1
|
Cao X, Wei J, Ge H, Guan D, Li H, Zhang H, Zheng Y, Qian K, Wang J. Involvement of Glutamate Cysteine Ligase Genes in Tolerance to Emamectin Benzoate in Spodoptera frugiperda and Their Putative Regulatory Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13717-13728. [PMID: 37691233 DOI: 10.1021/acs.jafc.3c04392] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
As the rate-limiting enzyme in de novo Glutathione (GSH) biosynthesis, the mammalian glutamate cysteine ligase (Gcl) catalytic (Gclc) and modifier (Gclm) subunits are regulated at multiple levels, whereas the function and regulatory mechanism of insect Gcl remain to be explored. In this study, we identified and characterized SfGclc and SfGclm in Spodoptera frugiperda. SfGclc and SfGclm were highly expressed in the hindgut and relatively less expressed in other tissues. The exposure of the third instar larvae to LC30 of emamectin benzoate (EMB) significantly reduced the GSH content with a concomitant upregulation of SfGclc and SfGclm. Further in vivo pretreatment with L-BSO, the Gcl inhibitor, increased the susceptibility of S. frugiperda to EMB. Consistently, overexpression of SfGclc and SfGclm increased the Sf9 cell viability under EMB treatment. Finally, both RNAi and the dual-luciferase reporter assay in Sf9 cells revealed that SfGclc is regulated by transcription factor CncC. These data provide insights into the function and regulatory mechanism of insect Gcl, and they imply that disruption of the redox homeostasis might be a practical strategy to enhance the insecticidal activity of EMB and other insecticides.
Collapse
Affiliation(s)
- Xiaoli Cao
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jiaping Wei
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Huichen Ge
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Daojie Guan
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Hai Li
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Hainan Zhang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yang Zheng
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Kun Qian
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jianjun Wang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Marinaccio J, Micheli E, Udroiu I, Di Nottia M, Carrozzo R, Baranzini N, Grimaldi A, Leone S, Moreno S, Muzzi M, Sgura A. TERT Extra-Telomeric Roles: Antioxidant Activity and Mitochondrial Protection. Int J Mol Sci 2023; 24:ijms24054450. [PMID: 36901881 PMCID: PMC10002448 DOI: 10.3390/ijms24054450] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/18/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Telomerase reverse transcriptase (TERT) is the catalytic subunit of telomerase holoenzyme, which adds telomeric DNA repeats on chromosome ends to counteract telomere shortening. In addition, there is evidence of TERT non-canonical functions, among which is an antioxidant role. In order to better investigate this role, we tested the response to X-rays and H2O2 treatment in hTERT-overexpressing human fibroblasts (HF-TERT). We observed in HF-TERT a reduced induction of reactive oxygen species and an increased expression of the proteins involved in the antioxidant defense. Therefore, we also tested a possible role of TERT inside mitochondria. We confirmed TERT mitochondrial localization, which increases after oxidative stress (OS) induced by H2O2 treatment. We next evaluated some mitochondrial markers. The basal mitochondria quantity appeared reduced in HF-TERT compared to normal fibroblasts and an additional reduction was observed after OS; nevertheless, the mitochondrial membrane potential and morphology were better conserved in HF-TERT. Our results suggest a protective function of TERT against OS, also preserving mitochondrial functionality.
Collapse
Affiliation(s)
| | - Emanuela Micheli
- Department of Science, University “ROMA TRE”, 00146 Rome, Italy
- Correspondence:
| | - Ion Udroiu
- Department of Science, University “ROMA TRE”, 00146 Rome, Italy
| | - Michela Di Nottia
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children’s Hospital IRCCS, 00146 Rome, Italy
| | - Rosalba Carrozzo
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children’s Hospital IRCCS, 00146 Rome, Italy
| | - Nicolò Baranzini
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Stefano Leone
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Sandra Moreno
- Department of Science, University “ROMA TRE”, 00146 Rome, Italy
- IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Maurizio Muzzi
- Department of Science, University “ROMA TRE”, 00146 Rome, Italy
- IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Antonella Sgura
- Department of Science, University “ROMA TRE”, 00146 Rome, Italy
| |
Collapse
|
3
|
Qi X, Wan Z, Jiang B, Ouyang Y, Feng W, Zhu H, Tan Y, He R, Xie L, Li Y. Inducing ferroptosis has the potential to overcome therapy resistance in breast cancer. Front Immunol 2022; 13:1038225. [PMID: 36505465 PMCID: PMC9730886 DOI: 10.3389/fimmu.2022.1038225] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022] Open
Abstract
Breast cancer is the most common type of malignancy among women. Due to the iron-dependent character of breast cancer cells, they are more sensitive to ferroptosis compared to normal cells. It is possible to reverse tumor resistance by inducing ferroptosis in breast cancer cells, thereby improving tumor treatment outcomes. Ferroptosis is highly dependent on the balance of oxidative and antioxidant status. When ferroptosis occurs, intracellular iron levels are significantly increased, leading to increased membrane lipid peroxidation and ultimately triggering ferroptosis. Ferroptotic death is a form of autophagy-associated cell death. Synergistic use of nanoparticle-loaded ferroptosis-inducer with radiotherapy and chemotherapy achieves more significant tumor suppression and inhibits the growth of breast cancer by targeting cancer tissues, enhancing the sensitivity of cells to drugs, reducing the drug resistance of cancer cells and the toxicity of drugs. In this review, we present the current status of breast cancer and the mechanisms of ferroptosis. It is hopeful for us to realize effective treatment of breast cancer through targeted ferroptosis.
Collapse
Affiliation(s)
- Xiaowen Qi
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhixing Wan
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Baohong Jiang
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yuhan Ouyang
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wenjie Feng
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Hongbo Zhu
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yeru Tan
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Rongfang He
- Department of Pathology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Liming Xie
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yuehua Li
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
4
|
Lin C, Zhou Z, Zhang L, Wang H, Lu J, Wang X, An R. Gegen Qinlian Decoction Relieves Ulcerative Colitis via Adjusting Dysregulated Nrf2/ARE Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2934552. [PMID: 35509629 PMCID: PMC9060978 DOI: 10.1155/2022/2934552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/25/2022] [Accepted: 04/09/2022] [Indexed: 11/30/2022]
Abstract
Objective Oxidative stress has been proven to be essential in the pathogenesis of ulcerative colitis (UC). Therefore, this study was designed to investigate the effect of Gegen Qinlian decoction (GQ) on the Nrf2 pathway in the treatment of UC and explore the potential mechanism. Methods The UC rat model was induced by 5% dextran sodium sulfate (DSS) aqueous solution, and UC rats were treated with GQ orally. The effect of GQ on UC rats was recorded. Human clonal colon adenocarcinoma cells (Caco-2) stimulated by tumor necrosis factor-α (TNF-α) were employed in this study. After being stimulated with TNF-α for 2 hours, Caco-2 cells were cultured with GQ or its major components (puerarin, baicalin, berberine, and liquiritin) for 22 hours. In addition, the Nrf2 gene of Caco-2 cells was silenced and then cultured with GQ for 22 hours. The contents of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and malondialdehyde (MDA) in colonic tissues and Caco-2 cells were detected by assay kits. Reactive oxygen species (ROS) in Caco-2 cells were analyzed by flow cytometry. Quantitative real-time PCR and western blot were employed to detect the mRNA and protein expression of Nrf2 and its related target genes in colon tissues and Caco-2 cells. Results GQ alleviated the injured colonic mucosa and activated the expression of Nrf2 in UC rats. In TNF-α stimulated Caco-2 cells and Nrf2 silenced Caco-2 cells, GQ also reversed the inhibitory effect of Nrf2. Furthermore, the major components of GQ could activate Nrf2 signaling in TNF-α stimulated cells as well. Moreover, the contents of SOD, GSH, MDA, and ROS were restored to normal after treatment with GQ or its major components. Among these components, puerarin, berberine, and liquiritin appear to have a better effect on activating Nrf2 in vitro. Overall, GQ can alleviate UC by increasing the activity of Nrf2/ARE signaling and enhancing the effect of antioxidant stress.
