1
|
Chen ZX, Qin YS, Shi BH, Gao BY, Tao RC, Yong XZ. Effects of Curcumin on Radiation/Chemotherapy-Induced Oral Mucositis: Combined Meta-Analysis, Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation. Curr Issues Mol Biol 2024; 46:10545-10569. [PMID: 39329977 PMCID: PMC11431004 DOI: 10.3390/cimb46090625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
The study aims to investigate the effects of curcumin on radiation/chemotherapy-induced oral mucositis (R/CIOM) and preliminarily explore its mechanism. Randomized controlled trials were identified from the PubMed, Embase, Web of Science, Cochrane Library, Medline, and Google Scholar databases. RevMan 5.4 was used for statistical analysis to calculate the combined risk ratios (RRs). The mechanism was analyzed through network pharmacology, molecular docking, and a molecular dynamics simulation. The targets of curcumin were collected in HERB, PharmMapper, Targetnet, Swiss Target Prediction, and SuperPred. OMIM, GeneCards, and Disgenet were used to collect relevant targets for R/CIOM. Cytoscape software 3.8.0 was used to construct the component-target-pathway network. Protein-Protein Interaction (PPI) networks were constructed using the STRING database. GO and KEGG enrichment analyses were performed by Metascape. AutoDock Vina 4.2 software was used for molecular docking. The molecular dynamics simulation was performed by Gromacs v2022.03. It is found that 12 studies involving 565 patients were included. Meta-analyses showed that curcumin reduced the incidence of severe R/CIOM (RR 0.42 [0.24, 0.75]) and the mean severity of R/CIOM (MD -0.93 [-1.34, -0.52]). Eleven core target genes were identified in the treatment of R/CIOM with curcumin. The results of molecular docking and the molecular dynamics simulation showed that curcumin had strong binding energy and stability with target proteins including MAPK3, SRC, and TNF. Overall, these findings suggest curcumin can effectively improve severe R/CIOM, perhaps by affecting MAPK3, SRC, and TNF.
Collapse
Affiliation(s)
- Zhi-Xing Chen
- College of Stomatology, Guangxi Medical University, Nanning 530021, China; (Z.-X.C.); (Y.-S.Q.); (B.-H.S.); (B.-Y.G.)
| | - Ya-Shi Qin
- College of Stomatology, Guangxi Medical University, Nanning 530021, China; (Z.-X.C.); (Y.-S.Q.); (B.-H.S.); (B.-Y.G.)
| | - Bang-Hui Shi
- College of Stomatology, Guangxi Medical University, Nanning 530021, China; (Z.-X.C.); (Y.-S.Q.); (B.-H.S.); (B.-Y.G.)
| | - Bi-Yun Gao
- College of Stomatology, Guangxi Medical University, Nanning 530021, China; (Z.-X.C.); (Y.-S.Q.); (B.-H.S.); (B.-Y.G.)
| | - Ren-Chuan Tao
- College of Stomatology, Guangxi Medical University, Nanning 530021, China; (Z.-X.C.); (Y.-S.Q.); (B.-H.S.); (B.-Y.G.)
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning 530021, China
| | - Xiang-Zhi Yong
- College of Stomatology, Guangxi Medical University, Nanning 530021, China; (Z.-X.C.); (Y.-S.Q.); (B.-H.S.); (B.-Y.G.)
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning 530021, China
| |
Collapse
|
2
|
Lewis AJ, Richards AC, Mendez AA, Dhakal BK, Jones TA, Sundsbak JL, Eto DS, Rousek AA, Mulvey MA. Plant phenolics inhibit focal adhesion kinase and suppress host cell invasion by uropathogenic Escherichia coli. Infect Immun 2024; 92:e0008024. [PMID: 38534100 PMCID: PMC11075462 DOI: 10.1128/iai.00080-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Traditional folk treatments for the prevention and management of urinary tract infections (UTIs) and other infectious diseases often include plants and plant extracts that are rich in phenolic compounds. These have been ascribed a variety of activities, including inhibition of bacterial interactions with host cells. Here, we tested a panel of four well-studied phenolic compounds-caffeic acid phenethyl ester (CAPE), resveratrol, catechin, and epigallocatechin gallate-for the effects on host cell adherence and invasion by uropathogenic Escherichia coli (UPEC). These bacteria, which are the leading cause of UTIs, can bind and subsequently invade bladder epithelial cells via an actin-dependent process. Intracellular UPEC reservoirs within the bladder are often protected from antibiotics and host defenses and likely contribute to the development of chronic and recurrent infections. In cell culture-based assays, only resveratrol had a notable negative effect on UPEC adherence to bladder cells. However, both CAPE and resveratrol significantly inhibited UPEC entry into the host cells, coordinate with attenuated phosphorylation of the host actin regulator Focal Adhesion Kinase (FAK or PTK2) and marked increases in the numbers of focal adhesion structures. We further show that the intravesical delivery of resveratrol inhibits UPEC infiltration of the bladder mucosa in a murine UTI model and that resveratrol and CAPE can disrupt the ability of other invasive pathogens to enter host cells. Together, these results highlight the therapeutic potential of molecules like CAPE and resveratrol, which could be used to augment antibiotic treatments by restricting pathogen access to protective intracellular niches.IMPORTANCEUrinary tract infections (UTIs) are exceptionally common and increasingly difficult to treat due to the ongoing rise and spread of antibiotic-resistant pathogens. Furthermore, the primary cause of UTIs, uropathogenic Escherichia coli (UPEC), can avoid antibiotic exposure and many host defenses by invading the epithelial cells that line the bladder surface. Here, we identified two plant-derived phenolic compounds that disrupt activation of the host machinery needed for UPEC entry into bladder cells. One of these compounds, resveratrol, effectively inhibited UPEC invasion of the bladder mucosa in a mouse UTI model, and both phenolic compounds significantly reduced host cell entry by other invasive pathogens. These findings suggest that select phenolic compounds could be used to supplement existing antibacterial therapeutics by denying uropathogens shelter within host cells and tissues and help explain some of the benefits attributed to traditional plant-based medicines.
Collapse
Affiliation(s)
- Adam J. Lewis
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Amanda C. Richards
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Alejandra A. Mendez
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, USA
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
- Henry Eyring Center for Cell & Genome Science, University of Utah, Salt Lake City, Utah, USA
| | - Bijaya K. Dhakal
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Tiffani A. Jones
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Jamie L. Sundsbak
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Danelle S. Eto
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Alexis A. Rousek
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
- Henry Eyring Center for Cell & Genome Science, University of Utah, Salt Lake City, Utah, USA
| | - Matthew A. Mulvey
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, USA
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
- Henry Eyring Center for Cell & Genome Science, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
3
|
Lewis AJ, Richards AC, Mendez AA, Dhakal BK, Jones TA, Sundsbak JL, Eto DS, Mulvey MA. Plant Phenolics Inhibit Focal Adhesion Kinase and Suppress Host Cell Invasion by Uropathogenic Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.23.568486. [PMID: 38045282 PMCID: PMC10690256 DOI: 10.1101/2023.11.23.568486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Traditional folk treatments for the prevention and management of urinary tract infections (UTIs) and other infectious diseases often include plants and plant extracts that are rich in phenolic and polyphenolic compounds. These have been ascribed a variety of activities, including inhibition of bacterial interactions with host cells. Here we tested a panel of four well-studied phenolic compounds - caffeic acid phenethyl ester (CAPE), resveratrol, catechin, and epigallocatechin gallate - for effects on host cell adherence and invasion by uropathogenic Escherichia coli (UPEC). These bacteria, which are the leading cause of UTIs, can bind and subsequently invade bladder epithelial cells via an actin-dependent process. Intracellular UPEC reservoirs within the bladder are often protected from antibiotics and host defenses, and likely contribute to the development of chronic and recurrent infections. Using cell culture-based assays, we found that only resveratrol had a notable negative effect on UPEC adherence to bladder cells. However, both CAPE and resveratrol significantly inhibited UPEC entry into the host cells, coordinate with attenuated phosphorylation of the host actin regulator Focal Adhesion Kinase (FAK, or PTK2) and marked increases in the numbers of focal adhesion structures. We further show that the intravesical delivery of resveratrol inhibits UPEC infiltration of the bladder mucosa in a murine UTI model, and that resveratrol and CAPE can disrupt the ability of other invasive pathogens to enter host cells. Together, these results highlight the therapeutic potential of molecules like CAPE and resveratrol, which could be used to augment antibiotic treatments by restricting pathogen access to protective intracellular niches.
Collapse
Affiliation(s)
- Adam J. Lewis
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Amanda C. Richards
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
- School of Biological Sciences, 257 S 1400 E, University of Utah, Salt Lake City, UT 84112, USA; Henry Eyring Center for Cell & Genome Science, 1390 Presidents Circle, University of Utah, Salt Lake City, UT 84112, USA
| | - Alejandra A. Mendez
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
- School of Biological Sciences, 257 S 1400 E, University of Utah, Salt Lake City, UT 84112, USA; Henry Eyring Center for Cell & Genome Science, 1390 Presidents Circle, University of Utah, Salt Lake City, UT 84112, USA
| | - Bijaya K. Dhakal
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Tiffani A. Jones
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Jamie L. Sundsbak
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Danelle S. Eto
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Matthew A. Mulvey
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
- School of Biological Sciences, 257 S 1400 E, University of Utah, Salt Lake City, UT 84112, USA; Henry Eyring Center for Cell & Genome Science, 1390 Presidents Circle, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
4
|
Hosseini MS, Hadadzadeh H, Mirahmadi-Zare SZ, Farrokhpour H, Aboutalebi F, Morshedi D. A curcumin-nicotinoyl derivative and its transition metal complexes: synthesis, characterization, and in silico and in vitro biological behaviors. Dalton Trans 2023; 52:14477-14490. [PMID: 37779393 DOI: 10.1039/d3dt01351k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Curcumin-nicotinoyl (Cur-Nic) was synthesized by the chemical modification of the curcumin structure, characterized, and used as a ligand for the synthesis of copper(II) and zinc(II) complexes. The biological activities of Cur-Nic and its metal complexes were predicted using the PASS and Swiss Target Prediction online software, respectively, and docking studies with tyrosine-protein kinase SRC were performed using the PyRx software to predict their anticancer activities. The toxicity effects of the complexes on a human breast cancer cell line (MCF-7) compared to a healthy breast cell line (MCF-10A) were investigated by the MTS assay. Although the metal complexes maintained the least toxicity against normal cells, the results indicated that compared to curcumin and Cur-Nic, the cytotoxicity toward cancer cells increased due to the complexation process. Moreover, the antibacterial evaluation of the compounds against a Gram-positive bacterium (MRSA) and a Gram-negative bacterium (E. coli) indicated that the Cu(II) complex and Cur-Nic were the best, respectively. Also, the Zn(II) complex was the most stable compound, and the Cu(II) complex was the best ROS scavenger based on the in vitro evaluation.
