1
|
Bessières M, Roy V, Abuduani T, Favetta P, Snoeck R, Andrei G, Moffat J, Gallardo F, Agrofoglio LA. Synthesis of LAVR-289, a new [(Z)-3-(acetoxymethyl)-4-(2,4-diaminopyrimidin-6-yl)oxy-but-2-enyl]phosphonic acid prodrug with pronounced antiviral activity against DNA viruses. Eur J Med Chem 2024; 271:116412. [PMID: 38643669 DOI: 10.1016/j.ejmech.2024.116412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/23/2024]
Abstract
New acyclic pyrimidine nucleoside phosphonate prodrugs with a 4-(2,4-diaminopyrimidin-6-yl)oxy-but-2-enyl]phosphonic acid skeleton (O-DAPy nucleobase) were prepared through a convergent synthesis by olefin cross-metathesis as the key step. Several acyclic nucleoside 4-(2,4-diaminopyrimidin-6-yl)oxy-but-2-enyl]phosphonic acid prodrug exhibited in vitro antiviral activity in submicromolar or nanomolar range against varicella zoster virus (VZV), human cytomegalovirus (HCMV), human herpes virus type 1 (HSV-1) and type 2 (HSV-2), and vaccinia virus (VV), with good selective index (SI). Among them, the analogue 9c (LAVR-289) proved markedly inhibitory against VZV wild-type (TK+) (EC50 0.0035 μM, SI 740) and for thymidine kinase VZV deficient strains (EC50 0.018 μM, SI 145), with a low morphological toxicity in cell culture at 100 μM and acceptable cytostatic activity resulting in excellent selectivity. Compound 9c exhibited antiviral activity against HCMV (EC50 0.021 μM) and VV (EC50 0.050 μM), as well as against HSV-1 (TK-) (EC50 0.0085 μM). Finally, LAVR-289 (9c) deserves further (pre)clinical investigations as a potent candidate broad-spectrum anti-herpesvirus drug.
Collapse
Affiliation(s)
- Maximes Bessières
- Institute of Organic and Analytical Chemistry (ICOA UMR 7311), University of Orleans, CNRS, F-45067 Orléans, France
| | - Vincent Roy
- Institute of Organic and Analytical Chemistry (ICOA UMR 7311), University of Orleans, CNRS, F-45067 Orléans, France.
| | - Tuniyazi Abuduani
- Institute of Organic and Analytical Chemistry (ICOA UMR 7311), University of Orleans, CNRS, F-45067 Orléans, France
| | - Patrick Favetta
- Institute of Organic and Analytical Chemistry (ICOA UMR 7311), University of Orleans, CNRS, F-45067 Orléans, France
| | - Robert Snoeck
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Graciela Andrei
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Jennifer Moffat
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210 USA
| | | | - Luigi A Agrofoglio
- Institute of Organic and Analytical Chemistry (ICOA UMR 7311), University of Orleans, CNRS, F-45067 Orléans, France.
| |
Collapse
|
2
|
Jia X, Kullik GA, Bufano M, Brancale A, Schols D, Meier C. Membrane-permeable tenofovir-di- and monophosphate analogues. Eur J Med Chem 2024; 264:116020. [PMID: 38086193 DOI: 10.1016/j.ejmech.2023.116020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023]
Abstract
The development of new antiviral agents such as nucleoside analogues or acyclic nucleotide analogues (ANPs) and prodrugs thereof is an ongoing task. We report on the synthesis of three types of lipophilic triphosphate analogues of (R)-PMPA and dialkylated diphosphate analogues of (R)-PMPA. A highly selective release of the different nucleotide analogues ((R)-PMPA-DP, (R)-PMPA-MP, and (R)-PMPA) from these compounds was achieved. All dialkylated (R)-PMPA-prodrugs proved to be very stable in PBS as well as in CEM/0 cell extracts and human plasma. In primer extension assays, both the monoalkylated and the dialkylated (R)-PMPA-DP derivatives acted as (R)-PMPA-DP as a substrate for HIV-RT. In contrast, no incorporation events were observed using human polymerase γ. The dialkylated (R)-PMPA-compounds exhibited significant anti-HIV efficacy in HIV-1/2 infected cells (CEM/0 and CEM/TK-). Remarkably, the dialkylated (R)-PMPA-MP derivative 9a showed a 326-fold improved activity as compared to (R)-PMPA in HIV-2 infected CEM/TK- cells as well as a very high SI of 14,000. We are convinced that this study may significantly contribute to advancing antiviral agents developed based on nucleotide analogues in the future.
Collapse
Affiliation(s)
- Xiao Jia
- Organic Chemistry, Department of Chemistry, Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, Martin-Luther-King-Platz 6, D-20146, Hamburg, Germany
| | - Giuliano A Kullik
- Organic Chemistry, Department of Chemistry, Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, Martin-Luther-King-Platz 6, D-20146, Hamburg, Germany
| | - Marianna Bufano
- Dipartimento Chimica e Tecnologie del Farmaco, Facoltà di Farmacia e Medicina, University of Rome "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Andrea Brancale
- Department of Organic Chemistry, Vysoká Škola Chemicko-Technologická v Praze, Technická 5, 16628, Prague, Czech Republic
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Chris Meier
- Organic Chemistry, Department of Chemistry, Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, Martin-Luther-King-Platz 6, D-20146, Hamburg, Germany; Centre for Structural Systems Biology (CSSB), Hamburg, DESY Campus, Notkestrasse 85, D-22607, Hamburg, Germany.
| |
Collapse
|
3
|
Kumar S. The Overview of Potential Antiviral Bioactive Compounds in Poxviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:331-336. [PMID: 38801588 DOI: 10.1007/978-3-031-57165-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Poxviruses belong to the family of double-stranded DNA viruses, and it is pathogenic for humans and spread worldwide. These viruses cause infections and various diseases in human. So, it is required to develop new drugs for the treatment of smallpox or other poxvirus infections. Very few potential compounds for the treatment of poxvirus such as smallpox, chickenpox, and monkeypox have been reported. Most of the compounds has used as vaccines. Cidofovir is most commonly used as a vaccine for the treatment of poxviruses. There are no phytochemicals reported for the treatment of poxviruses. Very few phytochemicals are under investigation for the treatment of poxviruses.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemistry, Sant Kavi Baba Baijnath Government P.G. College Harakh, Barabanki (UP), 225121, India.
- Dr. Rammanohar Lohia Avadh University, Ayodhya, Uttar Pradesh, 224001, India.
| |
Collapse
|
4
|
Kumari S, Chakraborty S, Ahmad M, Kumar V, Tailor PB, Biswal BK. Identification of probable inhibitors for the DNA polymerase of the Monkeypox virus through the virtual screening approach. Int J Biol Macromol 2023; 229:515-528. [PMID: 36584781 PMCID: PMC9794403 DOI: 10.1016/j.ijbiomac.2022.12.252] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Given the paucity of antiviral treatments for monkeypox disease, caused by the Monkeypox virus (MPXV), there is a pressing need for the development/identification of new drugs to treat the infection. MPXV possesses a linear dsDNA genome that is replicated by a DNA replication complex of which DNA polymerase (DPol) forms an important component. Owing to the importance of DPol in the viral life cycle, identifying/designing small molecules abolishing its function could yield new antivirals. In this study, we first used the AlphaFold artificial intelligence program to model the 3D structure of the MPXV DPol; like the fold of DPol from other organisms, the MPXV DPol structure has the characteristic exonuclease, thumb, palm, and fingers sub-domains arrangement. Subsequently, we have identified several inhibitors through virtual screening of ZINC and antiviral libraries. Molecules with phenyl scaffold along with alanine-based and tetrazole-based molecules showed the best docking score of -8 to -10 kcal/mol. These molecules bind in the palm and fingers sub-domains interface region, which partially overlaps with the DNA binding path. The delineation of DPol/inhibitor interactions showed that majorly active site residues ASP549, ASP753, TYR550, ASN551, SER552, and ASN665 interact with the inhibitors. These compounds exhibit good Absorption, Distribution, Metabolism and Excretion properties.
Collapse
Affiliation(s)
- Swati Kumari
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sayan Chakraborty
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Mohammed Ahmad
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Varun Kumar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | - Bichitra K Biswal
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
5
|
Byareddy SN, Sharma K, Sachdev S, Reddy AS, Acharya A, Klaustermeier KM, Lorson CL, Singh K. Potential therapeutic targets for Mpox: the evidence to date. Expert Opin Ther Targets 2023; 27:419-431. [PMID: 37368464 PMCID: PMC10722886 DOI: 10.1080/14728222.2023.2230361] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/07/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION The global Mpox (MPX) disease outbreak caused by the Mpox virus (MPXV) in 2022 alarmed the World Health Organization (WHO) and health regulation agencies of individual countries leading to the declaration of MPX as a Public Health Emergency. Owing to the genetic similarities between smallpox-causing poxvirus and MPXV, vaccine JYNNEOS, and anti-smallpox drugs Brincidofovir and Tecovirimat were granted emergency use authorization by the United States Food and Drug Administration. The WHO also included cidofovir, NIOCH-14, and other vaccines as treatment options. AREAS COVERED This article covers the historical development of EUA-granted antivirals, resistance to these antivirals, and the projected impact of signature mutations on the potency of antivirals against currently circulating MPXV. Since a high prevalence of MPXV infections in individuals coinfected with HIV and MPXV, the treatment results among these individuals have been included. EXPERT OPINION All EUA-granted drugs have been approved for smallpox treatment. These antivirals show good potency against Mpox. However, conserved resistance mutation positions in MPXV and related poxviruses, and the signature mutations in the 2022 MPXV can potentially compromise the efficacy of the EUA-granted treatments. Therefore, MPXV-specific medications are required not only for the current but also for possible future outbreaks.