Collapse
Affiliation(s)
- Chuan Lin
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zehua Zhou
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lijun Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongqing Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jie Lu
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinhong Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rui An
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
5
|
Ligaza γ-glutamylocysteiny – od molekularnych mechanizmów regulacji aktywności enzymatycznej do implikacji terapeutycznych. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstrakt
Glutation (γ-glutamylocysteinyloglicyna, GSH) jest najbardziej rozpowszechnionym tiolowym antyoksydantem wytwarzanym w cytozolu wszystkich komórek ssaków, który pełni ważną rolę ochronną przed stresem oksydacyjnym. GSH jest syntetyzowany de novo przez sekwencyjne działanie dwóch enzymów: ligazy γ-glutamylocysteiny (GCL) i syntetazy glutationowej (GS). GCL katalizuje pierwszy etap biosyntezy GSH, którego produktem jest γ-glutamylocysteina (γ-GC). GCL jest heterodimerycznym enzymem zbudowanym z podjednostki katalitycznej (GCLc) i modulatorowej (GCLm), kodowanych przez dwa różne geny. Podjednostki GCL podlegają złożonej regulacji zarówno na poziomie przed-, jak i potranslacyjnym. Zmiany w ekspresji i aktywności GCL mogą zaburzać poziom GSH i homeostazy redoks. Przyczyną wielu przewlekłych schorzeń związanych ze stresem oksydacyjnym jest upośledzenie aktywności katalitycznej GCL oraz spadek stężenia GSH. Badania przedkliniczne sugerują, że podawanie egzogennej γ-GC podwyższa wewnątrzkomórkowe GSH przez dostarczenie brakującego substratu i może wykazywać potencjał jako terapia uzupełniająca w chorobach związanych z deplecją GSH.
Collapse
|
6
|
Idres YA, Tousch D, Cazals G, Lebrun A, Naceri S, Bidel LPR, Poucheret P. A Novel Sesquiterpene Lactone Xanthatin-13-(pyrrolidine-2-carboxylic acid) Isolated from Burdock Leaf Up-Regulates Cells' Oxidative Stress Defense Pathway. Antioxidants (Basel) 2021; 10:antiox10101617. [PMID: 34679753 PMCID: PMC8533074 DOI: 10.3390/antiox10101617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 12/18/2022] Open
Abstract
The aim of our study was to identify novel molecules able to induce an adaptative response against oxidative stress during the first stages of metabolic syndrome. A cellular survival in vitro test against H2O2-based test was applied after pretreatment with various natural bitter Asteraceae extracts. This screening revealed potent protection from burdock leaf extract. Using chromatography and LC-MS—RMN, we then isolated and identified an original sesquiterpene lactone bioactive molecule: the Xanthatin-13-(pyrrolidine-2-carboxylic acid) (XPc). A real-time RT-qPCR experiment was carried out on three essential genes involved in oxidative stress protection: GPx, SOD, and G6PD. In presence of XPc, an over-expression of the G6PD gene was recorded, whereas no modification of the two others genes could be observed. A biochemical docking approach demonstrated that XPc had a high probability to directly interact with G6PD at different positions. One of the most probable docking sites corresponds precisely to the binding site of AG1, known to stabilize the G6PD dimeric form and enhance its activity. In conclusion, this novel sesquiterpene lactone XPc might be a promising prophylactic bioactive agent against oxidative stress and inflammation in chronic diseases such as metabolic syndrome or type 2 diabetes.
Collapse
Affiliation(s)
- Yanis A. Idres
- UMR 95 Qualisud, University Montpellier, CIRAD, SupAgro Montpellier, 15 Avenue Charles Flahault, BP 14491, CEDEX 5, 34093 Montpellier, France;
- Correspondence: (Y.A.I.); (D.T.); Tel.: +33-658587547 (Y.A.I.); +33-673466032 (D.T.)
| | - Didier Tousch
- UMR 95 Qualisud, University Montpellier, CIRAD, SupAgro Montpellier, 15 Avenue Charles Flahault, BP 14491, CEDEX 5, 34093 Montpellier, France;
- Correspondence: (Y.A.I.); (D.T.); Tel.: +33-658587547 (Y.A.I.); +33-673466032 (D.T.)
| | - Guillaume Cazals
- Laboratoire de Mesure Physique, Université de Montpellier, Place Eugène Bataillon, CEDEX 5, 34093 Montpellier, France; (G.C.); (A.L.)
| | - Aurélien Lebrun
- Laboratoire de Mesure Physique, Université de Montpellier, Place Eugène Bataillon, CEDEX 5, 34093 Montpellier, France; (G.C.); (A.L.)
| | - Sarah Naceri
- Laboratoire de Biologie Fonctionnelle et Adaptative, Université de Paris, CNRS UMR 8251, 35 rue Héléne Brion, 75013 Paris, France;
| | - Luc P. R. Bidel
- INRA, UMR AGAP, CIRAD, SupAgro, 2 Place Pierre Viala, 34060 Montpellier, France;
| | - Patrick Poucheret
- UMR 95 Qualisud, University Montpellier, CIRAD, SupAgro Montpellier, 15 Avenue Charles Flahault, BP 14491, CEDEX 5, 34093 Montpellier, France;
| |
Collapse
|
7
|
Liu K, Singer E, Cohn W, Micewicz ED, McBride WH, Whitelegge JP, Loo JA. Time-Dependent Measurement of Nrf2-Regulated Antioxidant Response to Ionizing Radiation Toward Identifying Potential Protein Biomarkers for Acute Radiation Injury. Proteomics Clin Appl 2019; 13:e1900035. [PMID: 31419066 PMCID: PMC7213060 DOI: 10.1002/prca.201900035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/16/2019] [Indexed: 01/06/2023]
Abstract
PURPOSE Potential acute exposure to ionizing radiation in nuclear or radiological accidents presents complex mass casualty scenarios that demand prompt triage and treatment decisions. Due to delayed symptoms and varied response of radiation victims, there is an urgent need to develop robust biomarkers to assess the extent of injuries in individuals. EXPERIMENTAL DESIGN The transcription factor Nrf2 is the master of redox homeostasis and there is transcriptional evidence of Nrf2-dependent antioxidant response activation upon radiation. The biomarker potential of Nrf2-dependent downstream target enzymes is investigated by measuring their response in bone marrow extracted from C57Bl/6 and C3H mice of both genders for up to 4 days following 6 Gy total body irradiation using targeted MS. RESULTS Overall, C57Bl/6 mice have a stronger proteomic response than C3H mice. In both strains, male mice have more occurrences of upregulation in antioxidant enzymes than female mice. For C57Bl/6 male mice, three proteins show elevated abundances after radiation exposure: catalase, superoxide dismutase 1, and heme oxygenase 1. Across both strains and genders, glutathione S-transferase Mu 1 is consistently decreased. CONCLUSIONS AND CLINICAL RELEVANCE This study provides the basis for future development of organ-specific protein biomarkers used in diagnostic blood test for radiation injury.