Collapse
Affiliation(s)
- Marziyeh-Sadat Hosseini
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, 8159358686, Isfahan, Iran.
| | - Hassan Hadadzadeh
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Seyede Zohreh Mirahmadi-Zare
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, 8159358686, Isfahan, Iran.
| | - Hossein Farrokhpour
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Fatemeh Aboutalebi
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, 8159358686, Isfahan, Iran.
| | - Dina Morshedi
- Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
5
|
Wang R, Yu H, Chen P, Yuan T, Zhang J. Integrated Transcriptome and Molecular Docking to Identify the Hub Superimposed Attenuation Targets of Curcumin in Breast Cancer Cells. Int J Mol Sci 2023; 24:12479. [PMID: 37569854 PMCID: PMC10419115 DOI: 10.3390/ijms241512479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/19/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Numerous in vitro and in vivo studies have shown that curcumin primarily activates apoptotic pathways in cancer cells and inhibits cancer progression by modulating various molecular targets. In this study, we utilized reverse docking servers to predict 444 human proteins that may potentially be targeted by curcumin. Then, high-throughput assays were conducted by using RNA-seq technology on curcumin-treated MCF-7 (human breast cancer ER (+)) and MDA-MB-231 (human breast cancer ER(-)/TNBC) cancer cell lines. Enrichment analysis identified seven and eight significantly down-regulated signaling pathways in these two cell lines, where the enriched genes were used to construct protein-protein interaction networks. From these networks, the MCODE algorithm screened out 42 hub targets, which are core genes of the RTK-(PI3K-AKT)/(MEK/ERK1/2) crosstalk network. Genetic alteration and expression patterns of hub targets of curcumin may be closely related to the overall pathogenesis and prognosis of breast cancer. MAPKAPK3, AKT3, CDK5, IGF1R, and MAPK11 are potential prognostic markers and therapeutic targets of curcumin in patients with triple-negative breast cancer. Molecular docking and transcriptomic results confirmed that curcumin can inhibit these high-scoring targets at the protein level. Additionally, these targets can act as self-feedback factors, relying on the cascading repressive effects in the network to limit their own transcription at the mRNA level. In conclusion, the integration of transcriptomic and molecular docking approaches enables the rapid identification of dual or multiple inhibitory targets of curcumin in breast cancer. Our study provides the potential elucidation of the anti-cancer mechanism of curcumin.
Collapse
Affiliation(s)
- Rui Wang
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China; (R.W.); (H.Y.); (P.C.)
| | - Hao Yu
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China; (R.W.); (H.Y.); (P.C.)
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, 60629 Frankfurt am Main, Germany
- Department of Medicine, Cardiology, Goethe University Hospital, 60590 Frankfurt, Germany
| | - Peide Chen
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China; (R.W.); (H.Y.); (P.C.)
| | - Ting Yuan
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, 60629 Frankfurt am Main, Germany
- Department of Medicine, Cardiology, Goethe University Hospital, 60590 Frankfurt, Germany
| | - Jing Zhang
- Jilin Provincial Key Laboratory of Livestock and Poultry Feed and Feeding in the Northeastern Frigid Area, College of Animal Sciences, Jilin University, Changchun 130062, China; (R.W.); (H.Y.); (P.C.)
| |
Collapse
|
6
|
Curcumin-loaded alginate hydrogels for cancer therapy and wound healing applications: A review. Int J Biol Macromol 2023; 232:123283. [PMID: 36657541 DOI: 10.1016/j.ijbiomac.2023.123283] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Hydrogels have emerged as a versatile platform for a numerous biomedical application due to their ability to absorb a huge quantity of biofluids. In order to design hydrogels, natural polymers are an attractive option owing to their biocompatibility and biodegradability. Due to abundance in occurrence, cost effectiveness, and facile crosslinking approaches, alginate has been extensively investigated to fabricate hydrogel matrix. Management of cancer and chronic wounds have always been a challenge for pharmaceutical and healthcare sector. In both cases, curcumin have been shown significant improvement and effectiveness. However, the innate restraints like poor bioavailability, hydrophobicity, and rapid systemic clearance associated with curcumin have restricted its clinical translations. The current review explores the cascade of research around curcumin encapsulated alginate hydrogel matrix for wound healing and cancer therapy. The focus of the review is to emphasize the mechanistic effects of curcumin with its fate inside the cells. Further, the review discusses different approaches to designed curcumin loaded alginate hydrogels along with the parameters that regulates their release behavior. Finally, the review is concluded with emphasize on some key aspect on increasing the efficacy of these hydrogels along with novel strategies to further develop curcumin loaded alginate hydrogel matrix with multifacet applications.
Collapse
|
7
|
Chen F, Zhong Z, Zhang C, Lu Y, Chan YT, Wang N, Zhao D, Feng Y. Potential Focal Adhesion Kinase Inhibitors in Management of Cancer: Therapeutic Opportunities from Herbal Medicine. Int J Mol Sci 2022; 23:13334. [PMID: 36362132 PMCID: PMC9659249 DOI: 10.3390/ijms232113334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 08/15/2024] Open
Abstract
Focal adhesion kinase (FAK) is a multifunctional protein involved in cellular communication, integrating and transducing extracellular signals from cell-surface membrane receptors. It plays a central role intracellularly and extracellularly within the tumor microenvironment. Perturbations in FAK signaling promote tumor occurrence and development, and studies have revealed its biological behavior in tumor cell proliferation, migration, and adhesion. Herein we provide an overview of the complex biology of the FAK family members and their context-dependent nature. Next, with a focus on cancer, we highlight the activities of FAK signaling in different types of cancer and how knowledge of them is being used for screening natural compounds used in herbal medicine to fight tumor development.
Collapse
Affiliation(s)
- Feiyu Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yuanjun Lu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yau-Tuen Chan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Di Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
Mahmoudi A, Atkin SL, Jamialahmadi T, Banach M, Sahebkar A. Effect of Curcumin on Attenuation of Liver Cirrhosis via Genes/Proteins and Pathways: A System Pharmacology Study. Nutrients 2022; 14:nu14204344. [PMID: 36297027 PMCID: PMC9609422 DOI: 10.3390/nu14204344] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 01/30/2023] Open
Abstract
Background: Liver cirrhosis is a life-threatening seqsuel of many chronic liver disorders of varying etiologies. In this study, we investigated protein targets of curcumin in liver cirrhosis based on a bioinformatics approach. Methods: Gene/protein associations with curcumin and liver cirrhosis were probed in drug−gene and gene−diseases databases including STITCH/DGIdb/DisGeNET/OMIM/DISEASES/CTD/Pharos and SwissTargetPrediction. Critical clustering groups (MCODE), hub candidates and critical hub genes in liver cirrhosis were identified, and connections between curcumin and liver cirrhosis-related genes were analyzed via Venn diagram. Interaction of hub genes with curcumin by molecular docking using PyRx-virtual screening tools was performed. Results: MCODE analysis indicated three MCODEs; the cluster (MCODE 1) comprised 79 nodes and 881 edges (score: 22.59). Curcumin database interactions recognized 318 protein targets. Liver cirrhosis genes and curcumin protein targets analysis demonstrated 96 shared proteins, suggesting that curcumin may influence 20 candidate and 13 hub genes, covering 81% of liver cirrhosis critical genes and proteins. Thirteen shared proteins affected oxidative stress regulation, RNA, telomerase activity, cell proliferation, and cell death. Molecular docking analysis showed the affinity of curcumin binding hub genes (Binding affinity: ΔG < −4.9 kcal/mol). Conclusions: Curcumin impacted on several critical liver cirrhosis genes mainly involved in extracellular matrix communication, focal adhesion, and the response to oxidative stress.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Stephen L. Atkin
- School of Postgraduate Studies and Research, RCSI Medical University of Bahrain, Busaiteen, Bahrain
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), 93-338 Lodz, Poland
- Cardiovascular Research Center, University of Zielona Gora, 65-417 Zielona Gora, Poland
- Correspondence: (M.B.); or (A.S.); Tel.: +98-513-180-1239 (A.S.); Fax: +98-513-800-2287 (A.S.)
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Correspondence: (M.B.); or (A.S.); Tel.: +98-513-180-1239 (A.S.); Fax: +98-513-800-2287 (A.S.)
| |
Collapse
|
9
|
TRPM2 Non-Selective Cation Channels in Liver Injury Mediated by Reactive Oxygen Species. Antioxidants (Basel) 2021; 10:antiox10081243. [PMID: 34439491 PMCID: PMC8389341 DOI: 10.3390/antiox10081243] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
TRPM2 channels admit Ca2+ and Na+ across the plasma membrane and release Ca2+ and Zn2+ from lysosomes. Channel activation is initiated by reactive oxygen species (ROS), leading to a subsequent increase in ADP-ribose and the binding of ADP-ribose to an allosteric site in the cytosolic NUDT9 homology domain. In many animal cell types, Ca2+ entry via TRPM2 channels mediates ROS-initiated cell injury and death. The aim of this review is to summarise the current knowledge of the roles of TRPM2 and Ca2+ in the initiation and progression of chronic liver diseases and acute liver injury. Studies to date provide evidence that TRPM2-mediated Ca2+ entry contributes to drug-induced liver toxicity, ischemia–reperfusion injury, and the progression of non-alcoholic fatty liver disease to cirrhosis, fibrosis, and hepatocellular carcinoma. Of particular current interest are the steps involved in the activation of TRPM2 in hepatocytes following an increase in ROS, the downstream pathways activated by the resultant increase in intracellular Ca2+, and the chronology of these events. An apparent contradiction exists between these roles of TRPM2 and the role identified for ROS-activated TRPM2 in heart muscle and in some other cell types in promoting Ca2+-activated mitochondrial ATP synthesis and cell survival. Inhibition of TRPM2 by curcumin and other “natural” compounds offers an attractive strategy for inhibiting ROS-induced liver cell injury. In conclusion, while it has been established that ROS-initiated activation of TRPM2 contributes to both acute and chronic liver injury, considerable further research is needed to elucidate the mechanisms involved, and the conditions under which pharmacological inhibition of TRPM2 can be an effective clinical strategy to reduce ROS-initiated liver injury.
Collapse
|
10
|
Baier A, Szyszka R. Compounds from Natural Sources as Protein Kinase Inhibitors. Biomolecules 2020; 10:biom10111546. [PMID: 33198400 PMCID: PMC7698043 DOI: 10.3390/biom10111546] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
The advantage of natural compounds is their lower number of side-effects when compared to most synthetic substances. Therefore, over the past several decades, the interest in naturally occurring compounds is increasing in the search for new potent drugs. Natural compounds are playing an important role as a starting point when developing new selective compounds against different diseases. Protein kinases play a huge role in several diseases, like cancers, neurodegenerative diseases, microbial infections, or inflammations. In this review, we give a comprehensive view of natural compounds, which are/were the parent compounds in the development of more potent substances using computational analysis and SAR studies.
