptotic index (NP = 6.50 ± 1.58%; LP = 10.65 ± 0.75%; LPC = 5.24 ± 0.71%; P < 0.05). Additionally, maternal curcumin supplementation enhanced the gene expression level of Nrf2 (NP = 1.00 ± 0.12; LP = 0.73 ± 0.10; LPC = 1.34 ± 0.12; P < 0.05), Sod2 (NP = 1.00 ± 0.04; LP = 0.85 ± 0.04; LPC = 1.04 ± 0.04; P < 0.05) and Ocln (NP = 1.00 ± 0.09; LP = 0.94 ± 0.10; LPC = 1.47 ± 0.09; P < 0.05) in the jejunum. Furthermore, maternal curcumin supplementation normalized the relative abundance of Lactobacillus (NP = 31.56 ± 6.19%; LP = 7.60 ± 2.33%; LPC = 17.79 ± 2.41%; P < 0.05) and Desulfovibrio (NP = 3.63 ± 0.93%; LP = 20.73 ± 3.96%; LPC = 13.96 ± 4.23%; P < 0.05), and the ratio of Firmicutes/Bacteroidota (NP = 2.84 ± 0.64; LP = 1.21 ± 0.30; LPC = 1.79 ± 0.15; P < 0.05). Moreover, Lactobacillus was positively correlated with the SOD activity, and it was negatively correlated with Il - 1β expression (P < 0.05). Desulfovibrio was negatively correlated with the SOD activity and the jejunal expression of Sod1, Bcl - 2, Card11, and Zo - 1 (P < 0.05). CONCLUSIONS Maternal curcumin supplementation could improve intestinal integrity, oxidative status, and gut microbiota in male mice offspring with IUGR.
Collapse
Affiliation(s)
- Lina Qi
- College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, People's Republic of China
| | - Jingle Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, People's Republic of China
| | - Jingfei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, People's Republic of China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, People's Republic of China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
19
|
Vafaeipour Z, Razavi BM, Hosseinzadeh H. Effects of turmeric (Curcuma longa) and its constituent (curcumin) on the metabolic syndrome: An updated review. JOURNAL OF INTEGRATIVE MEDICINE 2022; 20:193-203. [PMID: 35292209 DOI: 10.1016/j.joim.2022.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/13/2022] [Indexed: 12/16/2022]
Abstract
Metabolic syndrome (MS) involves people with the following risk factors: obesity, hypertension, high glucose level and hyperlipidemia. It can increase the risk of heart disease, stroke and type 2 diabetes mellitus. The prevalence of MS in the world's adult population is about 20%-25%. Today, there is much care to use medicinal plants. Turmeric (Curcuma longa) as well as curcumin which is derived from the rhizome of the plant, has been shown beneficial effects on different components of MS. Thus, the purpose of this manuscript was to introduce different in vitro, in vivo and human studies regarding the effect of turmeric and its constituent on MS. Moreover, different mechanisms of action by which this plant overcomes MS have been introduced. Based on studies, turmeric and its bioactive component, curcumin, due to their anti-inflammatory and antioxidant properties, have antidiabetic effects through increasing insulin release, antihyperlipidemic effects by increasing fatty acid uptake, anti-obesity effects by decreasing lipogenesis, and antihypertensive effects by increasing nitric oxide. According to several in vivo, in vitro and human studies, it can be concluded that turmeric or curcumin has important values as a complementary therapy in MS. However, more clinical trials should be done to confirm these effects.
Collapse
Affiliation(s)
- Zeinab Vafaeipour
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran.
| |
Collapse
|
20
|
Sayevand Z, Nazem F, Nazari A, Sheykhlouvand M, Forbes SC. Cardioprotective effects of exercise and curcumin supplementation against myocardial ischemia–reperfusion injury. SPORT SCIENCES FOR HEALTH 2022. [DOI: 10.1007/s11332-021-00886-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Guo S, Hu S, Jiang L, Chen X, Zhang W, Jiang Y, Liu B. Quantitative determination of multi-class bioactive constituents for quality control of yiqi jiangzhi granules. CHINESE HERBAL MEDICINES 2022; 14:324-331. [PMID: 36117673 PMCID: PMC9476781 DOI: 10.1016/j.chmed.2022.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 11/01/2022] Open
Abstract
Objective Methods Results Conclusion
Collapse
|
22
|
Muvhulawa N, Dludla PV, Ziqubu K, Mthembu SX, Mthiyane F, Nkambule BB, Mazibuko-Mbeje SE. Rutin ameliorates inflammation and improves metabolic function: A comprehensive analysis of scientific literature. Pharmacol Res 2022; 178:106163. [DOI: 10.1016/j.phrs.2022.106163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/06/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022]
|
23
|
ietary curcumin supplementation ameliorates placental inflammation in rats with intra-uterine growth retardation by inhibiting the NF-κB signaling pathway. J Nutr Biochem 2022; 104:108973. [DOI: 10.1016/j.jnutbio.2022.108973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/18/2021] [Accepted: 01/31/2022] [Indexed: 12/21/2022]
|
24
|
Tian C, Shao Y, Jin Z, Liang Y, Li C, Qu C, Sun S, Cui C, Liu M. The protective effect of rutin against lipopolysaccharide induced acute lung injury in mice based on the pharmacokinetic and pharmacodynamic combination model. J Pharm Biomed Anal 2021; 209:114480. [PMID: 34839052 DOI: 10.1016/j.jpba.2021.114480] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 11/19/2022]
Abstract