Collapse
Affiliation(s)
- Kate Liu
- Department of Chemistry and Biochemistry, UCLA
| | - Elizabeth Singer
- Pasarow Mass Spectrometry Laboratory, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA
| | - Whitaker Cohn
- Pasarow Mass Spectrometry Laboratory, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA
| | - Ewa D. Micewicz
- Pasarow Mass Spectrometry Laboratory, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA
| | | | - Julian P. Whitelegge
- Pasarow Mass Spectrometry Laboratory, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, UCLA
- Department of Biological Chemistry, David Geffen School of Medicine, Molecular Biology Institute, and UCLA/DOE Institute for Genomics and Proteomics, UCLA
| |
Collapse
|
8
|
Glutathione "Redox Homeostasis" and Its Relation to Cardiovascular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5028181. [PMID: 31210841 PMCID: PMC6532282 DOI: 10.1155/2019/5028181] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/20/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
Abstract
More people die from cardiovascular diseases (CVD) than from any other cause. Cardiovascular complications are thought to arise from enhanced levels of free radicals causing impaired "redox homeostasis," which represents the interplay between oxidative stress (OS) and reductive stress (RS). In this review, we compile several experimental research findings that show sustained shifts towards OS will alter the homeostatic redox mechanism to cause cardiovascular complications, as well as findings that show a prolonged antioxidant state or RS can similarly lead to such cardiovascular complications. This experimental evidence is specifically focused on the role of glutathione, the most abundant antioxidant in the heart, in a redox homeostatic mechanism that has been shifted towards OS or RS. This may lead to impairment of cellular signaling mechanisms and elevated pools of proteotoxicity associated with cardiac dysfunction.
Collapse
|
9
|
Wang X, Gao M, Zhang J, Ma Y, Qu W, Liang J, Wu H, Wen H. Peperomin E and its orally bioavailable analog induce oxidative stress-mediated apoptosis of acute myeloid leukemia progenitor cells by targeting thioredoxin reductase. Redox Biol 2019; 24:101153. [PMID: 30909158 PMCID: PMC6434189 DOI: 10.1016/j.redox.2019.101153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/18/2019] [Accepted: 02/26/2019] [Indexed: 01/03/2023] Open
Abstract
The early immature CD34+ acute myeloid leukemia (AML) cell subpopulation-acute myeloid leukemia progenitor cells (APCs), is often resistant to conventional chemotherapy, making them largely responsible for the relapse of AML. However, to date, the eradication of APCs remains a major challenge. We previously reported a naturally occurring secolignan- Peperomin E (PepE) and its analog 6-methyl (hydroxyethyl) amino-2, 6-dihydropeperomin E (DMAPE) that selectively target and induce oxidative stress-mediated apoptosis in KG-1a CD34+ cells (an APCs-like cell line) in vitro. We therefore further evaluated the efficacy and the mechanism of action of these compounds in this study. We found that PepE and DMAPE have similar potential to eliminate primary APCs, with no substantial toxicities to the normal cells in vitro and in vivo. Mechanistically, these agents selectively inhibit TrxR1, an antioxidant enzyme aberrantly expressed in APCs, by covalently binding to its selenocysteine residue at the C-terminal redox center. TrxR1 inhibition mediated by PepE (DMAPE) leads to the formation of cellular selenium compromised thioredoxin reductase-derived apoptotic protein (SecTRAP), oxidation of Trx, induction of oxidative stress and finally activation of apoptosis of APCs. Our results demonstrate a potential anti-APCs molecular target – TrxR1 and provide valuable insights into the mechanism underlying PepE (DMAPE)-induced cytotoxicity of APCs, and support the further preclinical investigations on PepE (DMAPE)-related therapies for the treatment of relapsed AML.
Collapse
Affiliation(s)
- Xinzhi Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Avenue No. 138, Nanjing 210023, People's Republic of China.
| | - Ming Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Avenue No. 138, Nanjing 210023, People's Republic of China
| | - Jiyun Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Avenue No. 138, Nanjing 210023, People's Republic of China
| | - Ying Ma
- Nanjing University of Science and Technology Hospital, Nanjing University of Science and Technology, Xiaolinwei Lane No. 200, Nanjing 210094, People's Republic of China
| | - Wenshu Qu
- People's Liberation Army Cancer Center, Nanjing Bayi Hospital, Yanggongjing Street No. 34, Nanjing 210002, People's Republic of China
| | - Jingyu Liang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Tongjia Lane No.24, Nanjing 210009, People's Republic of China
| | - Hao Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Avenue No. 138, Nanjing 210023, People's Republic of China
| | - Hongmei Wen
- School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Avenue No. 138, Nanjing 210023, People's Republic of China.
| |
Collapse
|
10
|
Hepatic metabolic adaptation in a murine model of glutathione deficiency. Chem Biol Interact 2019; 303:1-6. [PMID: 30794799 DOI: 10.1016/j.cbi.2019.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/03/2019] [Accepted: 02/16/2019] [Indexed: 11/23/2022]
Abstract
Glutathione (GSH), the most abundant cellular non-protein thiol, plays a pivotal role in hepatic defense mechanisms against oxidative damage. Despite a strong association between disrupted GSH homeostasis and liver diseases of various etiologies, it was shown that GSH-deficient glutamate-cysteine ligase modifier subunit (Gclm)-null mice are protected against fatty liver development induced by a variety of dietary and environmental insults. The biochemical mechanisms underpinning this protective phenotype have not been clearly defined. The purpose of the current study was to characterize the intrinsic metabolic signature in the livers from GSH deficient Gclm-null mice. Global profiling of hepatic polar metabolites revealed a spectrum of changes in amino acids and metabolites derived from fatty acids, glucose and nucleic acids due to the loss of GCLM. Overall, the observed low GSH-driven metabolic changes represent metabolic adaptations, including elevations in glutamate, aspartate, acetyl-CoA and gluconate, which are beneficial for the maintenance of cellular redox and metabolic homeostasis.