Collapse
Affiliation(s)
- Siddappa N Byareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | - Shrikesh Sachdev
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Athreya S. Reddy
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | - Christian L Lorson
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Kamal Singh
- Department of Pharmaceutical Chemistry, DPSRU, New Delhi-110017
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
6
|
Chen S, Guo L, Gao Y, Li Y, Wang Y, Li W. CsF-Promoted Iodocyclization of Allenylphosphonates: A Convenient Approach to Highly Functionalized Oxaphospholenes. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1828-1767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractA convenient CsF-promoted iodocyclization reaction of trisubstituted allenylphosphonates with iodine to construct highly functionalized oxaphospholene derivatives has been developed. A series of readily available starting materials including ferrocenylallenes, aromatic and alkyl substituted allenes can undergo the process successfully.
Collapse
Affiliation(s)
- Shufeng Chen
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University
| | - Le Guo
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University
- College of Chemical Engineering, Ordos Institute of Technology
| | - Yanpeng Gao
- College of Chemical Engineering, Ordos Institute of Technology
| | - Yingjie Li
- College of Chemical Engineering, Ordos Institute of Technology
| | - Yue Wang
- College of Chemical Engineering, Ordos Institute of Technology
| | - Weilong Li
- College of Chemical Engineering, Ordos Institute of Technology
| |
Collapse
|
7
|
Krečmerová M, Majer P, Rais R, Slusher BS. Phosphonates and Phosphonate Prodrugs in Medicinal Chemistry: Past Successes and Future Prospects. Front Chem 2022; 10:889737. [PMID: 35668826 PMCID: PMC9163707 DOI: 10.3389/fchem.2022.889737] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/26/2022] [Indexed: 12/25/2022] Open
Abstract
Compounds with a phosphonate group, i.e., -P(O)(OH)2 group attached directly to the molecule via a P-C bond serve as suitable non-hydrolyzable phosphate mimics in various biomedical applications. In principle, they often inhibit enzymes utilizing various phosphates as substrates. In this review we focus mainly on biologically active phosphonates that originated from our institute (Institute of Organic Chemistry and Biochemistry in Prague); i.e., acyclic nucleoside phosphonates (ANPs, e.g., adefovir, tenofovir, and cidofovir) and derivatives of non-nucleoside phosphonates such as 2-(phosphonomethyl) pentanedioic acid (2-PMPA). Principal strategies of their syntheses and modifications to prodrugs is reported. Besides clinically used ANP antivirals, a special attention is paid to new biologically active molecules with respect to emerging infections and arising resistance of many pathogens against standard treatments. These new structures include 2,4-diamino-6-[2-(phosphonomethoxy)ethoxy]pyrimidines or so-called "open-ring" derivatives, acyclic nucleoside phosphonates with 5-azacytosine as a base moiety, side-chain fluorinated ANPs, aza/deazapurine ANPs. When transformed into an appropriate prodrug by derivatizing their charged functionalities, all these compounds show promising potential to become drug candidates for the treatment of viral infections. ANP prodrugs with suitable pharmacokinetics include amino acid phosphoramidates, pivaloyloxymethyl (POM) and isopropoxycarbonyloxymethyl (POC) esters, alkyl and alkoxyalkyl esters, salicylic esters, (methyl-2-oxo-1,3-dioxol-4-yl) methyl (ODOL) esters and peptidomimetic prodrugs. We also focus on the story of cytostatics related to 9-[2-(phosphonomethoxy)ethyl]guanine and its prodrugs which eventually led to development of the veterinary drug rabacfosadine. Various new ANP structures are also currently investigated as antiparasitics, especially antimalarial agents e.g., guanine and hypoxanthine derivatives with 2-(phosphonoethoxy)ethyl moiety, their thia-analogues and N-branched derivatives. In addition to ANPs and their analogs, we also describe prodrugs of 2-(phosphonomethyl)pentanedioic acid (2-PMPA), a potent inhibitor of the enzyme glutamate carboxypeptidase II (GCPII), also known as prostate-specific membrane antigen (PSMA). Glutamate carboxypeptidase II inhibitors, including 2-PMPA have been found efficacious in various preclinical models of neurological disorders which are caused by glutamatergic excitotoxicity. Unfortunately its highly polar character and hence low bioavailability severely limits its potential for clinical use. To overcome this problem, various prodrug strategies have been used to mask carboxylates and/or phosphonate functionalities with pivaloyloxymethyl, POC, ODOL and alkyl esters. Chemistry and biological characterization led to identification of prodrugs with 44-80 fold greater oral bioavailability (tetra-ODOL-2-PMPA).
Collapse
Affiliation(s)
- Marcela Krečmerová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia
- *Correspondence: Marcela Krečmerová,
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia
| | - Rana Rais
- Departments of Neurology, Pharmacology and Molecular Sciences, Johns Hopkins Drug Discovery, Baltimore, MD, United States
| | - Barbara S. Slusher
- Departments of Neurology, Pharmacology and Molecular Sciences, Psychiatry and Behavioral Sciences, Neuroscience, Medicine, Oncology, Johns Hopkins Drug Discovery, Baltimore, MD, United States
| |
Collapse
|
8
|
Zenchenko AA, Drenichev MS, Il’icheva IA, Mikhailov SN. Antiviral and Antimicrobial Nucleoside Derivatives: Structural Features and Mechanisms of Action. Mol Biol 2021; 55:786-812. [PMID: 34955556 PMCID: PMC8682041 DOI: 10.1134/s0026893321040105] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/03/2021] [Accepted: 04/09/2021] [Indexed: 11/23/2022]
Abstract
The emergence of new viruses and resistant strains of pathogenic microorganisms has become a powerful stimulus in the search for new drugs. Nucleosides are a promising class of natural compounds, and more than a hundred drugs have already been created based on them, including antiviral, antibacterial and antitumor agents. The review considers the structural and functional features and mechanisms of action of known nucleoside analogs with antiviral, antibacterial or antiprotozoal activity. Particular attention is paid to the mechanisms that determine the antiviral effect of nucleoside analogs containing hydrophobic fragments. Depending on the structure and position of the hydrophobic substituent, such nucleosides can either block the process of penetration of viruses into cells or inhibit the stage of genome replication. The mechanisms of inhibition of viral enzymes by compounds of nucleoside and non-nucleoside nature have been compared. The stages of creation of antiparasitic drugs, which are based on the peculiarities of metabolic transformations of nucleosides in humans body and parasites, have been considered. A new approach to the creation of drugs is described, based on the use of prodrugs of modified nucleosides, which, as a result of metabolic processes, are converted into an effective drug directly in the target organ or tissue. This strategy makes it possible to reduce the general toxicity of the drug to humans and to increase the effectiveness of its action on cells infected by the virus.
Collapse
Affiliation(s)
- A. A. Zenchenko
- Engelhardt Institute of Molecular Biology, 119991 Moscow, Russia
| | - M. S. Drenichev
- Engelhardt Institute of Molecular Biology, 119991 Moscow, Russia
| | - I. A. Il’icheva
- Engelhardt Institute of Molecular Biology, 119991 Moscow, Russia
| | - S. N. Mikhailov
- Engelhardt Institute of Molecular Biology, 119991 Moscow, Russia
| |
Collapse
|
9
|
Serpi M, Pertusati F. An overview of ProTide technology and its implications to drug discovery. Expert Opin Drug Discov 2021; 16:1149-1161. [PMID: 33985395 DOI: 10.1080/17460441.2021.1922385] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: The ProTide technology is a phosphate (or phosphonate) prodrug method devised to deliver nucleoside monophosphate (or monophosphonate) intracellularly bypassing the key challenges of antiviral and anticancer nucleoside analogs. Three new antiviral drugs, exploiting this technology, have been approved by the FDA while others are in clinical studies as anticancer agents.Areas covered: The authors describe the origin and development of this technology and its incredible success in transforming the drug discovery of antiviral and anticancer nucleoside analogues. As evidence, discussion on the antiviral ProTides on the market, and those currently in clinical development are included. The authors focus on how the proven capacity of this technology to generate new drug candidates has stimulated its application to non-nucleoside-based molecules.Expert opinion: The ProTide approach has been extremely successful in delivering blockbuster antiviral medicines and it seems highly promising in oncology. Its application to non-nucleoside-based small molecules is recently emerging and proving effective in other therapeutic areas. However, investigations to explain the lack of activity of certain ProTide series and comprehensive structure activity relationship studies to identify the appropriate phosphoramidate motifs depending on the parent molecule are in our opinion mandatory for the future development of these compounds.
Collapse
Affiliation(s)
| | - Fabrizio Pertusati
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
10
|
Seneviratne U, Wickramaratne S, Kotandeniya D, Groehler AS, Geraghty RJ, Dreis C, Pujari SS, Tretyakova NY. Synthesis and biological evaluation of pyrrolidine-functionalized nucleoside analogs. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02700-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Groaz E, De Jonghe S. Overview of Biologically Active Nucleoside Phosphonates. Front Chem 2021; 8:616863. [PMID: 33490040 PMCID: PMC7821050 DOI: 10.3389/fchem.2020.616863] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/30/2020] [Indexed: 12/25/2022] Open
Abstract
The use of the phosphonate motif featuring a carbon-phosphorous bond as bioisosteric replacement of the labile P–O bond is widely recognized as an attractive structural concept in different areas of medicinal chemistry, since it addresses the very fundamental principles of enzymatic stability and minimized metabolic activation. This review discusses the most influential successes in drug design with special emphasis on nucleoside phosphonates and their prodrugs as antiviral and cancer treatment agents. A description of structurally related analogs able to interfere with the transmission of other infectious diseases caused by pathogens like bacteria and parasites will then follow. Finally, molecules acting as agonists/antagonists of P2X and P2Y receptors along with nucleotidase inhibitors will also be covered. This review aims to guide readers through the fundamentals of nucleoside phosphonate therapeutics in order to inspire the future design of molecules to target infections that are refractory to currently available therapeutic options.