Rutin is a flavonoid compound with many pharmacological activities, including antioxidation, anti-inflammation and cardiovascular and cerebrovascular protection. However, there are great limitations in clinical application in view of its poor solubility and slow absorption in vivo. In this study, a pharmacokinetic and pharmacodynomic model was adopted to study the correlation of the pharmacokinetics and pharmacodynomics of rutin in lipopolysaccharide-induced acute lung injury mice. Rutin was intragastrically administered continuously for 5 days at a dose of 200 mg/kg/d, and pharmacokinetic and pharmacodynamic indicators were measured every day after administration, including the blood concentration of rutin, the W/D ratio of lungs, the nitric oxide content and the expression levels of TLR4, TRAF6, IκB and P-IκB proteins. The results indicated that rutin can exert an anti-inflammatory protective effect by improving lung tissue injury, significantly decreasing the synthesis of the inflammatory mediator nitric oxide, and inhibiting the protein expression levels of TLR4, TRAF6 and P-IκB. The absorption of rutin conformed to a one-compartment model with the pharmacokinetic parameters as follows: t1/2α= 9.76 h, t1/2β= 19.44 h, Tmax= 24.00 h, Cmax= 22.65 μg/ml and AUC(0-t)= 518.58 μg/ml·h. A PK-PD combination model was established to fit the optimal administration time of rutin with a one-compartment-Sigmod Emax model connected to the effect site. Meanwhile,the PK-PD combination model was a better approach for evaluating the relationships between the five pharmacodynamic indicators and the pharmacokinetic characteristics of rutin. The correlation between the pharmacokinetics and pharmacodynamics of rutin was quantitatively analysed to provide a theoretical basis for the research and development of new anti-inflammatory drugs in clinical practice.
Collapse
Affiliation(s)
- Chunlian Tian
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No 120 Dongling Road Shenhe Dist. 110866, Shenyang Liaoning Prov., People's Republic of China; Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, 264005 Yantai Shangdong Prov., People's Republic of China
| | - Yi Shao
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No 120 Dongling Road Shenhe Dist. 110866, Shenyang Liaoning Prov., People's Republic of China
| | - Zhaodong Jin
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No 120 Dongling Road Shenhe Dist. 110866, Shenyang Liaoning Prov., People's Republic of China
| | - Yinfeng Liang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No 120 Dongling Road Shenhe Dist. 110866, Shenyang Liaoning Prov., People's Republic of China
| | - Chongyang Li
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No 120 Dongling Road Shenhe Dist. 110866, Shenyang Liaoning Prov., People's Republic of China
| | - Chenghu Qu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No 120 Dongling Road Shenhe Dist. 110866, Shenyang Liaoning Prov., People's Republic of China
| | - Sheng Sun
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No 120 Dongling Road Shenhe Dist. 110866, Shenyang Liaoning Prov., People's Republic of China
| | - Cancan Cui
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No 120 Dongling Road Shenhe Dist. 110866, Shenyang Liaoning Prov., People's Republic of China
| | - Mingchun Liu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No 120 Dongling Road Shenhe Dist. 110866, Shenyang Liaoning Prov., People's Republic of China.
| |
Collapse
|
25
|
Küçükler S, Kandemir FM, Özdemir S, Çomaklı S, Caglayan C. Protective effects of rutin against deltamethrin-induced hepatotoxicity and nephrotoxicity in rats via regulation of oxidative stress, inflammation, and apoptosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62975-62990. [PMID: 34218375 DOI: 10.1007/s11356-021-15190-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Deltamethrin is a type-II pyrethroid synthetic insecticide that is extensively used for controlling mosquitoes, flies, pests, and insects worldwide. This study was carried out to evaluate the likelihood protective effects of rutin, a natural antioxidant, against deltamethrin-induced liver and kidney toxicities in rats. Hepatotoxicity and nephrotoxicity were evaluated after the rats were treated orally with deltamethrin (1.28 mg/kg b.w.) alone or with rutin (25 and 50 mg/kg b.w.) for 30 days. Deltamethrin administration caused an increase in lipid peroxidation level and a decrease in activities of SOD, CAT, GPx, and GSH levels in the both tissues. Deltamethrin also increased serum ALT, AST, ALP, urea, and creatinine levels, while reduced nephrine levels in rats. In addition, deltamethrin increased the activation of inflammatory and apoptotic pathways by decreasing Bcl-2 and increasing TNF-α, NF-κB, IL-1β, p38α MAPK, COX-2, iNOS, beclin-1, Bax, and caspase-3 protein levels and/or activities. Furthermore, deltamethrin increased mRNA expression levels of PARP-1, VEGF, and immunohistochemical expressions of c-fos in the tissues. Rutin treatment significantly improved all examined parameters and restored the liver and kidney histopathological and immunohistochemical alterations. These findings demonstrate that rutin could be used to ameliorate hepatotoxicity and nephrotoxicity associated with oxidative stress, inflammation, and apoptosis in deltamethrin-induced rats.