Collapse
|
11
|
Sturm C, Wagner AE. Brassica-Derived Plant Bioactives as Modulators of Chemopreventive and Inflammatory Signaling Pathways. Int J Mol Sci 2017; 18:E1890. [PMID: 28862664 PMCID: PMC5618539 DOI: 10.3390/ijms18091890] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/22/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022] Open
Abstract
A high consumption of vegetables belonging to the Brassicaceae family has been related to a lower incidence of chronic diseases including different kinds of cancer. These beneficial effects of, e.g., broccoli, cabbage or rocket (arugula) intake have been mainly dedicated to the sulfur-containing glucosinolates (GLSs)-secondary plant compounds nearly exclusively present in Brassicaceae-and in particular to their bioactive breakdown products including isothiocyanates (ITCs). Overall, the current literature indicate that selected Brassica-derived ITCs exhibit health-promoting effects in vitro, as well as in laboratory mice in vivo. Some studies suggest anti-carcinogenic and anti-inflammatory properties for ITCs which may be communicated through an activation of the redox-sensitive transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) that controls the expression of antioxidant and phase II enzymes. Furthermore, it has been shown that ITCs are able to significantly ameliorate a severe inflammatory phenotype in colitic mice in vivo. As there are studies available suggesting an epigenetic mode of action for Brassica-derived phytochemicals, the conduction of further studies would be recommendable to investigate if the beneficial effects of these compounds also persist during an irregular consumption pattern.
Collapse
Affiliation(s)
- Christine Sturm
- Institute of Nutritional Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| | - Anika E Wagner
- Institute of Nutritional Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| |
Collapse
|
12
|
Melhem H, Spalinger MR, Cosin-Roger J, Atrott K, Lang S, Wojtal KA, Vavricka SR, Rogler G, Frey-Wagner I. Prdx6 Deficiency Ameliorates DSS Colitis: Relevance of Compensatory Antioxidant Mechanisms. J Crohns Colitis 2017; 11:871-884. [PMID: 28199527 DOI: 10.1093/ecco-jcc/jjx016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/10/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS An imbalance between cellular antioxidant defence system[s] and reactive oxygen species [ROS]-driven oxidative stress has been implicated in the pathogenesis of inflammatory bowel disease. Peroxiredoxin [PRDX] 6 contributes to an appropriate redox balance by clearing ROS and reducing peroxidized membrane phospholipids. We here studied the role of PRDX6 in acute and chronic dextran sodium sulphate [DSS]-induced colitis. METHODS To investigate the impact of PRDX6 on intestinal inflammation, we used wild type [WT], Prdx6 knock-out mice [Prdx6-/-] and transgenic mice [Prdx6tg/tg], overexpressing Prdx6. Acute and chronic colitis was induced by DSS in WT, Prdx6-/- and Prdx6tg/tg mice. Colitis was evaluated by endoscopy, colon length, histopathological assessment and myeloperoxidase [MPO] activity. Changes in mRNA and protein expression of pro-inflammatory cytokines and antioxidant enzymes were evaluated by real-time quantitative polymerase chain reaction [RT-qPCR] and western blot. Total glutathione [GSH] levels in colon samples were determined. RESULTS Prdx6-/- mice exposed to acute and chronic DSS showed a significant decrease in the clinical parameters and in colonic expression of pro-inflammatory cytokines compared with WT mice. mRNA expression of antioxidant enzymes in colon samples was significantly increased in Prdx6-/- compared with WT mice exposed to acute and chronic DSS. In addition, total GSH levels were increased in Prdx6-/- mice treated with DSS in comparison with WT. Overexpression of Prdx6 did not significantly influence acute and chronic colitis. CONCLUSIONS Our data indicate that a lack of the antioxidant enzyme PRDX6 protects against the development of acute and chronic experimental colitis and is associated with increased expression and function of other antioxidant enzymes, suggesting effective compensatory mechanisms.
Collapse
Affiliation(s)
- Hassan Melhem
- Department of Gastroenterology and Hepatology, University Hospital Zurich,Zurich, Switzerland
| | - Marianne R Spalinger
- Department of Gastroenterology and Hepatology, University Hospital Zurich,Zurich, Switzerland
| | - Jesus Cosin-Roger
- Department of Gastroenterology and Hepatology, University Hospital Zurich,Zurich, Switzerland
| | - Kirstin Atrott
- Department of Gastroenterology and Hepatology, University Hospital Zurich,Zurich, Switzerland
| | - Silvia Lang
- Department of Gastroenterology and Hepatology, University Hospital Zurich,Zurich, Switzerland
| | - Kacper A Wojtal
- Department of Gastroenterology and Hepatology, University Hospital Zurich,Zurich, Switzerland
| | - Stephan R Vavricka
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.,Division of Gastroenterology and Hepatology, Triemli Hospital, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology [ZIHP], University of Zurich, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.,Division of Gastroenterology and Hepatology, Triemli Hospital, Zurich, Switzerland
| | - Isabelle Frey-Wagner
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.,Division of Gastroenterology and Hepatology, Triemli Hospital, Zurich, Switzerland
| |
Collapse
|
13
|
Translational and post-translational regulation of mouse cation transport regulator homolog 1. Sci Rep 2016; 6:28016. [PMID: 27302742 PMCID: PMC4908420 DOI: 10.1038/srep28016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 05/27/2016] [Indexed: 01/15/2023] Open
Abstract
Cation transport regulator homolog 1 (Chac1) is an endoplasmic reticulum (ER) stress inducible gene that has a function as a γ-glutamyl cyclotransferase involved in the degradation of glutathione. To characterize the translation and stability of Chac1, we found that the Kozak-like sequence present in the 5′ untranslated region (5′UTR) of the Chac1 mRNA was responsible for Chac1 translation. In addition, the short form (ΔChac1), which translated from the second ATG codon, was generated in the absence of the 5′UTR. The proteasome pathway predominantly participated in the stability of the Chac1 protein; however, its expression was remarkably up-regulated by co-transfection with ubiquitin genes. Using an immunoprecipitation assay, we revealed that ubiquitin molecule was directly conjugated to Chac1, and that mutated Chac1 with all lysine residues replaced by arginine was also ubiquitinated. Finally, we showed that WT Chac1 but not ΔChac1 reduced the intracellular level of glutathione. Taken together, our results suggest that the Chac1 protein expression is regulated in translational and post-translational fashion due to the Kozak-like sequence in the 5′UTR and the ubiquitin-mediated pathways. The bidirectional roles of ubiquitination in regulating Chac1 stabilization might give us a new insight into understanding the homeostasis of glutathione under pathophysiological conditions.