Collapse
Affiliation(s)
- Elisabetta Groaz
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Steven De Jonghe
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Cao Y, Peng Q, Li S, Deng Z, Gao J. The intriguing biology and chemistry of fosfomycin: the only marketed phosphonate antibiotic. RSC Adv 2019; 9:42204-42218. [PMID: 35548698 PMCID: PMC9088020 DOI: 10.1039/c9ra08299a] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/27/2019] [Indexed: 11/29/2022] Open
Abstract
Recently infectious diseases caused by the increased emergence and rapid spread of drug-resistant bacterial isolates have been one of the main threats to global public health because of a marked surge in both morbidity and mortality. The only phosphonate antibiotic in the clinic, fosfomycin, is a small broad-spectrum molecule that effectively inhibits the initial step in peptidoglycan biosynthesis by blocking the enzyme, MurA in both Gram-positive and Gram-negative bacteria. As fosfomycin has a novel mechanism of action, low toxicity, a broad spectrum of antibacterial activity, excellent pharmacodynamic/pharmacokinetic properties, and good bioavailability, it has been approved for clinical use in the treatment of urinary tract bacterial infections in many countries for several decades. Furthermore, its potential use for difficult-to-treat bacterial infections has become promising, and fosfomycin has become an ideal candidate for the effective treatment of bacterial infections caused by multidrug-resistant isolates, especially in combination with other therapeutic drugs. Here we aim to present an overview of the biology and chemistry of fosfomycin including isolation and characterization, pharmacology, biosynthesis and chemical synthesis since its discovery in order to not only help scientists reassess the role of this exciting drug in fighting antibiotic resistance but also build the stage for discovering more novel phosphonate antibiotics in the future.
Collapse
Affiliation(s)
- Yingying Cao
- College of Life Sciences, Fujian Agriculture and Forestry University Fuzhou 350002 China
| | - Qingyao Peng
- College of Life Sciences, Fujian Agriculture and Forestry University Fuzhou 350002 China
| | - Shanni Li
- College of Life Sciences, Fujian Agriculture and Forestry University Fuzhou 350002 China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jiangtao Gao
- College of Life Sciences, Fujian Agriculture and Forestry University Fuzhou 350002 China
| |
Collapse
|
13
|
Blindauer CA, Holý A, Operschall BP, Sigel A, Song B, Sigel H. Metal Ion‐Coordinating Properties in Aqueous Solutions of the Antivirally Active Nucleotide Analogue (
S
)‐9‐[3‐Hydroxy‐2‐(phosphonomethoxy)propyl]adenine (HPMPA) – Quantification of Complex Isomeric Equilibria. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Claudia A. Blindauer
- Department of Chemistry Inorganic Chemistry University of Basel Spitalstrasse 51 4056 Basel Switzerland
- Department of Chemistry Inorganic Chemistry University of Warwick Coventry CV4 7AL UK
| | - Antonín Holý
- Institute of Organic Chemistry and Biochemistry Centre of Novel Antivirals and Antineoplastics Academy of Sciences 16610 Prague Czech Republic
| | - Bert P. Operschall
- Department of Chemistry Inorganic Chemistry University of Basel Spitalstrasse 51 4056 Basel Switzerland
| | - Astrid Sigel
- Department of Chemistry Inorganic Chemistry University of Basel Spitalstrasse 51 4056 Basel Switzerland
| | - Bin Song
- Department of Chemistry Inorganic Chemistry University of Basel Spitalstrasse 51 4056 Basel Switzerland
- Centre of Novel Antivirals and Antineoplastics Vertex Pharmaceuticals Inc. 02210 Boston MA USA
| | - Helmut Sigel
- Department of Chemistry Inorganic Chemistry University of Basel Spitalstrasse 51 4056 Basel Switzerland
| |
Collapse
|
14
|
Manaresi E, Gallinella G. Advances in the Development of Antiviral Strategies against Parvovirus B19. Viruses 2019; 11:v11070659. [PMID: 31323869 PMCID: PMC6669595 DOI: 10.3390/v11070659] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022] Open
Abstract
Parvovirus B19 (B19V) is a human pathogenic virus, responsible for an ample range of clinical manifestations. Infections are usually mild, self-limiting, and controlled by the development of a specific immune response, but in many cases clinical situations can be more complex and require therapy. Presently available treatments are only supportive, symptomatic, or unspecific, such as administration of intravenous immunoglobulins, and often of limited efficacy. The development of antiviral strategies against B19V should be considered of highest relevance for increasing the available options for more specific and effective therapeutic treatments. This field of research has been explored in recent years, registering some achievements as well as interesting future perspectives. In addition to immunoglobulins, some compounds have been shown to possess inhibitory activity against B19V. Hydroxyurea is an antiproliferative drug used in the treatment of sickle-cell disease that also possesses inhibitory activity against B19V. The nucleotide analogues Cidofovir and its lipid conjugate Brincidofovir are broad-range antivirals mostly active against dsDNA viruses, which showed an antiviral activity also against B19V. Newly synthesized coumarin derivatives offer possibilities for the development of molecules with antiviral activity. Identification of some flavonoid molecules, with direct inhibitory activity against the viral non-structural (NS) protein, indicates a possible line of development for direct antiviral agents. Continuing research in the field, leading to better knowledge of the viral lifecycle and a precise understanding of virus–cell interactions, will offer novel opportunities for developing more efficient, targeted antiviral agents, which can be translated into available therapeutic options.
Collapse
Affiliation(s)
- Elisabetta Manaresi
- Department of Pharmacy and Biotechnology, University of Bologna, I-40138 Bologna, Italy
| | - Giorgio Gallinella
- Department of Pharmacy and Biotechnology, University of Bologna, I-40138 Bologna, Italy.
| |
Collapse
|
15
|
Abstract
Over the past few years, nucleosides have maintained a prominent role as one of the cornerstones of antiviral and anticancer therapeutics, and many approaches to nucleoside drug design have been pursued. One such approach involves flexibility in the sugar moiety of nucleosides, for example, in the highly successful anti-HIV and HBV drug tenofovir. In contrast, introduction of flexibility to the nucleobase scaffold has only more recently gained significance with the invention of our fleximers. The history, development, and some biological relevance for this innovative class of nucleosides are detailed herein.
Collapse
|
16
|
Mansouri AEE, Zahouily M, Lazrek HB. HMDS/KI a simple, a cheap and efficient catalyst for the one-pot synthesis of N-functionalized pyrimidines. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1602655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Az-Eddine El Mansouri
- Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca, Morocco
- Laboratory of Biomolecular and Medicinal Chemistry, Department of Chemistry, Faculty of Science Semlalia, Marrakech, Morocco
| | - Mohamed Zahouily
- Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca, Morocco
| | - Hassan B. Lazrek
- Laboratory of Biomolecular and Medicinal Chemistry, Department of Chemistry, Faculty of Science Semlalia, Marrakech, Morocco
| |
Collapse
|
17
|
Głowacka IE, Piotrowska DG, Andrei G, Schols D, Snoeck R, Wróblewski AE. Acyclic nucleoside phosphonates containing the amide bond: hydroxy derivatives. MONATSHEFTE FUR CHEMIE 2019; 150:733-745. [PMID: 32214483 PMCID: PMC7087949 DOI: 10.1007/s00706-019-2351-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 01/03/2019] [Indexed: 10/29/2022]
Abstract
Abstract To study the influence of a linker rigidity and changes in donor-acceptor properties, three series of nucleotide analogs containing a P-X-HN-C(O)- residue (X=CH(OH)CH2, CH(OH)CH2CH2, CH2CH(OH)CH2) as a replacement for the P-CH2-O-CHR- fragment in acyclic nucleoside phosphonates, e.g., adefovir, cidofovir, were synthesized. EDC proved to provide good yields of the analogs from the respective ω-amino-1- or -2-hydroxyalkylphosphonates and nucleobase-derived acetic acids. New phosphorus-nucleobase linkers are characterized by two fragments of the restricted rotation within amide bonds and in four-atom units (P-CH(OH)-CH2-N, P-CH(OH)-CH2-C and P-CH2-CH(OH)-C) in which antiperiplanar disposition of P and N/C atoms was deduced from 1H and 13C NMR spectral data. The synthesized analogs P-X-HNC(O)-CH2B [X=CH(OH)CH2, CH(OH)CH2CH2, CH2CH(OH)CH2] appeared inactive in antiviral assays on a wide variety of DNA and RNA viruses at concentrations up to 100 μM, while two phosphonates showed cytostatic activity towards myeloid leukemia (K-562) and multiple myeloma cells (MM.1S) with IC50 of 28.8 and 40.7 μM, respectively. Graphical abstract
Collapse
Affiliation(s)
- Iwona E Głowacka
- 1Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| | - Dorota G Piotrowska
- 1Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| | - Graciela Andrei
- 2Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Louvain, Belgium
| | - Dominique Schols
- 2Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Louvain, Belgium
| | - Robert Snoeck
- 2Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Louvain, Belgium
| | - Andrzej E Wróblewski
- 1Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
18
|
Lee SJ, Ahn JG, Seo J, Ha HJ, Cho CW. Organocatalytic enantioselective synthesis of acyclic pyrimidine nucleosides by aza-Michael reaction. Org Biomol Chem 2018; 16:9477-9486. [PMID: 30516780 DOI: 10.1039/c8ob02754d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An efficient diarylprolinol triphenylsilyl ether-catalyzed enantioselective aza-Michael reaction of pyrimidines as N-centered nucleophiles to α,β-unsaturated aldehydes, followed by reduction, provided chiral acyclic pyrimidine nucleosides in good yields (51-78% yields for two steps) and excellent enantioselectivities (91-98% ee). In addition, the chiral acyclic pyrimidine nucleoside having the tert-butyldiphenylsilyl-protected hydroxyl substituent was successfully applied to the synthesis of the corresponding chiral cyclic pyrimidine nucleoside analogue bearing the tetrahydrofuranyl ring.