Collapse
Affiliation(s)
- Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Selim Çomaklı
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingöl University, 12000, Bingöl, Turkey.
| |
Collapse
|
26
|
Yixuan L, Qaria MA, Sivasamy S, Jianzhong S, Daochen Z. Curcumin production and bioavailability: A comprehensive review of curcumin extraction, synthesis, biotransformation and delivery systems. INDUSTRIAL CROPS AND PRODUCTS 2021; 172:114050. [DOI: 10.1016/j.indcrop.2021.114050] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
27
|
Zhou M, Zhang G, Hu J, Zhu Y, Lan H, Shen X, Lv Y, Huang L. Rutin attenuates Sorafenib-induced Chemoresistance and Autophagy in Hepatocellular Carcinoma by regulating BANCR/miRNA-590-5P/OLR1 Axis. Int J Biol Sci 2021; 17:3595-3607. [PMID: 34512168 PMCID: PMC8416719 DOI: 10.7150/ijbs.62471] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/24/2021] [Indexed: 12/24/2022] Open
Abstract
Rutin, the main component of Potentilla discolor Bunge, was proven to exhibit anti-tumor properties. Sorafenib (SO) is conventionally used in chemotherapy against hepatocellular carcinoma (HCC), but acquired resistance developed during long-term therapy limits its benefits. This study aimed to explore the molecular mechanism of rutin in SO-induced autophagy and chemoresistance in HCC. Sixty-eight paired HCC patients who received the same chemotherapy treatment were obtained. We also established two SO resistance cell lines and then utilized high-throughput RNA sequencing to explore their long non-coding RNA (lncRNA) expression profiles. The target microRNA (miRNA) and downstream mRNA were also explored. Our results indicated that rutin treatment attenuates autophagy and BANCR expression in SO resistance cells. Transmission electron microscopy clearly showed a significantly decreased number of autophagosomes after rutin-treated HepG2/SO and HCCLM3/SO cells. BANCR knockdown promotes the sensitivity of SO resistance cells to SO. Further study found that BANCR acts as a molecular sponge of miR-590-5P to sequester miR-590-5P away from oxidized low-density lipoprotein receptor 1 (OLR1) in HCC cells. Furthermore, in vivo study demonstrated that rutin could inhibit autophagy through the BANCR/miRNA-590-5P/OLR1 axis. Our findings suggest that rutin could regulate autophagy by regulating BANCR/miRNA-590-5P/OLR1 axis.
Collapse
Affiliation(s)
- Meng Zhou
- Department of Hepatopancreatobiliary Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P. R. China
| | - Gan Zhang
- Department of Hepatopancreatobiliary Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P. R. China
| | - Jun Hu
- Department of Hepatopancreatobiliary Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P. R. China
| | - Yanzhi Zhu
- Department of Hepatopancreatobiliary Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P. R. China
| | - Haoming Lan
- Department of Hepatopancreatobiliary Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P. R. China
| | - Xianfeng Shen
- Department of Hepatopancreatobiliary Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P. R. China
| | - Yi Lv
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710000, P. R. China
| | - Linsheng Huang
- Department of Hepatopancreatobiliary Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P. R. China
| |
Collapse
|
28
|
Qin X, Wang W, Chu W. Antioxidant and reducing lipid accumulation effects of rutin in Caenorhabditis elegans. Biofactors 2021; 47:686-693. [PMID: 33988888 DOI: 10.1002/biof.1755] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 11/06/2022]
Abstract
In this study, the effect of rutin on fatty acid metabolism and antioxidant activity were evaluated. We found that the antioxidant capacity of rutin-treated Caenorhabditis elegans was enhanced but the triglyceride content was significantly reduced. The reduction of fat accumulation by rutin was also confirmed by Oil Red O staining. RNA-seq analysis indicated that rutin significantly regulated the expression of seven genes related to lipid metabolism in C. elegans. Among the seven genes, acox-1.3, stdh-3, and fat-7 were associated with fatty acid metabolism. Rutin significantly reduced fat accumulation in both fat-6 and fat-7 mutant strains but did not affect the fat storage of fat-6/fat-7 double mutant, which indicated that the impact of rutin on fat storage depended on fat-6 and fat-7. These findings indicated that rutin reduced fat storage depending on the regulation of lipid metabolism-related genes expression and thereby regulating the biosynthesis of the corresponding unsaturated fatty acid.