Collapse
|
14
|
Glutamate cysteine ligase and the age-related decline in cellular glutathione: The therapeutic potential of γ-glutamylcysteine. Arch Biochem Biophys 2016; 593:12-23. [DOI: 10.1016/j.abb.2016.01.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 01/28/2023]
|
15
|
Trujillo J, Granados-Castro LF, Zazueta C, Andérica-Romero AC, Chirino YI, Pedraza-Chaverrí J. Mitochondria as a Target in the Therapeutic Properties of Curcumin. Arch Pharm (Weinheim) 2014; 347:873-84. [DOI: 10.1002/ardp.201400266] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/02/2014] [Accepted: 08/15/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Joyce Trujillo
- Facultad de Química; Department of Biology; UNAM; Ciudad Universitaria; México D.F. Mexico
| | | | - Cecilia Zazueta
- Department of Cardiovascular Medicine; Instituto Nacional de Cardiología Ignacio Chávez; México D.F. Mexico
| | | | - Yolanda Irasema Chirino
- Unidad de Biomedicina; Facultad de Estudios Superiores Iztacala; UNAM; Estado de México Mexico
| | - José Pedraza-Chaverrí
- Facultad de Química; Department of Biology; UNAM; Ciudad Universitaria; México D.F. Mexico
| |
Collapse
|
16
|
Zheng J, Piao MJ, Kim KC, Yao CW, Cha JW, Hyun JW. Fucoxanthin enhances the level of reduced glutathione via the Nrf2-mediated pathway in human keratinocytes. Mar Drugs 2014; 12:4214-30. [PMID: 25028796 PMCID: PMC4113824 DOI: 10.3390/md12074214] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/01/2014] [Accepted: 07/04/2014] [Indexed: 11/28/2022] Open
Abstract
Fucoxanthin, a natural carotenoid, is abundant in seaweed with antioxidant properties. This study investigated the role of fucoxanthin in the induction of antioxidant enzymes involved in the synthesis of reduced glutathione (GSH), synthesized by glutamate-cysteine ligase catalytic subunit (GCLC) and glutathione synthetase (GSS), via Akt/nuclear factor-erythroid 2-related (Nrf2) pathway in human keratinocytes (HaCaT) and elucidated the underlying mechanism. Fucoxanthin treatment increased the mRNA and protein levels of GCLC and GSS in HaCaT cells. In addition, fucoxanthin treatment promoted the nuclear translocation and phosphorylation of Nrf2, a transcription factor for the genes encoding GCLC and GSS. Chromatin immune-precipitation and luciferase reporter gene assays revealed that fucoxanthin treatment increased the binding of Nrf2 to the antioxidant response element (ARE) sequence and transcriptional activity of Nrf2. Fucoxanthin treatment increased phosphorylation of Akt (active form), an up-regulator of Nrf2 and exposure to LY294002, a phosphoinositide 3-kinase (PI3K)/Akt inhibitor, suppressed the fucoxanthin-induced activation of Akt, Nrf2, resulting in decreased GCLC and GSS expression. In accordance with the effects on GCLC and GSS expression, fucoxanthin induced the level of GSH. In addition, fucoxanthin treatment recovered the level of GSH reduced by ultraviolet B irradiation. Taken together, these findings suggest that fucoxanthin treatment augments cellular antioxidant defense by inducing Nrf2-driven expression of enzymes involved in GSH synthesis via PI3K/Akt signaling.
Collapse
Affiliation(s)
- Jian Zheng
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 690-756, Korea.
| | - Mei Jing Piao
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 690-756, Korea.
| | - Ki Cheon Kim
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 690-756, Korea.
| | - Cheng Wen Yao
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 690-756, Korea.
| | - Ji Won Cha
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 690-756, Korea.
| | - Jin Won Hyun
- School of Medicine and Institute for Nuclear Science and Technology, Jeju National University, Jeju 690-756, Korea.
| |
Collapse
|
17
|
Backos DS, Fritz KS, McArthur DG, Kepa JK, Donson AM, Petersen DR, Foreman NK, Franklin CC, Reigan P. Glycation of glutamate cysteine ligase by 2-deoxy-d-ribose and its potential impact on chemoresistance in glioblastoma. Neurochem Res 2013; 38:1838-49. [PMID: 23743623 DOI: 10.1007/s11064-013-1090-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/28/2013] [Indexed: 01/13/2023]
Abstract
The antioxidant glutathione (GSH) plays a critical role in maintaining intracellular redox homeostasis but in tumors the GSH biosynthetic pathway is often dysregulated, contributing to tumor resistance to radiation and chemotherapy. Glutamate-cysteine ligase (GCL) catalyzes the first and rate-limiting reaction in GSH synthesis, and enzyme function is controlled by GSH feedback inhibition or by transcriptional upregulation of the catalytic (GCLC) and modifier (GCLM) subunits. However, it has recently been reported that the activity of GCLC and the formation of GCL can be modified by reactive aldehyde products derived from lipid peroxidation. Due to the susceptibility of GCLC to posttranslational modifications by reactive aldehydes, we examined the potential for 2-deoxy-D-ribose (2dDR) to glycate GCLC and regulate enzyme activity and GCL formation. 2dDR was found to directly modify both GCLC and GCLM in vitro, resulting in a significant inhibition of GCLC and GCL enzyme activity without altering substrate affinity or feedback inhibition. 2dDR-mediated glycation also inhibited GCL subunit heterodimerization and formation of the GCL holoenzyme complex while not causing dissociation of pre-formed holoenzyme. This PTM could be of particular importance in glioblastoma (GBM) where intratumoral necrosis provides an abundance of thymidine, which can be metabolized by thymidine phosphorylase (TP) to form 2dDR. TP is expressed at high levels in human GBM tumors and shRNA knockdown of TP in U87 GBM cells results in a significant increase in cellular GCL enzymatic activity.
Collapse
Affiliation(s)
- Donald S Backos
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, V20-2102, Aurora, CO, 80045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
The amelioration of N-acetyl-p-benzoquinone imine toxicity by ginsenoside Rg3: the role of Nrf2-mediated detoxification and Mrp1/Mrp3 transports. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:957947. [PMID: 23766864 PMCID: PMC3666202 DOI: 10.1155/2013/957947] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 04/22/2013] [Indexed: 11/18/2022]
Abstract
Previously, we found that Korean red ginseng suppressed acetaminophen (APAP)-induced hepatotoxicity via alteration of its metabolic profile involving GSTA2 induction and that ginsenoside Rg3 was a major component of this gene induction. In the present study, therefore, we assessed the protective effect of Rg3 against N-acetyl-p-benzoquinone imine (NAPQI), a toxic metabolic intermediate of APAP. Excess NAPQI resulted in GSH depletion with increases in the ALT and AST activities in H4IIE cells. Rg3 pretreatment reversed GSH depletion by NAPQI. Rg3 resulted in increased mRNA levels of the catalytic and modulatory subunit of glutamate cysteine ligase (GCL), the rate-limiting steps in GSH synthesis and subsequently increased GSH content. Rg3 increased levels of nuclear Nrf2, an essential transcriptional factor of these genes. The knockdown or knockout of the Nrf2 gene abrogated the inductions of mRNA and protein by Rg3. Abolishment of the reversal of GSH depletion by Rg3 against NAPQI was observed in Nrf2-deficient cells. Rg3 induced multidrug resistance-associated protein (Mrp) 1 and Mrp3 mRNA levels, but not in Nrf2-deficient cells. Taken together, these results demonstrate that Rg3 is efficacious in protecting hepatocytes against NAPQI insult, due to GSH repletion and coordinated gene regulations of GSH synthesis and Mrp family genes by Nrf2.