Collapse
Affiliation(s)
- Andrea Baier
- Department of Animal Physiology and Toxicology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, 20-950 Lublin, Poland
- Correspondence:
| | - Ryszard Szyszka
- Department of Molecular Biology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, 20-950 Lublin, Poland;
| |
Collapse
|
11
|
Golonko A, Lewandowska H, Świsłocka R, Jasińska U, Priebe W, Lewandowski W. Curcumin as tyrosine kinase inhibitor in cancer treatment. Eur J Med Chem 2019; 181:111512. [DOI: 10.1016/j.ejmech.2019.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022]
|
12
|
Chiu WT, Tran TTV, Pan SC, Huang HK, Chen YC, Wong TW. Cystic Fibrosis Transmembrane Conductance Regulator: A Possible New Target for Photodynamic Therapy Enhances Wound Healing. Adv Wound Care (New Rochelle) 2019; 8:476-486. [PMID: 31456905 DOI: 10.1089/wound.2018.0927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/27/2019] [Indexed: 12/23/2022] Open
Abstract
Objective: Cell migration is an essential process in skin wound healing. Photodynamic therapy (PDT) enhances wound healing by photoactivating a photosensitizer with a specific wavelength of light. Cystic fibrosis transmembrane conductance regulator (CFTR) is an ion channel expressed in multiple layers of keratinocytes. Recent studies showed that the activation of CFTR-related downstream signaling affects skin wound healing. We examined whether indocyanine green (ICG)-mediated PDT-enhanced cell migration is related to CFTR activation. Approach: The spatial and temporal expression levels of CFTR and proteins involved in focal adhesion, including focal adhesion kinase (FAK) and paxillin, were evaluated during cell migration in vitro and in vivo for wound healing. Results: ICG-PDT-conditioned medium collected from cells exposed to 5 J/cm2 near-infrared light in the presence of 100 μg/mL ICG activated CFTR and enhanced HaCaT cell migration. The expression of phosphorylated FAK Tyr861 and phosphorylated paxillin in focal adhesions was spatially and temporally regulated in parallel by ICG-PDT-conditioned medium. Curcumin, a nonspecific activator of CFTR, further increased PDT-enhanced cell migration, whereas inhibition of CFTR and FAK delayed cell migration. The involvement of CFTR in ICG-PDT-enhanced skin wound healing was confirmed in a mouse back skin wound model. Innovation: CFTR is a potential new therapeutic target in ICG-PDT to enhance wound healing. Conclusion: ICG-PDT-enhanced cell migration may be related to activation of the CFTR and FAK pathway. Conditioned medium collected from ICG-PDT may be useful for treating patients with chronic skin ulcer by regulating CFTR expression in keratinocytes.
Collapse
Affiliation(s)
- Wen-Tai Chiu
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Thi-Tuong Vi Tran
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shin-Chen Pan
- Section of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ho-Kai Huang
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Chi Chen
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Tak-Wah Wong
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
13
|
Abdel-Magied N, Elkady AA. Possible curative role of curcumin and silymarin against nephrotoxicity induced by gamma-rays in rats. Exp Mol Pathol 2019; 111:104299. [PMID: 31442446 DOI: 10.1016/j.yexmp.2019.104299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/05/2019] [Accepted: 08/20/2019] [Indexed: 12/22/2022]
Abstract
Curcumin (CUR) and silymarin (SLM) are powerful antioxidant and anti-inflammatory compounds with beneficial protective effects against renal diseases. The purpose of this study was to evaluate the efficacy of CUR and SLM alone or in combination on radiation (IR) induced kidney injury. The results showed that CUR and SLM alone or in combination attenuated the oxidative stress denoted by a reduction in the level of malondialdehyde (MDA), hydrogen peroxide (H2O2) and advanced oxidation protein products (AOPP) along with a marked increase of glutathione GSH content and total antioxidant capacity (TAC). Additionally, a significant decrease in the level of blood urea nitrogen (BUN), creatinine, Cystatin-C (CYT-C), neutrophil gelatinase-associated lipocalin (N-GAL) and Kidney Injury Molecule-1 (Kim-1) was recorded. Moreover, the treatment resulted in a remarkable decline in the serum levels of interleukin-18(IL-18), tumor necrosis factor- alpha (TNF-α), C reactive protein (CRP), BCL2 associated X protein (Bax), Factor-related Apoptosis (FAS) and the activity of Caspase-3 associated by an increase of B-cell CLL/lymphoma 2 (Bcl2) level. The results were confirmed with the histopathological examination. Kidney of irradiated showed glomerular atrophy, massive necrotic changes of expanded tubules with hyaline cast inside some tubules and apoptotic changes were recorded in some renal tubules. While irradiated rats treated with CUR and SLM exhibited marked preservation of the cellular structure of their kidney tissue. In conclusion, the combination of CUR and SLM could be more potent than a single agent on the biochemical and histological changes of the irradiated rat renal tissue.
Collapse
Affiliation(s)
- Nadia Abdel-Magied
- Radiation Biology Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), P.O. Box 29, Nasr City, Cairo, Egypt.
| | - Ahmed A Elkady
- Health Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), P.O. Box 29, Nasr City, Cairo, Egypt.
| |
Collapse
|
14
|
Hatamipour M, Ramezani M, Tabassi SAS, Johnston TP, Sahebkar A. Demethoxycurcumin: A naturally occurring curcumin analogue for treating non-cancerous diseases. J Cell Physiol 2019; 234:19320-19330. [PMID: 31344992 DOI: 10.1002/jcp.28626] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Abstract
Turmeric extracts contain three primary compounds, which are commonly referred to as curcuminoids. They are curcumin, demethoxycurcumin (DMC), and bisdemethoxycurcumin. While curcumin has been the most extensively studied of the curcuminoids, it suffers from low overall oral bioavailability due to extremely low absorption as a result of low water solubility and instability at acidic pH, as well as rapid metabolism and clearance from the body. However, DMC, which lacks the methoxy group on the benzene ring of the parent structure, has much greater chemical stability at physiological pH and has been recently reported to exhibit antitumor properties. However, the treatment of noncancerous diseases with DMC has not been comprehensively reviewed. Therefore, here we evaluate published scientific literature on the therapeutic properties of DMC. The beneficial pharmacological actions of DMC include anti-inflammatory, neuroprotective, antihypertensive, antimalarial, antimicrobial, antifungal, and vasodilatory properties. In addition, DMC's ability to ameliorate the effects of free radicals and an environment characterized by oxidative stress caused by the accumulation of advanced glycation end-products associated with diabetic nephropathy, as well as DMC's capacity to inhibit the migration and proliferation of vascular smooth muscle cells following balloon angioplasty are also addressed. This review collates the available literature regarding the therapeutic possibilities of DMC in noncancerous conditions.
Collapse
Affiliation(s)
- Mahdi Hatamipour
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahin Ramezani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, Missouri
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Ali BH, Marrif H, Noureldayem SA, Bakheit AO, Blunden G. Some Biological Properties of Curcumin: A Review. Nat Prod Commun 2019. [DOI: 10.1177/1934578x0600100613] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Curcumin (diferuloyl methane), a small-molecular weight compound isolated from the roots of Curcuma longa L. (family Zingiberaceae), has been used traditionally for centuries in Asia for medicinal, culinary and other purposes. A large number of in vitro and in vivo studies in both animals and man have indicated that curcumin has strong antioxidant, anti-carcinogenic, anti-inflammatory, anti-angiogenic, antispasmodic, antimicrobial, anti-parasitic and other activities. The mechanisms of some of these actions have recently been intensively investigated. Curcumin inhibits the promotion/ progression stage of carcinogenesis by induction of apoptosis and the arrest of cancer cells in the S, G2/M cell cycle phase. The compound inhibits the activity of growth factor receptors. The anti-inflammatory properties of curcumin are mediated through their effects on cytokines, lipid mediators, eicosanoids and proteolytic enzymes. Curcumin scavenges the superoxide radical, hydrogen peroxide and nitric oxide, and inhibits lipid peroxidation. These actions may be the basis for many of its pharmacological and therapeutic properties. Curcumin is a nutraceutical of low toxicity, which has been used successfully in a number of medical conditions that include cataracts, cystic fibrosis, and prostate and colon cancers.
Collapse
Affiliation(s)
- Badreldin H. Ali
- Department of Pharmacology, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khod, Oman
| | - Husnia Marrif
- Toxicology Research Division, Bureau of Chemical Safety, Health Canada, Ottawa, Ontario, Canada
| | | | - Amel O. Bakheit
- College of Veterinary Medicine and Animal Production, SUST, Sudan
| | - Gerald Blunden
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| |
Collapse
|
16
|
Patera F, Cudzich-Madry A, Huang Z, Fragiadaki M. Renal expression of JAK2 is high in polycystic kidney disease and its inhibition reduces cystogenesis. Sci Rep 2019; 9:4491. [PMID: 30872773 PMCID: PMC6418191 DOI: 10.1038/s41598-019-41106-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/28/2019] [Indexed: 12/21/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common renal genetic disorder, however it still lacks a cure. The discovery of new therapies heavily depends on understanding key signalling pathways that lead to ADPKD. The JAnus Kinase and Signal Transducers and Activators of Transcription (JAK/STAT) pathway is aberrantly activated and contributes to ADPKD pathogenesis via enhancing epithelial proliferation. Yet the mechanisms underlying the upregulation of JAK/STAT activity in this disease context is completely unknown. Here, we investigate the role of JAK2 in ADPKD using a murine model of ADPKD (Pkd1nl/nl). In normal kidneys, JAK2 expression is limited to tubular epithelial and vascular cells with lesser staining in bowman’s capsule and remains below detection level in the interstitium. By contrast, in kidneys of mice with ADPKD, JAK2 is higher in cyst-lining cells when compared to normal tubules and critically, it is ectopically expressed in the interstitium, suggesting that ectopic JAK2 may contribute to ADPKD. JAK2 activity was inhibited using either curcumin, a natural compound with strong JAK2 inhibitor activity, or Tofacitinib, a clinically used selective JAK small molecule inhibitor. JAK2 inhibition led to significantly reduced tyrosine phosphorylation of STAT3 and markedly reduced cystic growth of human and mouse ADPKD-derived cells in cystogenesis assays. Taken together, our results indicate that blockade of JAK2 shows promise as a novel therapeutic target in ADPKD.