Collapse
Affiliation(s)
- Su-Jeong Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea.
| | | | | | | | | |
Collapse
|
19
|
Seneviratne HK, Hendrix CW, Fuchs EJ, Bumpus NN. MALDI Mass Spectrometry Imaging Reveals Heterogeneous Distribution of Tenofovir and Tenofovir Diphosphate in Colorectal Tissue of Subjects Receiving a Tenofovir-Containing Enema. J Pharmacol Exp Ther 2018; 367:40-48. [PMID: 30037813 DOI: 10.1124/jpet.118.250357] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/18/2018] [Indexed: 01/21/2023] Open
Abstract
Efforts to prevent human immunodeficiency virus (HIV) infection via pre-exposure prophylaxis (PrEP) include the development of anti-HIV drugs as microbicides for topical application to the mucosal sites of infection; however, although understanding the distribution profiles of these drugs in target mucosal tissues is of critical importance to guiding their optimization, data in this regard are largely lacking. With this in mind, we developed a matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) approach to visualize tenofovir (TFV), an HIV nucleotide analog reverse-transcriptase inhibitor under investigation for use as a topical microbicide, and its active metabolite TFV-diphosphate (TFV-DP) in colorectal biopsies obtained from healthy volunteers who received TFV-containing enemas. Application of MALDI MSI resulted in sufficient spatial resolution to visualize both TFV and TFV-DP and revealed heterogeneity in the distribution profiles of both analytes, including the presence of regions in which TFV and TFV-DP were undetectable, in colorectal tissue at two different time points and concentrations. Cell-specific staining for CD4 T and CD11c dendritic cells, which are important to the establishment of HIV infection, demonstrated that the TFV and TFV-DP distributions were independent of these cell types. MALDI MSI of endogenous lipids demonstrated that the heterogeneity observed for TFV and TFV-DP was not a function of tissue composition or processing. These data provide unique insight into the spatial distribution of TFV and TFV-DP in human colorectal tissue. In addition, this work establishes an approach that can be leveraged to directly detect and visualize these clinically important analytes more broadly in tissue.
Collapse
Affiliation(s)
- Herana Kamal Seneviratne
- Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Craig W Hendrix
- Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Edward J Fuchs
- Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Namandjé N Bumpus
- Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
20
|
Seley-Radtke KL, Yates MK. The evolution of nucleoside analogue antivirals: A review for chemists and non-chemists. Part 1: Early structural modifications to the nucleoside scaffold. Antiviral Res 2018; 154:66-86. [PMID: 29649496 PMCID: PMC6396324 DOI: 10.1016/j.antiviral.2018.04.004] [Citation(s) in RCA: 316] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/22/2018] [Accepted: 04/04/2018] [Indexed: 02/07/2023]
Abstract
This is the first of two invited articles reviewing the development of nucleoside-analogue antiviral drugs, written for a target audience of virologists and other non-chemists, as well as chemists who may not be familiar with the field. Rather than providing a simple chronological account, we have examined and attempted to explain the thought processes, advances in synthetic chemistry and lessons learned from antiviral testing that led to a few molecules being moved forward to eventual approval for human therapies, while others were discarded. The present paper focuses on early, relatively simplistic changes made to the nucleoside scaffold, beginning with modifications of the nucleoside sugars of Ara-C and other arabinose-derived nucleoside analogues in the 1960's. A future paper will review more recent developments, focusing especially on more complex modifications, particularly those involving multiple changes to the nucleoside scaffold. We hope that these articles will help virologists and others outside the field of medicinal chemistry to understand why certain drugs were successfully developed, while the majority of candidate compounds encountered barriers due to low-yielding synthetic routes, toxicity or other problems that led to their abandonment.
Collapse
Affiliation(s)
- Katherine L Seley-Radtke
- 1000 Hilltop Circle, Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, Baltimore, MD, USA.
| | - Mary K Yates
- 1000 Hilltop Circle, Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, Baltimore, MD, USA
| |
Collapse
|
21
|
Mertens B, Cristina de Araujo Nogueira T, Topalis D, Stranska R, Snoeck R, Andrei G. Investigation of tumor-tumor interactions in a double human cervical carcinoma xenograft model in nude mice. Oncotarget 2018; 9:21978-22000. [PMID: 29774117 PMCID: PMC5955163 DOI: 10.18632/oncotarget.25140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/27/2018] [Indexed: 12/15/2022] Open
Abstract
Tumor-tumor distant interactions within one organism are of major clinical relevance determining clinical outcome. To investigate this poorly understood phenomenon, a double human cervical xenograft model in nude mice was developed. A first tumor was induced subcutaneously by injection of human papillomavirus positive cervical carcinoma cells into the mouse lower right flank and 3 weeks later, animals were challenged with the same tumor cell line injected subcutaneously into the upper left flank. These tumors had no direct physical contact and we found no systemic changes induced by the primary tumor affecting the growth of a secondary tumor. However, ablation of the primary tumor by local treatment with cidofovir, a nucleotide analogue with known antiviral and antiproliferative properties, resulted not only in a local antitumor effect but also in a temporary far-reaching effect leading to retarded growth of the challenged tumor. Cidofovir far-reaching effects were linked to a reduced tumor-driven inflammation, to increased anti-tumor immune responses, and could not be enhanced by co-administration with immune stimulating adjuvants. Our findings point to the potential use of cidofovir in novel therapeutic strategies aiming to kill tumor cells as well as to influence the immune system to fight cancer.
Collapse
Affiliation(s)
- Barbara Mertens
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | | | | | - Ruzena Stranska
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Robert Snoeck
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Graciela Andrei
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Bessières M, Hervin V, Roy V, Chartier A, Snoeck R, Andrei G, Lohier JF, Agrofoglio LA. Highly convergent synthesis and antiviral activity of (E)-but-2-enyl nucleoside phosphonoamidates. Eur J Med Chem 2018; 146:678-686. [PMID: 29407990 PMCID: PMC7115695 DOI: 10.1016/j.ejmech.2018.01.086] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/11/2018] [Accepted: 01/26/2018] [Indexed: 01/04/2023]
Abstract
Several hitherto unknown (E)-but-2-enyl nucleoside phosphonoamidate analogs (ANPs) were prepared directed with nitrogen reagents by cross-metathesis in water-under ultrasound irradiation. Two diastereoisomers were formally identified by X-ray diffraction. These compounds were evaluated against a large spectrum of DNA and RNA viruses. Among them, the phosphonoamidate thymine analogue 19 emerged as the best prodrug against varicella-zoster virus (VZV) with EC50 values of 0.33 and 0.39 μM for wild-type and thymidine kinase deficient strains, respectively, and a selectivity index ≥200 μM. This breakthrough approach paves the way for new purine and pyrimidine (E)-but-2-enyl phosphonoamidate analogs. Phosphonoamidate prodrugs acyclic nucleosides were synthesized by convergent approach. Metathesis reaction in water was used between pyrimidic bases and a new phosphonoamidate synthons. EC50 values of any molecules were in (sub)micromolar range against DNA viruses.
Collapse
Affiliation(s)
| | - Vincent Hervin
- Univ. Orléans, CNRS, ICOA, UMR 7311, F-45067 Orléans, France
| | - Vincent Roy
- Univ. Orléans, CNRS, ICOA, UMR 7311, F-45067 Orléans, France.
| | - Agnès Chartier
- Univ. Orléans, CNRS, ICOA, UMR 7311, F-45067 Orléans, France
| | - Robert Snoeck
- Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium
| | - Graciela Andrei
- Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
23
|
Berton JKET, Heugebaert TSA, Virieux D, Stevens CV. Fifty Years of (Benz)oxaphospholene Chemistry. Chemistry 2017; 23:17413-17431. [DOI: 10.1002/chem.201703129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Jan K. E. T. Berton
- SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering; Ghent University; Coupure Links 653 9000 Ghent Belgium
- AM2N, Institut Charles Gerhardt, UMR 5253; Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM); 8, rue de l'Ecole Normale 34296 Montpellier France
| | - Thomas S. A. Heugebaert
- SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering; Ghent University; Coupure Links 653 9000 Ghent Belgium
| | - David Virieux
- AM2N, Institut Charles Gerhardt, UMR 5253; Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM); 8, rue de l'Ecole Normale 34296 Montpellier France
| | - Christian V. Stevens
- SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering; Ghent University; Coupure Links 653 9000 Ghent Belgium
| |
Collapse
|
24
|
Rungta P, Mangla P, Maikhuri VK, Singh SK, Prasad AK. Microwave-Assisted Synthesis of C-4′-(1,5-disubstituted)-triazole -spiro- α-L-arabinofuranosyl Nucleosides. ChemistrySelect 2017. [DOI: 10.1002/slct.201701111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pallavi Rungta
- Bioorganic Laboratory; Department Of Chemistry; University Of Delhi; Delhi- 110 007 India
| | - Priyanka Mangla
- Bioorganic Laboratory; Department Of Chemistry; University Of Delhi; Delhi- 110 007 India
| | - Vipin K. Maikhuri
- Bioorganic Laboratory; Department Of Chemistry; University Of Delhi; Delhi- 110 007 India
| | - Sunil K. Singh
- Bioorganic Laboratory; Department Of Chemistry; University Of Delhi; Delhi- 110 007 India
- Department Of Chemistry; KM College; University Of Delhi; Delhi- 110 007 India
| | - Ashok K. Prasad
- Bioorganic Laboratory; Department Of Chemistry; University Of Delhi; Delhi- 110 007 India
| |
Collapse
|
25
|
Pertusati F, Serafini S, Albadry N, Snoeck R, Andrei G. Phosphonoamidate prodrugs of C5-substituted pyrimidine acyclic nucleosides for antiviral therapy. Antiviral Res 2017; 143:262-268. [DOI: 10.1016/j.antiviral.2017.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/22/2017] [Accepted: 04/24/2017] [Indexed: 11/16/2022]
|
26
|
Hydroxyurea inhibits parvovirus B19 replication in erythroid progenitor cells. Biochem Pharmacol 2017; 136:32-39. [DOI: 10.1016/j.bcp.2017.03.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/29/2017] [Indexed: 11/19/2022]
|
27
|
Chevrier F, Chamas Z, Lequeux T, Pfund E, Andrei G, Snoeck R, Roy V, Agrofoglio LA. Synthesis of 5,5-difluoro-5-phosphono-pent-2-en-1-yl nucleosides as potential antiviral agents. RSC Adv 2017. [DOI: 10.1039/c7ra05153k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of hitherto unknown acyclic 5,5-difluoro-5-phosphono-pent-2-en-1-yl-pyrimidines, -purines and -(1,2,4)-triazolo-3-carboxamide were successfully synthesized from (E)-1-bromo-5-diethoxyphosphoryl-5,5-difluoro-pent-2-ene in a stereoselective manner.