Collapse
|
19
|
Ernst IM, Palani K, Esatbeyoglu T, Schwarz K, Rimbach G. Synthesis and Nrf2-inducing activity of the isothiocyanates iberverin, iberin and cheirolin. Pharmacol Res 2013; 70:155-62. [DOI: 10.1016/j.phrs.2013.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/23/2012] [Accepted: 01/18/2013] [Indexed: 12/18/2022]
|
20
|
Esatbeyoglu T, Huebbe P, Ernst IMA, Chin D, Wagner AE, Rimbach G. Curcumin--from molecule to biological function. Angew Chem Int Ed Engl 2012; 51:5308-32. [PMID: 22566109 DOI: 10.1002/anie.201107724] [Citation(s) in RCA: 587] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Indexed: 12/13/2022]
Abstract
Turmeric is traditionally used as a spice and coloring in foods. It is an important ingredient in curry and gives curry powder its characteristic yellow color. As a consequence of its intense yellow color, turmeric, or curcumin (food additive E100), is used as a food coloring (e.g. mustard). Turmeric contains the curcuminoids curcumin, demethoxycurcumin, and bisdemethoxycurcumin. Recently, the health properties (neuroprotection, chemo-, and cancer prevention) of curcuminoids have gained increasing attention. Curcuminoids induce endogenous antioxidant defense mechanisms in the organism and have anti-inflammatory activity. Curcuminoids influence gene expression as well as epigenetic mechanisms. Synthetic curcumin analogues also exhibit biological activity. This Review describes the development of curcumin from a "traditional" spice and food coloring to a "modern" biological regulator.
Collapse
Affiliation(s)
- Tuba Esatbeyoglu
- Abteilung Lebensmittelwissenschaft, Institut für Humanernährung und Lebensmittelkunde, Christian-Albrechts-Universität zu Kiel, Kiel, Deutschland
| | | | | | | | | | | |
Collapse
|
21
|
Esatbeyoglu T, Huebbe P, Ernst IMA, Chin D, Wagner AE, Rimbach G. Curcumin - vom Molekül zur biologischen Wirkung. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201107724] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Willis MN, Liu Y, Biterova EI, Simpson MA, Kim H, Lee J, Barycki JJ. Enzymatic defects underlying hereditary glutamate cysteine ligase deficiency are mitigated by association of the catalytic and regulatory subunits. Biochemistry 2011; 50:6508-17. [PMID: 21657237 DOI: 10.1021/bi200708w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Glutamate cysteine ligase (GCL) deficiency is a rare autosomal recessive trait that compromises production of glutathione, a critical redox buffer and enzymatic cofactor. Patients have markedly reduced levels of erythrocyte glutathione, leading to hemolytic anemia and, in some cases, impaired neurological function. Human glutamate cysteine ligase is a heterodimer comprised of a catalytic subunit (GCLC) and a regulatory subunit (GCLM), which catalyzes the initial rate-limiting step in glutathione production. Four clinical missense mutations have been identified within GCLC: Arg127Cys, Pro158Leu, His370Leu, and Pro414Leu. Here, we have evaluated the impacts of these mutations on enzymatic function in vivo and in vitro to gain further insight into the pathology. Embryonic fibroblasts from GCLC null mice were transiently transfected with wild-type or mutant GCLC, and cellular glutathione levels were determined. The four mutant transfectants each had significantly lower levels of glutathione relative to that of the wild type, with the Pro414Leu mutant being most compromised. The contributions of the regulatory subunit to GCL activity were investigated using a Saccharomyces cerevisiae model system. Mutant GCLC alone could not complement a glutathione deficient strain and required the concurrent addition of GCLM to restore growth. Kinetic characterizations of the recombinant GCLC mutants indicated that the Arg127Cys, His370Leu, and Pro414Leu mutants have compromised enzymatic activity that can largely be rescued by the addition of GCLM. Interestingly, the Pro158Leu mutant has kinetic constants comparable to those of wild-type GCLC, suggesting that heterodimer formation is needed for stability in vivo. Strategies that promote heterodimer formation and persistence would be effective therapeutics for the treatment of GCL deficiency.
Collapse
Affiliation(s)
- Melanie Neely Willis
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588-0664, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Izigov N, Farzam N, Savion N. S-allylmercapto-N-acetylcysteine up-regulates cellular glutathione and protects vascular endothelial cells from oxidative stress. Free Radic Biol Med 2011; 50:1131-9. [PMID: 21281712 DOI: 10.1016/j.freeradbiomed.2011.01.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 01/10/2011] [Accepted: 01/21/2011] [Indexed: 10/18/2022]
Abstract
Oxidative stress and/or low cellular glutathione (GSH) levels are associated with the development and progression of numerous pathological conditions. Cells possess various antioxidant protection mechanisms, including GSH and phase II detoxifying enzymes. N-acetylcysteine (NAC) supplies cells with cysteine to increase GSH level but its efficacy is relatively low because of its limited tissue penetration. Allicin (diallyl thiosulfinate), a reactive sulfaorganic compound, increases cellular GSH and phase II detoxifying enzymes in vascular endothelial cells (EC). A novel compound was designed: S-allylmercapto-N-acetylcysteine (ASSNAC), a conjugate of S-allyl mercaptan (a component of allicin) and NAC. Both ASSNAC and NAC increased cellular GSH of ECs, reaching a maximum of up to four- and threefold increase after exposure for 24 or 6 h at a concentration of 0.2 or 1 mM, respectively. ASSNAC induced nuclear translocation of the activated transcription factor Nrf2 and expression of phase II detoxifying enzymes. EC exposure to tBuOOH resulted in 75% cytotoxicity, and pretreatment of cultures with 0.2 mM ASSNAC or 2mM NAC reduced cytotoxicity to 20 and 42%, respectively. In conclusion, ASSNAC is superior to NAC in protecting cells from oxidative stress because of its ability to up-regulate both GSH and the expression of phase II detoxifying enzymes.
Collapse
Affiliation(s)
- Nira Izigov
- Goldschleger Eye Research Institute, Tel Hashomer 52621, Israel
| | | | | |
Collapse
|
24
|
Backos DS, Fritz KS, Roede JR, Petersen DR, Franklin CC. Posttranslational modification and regulation of glutamate-cysteine ligase by the α,β-unsaturated aldehyde 4-hydroxy-2-nonenal. Free Radic Biol Med 2011; 50:14-26. [PMID: 20970495 PMCID: PMC3014730 DOI: 10.1016/j.freeradbiomed.2010.10.694] [Citation(s) in RCA: 233] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 09/27/2010] [Accepted: 10/11/2010] [Indexed: 11/21/2022]
Abstract
4-Hydroxy-2-nonenal (4-HNE) is a lipid peroxidation product formed during oxidative stress that can alter protein function via adduction of nucleophilic amino acid residues. 4-HNE detoxification occurs mainly via glutathione (GSH) conjugation and transporter-mediated efflux. This results in a net loss of cellular GSH, and restoration of GSH homeostasis requires de novo GSH biosynthesis. The rate-limiting step in GSH biosynthesis is catalyzed by glutamate-cysteine ligase (GCL), a heterodimeric holoenzyme composed of a catalytic (GCLC) and a modulatory (GCLM) subunit. The relative levels of the GCL subunits are a major determinant of cellular GSH biosynthetic capacity and 4-HNE induces the expression of both GCL subunits. In this study, we demonstrate that 4-HNE can alter GCL holoenzyme formation and activity via direct posttranslational modification of the GCL subunits in vitro. 4-HNE directly modified Cys553 of GCLC and Cys35 of GCLM in vitro, which significantly increased monomeric GCLC enzymatic activity, but reduced GCL holoenzyme activity and formation of the GCL holoenzyme complex. In silico molecular modeling studies also indicate these residues are likely to be functionally relevant. Within a cellular context, this novel posttranslational regulation of GCL activity could significantly affect cellular GSH homeostasis and GSH-dependent detoxification during periods of oxidative stress.