Collapse
Affiliation(s)
- Foteini Patera
- Academic Nephrology Unit, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2RX, United Kingdom
| | - Alex Cudzich-Madry
- Academic Nephrology Unit, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2RX, United Kingdom
| | - Zhi Huang
- Academic Nephrology Unit, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2RX, United Kingdom
| | - Maria Fragiadaki
- Academic Nephrology Unit, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2RX, United Kingdom.
| |
Collapse
|
17
|
Hatamipour M, Ramezani M, Tabassi SAS, Johnston TP, Ramezani M, Sahebkar A. Demethoxycurcumin: A naturally occurring curcumin analogue with antitumor properties. J Cell Physiol 2018; 233:9247-9260. [PMID: 30076727 DOI: 10.1002/jcp.27029] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022]
Abstract
The eradication of cancer in a patient remains an elusive challenge despite advances in early detection and diagnosis, chemo- and immunotherapy, pinpoint radiation treatments, and expert surgical intervention. Although significant gains have been made in our understanding of cancer cell biology, a definite cure for most cancers does not exist at present. Thus, it is not surprising that the research and medical communities continue to explore the importance and therapeutic potential of natural products in their multimodality cancer treatment approach. Curcuminoids found in turmeric are one such class of natural products that have been extensively investigated for their potential to halt the progression of cancer cell proliferation and, more important, to stop metastasis from occurring. In this review, we examine one curcuminoid (demethoxycurcumin [DMC]) largely because of its increased stability and better aqueous solubility at physiological pH, unlike the more well-known curcuminoid (curcumin), which is largely unabsorbed after oral ingestion. The present review will focus on the signaling pathways that DMC utilizes to modulate the growth, invasion, and metastasis of cancer cells in an effort to provide enhanced mechanistic insight into DMC's action as it pertains to brain, ovarian, breast, lung, skin, and prostate cancer. Additionally, this review will attempt to provide an overview of DMC's mechanism of action by modulating apoptosis, cell cycle, angiogenesis, metastasis, and chemosensitivity. Lastly, it is hoped that increased understanding will be gained concerning DMC's interactive role with microRNA-551a, 5' adenosine monophosphate-activated protein kinase, nuclear factor-κB, Wnt inhibitory factor-1, and heat shock protein 70 to affect the progression of cancer.
Collapse
Affiliation(s)
- Mahdi Hatamipour
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahin Ramezani
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Thomas P Johnston
- Division of Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, Missouri
| | - Mahnaz Ramezani
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Amirhosein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Choe SR, Kim YN, Park CG, Cho KH, Cho DY, Lee HY. RCP induces FAK phosphorylation and ovarian cancer cell invasion with inhibition by curcumin. Exp Mol Med 2018; 50:1-10. [PMID: 29700289 PMCID: PMC5938006 DOI: 10.1038/s12276-018-0078-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/26/2018] [Accepted: 02/13/2018] [Indexed: 01/18/2023] Open
Abstract
Rab coupling protein (RCP) aggravates cancer cell metastasis and has been implicated in various cancer patient outcomes. Recently, we showed that RCP induces Slug expression and cancer cell invasion by stabilizing the β1 integrin protein. In the present study, we demonstrated that FAK is implicated in RCP-induced EGFR phosphorylation and ovarian cancer cell invasion with inhibition by curcumin. Ectopic expression of RCP induced FAK phosphorylation, which links β1 integrin with EGFR and participates in a positive regulation loop with EGFR. Interestingly, we observed for the first time that curcumin attenuates RCP-induced ovarian cancer cell invasion by blocking stabilization of β1 integrin and consequently inhibiting FAK and EGFR activation, providing potential biomarkers for ovarian cancer and therapeutic approaches for this deadly disease. Rab coupling protein (RCP)-induced tumor cell migration has been implicated in tumor pathophysiology and patient outcomes. Hoi Young Lee and colleagues at Konyang University in Daejeon, South Korea, have previously shown that RCP promotes ovarian cancer cell invasiveness by stabilizing cell adhesion receptors. In their latest study they find that RCP also increases the levels of two of its protein-binding partners and activates an important mediator of growth factor signaling, Focal Adhesion Kinase (FAK). Interestingly, treating ovarian cancer cells with curcumin, a natural compound extracted from the spice turmeric, not only blocked the effects of RCP on cell adhesion and FAK activation, it also potentiated the inhibitory effects of the chemotherapeutic agent doxorubicin on cell invasiveness. Further research will determine whether curcumin could be used to halt ovarian cancer progression.
Collapse
Affiliation(s)
- So Ra Choe
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, Korea
| | - Yu Na Kim
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, Korea
| | - Chang Gyo Park
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, Korea
| | - Kyung Hwa Cho
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, Korea
| | - Do Yeun Cho
- Department of Hematology and Oncology, College of Medicine, Konyang University, Daejeon, Korea.
| | - Hoi Young Lee
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon, Korea.
| |
Collapse
|
19
|
|
20
|
Kampa M, Notas G, Castanas E. Natural extranuclear androgen receptor ligands as endocrine disruptors of cancer cell growth. Mol Cell Endocrinol 2017; 457:43-48. [PMID: 28212843 DOI: 10.1016/j.mce.2017.02.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 01/08/2023]
Abstract
Even though the term endocrine disruption primarily designates environmental chemicals that can interfere with the action of hormones, in recent years it has been extended to include also plant derived compounds that can reach the human body, naturally, or have been identified and studied as alternative pharmaceutical agents. In fact, for a large number of them, their antihormonal action was appreciated by different traditional herbal medicines. In the present review we report the majority of the plant derived compounds that exhibit an antiandrogenic effect and the known mechanisms of action. These include a disruption at testosterone production level and at the classical androgen receptor triggered pathways, including membrane initiated ones. Finally, for the first time we describe the possible involvement of alternative cell membrane androgen receptor systems and the lipid signaling disruption by natural androgen, providing hints about a novel class of therapeutic involvement of androgens.
Collapse
Affiliation(s)
- Marilena Kampa
- Department of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece.
| | - George Notas
- Department of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
| | - Elias Castanas
- Department of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
| |
Collapse
|
21
|
Shi J, Zhang X, Shi T, Li H. Antitumor effects of curcumin in human bladder cancer in vitro. Oncol Lett 2017; 14:1157-1161. [PMID: 28693289 DOI: 10.3892/ol.2017.6205] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 02/13/2017] [Indexed: 11/06/2022] Open
Abstract
Bladder cancer is one of the major causes of cancer-associated mortality, with a high incidence. Curcumin, a polyphenol compound extracted from turmeric, has been identified to regulate tumor progression. However, the therapeutic effect of curcumin in human bladder cancer has not yet been determined. In the present study, the effects of curcumin on cell growth, apoptosis and migration of bladder cancer cell lines were evaluated using an MTT assay, a Transwell assay and flow cytometry, and the associated mechanisms were investigated using western blot analysis. Curcumin was identified to decrease the growth of T24 and 5637 cells in a dose- and time-dependent manner. The present study confirmed that curcumin is able to inhibit cell migration and promote apoptosis of bladder cancer through suppression of matrix metalloproteinase signaling pathways in vitro. The anticancer effects of curcumin on bladder cancer cells may benefit clinical practice in the future.
Collapse
Affiliation(s)
- Jing Shi
- Department of Urology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Xu Zhang
- Department of Urology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Taoping Shi
- Department of Urology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Hongzhao Li
- Department of Urology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
22
|
Ramezani M, Hatamipour M, Sahebkar A. Promising anti-tumor properties of bisdemethoxycurcumin: A naturally occurring curcumin analogue. J Cell Physiol 2017; 233:880-887. [PMID: 28075008 DOI: 10.1002/jcp.25795] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 01/10/2017] [Indexed: 12/15/2022]
Abstract
Curcuminoids are turmeric-extracted phytochemicals with documented chemopreventive and anti-tumor activities against several types of malignancies. Curcuminoids can modulate several molecular pathways and cellular targets involved in different stages of tumor initiation, growth, and metastasis. Bisdemethoxycurcumin (BDMC) is a minor constituent (approximately 3%) of curcuminoids that has been shown to be more stable than the other two main curcuminoids, that is, curcumin and demthoxycurcumin. Recent studies have revealed that BDMC has anti-tumor effects exerted through a multimechanistic mode of action involving inhibition of cell proliferation, invasion and migration, metastasis and tumour growth, and induction of apoptotic death in cancer cells. The present review discusses the findings on the anti-tumor effects of BDMC, underlying mechanisms, and the relevance of finding for translational studies in human.
Collapse
Affiliation(s)
- Mahin Ramezani
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Hatamipour
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Liu YC, Ho HC, Lee MR, Yeh CM, Tseng HC, Lin YC, Chung JG. Cortactin is a prognostic marker for oral squamous cell carcinoma and its overexpression is involved in oral carcinogenesis. ENVIRONMENTAL TOXICOLOGY 2017; 32:799-812. [PMID: 27148699 DOI: 10.1002/tox.22280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 04/13/2016] [Accepted: 04/17/2016] [Indexed: 06/05/2023]
Abstract
EMS1 (chromosome eleven, band q13, mammary tumor and squamous cell carcinoma-associated gene 1) gene amplification and the concomitant cortactin overexpression have been reported to associate with poor prognosis and tumor metastasis. In this study, we examined cortactin expression by immunohistochemistry in human oral tumors and murine tongue tumors which were induced by the carcinogen 4-nitroquinoline 1-oxide (4-NQO). The immunostaining results show over- to moderate expression of cortactin in 85% (104/122) of oral squamous cell carcinoma (OSCC) tissues and in all 15 leukoplakia tissues examined. Further, statistical analysis indicates that cortactin overexpression appears to be a predictor for shorter survival and poorer prognosis in OSCC patients. In an animal model, cortactin is shown to upregulate in infiltrating squamous cell carcinoma, papilloma, and epithelia with squamous hyperplasia, indicating that cortactin induction is an early event during oral carcinogenesis. It is suggested that cortactin expression is mediated in the progression of pre-malignancy to papilloma, based on earlier cortactin induction in pre-malignancy preceding cyclin D1 in papilloma. In conclusion, cortactin overexpression is frequently observed in human OSCC and mouse tongue tumors. Thus, cortactin may have an important role in the development of oral tumors in human and mice. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 799-812, 2017.