Collapse
Affiliation(s)
- Xianjin Qin
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- School of Pharmaceutical Science, Peking University, Beijing, China
| | - Wenqian Wang
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Weihua Chu
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
29
|
Ashrafizadeh M, Ahmadi Z, Mohammadinejad R, Farkhondeh T, Samarghandian S. Curcumin Activates the Nrf2 Pathway and Induces Cellular Protection Against Oxidative Injury. Curr Mol Med 2021; 20:116-133. [PMID: 31622191 DOI: 10.2174/1566524019666191016150757] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022]
Abstract
Curcumin is a naturally occurring polyphenol that is isolated from the rhizome of Curcuma longa (turmeric). This medicinal compound has different biological activities, including antioxidant, antibacterial, antineoplastic, and anti-inflammatory. It also has therapeutic effects on neurodegenerative disorders, renal disorders, and diabetes mellitus. Curcumin is safe and well-tolerated at high concentrations without inducing toxicity. It seems that curcumin is capable of targeting the Nrf2 signaling pathway in protecting the cells against oxidative damage. Besides, this strategy is advantageous in cancer therapy. Accumulating data demonstrates that curcumin applies four distinct ways to stimulate the Nrf2 signaling pathway, including inhibition of Keap1, affecting the upstream mediators of Nrf2, influencing the expression of Nrf2 and target genes, and finally, improving the nuclear translocation of Nrf2. In the present review, the effects of curcumin on the Nrf2 signaling pathway to exert its therapeutic and biological activities has been discussed.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Veterinary Medicine Faculty, Shushtar University, Khuzestan, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
30
|
Sethiya A, Agarwal DK, Agarwal S. Current Trends in Drug Delivery System of Curcumin and its Therapeutic Applications. Mini Rev Med Chem 2021; 20:1190-1232. [PMID: 32348221 DOI: 10.2174/1389557520666200429103647] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
Curcumin is a poly phenolic compound extracted from turmeric. Over the past years, it has acquired significant interest among researchers due to its numerous pharmacological activities like anti- cancer, anti-alzheimer, anti-diabetic, anti-bacterial, anti-inflammatory and so on. However, the clinical use of curcumin is still obstructed due to tremendously poor bioavailability, rapid metabolism, lower gastrointestinal absorption, and low permeability through cell that makes its pharmacology thrilling. These issues have led to enormous surge of investigation to develop curcumin nano formulations which can overcome these restrictive causes. The scientists all across the universe are working on designing several drug delivery systems viz. liposomes, micelles, magnetic nano carriers, etc. for curcumin and its composites which not only improve its physiochemical properties but also enhanced its therapeutic applications. The review aims to systematically examine the treasure of information about the medicinal use of curcumin. This article delivers a general idea of the current study piloted to overwhelm the complications with the bioavailability of curcumin which have exhibited an enhanced biological activity than curcumin. This article explains the latest and detailed study of curcumin and its conjugates, its phytochemistry and biological perspectives and also proved curcumin as an efficient drug candidate for the treatment of numerous diseases. Recent advancements and futuristic viewpoints are also deliberated, which shall help researchers and foster commercial translations of improved nanosized curcumin combination for the treatment of various diseases.
Collapse
Affiliation(s)
- Ayushi Sethiya
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLS University, Udaipur, 313001, India
| | | | - Shikha Agarwal
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLS University, Udaipur, 313001, India
| |
Collapse
|
31
|
Suzuki K, Gonda K, Kishimoto Y, Katsumoto Y, Takenoshita S. Potential curing and beneficial effects of Ooitabi (Ficus pumila L.) on hypertension and dyslipidaemia in Okinawa. J Hum Nutr Diet 2021; 34:395-401. [PMID: 32845065 PMCID: PMC8048928 DOI: 10.1111/jhn.12806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Over 30% of the population of Okinawa Prefecture have a high body mass index. The incidence of hypertension and dyslipidaemia has also increased in recent years. We found that Ooitabi (Ficus pumila L.), a plant native to Okinawa, was useful for hypertension. During ancient times, the extracts of Ooitabi leaves were used for making Ishimaki tea in some areas of Okinawa Prefecture. The plants in Okinawa are rich in antioxidants, and four flavonoid glycosides, including rutin, have been identified in Ooitabi. METHODS In the present study, we conducted clinical verification tests on the effects of drinking Ishimaki tea on outpatients with hypertension and dyslipidaemia. Of 3814 Japanese patients who underwent medical check-ups in Okinawa, 38 individuals with high blood pressure, dyslipidaemia, liver dysfunction and gout visited our hospital as outpatients and were asked to drink Ishimaki tea. RESULTS After 3 months, there were significant reductions in body mass index, systolic and diastolic blood pressure, total cholesterol, low-density lipoprotein cholesterol, γ-glutamyltrans peptidase, uric acid and ratio of blood vessel insulin resistance. CONCLUSIONS Ooitabi extract can lower blood pressure and improve lipid abnormalities and has likely contributed to the well-known health and longevity of the population in Okinawa.