Collapse
Affiliation(s)
- F. Chevrier
- Université d'Orléans et CNRS
- ICOA
- UMR 7311
- Orléans
- France
| | - Z. Chamas
- Université d'Orléans et CNRS
- ICOA
- UMR 7311
- Orléans
- France
| | - T. Lequeux
- Laboratoire de Chimie Moléculaire et Thio-organique
- ENSICAEN
- UNICAEN
- UMR
- CNRS 6507
| | - E. Pfund
- Laboratoire de Chimie Moléculaire et Thio-organique
- ENSICAEN
- UNICAEN
- UMR
- CNRS 6507
| | - G. Andrei
- REGA Institute for Medical Research
- KU Leuven
- Leuven
- Belgium
| | - R. Snoeck
- REGA Institute for Medical Research
- KU Leuven
- Leuven
- Belgium
| | - V. Roy
- Université d'Orléans et CNRS
- ICOA
- UMR 7311
- Orléans
- France
| | | |
Collapse
|
28
|
Al-Omary FA, Mary YS, Beegum S, Panicker CY, Al-Shehri MM, El-Emam AA, Armaković S, Armaković SJ, Van Alsenoy C. Molecular conformational analysis, reactivity, vibrational spectral analysis and molecular dynamics and docking studies of 6-chloro-5-isopropylpyrimidine-2,4(1H,3H)-dione, a potential precursor to bioactive agent. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.07.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Meng J, Agrahari V, Ezoulin MJ, Zhang C, Purohit SS, Molteni A, Dim D, Oyler NA, Youan BBC. Tenofovir Containing Thiolated Chitosan Core/Shell Nanofibers: In Vitro and in Vivo Evaluations. Mol Pharm 2016; 13:4129-4140. [PMID: 27700124 DOI: 10.1021/acs.molpharmaceut.6b00739] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is hypothesized that thiolated chitosan (TCS) core/shell nanofibers (NFs) can enhance the drug loading of tenofovir, a model low molecular weight and highly water-soluble drug molecule, and improve its mucoadhesivity and in vivo safety. To test this hypothesis, poly(ethylene oxide) (PEO) core with TCS and polylactic acid (PLA) shell NFs are fabricated by a coaxial electrospinning technique. The morphology, drug loading, drug release profiles, cytotoxicity and mucoadhesion of the NFs are analyzed using scanning and transmission electron microscopies, liquid chromatography, cytotoxicity assays on VK2/E6E7 and End1/E6E7 cell lines and Lactobacilli crispatus, fluorescence imaging and periodic acid colorimetric method, respectively. In vivo safety studies are performed in C57BL/6 mice followed by H&E and immunohistochemical (CD45) staining analysis of genital tract. The mean diameters of PEO, PEO/TCS, and PEO/TCS-PLA NFs are 118.56, 9.95, and 99.53 nm, respectively. The NFs exhibit smooth surface. The drug loading (13%-25%, w/w) increased by 10-fold compared to a nanoparticle formulation due to the application of the electrospinning technique. The NFs are noncytotoxic at the concentration of 1 mg/mL. The PEO/TCS-PLA core/shell NFs mostly exhibit a release kinetic following Weibull model (r2 = 0.9914), indicating the drug release from a matrix system. The core/shell NFs are 40-60-fold more bioadhesive than the pure PEO based NFs. The NFs are nontoxic and noninflammatory in vivo after daily treatment for up to 7 days. Owing to their enhanced drug loading and preliminary safety profile, the TCS core/shell NFs are promising candidates for the topical delivery of HIV/AIDS microbicides such as tenofovir.
Collapse
Affiliation(s)
- Jianing Meng
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics Division of Pharmaceutical Sciences, University of Missouri-Kansas City , Kansas City, Missouri 64108, United States
| | - Vivek Agrahari
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics Division of Pharmaceutical Sciences, University of Missouri-Kansas City , Kansas City, Missouri 64108, United States
| | - Miezan J Ezoulin
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics Division of Pharmaceutical Sciences, University of Missouri-Kansas City , Kansas City, Missouri 64108, United States
| | - Chi Zhang
- Department of Chemistry, University of Missouri-Kansas City , Kansas City, Missouri 64110, United States
| | - Sudhaunshu S Purohit
- Department of Chemistry, University of Missouri-Kansas City , Kansas City, Missouri 64110, United States
| | - Agostino Molteni
- School of Medicine, University of Missouri-Kansas City , Kansas City, Missouri 64108, United States
| | - Daniel Dim
- School of Medicine, University of Missouri-Kansas City , Kansas City, Missouri 64108, United States
| | - Nathan A Oyler
- Department of Chemistry, University of Missouri-Kansas City , Kansas City, Missouri 64110, United States
| | - Bi-Botti C Youan
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics Division of Pharmaceutical Sciences, University of Missouri-Kansas City , Kansas City, Missouri 64108, United States
| |
Collapse
|
30
|
Głowacka IE, Piotrowska DG, Andrei G, Schols D, Snoeck R, Wróblewski AE. Acyclic nucleoside phosphonates containing the amide bond. MONATSHEFTE FUR CHEMIE 2016; 147:2163-2177. [PMID: 27881885 PMCID: PMC5101293 DOI: 10.1007/s00706-016-1848-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/04/2016] [Indexed: 12/11/2022]
Abstract
Abstract To study the influence of a linker rigidity and donor–acceptor properties, the P–CH2–O–CHR– fragment in acyclic nucleoside phosphonates (e.g., acyclovir, tenofovir) was replaced by the P–CH2–HN–C(O)– residue. The respective phosphonates were synthesized in good yields by coupling the straight chain of ω-aminophosphonates and nucleobase-derived acetic acids with EDC. Based on the 1H and 13C NMR data, the unrestricted rotation within the methylene and 1,2-ethylidene linkers in phosphonates from series a and b was confirmed. For phosphonates containing 1,3-propylidene (series c) fragments, antiperiplanar disposition of the bulky O,O-diethylphosphonate and substituted amidomethyl groups was established. The synthesized ANPs P–X–HNC(O)–CH2B (X = CH2, CH2CH2, CH2CH2CH2, CH2OCH2CH2) appeared inactive in antiviral assays against a wide variety of DNA and RNA viruses at concentrations up to 100 μM while marginal antiproliferative activity (L1210 cells, IC50 = 89 ± 16 μM and HeLa cells, IC50 = 194 ± 19 μM) was noticed for the analog derived from (5-fluorouracyl-1-yl)acetic acid and O,O-diethyl (2-aminoethoxy)methylphosphonate. Graphical abstract ![]()
Collapse
Affiliation(s)
- Iwona E Głowacka
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| | - Dorota G Piotrowska
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| | - Graciela Andrei
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Louvain, Belgium
| | - Dominique Schols
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Louvain, Belgium
| | - Robert Snoeck
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Louvain, Belgium
| | - Andrzej E Wróblewski
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
31
|
Mpondo BCT. New Biomedical Technologies and Strategies for Prevention of HIV and Other Sexually Transmitted Infections. JOURNAL OF SEXUALLY TRANSMITTED DISEASES 2016; 2016:7684768. [PMID: 27703837 PMCID: PMC5040797 DOI: 10.1155/2016/7684768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/29/2016] [Accepted: 08/10/2016] [Indexed: 11/30/2022]
Abstract
Sexually transmitted infections remain to be of public health concern in many developing countries. Their control is important, considering the high incidence of acute infections, complications and sequelae, and their socioeconomic impact. This article discusses the new biomedical technologies and strategies for the prevention of HIV and other sexually transmitted infections.