Collapse
Affiliation(s)
- Yu-Ching Liu
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Heng-Chien Ho
- Departments of Biochemistry, China Medical University, Taichung, Taiwan
| | - Miau-Rong Lee
- Departments of Biochemistry, China Medical University, Taichung, Taiwan
| | - Chung-Min Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Hsien-Chang Tseng
- Department of Otolaryngology, China Medical University Hospital, Taichung, Taiwan
| | - Yung-Chang Lin
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Jing-Gung Chung
- Departments of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan
| |
Collapse
|
24
|
Zhong ZF, Tan W, Tian K, Yu H, Qiang WA, Wang YT. Combined effects of furanodiene and doxorubicin on the migration and invasion of MDA-MB-231 breast cancer cells in vitro. Oncol Rep 2017; 37:2016-2024. [PMID: 28184941 DOI: 10.3892/or.2017.5435] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/11/2016] [Indexed: 11/06/2022] Open
Abstract
Furanodiene is one of the major bioactive components isolated from the natural product of the plant, Curcuma wenyujin Y.H. Chen et C. Ling. Furanodiene has been found to exert anticancer effects in various types of cancer cell lines, as well as exhibit antimetastatic activities. However, the antimetastatic capacity of furanodiene in combination with the common chemotherapy drug doxorubicin has not been investigated. We found that doxorubicin at a non-toxic concentration induced cell migration and cell invasion in highly metastatic breast cancer cells. Combinational treatments with furanodiene and doxorubicin blocked the invasion and migration of MDA-MB-231 breast cancer cells in vitro. We also clarified the effects of the combination on the signaling pathways involved in migration, invasion, and cytoskeletal organization. When combined with doxorubicin, furanodiene downregulated the expression of integrin αV and β-catenin and inhibited the phosphorylation of paxillin, Src, focal adhesion kinase (FAK), p85, and Akt. Moreover, combinational treatments also resulted in a decrease in matrix metalloproteinase-9 (MMP-9). Further study demonstrated that the co-treatments with furanodiene did not significantly alter the effects of doxorubicin on the tubulin cytoskeleton, represented by no influence on the expression levels of RhoA, Cdc42, N-WASP, and α/β tubulin. These observations indicate that furanodiene is a potential agent that may be utilized to improve the anticancer efficacy of doxorubicin and overcome the risk of chemotherapy in highly metastatic breast cancer.
Collapse
Affiliation(s)
- Zhang-Feng Zhong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR 999078, P.R. China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Ke Tian
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, P.R. China
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR 999078, P.R. China
| | - Wen-An Qiang
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL 60611, USA
| | - Yi-Tao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR 999078, P.R. China
| |
Collapse
|
25
|
Dai C, Ciccotosto GD, Cappai R, Tang S, Li D, Xie S, Xiao X, Velkov T. Curcumin Attenuates Colistin-Induced Neurotoxicity in N2a Cells via Anti-inflammatory Activity, Suppression of Oxidative Stress, and Apoptosis. Mol Neurobiol 2016; 55:421-434. [PMID: 27957686 DOI: 10.1007/s12035-016-0276-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/30/2016] [Indexed: 01/06/2023]
Abstract
Neurotoxicity is an unwanted side-effect seen in patients receiving therapy with the "last-line" polymyxin antibiotics. This is the first study to show that colistin-induced neurotoxicity in neuroblastoma-2a (N2a) cells gives rise to an inflammatory response involving the IL-1β/p-IκB-α/NF-κB pathway. Pretreatment with curcumin at 5, 10, and 20 μM for 2 h prior to colistin (200 μM) exposure for 24 h, produced an anti-inflammatory effect by significantly down-regulating the expression of the pro-inflammatory mediators cyclooxygenase-2 (COX-2), phosphorylation of the inhibitor of nuclear factor-kappa B (NF-κB) (p-IκB)-α, and concomitantly NF-κB levels. Moreover, curcumin significantly decreased intracellular reactive oxygen species (ROS) production and increased the activities of the anti-ROS enzymes superoxide dismutase, catalase, and the intracellular levels of glutathione. Curcumin pretreatment also protected the cells from colistin-induced mitochondrial dysfunction, caspase activation, and subsequent apoptosis. Overall, our findings demonstrate for the first time, a potential role for curcumin for treating polymyxin-induced neurotoxicity through the modulation of NF-κB signaling and its potent anti-oxidative and anti-apoptotic effects.
Collapse
Affiliation(s)
- Chongshan Dai
- College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Giuseppe D Ciccotosto
- Department of Pathology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Roberto Cappai
- Department of Pathology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Shusheng Tang
- College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Daowen Li
- College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Sanlei Xie
- College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Xilong Xiao
- College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China.
| | - Tony Velkov
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
| |
Collapse
|
26
|
Kumar M, Dhatwalia SK, Dhawan DK. Role of angiogenic factors of herbal origin in regulation of molecular pathways that control tumor angiogenesis. Tumour Biol 2016; 37:14341-14354. [DOI: 10.1007/s13277-016-5330-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/06/2016] [Indexed: 12/19/2022] Open
|
27
|
Esmatabadi MJD, Farhangi B, Safari Z, Kazerooni H, Shirzad H, Zolghadr F, Sadeghizadeh M. Dendrosomal Curcumin Inhibits Metastatic Potential of Human SW480 Colon Cancer Cells through Down-regulation of Claudin1, Zeb1 and Hef1-1 Gene Expression. Asian Pac J Cancer Prev 2015; 16:2473-81. [DOI: 10.7314/apjcp.2015.16.6.2473] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
28
|
Zhang F, Zhang Z, Chen L, Kong D, Zhang X, Lu C, Lu Y, Zheng S. Curcumin attenuates angiogenesis in liver fibrosis and inhibits angiogenic properties of hepatic stellate cells. J Cell Mol Med 2014; 18:1392-406. [PMID: 24779927 PMCID: PMC4124023 DOI: 10.1111/jcmm.12286] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 02/17/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatic fibrosis is concomitant with sinusoidal pathological angiogenesis, which has been highlighted as novel therapeutic targets for the treatment of chronic liver disease. Our prior studies have demonstrated that curcumin has potent antifibrotic activity, but the mechanisms remain to be elucidated. The current work demonstrated that curcumin ameliorated fibrotic injury and sinusoidal angiogenesis in rat liver with fibrosis caused by carbon tetrachloride. Curcumin reduced the expression of a number of angiogenic markers in fibrotic liver. Experiments in vitro showed that the viability and vascularization of rat liver sinusoidal endothelial cells and rat aortic ring angiogenesis were not impaired by curcumin. These results indicated that hepatic stellate cells (HSCs) that are characterized as liver-specific pericytes could be potential target cells for curcumin. Further investigations showed that curcumin inhibited VEGF expression in HSCs associated with disrupting platelet-derived growth factor-β receptor (PDGF-βR)/ERK and mTOR pathways. HSC motility and vascularization were also suppressed by curcumin associated with blocking PDGF-βR/focal adhesion kinase/RhoA cascade. Gain- or loss-of-function analyses revealed that activation of peroxisome proliferator-activated receptor-γ (PPAR-γ) was required for curcumin to inhibit angiogenic properties of HSCs. We concluded that curcumin attenuated sinusoidal angiogenesis in liver fibrosis possibly by targeting HSCs via a PPAR-γ activation-dependent mechanism. PPAR-γ could be a target molecule for reducing pathological angiogenesis during liver fibrosis.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Chen J, Elfiky A, Han M, Chen C, Saif MW. The Role of Src in Colon Cancer and Its Therapeutic Implications. Clin Colorectal Cancer 2014; 13:5-13. [DOI: 10.1016/j.clcc.2013.10.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 10/02/2013] [Indexed: 12/13/2022]
|
30
|
Abstract
Curcumin (diferuloylmethane) is the biphenolic active compound of turmeric. Curcumin has been used for hundreds of years to treat various ailments. Curcumin has been reported to exert numerous pharmacological effects by modulating multiple molecular targets including those involved in the pathogenesis of cancer. Cancer has been characterized as the dysregulation of cell signaling pathways through gradual alteration of regulatory proteins and through gene mutation. Curcumin is a highly pleiotropic molecule that modulates several intracellular signaling pathways in cancer. The pleiotropic activities of curcumin have been attributed to its novel molecular structure. Based on its β-diketone moiety, curcumin exists in keto-enol tautomers, and this tautomerism favors interaction and binding with a wide range of enzymes. Several studies have shown modulation of numerous signaling enzymes by curcumin including, LOX, COX-2, XO, proteasomes, Ca(2+)-ATPase of sarcoplasmic reticulum, MMPs, HAT, HDAC, DNMT1, DNA polymerase λ, ribonucleases, GloI, protein kinases (PKA, PKB, PKC, v-Src, GSK-3β, ErbB2), protein reductases (TrxR1, AR), GSH, ICDHs, peroxidases (Prx1, Prx2, Prx6) by treatment with curcumin. Various biophysical analyses have been reported, which shows the underlying molecular interaction of curcumin with multiple targets in terms of binding affinities. The current chapter describes how curcumin binds and modulates multiple enzymes involved cancer. Published clinical trial studies with curcumin in cancer management will also be discussed.
Collapse
Affiliation(s)
- Adeeb Shehzad
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Raheem Shahzad
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Young Sup Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
31
|
Abstract
SIGNIFICANCE We herein review recent advances on the role exerted by protein redox machines engaged in tumor progression, focusing on cell adhesion and migration, regulation of transcriptional response, and tumor metabolic reprogramming, all features belonging to the new hallmarks of cancer. RECENT ADVANCES Several recent insights have reported that oxidative stress, either due to intracellular sources of oxidants, which are frequently deregulated in cancers or to microenvironment factors as hypoxia or stromal cell contact, plays a key role in tumor malignancy, as well as in metabolic pathways control. Indeed, many proteins behave as sensors of intracellular oxidative stress, including protein tyrosine kinases and phosphatases, transcription factors as p53, forkhead box class-Os, nuclear respiratory factor-2, nuclear factor-kB, hypoxia inducible factor, enzymes involved in glycolysis or penthose phosphate pathway as pyruvate kinase-M2 and adenylate monophosphate kinase, or DNA repair enzymes as Ataxia Teleangectasia Mutated. All these proteins have been reported to play essential roles during cancer progression and their sensitivity to oxidative stress has added new levels of complexity to the cancer field. CRITICAL ISSUES Main significant issues that need to be addressed in redox cancer biology are (i) sensitivity to a different level of oxidative stress of sensors, that is, they can respond to different oxidative insults/signals, and (ii) the real susceptibility of cancer cells to redox-based therapies due to the acknowledged plasticity of cancer cells to develop adoptive strategies. FUTURE DIRECTIONS Definitely, redox machines have the potentiality to develop into novel biomarkers and related target therapies should attain the goal of personalized medicine in the fight against cancer.