Collapse
Affiliation(s)
- Donald S. Backos
- Department of Pharmaceutical Sciences, Graduate Program in Toxicology, School of Pharmacy, University of Colorado Denver, Aurora, CO 80045
| | - Kristofer S. Fritz
- Department of Pharmaceutical Sciences, Graduate Program in Toxicology, School of Pharmacy, University of Colorado Denver, Aurora, CO 80045
| | - James R. Roede
- Department of Medicine, Pulmonary Division, Emory University School of Medicine, Atlanta, GA 30322
| | - Dennis R. Petersen
- Department of Pharmaceutical Sciences, Graduate Program in Toxicology, School of Pharmacy, University of Colorado Denver, Aurora, CO 80045
| | - Christopher C. Franklin
- Department of Pharmaceutical Sciences, Graduate Program in Toxicology, School of Pharmacy, University of Colorado Denver, Aurora, CO 80045
- University of Colorado Cancer Center, University of Colorado Denver, Aurora, CO 80045
- to whom correspondence should be addressed: University of Colorado Denver, Department of Pharmaceutical Sciences, School of Pharmacy, C238-P15, Research-2, 12700 E. 19th Avenue, Room 3009, Aurora, CO 80045, Phone: 303-724-6124, FAX: 303-724-7266,
| |
Collapse
|
25
|
Krejsa CM, Franklin CC, White CC, Ledbetter JA, Schieven GL, Kavanagh TJ. Rapid activation of glutamate cysteine ligase following oxidative stress. J Biol Chem 2010; 285:16116-24. [PMID: 20332089 DOI: 10.1074/jbc.m110.116210] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Glutamate cysteine ligase (GCL) catalyzes the rate-limiting step in the formation of the cellular antioxidant glutathione (GSH). The GCL holoenzyme consists of two separately coded proteins, a catalytic subunit (GCLC) and a modifier subunit (GCLM). Both GCLC and GLCM are controlled transcriptionally by a variety of cellular stimuli, including oxidative stress. This study addresses post-translational control of GCL activity, which increased rapidly in human lymphocytes following oxidative stress. Activation of GCL occurred within minutes of treatment and without any change in GCL protein levels and coincided with an increase in the proportion of GCLC in the holoenzyme form. Likewise, GCLM shifted from the monomeric form to holoenzyme and higher molecular weight species. Normal rat tissues also showed a distribution of monomeric and higher molecular weight forms. Neither GCL activation, nor the formation of holoenzyme, required a covalent intermolecular disulfide bridge between GCLC and GCLM. However, in immunoprecipitation studies, a neutralizing epitope associated with enzymatic activity was protected following cellular oxidative stress. Thus, the N-terminal portion of GCLC may undergo a change that stabilizes the GCL holoenzyme. Our results suggest that a dynamic equilibrium exists between low and high activity forms of GCL and is altered by transient oxidative stress. This provides a mechanism for the rapid post-translational activation of GCL and maintenance of cellular GSH homeostasis.
Collapse
Affiliation(s)
- Cecile M Krejsa
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
26
|
Manipulation of cellular GSH biosynthetic capacity via TAT-mediated protein transduction of wild-type or a dominant-negative mutant of glutamate cysteine ligase alters cell sensitivity to oxidant-induced cytotoxicity. Toxicol Appl Pharmacol 2009; 243:35-45. [PMID: 19914271 DOI: 10.1016/j.taap.2009.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 11/04/2009] [Accepted: 11/06/2009] [Indexed: 02/07/2023]
Abstract
The glutathione (GSH) antioxidant defense system plays a central role in protecting mammalian cells against oxidative injury. Glutamate cysteine ligase (GCL) is the rate-limiting enzyme in GSH biosynthesis and is a heterodimeric holoenzyme composed of catalytic (GCLC) and modifier (GCLM) subunits. As a means of assessing the cytoprotective effects of enhanced GSH biosynthetic capacity, we have developed a protein transduction approach whereby recombinant GCL protein can be rapidly and directly transferred into cells when coupled to the HIV TAT protein transduction domain. Bacterial expression vectors encoding TAT fusion proteins of both GCL subunits were generated and recombinant fusion proteins were synthesized and purified to near homogeneity. The TAT-GCL fusion proteins were capable of heterodimerization and formation of functional GCL holoenzyme in vitro. Exposure of Hepa-1c1c7 cells to the TAT-GCL fusion proteins resulted in the time- and dose-dependent transduction of both GCL subunits and increased cellular GCL activity and GSH levels. A heterodimerization-competent, enzymatically deficient GCLC-TAT mutant was also generated in an attempt to create a dominant-negative suppressor of GCL. Transduction of cells with a catalytically inactive GCLC(E103A)-TAT mutant decreased cellular GCL activity in a dose-dependent manner. TAT-mediated manipulation of cellular GCL activity was also functionally relevant as transduction with wild-type GCLC(WT)-TAT or mutant GCLC(E103A)-TAT conferred protection or enhanced sensitivity to H(2)O(2)-induced cell death, respectively. These findings demonstrate that TAT-mediated transduction of wild-type or dominant-inhibitory mutants of the GCL subunits is a viable means of manipulating cellular GCL activity to assess the effects of altered GSH biosynthetic capacity.
Collapse
|
27
|
Biterova EI, Barycki JJ. Mechanistic details of glutathione biosynthesis revealed by crystal structures of Saccharomyces cerevisiae glutamate cysteine ligase. J Biol Chem 2009; 284:32700-8. [PMID: 19726687 DOI: 10.1074/jbc.m109.025114] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutathione is a thiol-disulfide exchange peptide critical for buffering oxidative or chemical stress, and an essential cofactor in several biosynthesis and detoxification pathways. The rate-limiting step in its de novo biosynthesis is catalyzed by glutamate cysteine ligase, a broadly expressed enzyme for which limited structural information is available in higher eukaryotic species. Structural data are critical to the understanding of clinical glutathione deficiency, as well as rational design of enzyme modulators that could impact human disease progression. Here, we have determined the structures of Saccharomyces cerevisiae glutamate cysteine ligase (ScGCL) in the presence of glutamate and MgCl(2) (2.1 A; R = 18.2%, R(free) = 21.9%), and in complex with glutamate, MgCl(2), and ADP (2.7 A; R = 19.0%, R(free) = 24.2%). Inspection of these structures reveals an unusual binding pocket for the alpha-carboxylate of the glutamate substrate and an ATP-independent Mg(2+) coordination site, clarifying the Mg(2+) dependence of the enzymatic reaction. The ScGCL structures were further used to generate a credible homology model of the catalytic subunit of human glutamate cysteine ligase (hGCLC). Examination of the hGCLC model suggests that post-translational modifications of cysteine residues may be involved in the regulation of enzymatic activity, and elucidates the molecular basis of glutathione deficiency associated with patient hGCLC mutations.