Collapse
Affiliation(s)
- Bonaventura C. T. Mpondo
- Department of Internal Medicine, College of Health and Allied Sciences, The University of Dodoma, Dodoma, Tanzania
| |
Collapse
|
32
|
Alexandre KB, Mufhandu HT, London GM, Chakauya E, Khati M. Progress and Perspectives on HIV-1 microbicide development. Virology 2016; 497:69-80. [PMID: 27429040 DOI: 10.1016/j.virol.2016.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 12/12/2022]
Abstract
The majority of HIV-1 infections occur via sexual intercourse. Women are the most affected by the epidemic, particularly in developing countries, due to their socio-economic dependence on men and the fact that they are often victims of gender based sexual violence. Despite significant efforts that resulted in the reduction of infection rates in some countries, there is still need for effective prevention methods against the virus. One of these methods for preventing sexual transmission in women is the use of microbicides. In this review we provide a summary of the progress made toward the discovery of affordable and effective HIV-1 microbicides and suggest future directions. We show that there is a wide range of compounds that have been proposed as potential microbicides. Although most of them have so far failed to show protection in humans, there are many promising ones currently in pre-clinical studies and in clinical trials.
Collapse
Affiliation(s)
- Kabamba B Alexandre
- Council for Scientific and Industrial Research, Pioneering Health Sciences Laboratory, Biosciences Unit, Pretoria, Gauteng, South Africa.
| | - Hazel T Mufhandu
- Council for Scientific and Industrial Research, Pioneering Health Sciences Laboratory, Biosciences Unit, Pretoria, Gauteng, South Africa
| | - Grace M London
- Department of Health Free State District Health Services and Health Programs, South Africa
| | - E Chakauya
- Council for Scientific and Industrial Research, Pioneering Health Sciences Laboratory, Biosciences Unit, Pretoria, Gauteng, South Africa
| | - M Khati
- Council for Scientific and Industrial Research, Pioneering Health Sciences Laboratory, Biosciences Unit, Pretoria, Gauteng, South Africa; University of Cape Town and Groote Schuur Hospital, Department of Medicine, Cape Town, South Africa
| |
Collapse
|
33
|
Abstract
Since the first antiviral drug, idoxuridine, was approved in 1963, 90 antiviral drugs categorized into 13 functional groups have been formally approved for the treatment of the following 9 human infectious diseases: (i) HIV infections (protease inhibitors, integrase inhibitors, entry inhibitors, nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors, and acyclic nucleoside phosphonate analogues), (ii) hepatitis B virus (HBV) infections (lamivudine, interferons, nucleoside analogues, and acyclic nucleoside phosphonate analogues), (iii) hepatitis C virus (HCV) infections (ribavirin, interferons, NS3/4A protease inhibitors, NS5A inhibitors, and NS5B polymerase inhibitors), (iv) herpesvirus infections (5-substituted 2'-deoxyuridine analogues, entry inhibitors, nucleoside analogues, pyrophosphate analogues, and acyclic guanosine analogues), (v) influenza virus infections (ribavirin, matrix 2 protein inhibitors, RNA polymerase inhibitors, and neuraminidase inhibitors), (vi) human cytomegalovirus infections (acyclic guanosine analogues, acyclic nucleoside phosphonate analogues, pyrophosphate analogues, and oligonucleotides), (vii) varicella-zoster virus infections (acyclic guanosine analogues, nucleoside analogues, 5-substituted 2'-deoxyuridine analogues, and antibodies), (viii) respiratory syncytial virus infections (ribavirin and antibodies), and (ix) external anogenital warts caused by human papillomavirus infections (imiquimod, sinecatechins, and podofilox). Here, we present for the first time a comprehensive overview of antiviral drugs approved over the past 50 years, shedding light on the development of effective antiviral treatments against current and emerging infectious diseases worldwide.
Collapse
Affiliation(s)
- Erik De Clercq
- KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium
| | - Guangdi Li
- KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
34
|
Wilkes RP, Hartmann K. Update on Antiviral Therapies. AUGUST'S CONSULTATIONS IN FELINE INTERNAL MEDICINE, VOLUME 7 2016. [PMCID: PMC7152142 DOI: 10.1016/b978-0-323-22652-3.00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Sahu PK, Kim G, Nayak A, Ahn JY, Ha MW, Park C, Yu J, Park HG, Jeong LS. Synthesis of Acyclic Selenonucleoside Phosphonates as Potential Antiviral Agents. ASIAN J ORG CHEM 2015. [DOI: 10.1002/ajoc.201500421] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pramod K. Sahu
- Research Institute of Pharmaceutical Sciences; College of Pharmacy; Seoul National University; Seoul 151-742 Korea
| | - Gyudong Kim
- Research Institute of Pharmaceutical Sciences; College of Pharmacy; Seoul National University; Seoul 151-742 Korea
| | - Akshata Nayak
- Research Institute of Pharmaceutical Sciences; College of Pharmacy; Seoul National University; Seoul 151-742 Korea
- College of Pharmacy; Ewha Womans University; Seoul 120-750 Korea
| | - Ji Yoon Ahn
- Research Institute of Pharmaceutical Sciences; College of Pharmacy; Seoul National University; Seoul 151-742 Korea
| | - Min Woo Ha
- Research Institute of Pharmaceutical Sciences; College of Pharmacy; Seoul National University; Seoul 151-742 Korea
| | - Cheonhyoung Park
- Research Institute of Pharmaceutical Sciences; College of Pharmacy; Seoul National University; Seoul 151-742 Korea
| | - Jinha Yu
- Research Institute of Pharmaceutical Sciences; College of Pharmacy; Seoul National University; Seoul 151-742 Korea
| | - Hyeung-geun Park
- Research Institute of Pharmaceutical Sciences; College of Pharmacy; Seoul National University; Seoul 151-742 Korea
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences; College of Pharmacy; Seoul National University; Seoul 151-742 Korea
| |
Collapse
|
36
|
Efficacy of Antiviral Drugs against Feline Immunodeficiency Virus. Vet Sci 2015; 2:456-476. [PMID: 29061953 PMCID: PMC5644647 DOI: 10.3390/vetsci2040456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/05/2015] [Accepted: 10/21/2015] [Indexed: 11/29/2022] Open
Abstract
Feline immunodeficiency virus (FIV) is one of the most common infectious agents affecting cats worldwide .FIV and human immunodeficiency virus (HIV) share many properties: both are lifelong persistent lentiviruses that are similar genetically and morphologically and both viruses propagate in T-lymphocytes, macrophages, and neural cells. Experimentally infected cats have measurable immune suppression, which sometimes progresses to an acquired immunodeficiency syndrome. A transient initial state of infection is followed by a long latent stage with low virus replication and absence of clinical signs. In the terminal stage, both viruses can cause severe immunosuppression. Thus, FIV infection in cats has become an important natural model for studying HIV infection in humans, especially for evaluation of antiviral compounds. Of particular importance for chemotherapeutic studies is the close similarity between the reverse transcriptase (RT) of FIV and HIV, which results in high in vitro susceptibility of FIV to many RT-targeted antiviral compounds used in the treatment of HIV-infected patients. Thus, the aim of this article is to provide an up-to-date review of studies on antiviral treatment of FIV, focusing on commercially available compounds for human or animal use.
Collapse
|
37
|
Zdzienicka A, Schols D, Andrei G, Snoeck R, Głowacka IE. Phosphonylated 8-Azahypoxantines as Acyclic Nucleotide Analogs. PHOSPHORUS SULFUR 2015. [DOI: 10.1080/10426507.2015.1054931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Anna Zdzienicka
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Łódź, 90-151 Łódź, Muszyńskiego 1, Poland
| | - Dominique Schols
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Graciela Andrei
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Robert Snoeck
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Iwona E. Głowacka
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Łódź, 90-151 Łódź, Muszyńskiego 1, Poland
| |
Collapse
|
38
|
Solyev PN, Jasko MV, Kleymenova AA, Kukhanova MK, Kochetkov SN. Versatile synthesis of oxime-containing acyclic nucleoside phosphonates--synthetic solutions and antiviral activity. Org Biomol Chem 2015; 13:10946-56. [PMID: 26383895 DOI: 10.1039/c5ob01571e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New oxime-containing acyclic nucleoside phosphonates 9-{2-[(phosphonomethyl)oximino]ethyl}adenine (1), -guanine (2) and 9-{2-[(phosphonomethyl)oximino]propyl}adenine (3) with wide spectrum activity against different types of viruses were synthesized. The key intermediate, diethyl aminooxymethylphosphonate, was obtained by the Mitsunobu reaction. Modified conditions for the by-product separation (without chromatography and distillation) allowed us to obtain 85% yield of the aminooxy intermediate. The impact of DBU and Cs2CO3 on the N(9)/N(7) product ratio for adenine and guanine alkylation was studied. A convenient procedure for aminooxy group detection was found. The synthesized phosphonates were tested and they appeared to display moderate activity against different types of viruses (HIV, herpes viruses in cell cultures, and hepatitis C virus in the replicon system) without toxicity up to 1000 μM.