Collapse
Affiliation(s)
- Matteo Parri
- 1 Department of Biochemical Science, University of Florence , Florence, Italy
| | | |
Collapse
|
32
|
Curcumin Suppresses Metastasis via Sp-1, FAK Inhibition, and E-Cadherin Upregulation in Colorectal Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:541695. [PMID: 23970932 PMCID: PMC3736531 DOI: 10.1155/2013/541695] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/17/2013] [Indexed: 12/19/2022]
Abstract
Colorectal cancer (CRC) is a serious public health problem that results due to changes of diet and various environmental stress factors in the world. Curcumin is a traditional medicine used for treatment of a wide variety of tumors. However, antimetastasis mechanism of curcumin on CRC has not yet been completely investigated. Here, we explored the underlying molecular mechanisms of curcumin on metastasis of CRC cells in vitro and in vivo. Curcumin significantly inhibits cell migration, invasion, and colony formation in vitro and reduces tumor growth and liver metastasis in vivo. We found that curcumin suppresses Sp-1 transcriptional activity and Sp-1 regulated genes including ADEM10, calmodulin, EPHB2, HDAC4, and SEPP1 in CRC cells. Curcumin inhibits focal adhesion kinase (FAK) phosphorylation and enhances the expressions of several extracellular matrix components which play a critical role in invasion and metastasis. Curcumin reduces CD24 expression in a dose-dependent manner in CRC cells. Moreover, E-cadherin expression is upregulated by curcumin and serves as an inhibitor of EMT. These results suggest that curcumin executes its antimetastasis function through downregulation of Sp-1, FAK, and CD24 and by promoting E-cadherin expression in CRC cells.
Collapse
|
33
|
Yang WH, Kuo MP, Liu CM, Deng YT, Chang HH, Chang JC. Curcumin Inhibits TGFβ1-induced CCN2 via Src, JNK, and Smad3 in Gingiva. J Dent Res 2013; 92:629-34. [DOI: 10.1177/0022034513488139] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Transforming growth factor β (TGFβ) is a key regulator associated with the pathogenesis of gingival overgrowth (GO). Connective tissue growth factor (CTGF/CCN2) is overexpressed in GO tissues. CCN2 promotes and sustains fibrosis initiated by TGFβ. Previous studies have shown that JNK and Smad3 activation is required for TGFβ-induced CCN2 expressions in human gingival fibroblasts (HGFs). In this study, we have found that Src is a major signaling mediator for TGFβ-induced CCN2 expressions in HGFs. Pre-treatment with 2 Src kinase inhibitors (PP2, Src inhibitor-1) significantly reduced TGFβ1-induced CCN2 synthesis and JNK and Smad3 activation in HGFs. These results suggest that Src is an upstream signaling transducer of JNK and Smad3 with respect to TGFβ1-stimulated CCN2 expression in HGFs. We further found that curcumin significantly abrogated the TGFβ1-induced CCN2 in HGFs by inhibiting the phosphorylations of Src, JNK, and Smad3. Furthermore, curcumin inhibited TGFβ1-induced HGF migration and α-SMA expression. Curcumin potentially qualifies as a useful agent for the control of GO.
Collapse
Affiliation(s)
- W.-H. Yang
- School of Dentistry and Department of Dentistry, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - M.Y.-P. Kuo
- School of Dentistry and Department of Dentistry, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - C.-M. Liu
- School of Dentistry and Department of Dentistry, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Y.-T. Deng
- School of Dentistry and Department of Dentistry, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - H.-H. Chang
- School of Dentistry and Department of Dentistry, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - J.Z.-C. Chang
- School of Dentistry and Department of Dentistry, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
34
|
Shishodia S. Molecular mechanisms of curcumin action: gene expression. Biofactors 2013; 39:37-55. [PMID: 22996381 DOI: 10.1002/biof.1041] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 08/07/2012] [Indexed: 12/26/2022]
Abstract
Curcumin derived from the tropical plant Curcuma longa has a long history of use as a dietary agent, food preservative, and in traditional Asian medicine. It has been used for centuries to treat biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism, and sinusitis. The preventive and therapeutic properties of curcumin are associated with its antioxidant, anti-inflammatory, and anticancer properties. Extensive research over several decades has attempted to identify the molecular mechanisms of curcumin action. Curcumin modulates numerous molecular targets by altering their gene expression, signaling pathways, or through direct interaction. Curcumin regulates the expression of inflammatory cytokines (e.g., TNF, IL-1), growth factors (e.g., VEGF, EGF, FGF), growth factor receptors (e.g., EGFR, HER-2, AR), enzymes (e.g., COX-2, LOX, MMP9, MAPK, mTOR, Akt), adhesion molecules (e.g., ELAM-1, ICAM-1, VCAM-1), apoptosis related proteins (e.g., Bcl-2, caspases, DR, Fas), and cell cycle proteins (e.g., cyclin D1). Curcumin modulates the activity of several transcription factors (e.g., NF-κB, AP-1, STAT) and their signaling pathways. Based on its ability to affect multiple targets, curcumin has the potential for the prevention and treatment of various diseases including cancers, arthritis, allergies, atherosclerosis, aging, neurodegenerative disease, hepatic disorders, obesity, diabetes, psoriasis, and autoimmune diseases. This review summarizes the molecular mechanisms of modulation of gene expression by curcumin.
Collapse
Affiliation(s)
- Shishir Shishodia
- Department of Biology, Texas Southern University, Houston, TX 77004, USA.
| |
Collapse
|
35
|
Kim J, Kang D, Sun BK, Kim JH, Song JJ. TRAIL/MEKK4/p38/HSP27/Akt survival network is biphasically modulated by the Src/CIN85/c-Cbl complex. Cell Signal 2012; 25:372-9. [PMID: 23085457 DOI: 10.1016/j.cellsig.2012.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/01/2012] [Accepted: 10/16/2012] [Indexed: 12/30/2022]
Abstract
Previously, we showed that mitogen-activated protein kinase/extracellular signal-related kinase 4 (MEKK4) is responsible for p38 activation and that its activation during tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) treatment also increases the catalytic activity of Akt. Here, we further investigated how the TRAIL-induced MEKK4/p38/heat shock protein (HSP27)/Akt survival network is modulated by the Src/c-Cbl interacting protein of 85kDa (CIN85)/c-Cbl complex. TRAIL-induced activation of Akt catalytic activity and phosphorylation were highly correlated with p38/HSP27 phosphorylation, whereas the phosphorylation of p38/HSP27 increased further during incubation with curcumin and TRAIL, which caused significant apoptotic cell death. CIN85, a c-Cbl-binding protein, plays an essential role in connecting cell survival to cell death. The interaction of CIN85 with MEKK4 was increased during the late phase of TRAIL incubation, suggesting that sustained p38 and HSP27 phosphorylation protects cells by preventing further cell death. However, further increases in p38/HSP27 phosphorylation induced by cotreatment with curcumin and TRAIL converted cell fate to death. Taken together, these data demonstrate that phosphorylated p38/HSP27 as biphasic modulators act in conjunction with CIN85 to determine whether cells survive or die in response to apoptotic stress.
Collapse
Affiliation(s)
- Jina Kim
- Institute for Cancer Research, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
36
|
Guo X, Yin S, Dong Y, Fan L, Ye M, Lu J, Hu H. Enhanced apoptotic effects by the combination of curcumin and methylseleninic acid: potential role of Mcl-1 and FAK. Mol Carcinog 2012; 52:879-89. [PMID: 22711297 DOI: 10.1002/mc.21933] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 05/07/2012] [Accepted: 05/18/2012] [Indexed: 12/29/2022]
Abstract
Curcumin and methylseleninic acid (MSeA) are well-documented dietary chemopreventive agents. Apoptosis appears to be a major mechanism for both agents to exert anti-cancer activity. The purpose of the present study was designed to determine whether the apoptotic effect on human cancer cells can be enhanced by combining curcumin with MSeA. Apoptosis was evaluated by Annexin V staining of externalized phosphatidylserine by flow cytometry. Expression of protein was analyzed by Western blotting. Localization of apoptosis-inducing factor (AIF) was detected by immunocytochemistry. RNA interference was employed to inhibit expression of specific protein. We found here that combining curcumin with MSeA led to a significantly enhanced apoptosis in both MDA-MB-231 breast cancer cells and DU145 prostate cancer cells. Further mechanistic investigations revealed that curcumin treatment alone caused a concentration dependent upregulation of Mcl-1, which can be overcome by combining it with MSeA. In line with the Mcl-1 reduction, an enhanced mitochondrial permeability transition and AIF nuclear translocation by the combination were achieved. In addition, an increased suppression of focal adhesion kinase activity was observed in the combination-treated cells which were associated with cell detachment-induced apoptosis by the combination. Our findings suggest that curcumin/MSeA combination holds excellent potential for improving their efficacy against human breast and prostate cancer through enhanced apoptosis induction.
Collapse
Affiliation(s)
- Xiao Guo
- Division of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Chakraborty SK, Basu NK, Jana S, Basu M, Raychoudhuri A, Owens IS. Protein kinase Cα and Src kinase support human prostate-distributed dihydrotestosterone-metabolizing UDP-glucuronosyltransferase 2B15 activity. J Biol Chem 2012; 287:24387-96. [PMID: 22532564 DOI: 10.1074/jbc.m111.335067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Because human prostate-distributed UDP-glucuronosyltransferase (UGT) 2B15 metabolizes 5α-dihydrotestosterone (DHT) and 3α-androstane-5α,17β-diol metabolite, we sought to determine whether 2B15 requires regulated phosphorylation similar to UGTs already analyzed. Reversible down-regulation of 2B15-transfected COS-1 cells following curcumin treatment and irreversible inhibition by calphostin C, bisindolylmaleimide, or röttlerin treatment versus activation by phorbol 12-myristate 13-acetate indicated that 2B15 undergoes PKC phosphorylation. Mutation of three predicted PKC and two tyrosine kinase sites in 2B15 caused 70-100 and 80-90% inactivation, respectively. Anti-UGT-1168 antibody trapped 2B15-His-containing co-immunoprecipitates of PKCα in 130-140- and >150-kDa complexes by gradient SDS-PAGE analysis. Complexes bound to WT 2B15-His remained intact during electrophoresis, whereas 2B15-His mutants at phosphorylation sites differentially dissociated. PKCα siRNA treatment inactivated >50% of COS-1 cell-expressed 2B15. In contrast, treatment of 2B15-transfected COS-1 cells with the Src-specific activator 1,25-dihydroxyvitamin D(3) enhanced activity; treatment with the Src-specific PP2 inhibitor or Src siRNA inhibited >50% of the activity. Solubilized 2B15-His-transfected Src-free fibroblasts subjected to in vitro [γ-(33)P]ATP-dependent phosphorylation by PKCα and/or Src, affinity purification, and SDS gel analysis revealed 2-fold more radiolabeling of 55-58-kDa 2B15-His by PKCα than by Src; labeling was additive for combined kinases. Collectively, the evidence indicates that 2B15 requires regulated phosphorylation by both PKCα and Src, which is consistent with the complexity of synthesis and metabolism of its major substrate, DHT. Whether basal cells import or synthesize testosterone for transport to luminal cells for reduction to DHT by 5α-steroid reductase 2, comparatively low-activity luminal cell 2B15 undergoes a complex pattern of regulated phosphorylation necessary to maintain homeostatic DHT levels to support occupation of the androgen receptor for prostate-specific functions.