Collapse
Affiliation(s)
- K. Suzuki
- Daido Obesity and Metabolism Research CenterNahaJapan
- Daido Central HospitalNahaJapan
| | - K. Gonda
- Daido Obesity and Metabolism Research CenterNahaJapan
- Daido Central HospitalNahaJapan
- Department of Bioregulation and Pharmacological MedicineFukushima Medical UniversityFukushimaJapan
| | - Y. Kishimoto
- Executive Office of the GovernorOkinawa Prefectural GovernmentNahaJapan
| | | | | |
Collapse
|
32
|
Jantsch MH, Bernardes VM, Oliveira JS, Passos DF, Dornelles GL, Manzoni AG, Cabral FL, da Silva JLG, Schetinger MRC, Leal DBR. Tucumã (Astrocaryum aculeatum) prevents memory loss and oxidative imbalance in the brain of rats with hyperlipidemia. J Food Biochem 2021; 45:e13636. [PMID: 33533491 DOI: 10.1111/jfbc.13636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/21/2020] [Accepted: 01/14/2021] [Indexed: 01/10/2023]
Abstract
Hyperlipidemia generates deposition of lipids, inflammation, and oxidative damage in cells and tissues, including those of the brain. Tucumã (Astrocaryum aculeatum) fruits contain bioactive compounds with antioxidant and anti-inflammatory effects. We evaluated the action of Tucumã extract on memory and brain cortex redox balance in hyperlipidemic rats. For 30 days, Wistar rats received Tucumã extract (250 mg/kg). Then, hyperlipidemia was induced by intraperitoneal administration of Poloxamer-407. Twenty-four hours later, the object recognition index was measured. The animals were euthanized for sample collection 36 hr postinduction. Hyperlipidemic animals showed memory loss and an imbalance between reactive species and intrinsic antioxidants. We found that Tucumã prevented memory loss and protein and lipid oxidative damage and prompted a better antioxidant response in the cerebral cortex of rats with hyperlipidemia. These findings suggest a neuroprotective effect and nutraceutical potential of Tucumã. PRACTICAL APPLICATIONS: In the present work, we demonstrated that induced hyperlipidemia in rats caused memory loss and redox unbalance, both factors prevented by the administration of Tucumã (Astrocaryum aculeatum) extract. Two aims were fulfilled with these results. The first was to show that hyperlipidemia affected brain function through oxidative damage and concerned basic research. The second was to offer a therapy that prevented this harm and could be applied in the clinic. Tucumã has ethnopharmacological importance through the consumption of fruits or the administration of extracts and oils by a population that was shown to enjoy improved health and longevity. Here, we show evidence that Tucumã contributes to the maintenance of brain health by preventing memory loss and oxidative damage, a nutraceutical supplement that may aid the prevention of vascular, inflammatory, and brain diseases.
Collapse
Affiliation(s)
- Matheus Henrique Jantsch
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Programa de Pós-graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Viviane Martins Bernardes
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Juliana Sorraila Oliveira
- Programa de Pós-graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Daniela Ferreira Passos
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Programa de Pós-graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Guilherme Lopes Dornelles
- Programa de Pós-graduação em Medicina Veterinária, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Alessandra Guedes Manzoni
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Programa de Pós-graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Fernanda Licker Cabral
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Jean Lucas Gutknecht da Silva
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Programa de Pós-graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Maria Rosa Chitolina Schetinger
- Programa de Pós-graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Daniela Bitencourt Rosa Leal
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Programa de Pós-graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
33
|
Huang X, Li G, Xu B, Zhang J, Wang X, Cheng X, Jayachandran M, Huang Y, Qu S. Lower Baseline Serum Triglyceride Levels Are Associated With Higher Decrease in Body Mass Index After Laparoscopy Sleeve Gastrectomy Among Obese Patients. Front Endocrinol (Lausanne) 2021; 12:633856. [PMID: 33692759 PMCID: PMC7937917 DOI: 10.3389/fendo.2021.633856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/07/2021] [Indexed: 12/23/2022] Open
Abstract
AIMS To investigate the predictive value of baseline serum triglyceride (TG) levels for improvements of metabolism after laparoscopic sleeve gastrectomy (LSG). METHODS 112 obese patients [body mass index (BMI) ≥ 35 kg/m2] underwent LSG and with complete information of anthropometric and metabolic parameters were divided into normal TG group (group A) and high TG group (group B), while group A had TG levels ≤ 1.7 mmol/L, and group B had TG levels > 1.7 mmol/L. The post-operative changes (Δ) in metabolic parameters between the two groups were compared. RESULTS In the whole cohort, the metabolic parameters were significantly improved at 6 months after LSG. BMI and waist circumference (WC) decreased significantly in the two groups. The ΔBMI among group A and group B were 11.42±3.23 vs 9.13±2.77 kg/m2 (p<0.001), respectively. ΔBMI was positively correlated with ΔWC (r=0.696, p<0.001), Δfasting insulin level (r=0.440, p=0.002), Δfasting serum C peptide level (r=0.453, p=0.002), and Δhomeostasis model assessment insulin resistance index (r=0.418, p=0.004) in group A. Compared with group B, group A had a significantly higher odds ratio (OR) of 2.83 (95% confidence interval [CI]1.25-6.38, p=0.012)and 2.73 (95% CI 1.11-6.72, p=0.029) for ΔBMI and ΔWC after adjustment for age and gender, respectively. CONCLUSIONS Obese patients with baseline TG levels under 1.7 mmol/L had greater loss of weight at six months follow-up later LSG. This finding suggests that baseline TG level may have a predictive value for weight loss, at least in the short-term follow-up.