Collapse
Affiliation(s)
- Pavel N Solyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | | | | | | | | |
Collapse
|
39
|
Šolínová V, Mikysková H, Kaiser MM, Janeba Z, Holý A, Kašička V. Estimation of apparent binding constant of complexes of selected acyclic nucleoside phosphonates with β-cyclodextrin by affinity capillary electrophoresis. Electrophoresis 2015; 37:239-47. [DOI: 10.1002/elps.201500337] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/11/2015] [Accepted: 09/24/2015] [Indexed: 01/11/2023]
Affiliation(s)
- Veronika Šolínová
- Institute of Organic Chemistry and Biochemistry, v.v.i; The Czech Academy of Sciences; Prague Czech Republic
| | - Hana Mikysková
- Institute of Organic Chemistry and Biochemistry, v.v.i; The Czech Academy of Sciences; Prague Czech Republic
| | - Martin Maxmilián Kaiser
- Institute of Organic Chemistry and Biochemistry, v.v.i; The Czech Academy of Sciences; Prague Czech Republic
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry, v.v.i; The Czech Academy of Sciences; Prague Czech Republic
| | - Antonín Holý
- Institute of Organic Chemistry and Biochemistry, v.v.i; The Czech Academy of Sciences; Prague Czech Republic
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry, v.v.i; The Czech Academy of Sciences; Prague Czech Republic
| |
Collapse
|
40
|
Hartmann K. Efficacy of antiviral chemotherapy for retrovirus-infected cats: What does the current literature tell us? J Feline Med Surg 2015; 17:925-39. [PMID: 26486979 PMCID: PMC10816252 DOI: 10.1177/1098612x15610676] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
GLOBAL IMPORTANCE The two feline retroviruses, feline immunodeficiency virus (FIV) and feline leukaemia virus (FeLV), are global and widespread, but differ in their potential to cause disease. VIRAL INFECTION - FIV FIV, a lentivirus that shares many properties with human immunodeficiency virus (HIV), can cause an acquired immune deficiency syndrome, which predisposes cats to other infections, stomatitis, neurological disorders and tumours. Although secondary infections are common, specific opportunistic infections or acquired immunodeficiency virus-defining infections, such as those that occur with HIV, are not commonly reported in FIV-infected cats. In most naturally infected cats, FIV does not cause a severe clinical syndrome; with appropriate care, FIV-infected cats can live many years before succumbing to conditions unrelated to their FIV infection. Thus, overall survival time is not necessarily shorter than in uninfected cats, and quality of life is usually high over many years or lifelong. VIRAL INFECTION - FELV FeLV, an oncornavirus, is more pathogenic than FIV. Historically, it was considered to account for more disease-related deaths and clinical syndromes in cats than any other infectious agent. Recently, the prevalence and importance of FeLV have been decreasing, mainly because of testing and eradication programmes and the use of FeLV vaccines. Progressive FeLV infection can cause tumours, bone marrow suppression and immunosuppression, as well as neurological and other disorders, and leads to a decrease in life expectancy. However, with appropriate care, many FeLV-infected cats can also live several years with a good quality of life. PRACTICAL RELEVANCE A decision regarding treatment or euthanasia should never be based solely on the presence or absence of a retrovirus infection. Antiviral chemotherapy is of increasing interest in veterinary medicine, but is still not used commonly. EVIDENCE BASE This article reviews the current literature on antiviral chemotherapy in retrovirus-infected cats, focusing on drugs that are currently available on the market and, thus, could potentially be used in cats.
Collapse
Affiliation(s)
- Katrin Hartmann
- Medizinische Kleintierklinik, Ludwig-Maximilians-Universität München, Veterinärstrasse 13, 80539 Munich, Germany
| |
Collapse
|
41
|
Burns MJ, Rayner PJ, Green GGR, Highton LAR, Mewis RE, Duckett SB. Improving the hyperpolarization of (31)P nuclei by synthetic design. J Phys Chem B 2015; 119:5020-7. [PMID: 25811635 PMCID: PMC4428009 DOI: 10.1021/acs.jpcb.5b00686] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
![]()
Traditional 31P NMR or
MRI measurements suffer from
low sensitivity relative to 1H detection and consequently
require longer scan times. We show here that hyperpolarization of 31P nuclei through reversible interactions with parahydrogen can deliver substantial signal enhancements in a range of
regioisomeric phosphonate esters containing a heteroaromatic motif
which were synthesized in order to identify the optimum molecular
scaffold for polarization transfer. A 3588-fold 31P signal
enhancement (2.34% polarization) was returned for a partially deuterated
pyridyl substituted phosphonate ester. This hyperpolarization level
is sufficient to allow single scan 31P MR images of a phantom
to be recorded at a 9.4 T observation field in seconds that have signal-to-noise
ratios of up to 94.4 when the analyte concentration is 10 mM. In contrast,
a 12 h 2048 scan measurement under standard conditions yields a signal-to-noise
ratio of just 11.4. 31P-hyperpolarized images are also
reported from a 7 T preclinical scanner.
Collapse
Affiliation(s)
- Michael J Burns
- Centre for Hyperpolarization in Magnetic Resonance, Department of Chemistry, University of York, York YO10 5NY, United Kingdom
| | - Peter J Rayner
- Centre for Hyperpolarization in Magnetic Resonance, Department of Chemistry, University of York, York YO10 5NY, United Kingdom
| | - Gary G R Green
- Centre for Hyperpolarization in Magnetic Resonance, Department of Chemistry, University of York, York YO10 5NY, United Kingdom
| | - Louise A R Highton
- Centre for Hyperpolarization in Magnetic Resonance, Department of Chemistry, University of York, York YO10 5NY, United Kingdom
| | - Ryan E Mewis
- Centre for Hyperpolarization in Magnetic Resonance, Department of Chemistry, University of York, York YO10 5NY, United Kingdom
| | - Simon B Duckett
- Centre for Hyperpolarization in Magnetic Resonance, Department of Chemistry, University of York, York YO10 5NY, United Kingdom
| |
Collapse
|
42
|
Herold S, Becker C, Ridge KM, Budinger GRS. Influenza virus-induced lung injury: pathogenesis and implications for treatment. Eur Respir J 2015; 45:1463-78. [PMID: 25792631 DOI: 10.1183/09031936.00186214] [Citation(s) in RCA: 303] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/07/2015] [Indexed: 01/21/2023]
Abstract
The influenza viruses are some of the most important human pathogens, causing substantial seasonal and pandemic morbidity and mortality. In humans, infection of the lower respiratory tract of can result in flooding of the alveolar compartment, development of acute respiratory distress syndrome and death from respiratory failure. Influenza-mediated damage of the airway, alveolar epithelium and alveolar endothelium results from a combination of: 1) intrinsic viral pathogenicity, attributable to its tropism for host airway and alveolar epithelial cells; and 2) a robust host innate immune response, which, while contributing to viral clearance, can worsen the severity of lung injury. In this review, we summarise the molecular events at the virus-host interface during influenza virus infection, highlighting some of the important cellular responses. We discuss immune-mediated viral clearance, the mechanisms promoting or perpetuating lung injury, lung regeneration after influenza-induced injury, and recent advances in influenza prevention and therapy.
Collapse
Affiliation(s)
- Susanne Herold
- Dept of Internal Medicine II, Universities Giessen and Marburg Lung Center (UGMLC), Justus-Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Christin Becker
- Dept of Internal Medicine II, Universities Giessen and Marburg Lung Center (UGMLC), Justus-Liebig University, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Karen M Ridge
- Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| | - G R Scott Budinger
- Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
43
|
Ocampo CE, Lee D, Jamison TF. Selective Lewis acid catalyzed assembly of phosphonomethyl ethers: three-step synthesis of tenofovir. Org Lett 2015; 17:820-3. [PMID: 25664399 DOI: 10.1021/ol503612h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Described herein is a novel Lewis acid catalyzed rearrangement-coupling of oxygen heterocycles and bis(diethylamino)chlorophosphine that provides direct formation of the phosphonomethyl ether functionality found in several important antiretroviral agents. A wide range of dioxolanes and 1,3-dioxanes may be employed, furnishing the desired products in good yield. The utility of this method is demonstrated in a novel synthesis of tenofovir, an antiretroviral drug used in the treatment of HIV/AIDS and hepatitis B.
Collapse
Affiliation(s)
- Charles E Ocampo
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | | | | |
Collapse
|
44
|
Reznikov AN, Skomorokhov MY, Leonova MV, Klimochkin YN. Synthesis of adamantyl-containing cidofovir analogs as potential antiviral prodrugs with high bioavailability parameters. RUSS J GEN CHEM+ 2015. [DOI: 10.1134/s1070363215020097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Mansoor LE, Abdool Karim Q, Mngadi KT, Dlamini S, Montague C, Nkomonde N, Mvandaba N, Baxter C, Gengiah TN, Samsunder N, Dawood H, Grobler A, Frohlich JA, Abdool Karim SS. Assessing the implementation effectiveness and safety of 1% tenofovir gel provision through family planning services in KwaZulu-Natal, South Africa: study protocol for an open-label randomized controlled trial. Trials 2014; 15:496. [PMID: 25527071 PMCID: PMC4300828 DOI: 10.1186/1745-6215-15-496] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 12/10/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Centre for the AIDS Programme of Research in South Africa (CAPRISA) 004 trial demonstrated a 39% reduction in HIV infection, with a 54% HIV reduction in women who used tenofovir gel consistently. A confirmatory trial is expected to report results in early 2015. In the interim, we have a unique window of opportunity to prepare for and devise effective strategies for the future policy and programmatic scale-up of tenofovir gel provision. One approach is to integrate tenofovir gel provision into family planning (FP) services. The CAPRISA 008 implementation trial provides an opportunity to provide post-trial access to tenofovir gel while generating empiric evidence to assess whether integrating tenofovir gel provision into routine FP services can achieve similar levels of adherence as the CAPRISA 004 trial. METHODS/DESIGN This is a two-arm, open-label, randomized controlled non-inferiority trial. A maximum of 700 sexually active, HIV-uninfected women aged 18 years and older who previously participated in an antiretroviral prevention study will be enrolled from an urban and rural site in KwaZulu-Natal, South Africa. The anticipated study duration is 30 months, with active accrual requiring approximately 12 months (following which an open cohort will be maintained) and follow-up continuing for approximately 18 months. At each of the two sites, eligible participants will be randomly assigned to receive tenofovir gel through either FP services (intervention arm) or through the CAPRISA research clinics (control arm). As part of the study intervention, a quality improvement approach will be used to assist the FP services to expand their current services to include tenofovir gel provision. DISCUSSION This protocol aims to address an important implementation question on whether FP services are able to effectively incorporate tenofovir gel provision for this at-risk group of women in South Africa. Provision of tenofovir gel to the women from the CAPRISA 004 trial meets the ethical obligation for post-trial access, and helps identify a potential avenue for future scale-up of microbicides within the public health system of South Africa. TRIAL REGISTRATION This trial was registered with the South Africa Department of Health (reference: DOH-27-0812-4129) and ClinicalTrials.gov (reference: NCT01691768) on 05 July 2012.