Collapse
Affiliation(s)
- Sunit K Chakraborty
- Section on Genetic Disorders of Drug Metabolism, Program on Developmental Endocrinology and Genetics, NICHD, National Institutes of Health, Bethesda, Maryland 20892-1830, USA
| | | | | | | | | | | |
Collapse
|
38
|
Ganguly KK, Sen T, Pal S, Biswas J, Chatterjee A. Studies on Focal Adhesion Kinase in human breast cancer cell MDA-MB-231. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/abc.2012.21004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Gupta SC, Prasad S, Kim JH, Patchva S, Webb LJ, Priyadarsini IK, Aggarwal BB. Multitargeting by curcumin as revealed by molecular interaction studies. Nat Prod Rep 2011; 28:1937-55. [PMID: 21979811 DOI: 10.1039/c1np00051a] [Citation(s) in RCA: 415] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Curcumin (diferuloylmethane), the active ingredient in turmeric (Curcuma longa), is a highly pleiotropic molecule with anti-inflammatory, anti-oxidant, chemopreventive, chemosensitization, and radiosensitization activities. The pleiotropic activities attributed to curcumin come from its complex molecular structure and chemistry, as well as its ability to influence multiple signaling molecules. Curcumin has been shown to bind by multiple forces directly to numerous signaling molecules, such as inflammatory molecules, cell survival proteins, protein kinases, protein reductases, histone acetyltransferase, histone deacetylase, glyoxalase I, xanthine oxidase, proteasome, HIV1 integrase, HIV1 protease, sarco (endo) plasmic reticulum Ca(2+) ATPase, DNA methyltransferases 1, FtsZ protofilaments, carrier proteins, and metal ions. Curcumin can also bind directly to DNA and RNA. Owing to its β-diketone moiety, curcumin undergoes keto-enol tautomerism that has been reported as a favorable state for direct binding. The functional groups on curcumin found suitable for interaction with other macromolecules include the α, β-unsaturated β-diketone moiety, carbonyl and enolic groups of the β-diketone moiety, methoxy and phenolic hydroxyl groups, and the phenyl rings. Various biophysical tools have been used to monitor direct interaction of curcumin with other proteins, including absorption, fluorescence, Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopy, surface plasmon resonance, competitive ligand binding, Forster type fluorescence resonance energy transfer (FRET), radiolabeling, site-directed mutagenesis, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), immunoprecipitation, phage display biopanning, electron microscopy, 1-anilino-8-naphthalene-sulfonate (ANS) displacement, and co-localization. Molecular docking, the most commonly employed computational tool for calculating binding affinities and predicting binding sites, has also been used to further characterize curcumin's binding sites. Furthermore, the ability of curcumin to bind directly to carrier proteins improves its solubility and bioavailability. In this review, we focus on how curcumin directly targets signaling molecules, as well as the different forces that bind the curcumin-protein complex and how this interaction affects the biological properties of proteins. We will also discuss various analogues of curcumin designed to bind selective targets with increased affinity.
Collapse
Affiliation(s)
- Subash C Gupta
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, 77030, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Zhou H, Beevers CS, Huang S. The targets of curcumin. Curr Drug Targets 2011; 12:332-47. [PMID: 20955148 DOI: 10.2174/138945011794815356] [Citation(s) in RCA: 508] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 04/16/2010] [Indexed: 02/07/2023]
Abstract
Curcumin (diferuloylmethane), an orange-yellow component of turmeric or curry powder, is a polyphenol natural product isolated from the rhizome of the plant Curcuma longa. For centuries, curcumin has been used in some medicinal preparation or used as a food-coloring agent. In recent years, extensive in vitro and in vivo studies suggested curcumin has anticancer, antiviral, antiarthritic, anti-amyloid, antioxidant, and anti-inflammatory properties. The underlying mechanisms of these effects are diverse and appear to involve the regulation of various molecular targets, including transcription factors (such as nuclear factor-kB), growth factors (such as vascular endothelial cell growth factor), inflammatory cytokines (such as tumor necrosis factor, interleukin 1 and interleukin 6), protein kinases (such as mammalian target of rapamycin, mitogen-activated protein kinases, and Akt) and other enzymes (such as cyclooxygenase 2 and 5 lipoxygenase). Thus, due to its efficacy and regulation of multiple targets, as well as its safety for human use, curcumin has received considerable interest as a potential therapeutic agent for the prevention and/or treatment of various malignant diseases, arthritis, allergies, Alzheimer's disease, and other inflammatory illnesses. This review summarizes various in vitro and in vivo pharmacological aspects of curcumin as well as the underlying action mechanisms. The recently identified molecular targets and signaling pathways modulated by curcumin are also discussed here.
Collapse
Affiliation(s)
- Hongyu Zhou
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | | | | |
Collapse
|
41
|
Mitra PS, Basu NK, Basu M, Chakraborty S, Saha T, Owens IS. Regulated phosphorylation of a major UDP-glucuronosyltransferase isozyme by tyrosine kinases dictates endogenous substrate selection for detoxification. J Biol Chem 2010; 286:1639-48. [PMID: 21056984 PMCID: PMC3020772 DOI: 10.1074/jbc.m110.165126] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Whereas UDP-glucuronosyltransferase-2B7 is widely distributed in different tissues, it preferentially detoxifies genotoxic 4-OH-estradiol and 4-OH-estrone (4-OHE(1)) with barely detectable 17β-estradiol (E(2)) conversion following expression in COS-1 cells. Consistent with the UDP-glucuronosyltransferase requirement for regulated phosphorylation, we discovered that 2B7 requires Src-dependent tyrosine phosphorylation. Y236F-2B7 and Y438F-2B7 mutants were null and 90% inactive, respectively, when expressed in COS-1. We demonstrated that 2B7 incorporated immunoprecipitable [(33)P]orthophosphate and that 2B7His, previously expressed in SYF-(Src,Yes,Fyn)(-/-) cells, was Src-supported or phosphorylated under in vitro conditions. Unexpectedly, 2B7 expressed in SYF(-/-) and SYF(+/-) cells metabolized 4-OHE(1) at 10- and 3-fold higher rates, respectively, than that expressed in COS-1, and similar analysis showed that E(2) metabolism was 16- and 9-fold higher than in COS-1. Because anti-Tyr(P)-438-2B7 detected Tyr(P)-438-2B7 in each cell line, results indicated that unidentified tyrosine kinase(s) (TKs) phosphorylated 2B7 in SYF(-/-). 2B7-transfected COS-1 treated with increasing concentrations of the Src-specific inhibitor PP2 down-regulated 4-OHE(1) glucuronidation reaching 60% maximum while simultaneously increasing E(2) metabolism linearly. This finding indicated that increasing PP2 inhibition of Src allows increasing E(2) metabolism caused by 2B7 phosphorylation by unidentified TK(s). Importantly, 2B7 expressed in SYF(-/-) is more competent at metabolizing E(2) in cellulo than 2B7 expressed in COS-1. To confirm Src-controlled 2B7 prevents toxicity, we showed that 2B7-transfected COS-1 efficiently protected against 4-OH-E(1)-mediated depurination. Finally, our results indicate that Src-dependent phosphorylation of 2B7 allows metabolism of 4-OHE(1), but not E(2), in COS-1, whereas non-Src-phosphorylated 2B7 metabolizes both chemicals. Importantly, we determined that 2B7 substrate selection is not fixed but varies depending upon the TK(s) that carry out its required phosphorylation.
Collapse
Affiliation(s)
- Partha S Mitra
- Section on Genetic Disorders of Drug Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-1830, USA
| | | | | | | | | | | |
Collapse
|
42
|
Ivey NS, Renner NA, Moroney-Rasmussen T, Mohan M, Redmann RK, Didier PJ, Alvarez X, Lackner AA, MacLean AG. Association of FAK activation with lentivirus-induced disruption of blood-brain barrier tight junction-associated ZO-1 protein organization. J Neurovirol 2010; 15:312-23. [PMID: 19521898 DOI: 10.1080/13550280902998413] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Expression of tight junction proteins between brain microvascular endothelial cells (BMECs) of the blood-brain barrier (BBB) is lost during development of human immunodeficiency virus (HIV) encephalitis (HIVE). Although many studies have focused on the strains of virus that induce neurological sequelae or on the macrophages/microglia that are associated with development of encephalitis, the molecular signaling pathways within the BMECs involved have yet to be resolved. We have previously shown that there is activation and disruption of an in vitro BBB model using lentivirus-infected CEMx174 cells. We and others have shown similar disruption in vivo. Therefore, it was of interest to determine if the presence of infected cells could disrupt intact cerebral microvessels immediately ex vivo, and if so, which signaling pathways were involved. The present data demonstrate that disruption of tight junctions between BMECs is mediated through activation of focal adhesion kinase (FAK) by phosphorylation at TYR-397. Inhibition of FAK activation is sufficient to prevent tight junction disruption. Thus, it may be possible to inhibit the development of HIVE by using inhibitors of FAK.
Collapse
Affiliation(s)
- Nathan S Ivey
- Tulane Primate Center, Pathology, Covington, LA 70433, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Glienke W, Maute L, Wicht J, Bergmann L. Curcumin inhibits constitutive STAT3 phosphorylation in human pancreatic cancer cell lines and downregulation of survivin/BIRC5 gene expression. Cancer Invest 2010; 28:166-71. [PMID: 20121547 DOI: 10.3109/07357900903287006] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The purpose of this study was to determine the effect of curcumin on Survivin/BIRC5 and on the role of signal transducer and activator of transcription 3 (STAT3) activation in Survivin/ BIRC5. We incubated two pancreatic cancer cell lines with different amounts of curcumin. This resulted in a downregulation of proliferation in all cell lines tested. The expression of Survivin/BIRC5 on mRNA and protein level was significantly downregulated and the phosphorylation of STAT3 was blocked. Treatment of pancreatic cancer cells with curcumin resulted in an induction of apoptosis. The results indicate that curcumin inhibits several key factors in cancer cellular pathways and may be of interest in pancreatic cancer.