Collapse
Affiliation(s)
- Xiu Huang
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, School of Medicine Tongji University, Shanghai, China
| | - Guifang Li
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, School of Medicine Tongji University, Shanghai, China
| | - Bei Xu
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, School of Medicine Tongji University, Shanghai, China
| | - Junyi Zhang
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, School of Medicine Tongji University, Shanghai, China
| | - Xingchun Wang
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, School of Medicine Tongji University, Shanghai, China
- Shanghai Center of Thyroid Disease, Shanghai, China
| | - Xiaoyun Cheng
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, School of Medicine Tongji University, Shanghai, China
| | - Muthukumaran Jayachandran
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, School of Medicine Tongji University, Shanghai, China
| | - Yueye Huang
- Shanghai Center of Thyroid Disease, Shanghai, China
- *Correspondence: Shen Qu, ; Yueye Huang,
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, School of Medicine Tongji University, Shanghai, China
- Shanghai Center of Thyroid Disease, Shanghai, China
- *Correspondence: Shen Qu, ; Yueye Huang,
| |
Collapse
|
34
|
Zhan J, Ma X, Liu D, Liang Y, Li P, Cui J, Zhou Z, Wang P. Gut microbiome alterations induced by tributyltin exposure are associated with increased body weight, impaired glucose and insulin homeostasis and endocrine disruption in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115276. [PMID: 32835916 DOI: 10.1016/j.envpol.2020.115276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/15/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Tributyltin (TBT), an organotin compound once widely used in agriculture and industry, has been reported to induce obesity and endocrine disruption. Gut microbiota has a strong connection with the host's physiology. Nevertheless, the influences of TBT exposure on gut microbiota and whether TBT-influenced gut microbiota is related to TBT-induced toxicity remain unclear. To fill these gaps, ICR (CD-1) mice were respectively exposed to TBT at NOEL (L-TBT) and tenfold NOEL (H-TBT) daily by gavage for 8 weeks in the current study. The results showed that TBT exposure significantly increased body weight as well as epididymal fat, and led to adipocyte hypertrophy, dyslipidemia and impaired glucose and insulin homeostasis in mice. Additionally, TBT exposure significantly decreased the levels of T4, T3 and testosterone in serum. Also of note, TBT exposure changed gut microbiota composition mainly by decreasing Bacteroidetes and increasing Firmicutes proportions. To confirm the role of gut microbiota in TBT-induced overweight and hormonal disorders, fecal microbiota transplantation was performed and the mice receiving gut microbiota from H-TBT mice had similar phenotypes with their donor mice including significant body weight and epididymal fat gain, glucose and insulin dysbiosis and hormonal disorders. These results suggested that gut microbiome altered by TBT exposure was involved in the TBT-induced increased body weight, impaired glucose and insulin homeostasis and endocrine disruption in mice, providing significant evidence and a novel perspective for better understanding the mechanism by which TBT induces toxicity.
Collapse
Affiliation(s)
- Jing Zhan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, China
| | - Xiaoran Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, China
| | - Donghui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, China
| | - Yiran Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, China
| | - Peize Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, China
| | - Jingna Cui
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, China
| | - Peng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing, 100193, China.
| |
Collapse
|
35
|
Zhang Y, Li X, Guo C, Dong J, Liao L. Mechanisms of Spica Prunellae against thyroid-associated Ophthalmopathy based on network pharmacology and molecular docking. BMC Complement Med Ther 2020; 20:229. [PMID: 32689994 PMCID: PMC7372882 DOI: 10.1186/s12906-020-03022-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Thyroid-associated ophthalmopathy (TAO) is an autoimmune inflammatory disorder, which lacks effective treatment currently. Spica Prunellae (SP) is popularly used for its anti-inflammatory and immune-regulating properties, indicating SP may have potential therapeutic value in TAO. Therefore, the purpose of this study is to identify the efficiency and potential mechanism of SP in treating TAO. METHODS A network pharmacology integrated molecular docking strategy was used to predict the underlying molecular mechanism of treating TAO. Firstly, the active compounds of SP were obtained from TCMSP database and literature research. Then we collected the putative targets of SP and TAO based on multi-sources databases to generate networks. Network topology analysis, GO and KEGG pathway enrichment analysis were performed to screen the key targets and mechanism. Furthermore, molecular docking simulation provided an assessment tool for verifying drug and target binding. RESULTS Our results showed that 8 targets (PTGS2, MAPK3, AKT1, TNF, MAPK1, CASP3, IL6, MMP9) were recognized as key therapeutic targets with excellent binding affinity after network analysis and molecular docking-based virtual screening. The results of enrichment analysis suggested that the underlying mechanism was mainly focused on the biological processes and pathways associated with immune inflammation, proliferation, and apoptosis. Notably, the key pathway was considered as the PI3K-AKT signaling pathway. CONCLUSION In summary, the present study elucidates that SP may suppress inflammation and proliferation and promote apoptosis through the PI3K-AKT pathway, which makes SP a potential treatment against TAO. And this study offers new reference points for future experimental research and provides a scientific basis for more widespread clinical application.