Collapse
Affiliation(s)
- Ekaterina I Biterova
- Department of Biochemistry and the Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588-0664, USA
| | | |
Collapse
|
28
|
Tartari S, D'Alessandro G, Babetto E, Rizzardini M, Conforti L, Cantoni L. Adaptation to G93Asuperoxide dismutase 1 in a motor neuron cell line model of amyotrophic lateral sclerosis: the role of glutathione. FEBS J 2009; 276:2861-74. [PMID: 19459941 DOI: 10.1111/j.1742-4658.2009.07010.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Motor neuron degeneration in amyotrophic lateral sclerosis involves oxidative damage. Glutathione (GSH) is critical as an antioxidant and a redox modulator. We used a motor neuronal cell line (NSC-34) to investigate whether wild-type and familial amyotrophic lateral sclerosis-linked G93A mutant Cu,Zn superoxide dismutase (wt/G93ASOD1) modified the GSH pool and glutamate cysteine ligase (GCL), the rate-limiting enzyme for GSH synthesis. We studied the effect of various G93ASOD1 levels and exposure times. Mutant Cu,Zn superoxide dismutase induced an adaptive process involving the upregulation of GSH synthesis, even at very low expression levels. However, cells with a high level of G93ASOD1 cultured for 10 weeks showed GSH depletion and a decrease in expression of the modulatory subunit of GCL. These cells also had lower levels of GSH and GCL activity was not induced after treatment with the pro-oxidant tert-butylhydroquinone. Cells with a low level of G93ASOD1 maintained higher GSH levels and GCL activity, showing that the exposure time and the level of the mutant protein modulate GSH synthesis. We conclude that failure of the regulation of the GSH pathway caused by G93ASOD1 may contribute to motor neuron vulnerability and we identify this pathway as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Silvia Tartari
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Wagner AE, Ernst I, Iori R, Desel C, Rimbach G. Sulforaphane but not ascorbigen, indole-3-carbinole and ascorbic acid activates the transcription factor Nrf2 and induces phase-2 and antioxidant enzymes in human keratinocytes in culture. Exp Dermatol 2009; 19:137-44. [PMID: 19558496 DOI: 10.1111/j.1600-0625.2009.00928.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nrf2 is a basic leucine zipper transcriptional activator essential for the coordinated transcriptional induction of phase-2 and antioxidant enzymes. Brassica vegetables contain phytochemicals including glucoraphanin, the precursor of sulforaphane (SFN) and glucobrassicin, the precursor of indole-3-carbinole (I3C) and ascorbigen (ABG). The degradation products SFN, I3C and ABG may be capable of inducing cytoprotective genes in skin. In this study, we tested the potency of SFN, ABG and I3C in affecting Nrf2-dependent gene expression in human keratinocytes in culture. SFN but not ABG and its precursors I3C and ascorbic acid induced Nrf2 dependent gene expression at a relatively low concentration (5 micromol/l). Induction of Nrf2 due to SFN was accompanied by an increase in mRNA and protein levels of NADPH quinone oxidoreductase 1, heme oxygenase 1 and gamma-glutamylcysteine-synthetase. Furthermore, SFN elevated cellular glutathione levels and antagonized tumor necrosis factor-alpha-induced NFkappaB transactivation. Therefore, SFN treatment may present a strategy for enhancing the cellular defense mechanisms in skin.
Collapse
Affiliation(s)
- Anika E Wagner
- Institute of Human Nutrition and Food Science, Christian-Albrechts-University, Kiel, Germany
| | | | | | | | | |
Collapse
|
30
|
Horev-Azaria L, Eliav S, Izigov N, Pri-Chen S, Mirelman D, Miron T, Rabinkov A, Wilchek M, Jacob-Hirsch J, Amariglio N, Savion N. Allicin up-regulates cellular glutathione level in vascular endothelial cells. Eur J Nutr 2008; 48:67-74. [PMID: 19048328 DOI: 10.1007/s00394-008-0762-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 11/17/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Allicin in garlic is the primary active compound known to rapidly interact with free thiols. AIMS OF THE STUDY To examine the effect of allicin on gene expression and glutathione cellular level in vascular endothelial cells. METHODS Cultured endothelial cells were exposed to allicin; mRNA was prepared and subjected to Micro-array and Real-Time PCR. Glutathione cellular level was determined on cell lysates. RESULTS Micro-array analysis demonstrated allicin-induced up- and down-regulation of 116 and 100 genes, respectively. Up-regulated genes included the phase II detoxifying enzymes thioredoxin reductase 1 and 2, heme oxygenase-1 and glutamate cysteine lygaze modifier subunit, the rate limiting enzyme in glutathione biosynthesis. Endothelial cells exposed to allicin and its derivatives containing glutathione or cysteine residues increased cellular glutathione. Allicin increased the glutathione level in a concentration and time-dependent manner up to 8-fold at a concentration of 10-20 microM after 28 h exposure. Furthermore, allicin derivative-treated cultures demonstrated a 50% decrease in tBuOOH cytotoxicity. CONCLUSIONS These results may suggest a putative role for allicin and its derivatives in preventing reactive oxygen species damage by up-regulating the phase II detoxifying enzymes and increasing the cellular glutathione level.
Collapse
Affiliation(s)
- Limor Horev-Azaria
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Franklin CC, Backos DS, Mohar I, White CC, Forman HJ, Kavanagh TJ. Structure, function, and post-translational regulation of the catalytic and modifier subunits of glutamate cysteine ligase. Mol Aspects Med 2008; 30:86-98. [PMID: 18812186 DOI: 10.1016/j.mam.2008.08.009] [Citation(s) in RCA: 501] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/28/2008] [Accepted: 08/29/2008] [Indexed: 11/28/2022]
Abstract
Glutathione (GSH) is a tripeptide composed of glutamate, cysteine, and glycine. The first and rate-limiting step in GSH synthesis is catalyzed by glutamate cysteine ligase (GCL, previously known as gamma-glutamylcysteine synthetase). GCL is a heterodimeric protein composed of catalytic (GCLC) and modifier (GCLM) subunits that are expressed from different genes. GCLC catalyzes a unique gamma-carboxyl linkage from glutamate to cysteine and requires ATP and Mg(++) as cofactors in this reaction. GCLM increases the V(max) and K(cat) of GCLC, decreases the K(m) for glutamate and ATP, and increases the K(i) for GSH-mediated feedback inhibition of GCL. While post-translational modifications of GCLC (e.g. phosphorylation, myristoylation, caspase-mediated cleavage) have modest effects on GCL activity, oxidative stress dramatically affects GCL holoenzyme formation and activity. Pyridine nucleotides can also modulate GCL activity in some species. Variability in GCL expression is associated with several disease phenotypes and transgenic mouse and rat models promise to be highly useful for investigating the relationships between GCL activity, GSH synthesis, and disease in humans.
Collapse
Affiliation(s)
- Christopher C Franklin
- Department of Pharmaceutical Sciences, University of Colorado Denver, Denver, CO 80262, USA.
| | | | | | | | | | | |
Collapse
|