Collapse
Affiliation(s)
- Leila E Mansoor
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Andrei G, Topalis D, De Schutter T, Snoeck R. Insights into the mechanism of action of cidofovir and other acyclic nucleoside phosphonates against polyoma- and papillomaviruses and non-viral induced neoplasia. Antiviral Res 2014; 114:21-46. [PMID: 25446403 DOI: 10.1016/j.antiviral.2014.10.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 09/22/2014] [Accepted: 10/21/2014] [Indexed: 12/30/2022]
Abstract
Acyclic nucleoside phosphonates (ANPs) are well-known for their antiviral properties, three of them being approved for the treatment of human immunodeficiency virus infection (tenofovir), chronic hepatitis B (tenofovir and adefovir) or human cytomegalovirus retinitis (cidofovir). In addition, cidofovir is mostly used off-label for the treatment of infections caused by several DNA viruses other than cytomegalovirus, including papilloma- and polyomaviruses, which do not encode their own DNA polymerases. There is considerable interest in understanding why cidofovir is effective against these small DNA tumor viruses. Considering that papilloma- and polyomaviruses cause diseases associated either with productive infection (characterized by high production of infectious virus) or transformation (where only a limited number of viral proteins are expressed without synthesis of viral particles), it can be envisaged that cidofovir may act as antiviral and/or antiproliferative agent. The aim of this review is to discuss the advances in recent years in understanding the mode of action of ANPs as antiproliferative agents, given the fact that current data suggest that their use can be extended to the treatment of non-viral related malignancies.
Collapse
Affiliation(s)
- G Andrei
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Belgium.
| | - D Topalis
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Belgium
| | - T De Schutter
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Belgium
| | - R Snoeck
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Belgium
| |
Collapse
|
47
|
Ludwig S, Zell R, Schwemmle M, Herold S. Influenza, a One Health paradigm--novel therapeutic strategies to fight a zoonotic pathogen with pandemic potential. Int J Med Microbiol 2014; 304:894-901. [PMID: 25220817 DOI: 10.1016/j.ijmm.2014.08.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Influenza virus is a paradigm for a pathogen that frequently crosses the species barrier from animals to humans, causing severe disease in the human population. This ranges from frequent epidemics to occasional pandemic outbreaks with millions of death. All previous pandemics in humans were caused by animal viruses or virus reassortants carrying animal virus genes, underlining that the fight against influenza requires a One Health approach integrating human and veterinary medicine. Furthermore, the fundamental question of what enables a flu pathogen to jump from animals to humans can only be tackled in a transdisciplinary approach between virologists, immunologists and cell biologists. To address this need the German FluResearchNet was established as a first nationwide influenza research network that virtually integrates all national expertise in the field of influenza to unravel viral and host determinants of pathogenicity and species transmission and to explore novel avenues of antiviral intervention. Here we focus on the various novel anti-flu approaches that were developed as part of the FluResearchNet activities.
Collapse
Affiliation(s)
- Stephan Ludwig
- Institute of Molecular Virology (IMV), Centre for Molecular Biology of Inflammation (ZMBE), University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany.
| | - Roland Zell
- Department of Virology and Antiviral Therapy, Jena University Hospital, Friedrich Schiller University Jena, Hans Knoell Str. 2, D-07745 Jena, Germany
| | - Martin Schwemmle
- Institute for Virology, University Medical Center Freiburg, Hermann-Herder-Strasse 11, D-79104 Freiburg, Germany
| | - Susanne Herold
- Universities Giessen & Marburg Lung Center (UGMLC), Department of Internal Medicine II, Section of Infectious Diseases, Klinikstr. 33, D-35392 Giessen, Germany
| |
Collapse
|
48
|
Effects of tenofovir on cytokines and nucleotidases in HIV-1 target cells and the mucosal tissue environment in the female reproductive tract. Antimicrob Agents Chemother 2014; 58:6444-53. [PMID: 25136003 DOI: 10.1128/aac.03270-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tenofovir (TFV) is a reverse transcriptase inhibitor used in microbicide preexposure prophylaxis trials to prevent HIV infection. Recognizing that changes in cytokine/chemokine secretion and nucleotidase biological activity can influence female reproductive tract (FRT) immune protection against HIV infection, we tested the hypothesis that TFV regulates immune protection in the FRT. Epithelial cells, fibroblasts, CD4(+) T cells, and CD14(+) cells were isolated from the endometrium (Em), endocervix (Cx), and ectocervix (Ecx) following hysterectomy. The levels of proinflammatory cytokines (macrophage inflammatory protein 3α [MIP-3α], interleukin 8 [IL-8], and tumor necrosis factor alpha [TNF-α]), the expression levels of specific nucleotidases, and nucleotidase biological activities were analyzed in the presence or absence of TFV. TFV influenced mRNA and/or protein cytokines and nucleotidases in a cell- and site-specific manner. TFV significantly enhanced IL-8 and TNF-α secretion by epithelial cells from the Em and Ecx but not from the Cx. In contrast, in response to TFV, IL-8 secretion was significantly decreased in Em and Cx fibroblasts but increased with fibroblasts from the Ecx. When incubated with CD4(+) T cells from the FRT, TFV increased IL-8 (Em and Ecx) and TNF-α (Cx and Ecx) secretion levels. Moreover, when incubated with Em CD14(+) cells, TFV significantly increased MIP-3α, IL-8, and TNF-α secretion levels relative to those of the controls. In contrast, nucleotidase biological activities were significantly decreased by TFV in epithelial (Cx) and CD4(+) T cells (Em) but increased in fibroblasts (Em). Our findings indicate that TFV modulates proinflammatory cytokines, nucleotidase gene expression, and nucleotidase biological activity in epithelial cells, fibroblasts, CD4(+) T cells, and CD14(+) cells at distinct sites within the FRT.
Collapse
|
49
|
Blakney AK, Krogstad EA, Jiang YH, Woodrow KA. Delivery of multipurpose prevention drug combinations from electrospun nanofibers using composite microarchitectures. Int J Nanomedicine 2014; 9:2967-78. [PMID: 24971008 PMCID: PMC4069153 DOI: 10.2147/ijn.s61664] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Electrospun drug-eluting fabrics have enormous potential for the delivery of physicochemically diverse drugs in combination by controlling the underlying material chemistry and fabric microarchitecture. However, the rationale for formulating drugs at high drug loading in the same or separate fibers is unknown but has important implications for product development and clinical applications. Methods Using a production-scale free-surface electrospinning instrument, we produced electrospun nanofibers with different microscale geometries for the co-delivery of tenofovir (TFV) and levonorgestrel (LNG) – two lead drug candidates for multipurpose prevention of HIV acquisition and unintended pregnancy. We investigated the in vitro drug release of TFV and LNG combinations from composites that deliver the two drugs from the same fiber (combined fibers) or from separate fibers in a stacked or interwoven architecture. For stacked composites, we also examined the role that fabric thickness has on drug-release kinetics. We also measured the cytotoxicity and antiviral activity of the drugs delivered alone and in combination. Results Herein, we report on the solution and processing parameters for the free-surface electrospinning of medical fabrics with controlled microarchitecture and high drug loading (up to 20 wt%). We observed that in vitro release of the highly water-soluble TFV, but not the water-insoluble LNG, was affected by composite microarchitecture, fabric thickness, and drug content. Finally, we showed that the drug-loaded nanofibers are noncytotoxic and that the antiviral activity of TFV is preserved through the electrospinning process and when combined with LNG. Conclusion Electrospun fabrics with high drug loading create multicomponent systems that benefit from the independent control of the nanofibrous microarchitecture. Our findings are significant because they will inform the design and production of composite electrospun fabrics for the co-delivery of physicochemically diverse drugs that may be useful for multipurpose prevention.
Collapse
Affiliation(s)
- Anna K Blakney
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Emily A Krogstad
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Yonghou H Jiang
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
50
|
Głowacka IE, Balzarini J, Piotrowska DG. 1-Amino-3-(1H-1,2,3-triazol-1-yl)propylphosphonates as acyclic analogs of nucleotides. Arch Pharm (Weinheim) 2014; 347:496-505. [PMID: 24706386 DOI: 10.1002/ardp.201300471] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/21/2014] [Accepted: 02/21/2014] [Indexed: 01/11/2023]
Abstract
A new series of 1-amino-3-(1H-1,2,3-triazol-1-yl)propylphosphonates (R)- and (S)-16 were obtained from enantiomerically pure (R)- and (S)-1-tert-butoxycarbonyl (Boc)-amino-3-azidopropylphosphonates and N-propargylated nucleobases in good yields. All 1,2,3-triazolylphosphonates (R)- and (S)-16 were evaluated for their activities against a broad range of DNA and RNA viruses. Compound (R)-16g (B = 3-acetylindole) was moderately active against vesicular stomatitis virus in HeLa cell cultures (EC50 = 45 µM). In addition, (S)-16c (B = adenine), (R)-16f (B = N(3)-Bz-benzuracil), (R)-16g (B = 3-acetylindole), and (R)-16h (B = 5,6-dimethylbenzimidazole) were cytotoxic toward Crandell-Rees feline kidney (CRFK) cells (CC50 = 2.9, 45, 72, and 96 µM, respectively). Compounds (R)-16g, (S)-16g, and (S)-16h were slightly cytostatic to different tumor cell lines.
Collapse
Affiliation(s)
- Iwona E Głowacka
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Łódź, Łódź, Poland
| | | | | |
Collapse
|