Collapse
Affiliation(s)
- Yuhan Zhang
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China.,Laboratory of Endocrinology, Medical Research Center, Shandong Provincial Qianfoshan Hospital, the First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, Shandong, China
| | - Xianzhi Li
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China.,Laboratory of Endocrinology, Medical Research Center, Shandong Provincial Qianfoshan Hospital, the First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, Shandong, China
| | - Congcong Guo
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Jianjun Dong
- Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Lin Liao
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China. .,Department of Endocrinology and Metabology, the First Affiliated Hospital of Shandong First Medical University, Ji-nan, 250014, China.
| |
Collapse
|
36
|
Abstract
PURPOSE Hyperlipidemia, characterized by an increase in circulating lipid levels, doubles the chance of developing cardiovascular diseases. It prompts inflammation, immune activation, and oxidative stress in the bloodstream and organs of rats. Thus, we theorized that the metabolism of purines, an immunomodulatory mechanism, is altered in cells involved in the development of cardiovascular diseases. METHODS Therefore, we induced acute hyperlipidemia in Wistar rats with Poloxamer-407 and euthanized the animals 36 h later. The leucocyte differential, the rate of purine metabolism on the surface of platelets and heart cells, and markers of oxidative stress in the heart tissue were evaluated. These parameters were also assessed in animals pretreated for 30 days with curcumin and/or rutin. RESULTS Hyperlipidemia increased the hydrolyses of adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) in platelets. In heart cells, the metabolism of ATP and adenosine (ADO) were increased, while ADP hydrolysis was reduced. Additionally, lipid damage and antioxidant defenses were increased in heart homogenates. Hyperlipidemic rats also exhibited a reduced percentage of eosinophils and lymphocytes. CONCLUSION Together, these findings are indicative of an increased risk of developing cardiovascular diseases in hyperlipidemic rats. The pretreatments with antioxidants reverted some of the changes prompted by hyperlipidemia preventing detrimental changes in the cells and tissues. Graphical Abstract.
Collapse
|
37
|
Wu PH, Han SCH, Wu MH. Beneficial Effects of Hydroalcoholic Extract from Rosa Roxburghii Tratt Fruit on Hyperlipidemia in High-Fat-Fed Rats. ACTA CARDIOLOGICA SINICA 2020; 36:148-159. [PMID: 32201466 DOI: 10.6515/acs.202003_36(2).20190709a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background Rosa roxburghii Tratt fruit is extensively used as a medicinal and edible resource in China due to its unique bioactivities. In this research, we aimed to characterize its phenolic acid composition and investigate the potential hypolipidemic effect of this plant in a rat model of hyperlipidemia. Methods We evaluated the effects of hydroalcoholic extract of Rosa roxburghii Tratt fruit (HRT) on serum lipids, body weight, activities of lipoprotein metabolism and antioxidant enzymes, and gene expression of lipid metabolism in hyperlipidemic rats. Results HRT significantly reduced body weight gain and decreased serum and liver lipid levels in the hyperlipidemic rats. In addition, HRT treatment improved the activities of antioxidant enzymes, lipoprotein lipase, and hepatic lipase, downregulated the mRNA and protein expressions of sterol regulatory element-binding protein 1c and acetyl CoA carboxylase, and upregulated the mRNA and protein expressions of peroxisome proliferator-activated receptor α and low-density lipoprotein receptor in hepatic tissue. Conclusions The results showed that Rosa roxburghii Tratt fruit is rich in phenolic acids, and that it exerted lipid lowering effects in the hyperlipidemic rats.
Collapse
Affiliation(s)
| | | | - Meng-Hsiu Wu
- Department of Cardiology, Taiwan Adventist Hospital, Taipei, Taiwan
| |
Collapse
|
38
|
Aloe Emodin Reduces Cardiac Inflammation Induced by a High-Fat Diet through the TLR4 Signaling Pathway. Mediators Inflamm 2020; 2020:6318520. [PMID: 32089647 PMCID: PMC7025072 DOI: 10.1155/2020/6318520] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 12/20/2022] Open
Abstract
Background Aloe emodin (AE) is a lipid-lowering agent, which could be used to treat hyperlipidemia, thereby reducing the risk of cardiovascular disease. Recent evidence suggests that hyperlipidemia is associated with many cardiac pathological alterations and might worsen myocardial damages. Purpose The purpose of this study is to evaluate the potential roles and mechanisms of AE in hyperlipidemia-induced oxidative stress and inflammation in the heart. Study Design. We established a hyperlipidemia-induced cardiac inflammation model in rats and cells then administered AE and observed its effect on hyperlipidemia-induced cardiac inflammation. Methods We used a mouse model of hyperlipidemia caused by a high-fat diet (HFD) for 10 weeks and cell culture experimental models of inflammation in the heart stimulated by PA for 14 h. Inflammatory markers were detected by qRT-PCR, WB, and immunofluorescence. Results We demonstrated that the expression levels of proinflammatory cytokines IL-1β, IL-6, and TNF-α were increased in the HFD group compared to the normal diet (ND) group, whereas AE treatment significantly reduced their levels in the myocardium. In addition, vascular cell adhesion molecule 1 (VCAM1) and intercellular adhesion molecule 1 (ICAM-1) protein expressions were also inhibited by AE. Our in vitro study showed AE treatment dose-dependently decreased the expression of IL-1β, IL-6, and TNF-α were increased in the HFD group compared to the normal diet (ND) group, whereas AE treatment significantly reduced their levels in the myocardium. In addition, vascular cell adhesion molecule 1 (VCAM1) and intercellular adhesion molecule 1 (ICAM-1) protein expressions were also inhibited by AE. Our κB, and p-P65l in vivo and in vitro study showed AE treatment dose-dependently decreased the expression of IL-1 Conclusion Taken together, our findings disclose that AE could alleviate HFD/PA-induced cardiac inflammation via inhibition of the TLR4/NF-κB signaling pathway. Thus, AE may be a promising therapeutic strategy for preventing hyperlipidemia-induced myocardial injury.κB, and p-P65l