Collapse
Affiliation(s)
- W Glienke
- Department of Internal Medicine II, Hematology and Oncology, University Hospital, Johann Wolfgang Goethe University, Frankfurt, Germany
| | | | | | | |
Collapse
|
44
|
Yang TP, Chiou HL, Maa MC, Wang CJ. Mithramycin inhibits human epithelial carcinoma cell proliferation and migration involving downregulation of Eps8 expression. Chem Biol Interact 2010; 183:181-6. [PMID: 19799886 DOI: 10.1016/j.cbi.2009.09.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 09/08/2009] [Accepted: 09/22/2009] [Indexed: 10/20/2022]
Abstract
Mithramycin is an inhibitor of the binding of the Sp-family transcription factor to the GC box. Many studies show that mithramycin may reduce the expression of many oncogenes by inhibiting the mRNA and protein synthesis and it has been used as an antibiotic chemotherapy drug for a long time. Recently, Eps8 (EGFR pathway substrate 8) has been revealed to be a novel proto-oncogene related to cellular transformation, Rac activation and actin barbed-end-capping activity. Therefore, the aim of this study was to verify whether Eps8 might be regulated by mithramycin. Results showed that mithramycin could reduce the mRNA and protein levels of Eps8 in dose- and time-dependent manners in several cancer cell lines. Furthermore, cell growth and migration ability were also reduced significantly by mithramycin treatment. Since Src is a well-known Eps8 activity enhancer, a v-Src transfected IV5 cell line was subjected to mithramycin treatment and then analyzed to show that Src expression was unable to restore the mithramycin-induced decrease in Eps8 expression, cell growth, and migration ability. To further confirm the above mentioned results, the expression of Eps8 was eliminated by a transient transfection with siRNA and subsequent analysis showed that silencing of Eps8 might also lead to a reduced growth and migration ability of cancer cells. These findings suggested that Eps8 was involved in the regulation of growth and motility of cancer cells and mithramycin might exert its anticancer ability via a pathway involving the downregulation of Eps8.
Collapse
Affiliation(s)
- Tzi-Peng Yang
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | |
Collapse
|
45
|
Parekh HS, Liu G, Wei MQ. A new dawn for the use of traditional Chinese medicine in cancer therapy. Mol Cancer 2009; 8:21. [PMID: 19298677 PMCID: PMC2664781 DOI: 10.1186/1476-4598-8-21] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 03/20/2009] [Indexed: 01/26/2023] Open
Abstract
Although traditional Chinese medicine has benefitted one fifth of the world's population in treating a plethora of diseases, its acceptance as a real therapeutic option by the West is only now emerging. In light of a new wave of recognition being given to traditional Chinese medicine by health professionals and regulatory bodies in the West, an understanding of their molecular basis and highlighting potential future applications of a proven group of traditional Chinese medicine in the treatment of a variety of cancers is crucial – this is where their calling holds much hope and promise in both animal and human trials. Furthermore, the rationale for combining conventional agents and modern biotechnological approaches to the delivery of traditional Chinese medicine is an avenue set to revolutionize the future practice of cancer medicine – and this may well bring on a new dawn of therapeutic strategies where East truly meets West.
Collapse
Affiliation(s)
- Harendra S Parekh
- The University of Queensland, School of Pharmacy, Brisbane, Australia.
| | | | | |
Collapse
|
46
|
Mitra PS, Basu NK, Owens IS. Src supports UDP-glucuronosyltransferase-2B7 detoxification of catechol estrogens associated with breast cancer. Biochem Biophys Res Commun 2009; 382:651-6. [PMID: 19289110 DOI: 10.1016/j.bbrc.2009.03.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 03/09/2009] [Indexed: 11/30/2022]
Abstract
Mammary gland-distributed and ER-bound UDP-glucuronosyltransferase (UGT)-2B7 metabolizes genotoxic catechol-estrogens (CE) associated with breast cancer initiation. Although UGT2B7 has 3 PKC- and 2 tyrosine kinase (TK)-sites, its inhibition by genistein, herbimycin-A and PP2 with parallel losses in phospho-tyrosine and phospho-Y438-2B7 content indicated it requires tyrosine phosphorylation, unlike required PKC phosphorylation of UGT1A isozymes. 2B7 mutants at PKC-sites had essentially normal activity, while its TK-sites mutants, Y236F- and Y438F-2B7, were essentially inactive. Overexpression of regular or active Src, but not dominant-negative Src, in 2B7-transfected COS-1 cells increased 2B7 activity and phospho-Y438-2B7 by 50%. Co-localization of 2B7 and regular SrcTK in COS-1 cells that was dissociated by pretreatment with Src-specific PP2-inhibitor provided strong evidence Src supports 2B7 activity. Consistent with these findings, evidence indicates an appropriate set of ER proteins with Src-homology binding-domains, including 2B7 and well-known multi-functional Src-engaged AKAP12 scaffold, supports Src-dependent phosphorylation of CE-metabolizing 2B7 enabling it to function as a tumor suppressor.
Collapse
Affiliation(s)
- Partha S Mitra
- Section on Genetic Disorders of Drug Metabolism, Program on Developmental Endocrinology and Genetics, National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892-1830, USA
| | | | | |
Collapse
|
47
|
Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharmacol Sci 2008; 30:85-94. [PMID: 19110321 DOI: 10.1016/j.tips.2008.11.002] [Citation(s) in RCA: 724] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 11/01/2008] [Accepted: 11/05/2008] [Indexed: 12/14/2022]
Abstract
Curcumin (diferuloylmethane), a yellow pigment in the spice turmeric (also called curry powder), has been used for centuries as a treatment for inflammatory diseases. Extensive research within the past two decades has shown that curcumin mediates its anti-inflammatory effects through the downregulation of inflammatory transcription factors (such as nuclear factor kappaB), enzymes (such as cyclooxygenase 2 and 5 lipoxygenase) and cytokines (such as tumor necrosis factor, interleukin 1 and interleukin 6). Because of the crucial role of inflammation in most chronic diseases, the potential of curcumin has been examined in neoplastic, neurological, cardiovascular, pulmonary and metabolic diseases. The pharmacodynamics and pharmacokinetics of curcumin have been examined in animals and in humans. Various pharmacological aspects of curcumin in vitro and in vivo are discussed in detail here.
Collapse
|
48
|
Sa G, Das T. Anti cancer effects of curcumin: cycle of life and death. Cell Div 2008; 3:14. [PMID: 18834508 PMCID: PMC2572158 DOI: 10.1186/1747-1028-3-14] [Citation(s) in RCA: 253] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 10/03/2008] [Indexed: 01/14/2023] Open
Abstract
Increasing knowledge on the cell cycle deregulations in cancers has promoted the introduction of phytochemicals, which can either modulate signaling pathways leading to cell cycle regulation or directly alter cell cycle regulatory molecules, in cancer therapy. Most human malignancies are driven by chromosomal translocations or other genetic alterations that directly affect the function of critical cell cycle proteins such as cyclins as well as tumor suppressors, e.g., p53. In this respect, cell cycle regulation and its modulation by curcumin are gaining widespread attention in recent years. Extensive research has addressed the chemotherapeutic potential of curcumin (diferuloylmethane), a relatively non-toxic plant derived polyphenol. The mechanisms implicated are diverse and appear to involve a combination of cell signaling pathways at multiple levels. In the present review we discuss how alterations in the cell cycle control contribute to the malignant transformation and provide an overview of how curcumin targets cell cycle regulatory molecules to assert anti-proliferative and/or apoptotic effects in cancer cells. The purpose of the current article is to present an appraisal of the current level of knowledge regarding the potential of curcumin as an agent for the chemoprevention of cancer via an understanding of its mechanism of action at the level of cell cycle regulation. Taken together, this review seeks to summarize the unique properties of curcumin that may be exploited for successful clinical cancer prevention.
Collapse
Affiliation(s)
- Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata, 700054, India.
| | | |
Collapse
|
49
|
Maa MC, Chang MY, Chen YJ, Lin CH, Yu CJ, Yang YL, Li J, Chen PR, Tang CH, Lei HY, Leu TH. Requirement of inducible nitric-oxide synthase in lipopolysaccharide-mediated Src induction and macrophage migration. J Biol Chem 2008; 283:31408-16. [PMID: 18786925 DOI: 10.1074/jbc.m801158200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, we have demonstrated the induction of Src in lipopolysaccharide (LPS)-stimulated macrophages. In this study, we observed that pharmacological blockade or knockout of inducible nitric-oxide synthase (iNOS) reduced LPS-mediated Src induction and macrophage migration. Either SNAP (a NO donor) or 8-Br-cGMP (a cGMP analogue) could rescue these defects in iNOS-null macrophages, which indicated the participation of NO/cGMP in LPS-elicited Src expression and mobilization. In addition, Src family kinase (SFK)-specific inhibitor, PP2, inhibited SNAP- and 8-Br-cGMP-evoked motility implicating the involvement of SFKs downstream of NO/cGMP. Analysis of the expression of SFKs indicated LPS dramatically induced Src, which could be attributable to the increased level of the src transcript. Attenuation of Src by src-specific siRNA reduced LPS- and SNAP-evoked mobilization in Raw264.7 macrophages, and reintroduction of avian Src could rescue their motility. Furthermore, LPS-mediated Src induction led to increased FAK Pi-Tyr-397 and Pi-Tyr-861, which was also iNOS-dependent. With these findings, we concluded that iNOS was important for LPS-mediated macrophage locomotion and Src was a critical player in this process.
Collapse
Affiliation(s)
- Ming-Chei Maa
- Institute of Medical Science, China Medical University, Taichung 40402.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Pyun BJ, Choi S, Lee Y, Kim TW, Min JK, Kim Y, Kim BD, Kim JH, Kim TY, Kim YM, Kwon YG. Capsiate, a nonpungent capsaicin-like compound, inhibits angiogenesis and vascular permeability via a direct inhibition of Src kinase activity. Cancer Res 2008; 68:227-35. [PMID: 18172315 DOI: 10.1158/0008-5472.can-07-2799] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Capsiate, a nonpungent capsaicin analogue, and its dihydroderivative dihydrocapsiate are the major capsaicinoids of the nonpungent red pepper cultivar CH-19 Sweet. In this study, we report the biological actions and underlying molecular mechanisms of capsiate on angiogenesis and vascular permeability. In vitro, capsiate and dihydrocapsiate inhibited vascular endothelial growth factor (VEGF)-induced proliferation, chemotactic motility, and capillary-like tube formation of primary cultured human endothelial cells. They also inhibited sprouting of endothelial cells in the rat aorta and formation of new blood vessels in the mouse Matrigel plug assay in response to VEGF. Moreover, both compounds blocked VEGF-induced endothelial permeability and loss of vascular endothelial (VE)-cadherin-facilitated endothelial cell-cell junctions. Importantly, capsiate suppressed VEGF-induced activation of Src kinase and phosphorylation of its downstream substrates, such as p125(FAK) and VE-cadherin, without affecting autophosphorylation of the VEGF receptor KDR/Flk-1. In vitro kinase assay and molecular modeling studies revealed that capsiate inhibits Src kinase activity via its preferential docking to the ATP-binding site of Src kinase. Taken together, these results suggest that capsiate could be useful for blocking pathologic angiogenesis and vascular permeability caused by VEGF.
Collapse
Affiliation(s)
- Bo-Jeong Pyun
- Department of Biochemistry, College of Sciences, Yonsei University, Seoul, 120-749, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|