Collapse
|
39
|
Manzoni AG, Passos DF, Leitemperger JW, Storck TR, Doleski PH, Jantsch MH, Loro VL, Leal DBR. Hyperlipidemia-induced lipotoxicity and immune activation in rats are prevented by curcumin and rutin. Int Immunopharmacol 2020; 81:106217. [PMID: 32007794 DOI: 10.1016/j.intimp.2020.106217] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/20/2019] [Accepted: 01/14/2020] [Indexed: 12/27/2022]
Abstract
We assessed the effects of curcumin, rutin, and the association of rutin and curcumin in organs of hyperlipidemic rats. Rutin and curcumin have notable antioxidant and anti-inflammatory actions, so we hypothesized that their association would enhance their beneficial effects. Hyperlipidemia results in lipotoxicity and affects several organs. Lipotoxicity is not only an outcome of lipid accumulation in non-adipose tissues but also a result of the hyperlipidemia-associated inflammation and oxidative stress. Wistar rats were treated with rutin and curcumin for 30 days before the induction of acute hyperlipidemia by Poloxamer-407. After 36 h, the animals were euthanized for collection of blood and organs. Untreated hyperlipidemic rats showed higher uric acid and albumin levels in the serum and increased spleen size and ADA activity. Rutin, curcumin and the association reduced the spleen size by 20% and ADA activity by 23, 28, and 27%, respectively. Rats pretreated with rutin showed reduced lipid damage in the liver (40%) and the kidney (44%), and the protein damage was also reduced in the liver (75%). The lipid damage was decreased by 40% in the liver, and 56% in the kidney of rats pretreated with curcumin. The association reduced lipid damage by 50% and 36%, and protein damage by 77% and 64% in the liver and kidney, respectively. Rutin better prevented the decrease in the antioxidant defenses, increasing SOD by 34%, CAT by 246% and GST by 84% in the liver, as well as SOD by 119% and GST by 190% in the kidney. Also, analyses of blood and spleen parameters of untreated and pretreated non-hyperlipidemic rats showed no signs of immunotoxicity. Despite showing protective effects, the association did not perform better than the isolated compounds. Here, we showed that rutin and/or curcumin reestablished the immune homeostasis and redox balance disrupted by hyperlipidemia in peripheral organs of rats.
Collapse
Affiliation(s)
- Alessandra G Manzoni
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Daniela F Passos
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Jossiele W Leitemperger
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Laboratório de Toxicologia Aquática, Departamento de Bioquimica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Tamiris R Storck
- Laboratório de Toxicologia Aquática, Departamento de Bioquimica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Pedro H Doleski
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Matheus H Jantsch
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Vania L Loro
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Laboratório de Toxicologia Aquática, Departamento de Bioquimica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Daniela B R Leal
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
40
|
Zhang Q, Qin M, Liang Z, Huang H, Tang Y, Qin L, Wei Z, Xu M, Tang G. The relationship between serum triglyceride levels and acute pancreatitis in an animal model and a 14-year retrospective clinical study. Lipids Health Dis 2019; 18:183. [PMID: 31647014 PMCID: PMC6813107 DOI: 10.1186/s12944-019-1126-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/30/2019] [Indexed: 02/07/2023] Open
Abstract
Objectives The aim of the current study was to evaluate influence of serum triglyceride levels on the course of acute pancreatitis (AP). Methods Rats models of hypertriglyceridemic were used in animal experiments. Following induction of acute pancreatitis, amylase, and pancreas histological scores were all compared. In addition, in a clinical study, clinical data were collected from 1681 AP patients admitted from 2003 to 2016 who were divided into 4 groups based on their serum triglyceride (TG) levels. The clinical features among these 4 groups were compared, and a receiver operating characteristic (ROC) curve analysis was also performed on TG values to estimate their relationship with severity. Results In animal experiments, the hypertriglyceridemic pancreatitis (HTGP) group had markedly higher serum amylase, and histological scores relative to the other animal groups. In the clinical study, we identified significant differences in gender, age, body mass index (BMI), cost, and incidence of partial complications among the 4 TG-based groups. Importantly, the TG levels on day 3–4 after admission could be used to accurately predict disease severity. Conclusions Hypertriglyceridemia (HTG) can aggravate pancreatic injury, and hypertriglyceridemia patients are more likely to suffer from severe pancreatic injury with a higher possibility of complications. In addition, triglyceride levels are correlated with the severity of AP positively.
Collapse
Affiliation(s)
- Qiyue Zhang
- Department of Gastroenterology, First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Mengbin Qin
- Department of Gastroenterology, Second Affiliated Hospital, Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Zhihai Liang
- Department of Gastroenterology, First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Huali Huang
- Department of Gastroenterology, First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yongfeng Tang
- Department of Gastroenterology, First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lingyan Qin
- Department of Gastroenterology, First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhenping Wei
- Department of Gastroenterology, First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Mengtao Xu
- Department of Gastroenterology, First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Guodu Tang
- Department of Gastroenterology, First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|