1
|
Wang XL, Jiang RW. Therapeutic Potential of Superoxide Dismutase Fused with Cell-Penetrating Peptides in Oxidative Stress-Related Diseases. Mini Rev Med Chem 2022; 22:2287-2298. [PMID: 35227183 DOI: 10.2174/1389557522666220228150127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
Superoxide dismutase (SOD) is a well-known cellular antioxidant enzyme. However, exogenous SOD cannot be used to protect tissues from oxidative damage due to the low permeability of the cell membrane. Cell-penetrating peptides (CPPs) are a class of short peptides that can cross the cell membrane. Recombinant fusion protein that fuses SOD protein with CPP (CPP-SOD) can cross various tissues and organs as well as the blood-brain barrier. CPP-SODs can relieve severe oxidative damage in various tissues caused by radiation, ischemia, inflammation, and chemotherapy by clearing the reactive oxygen species, reducing the expression of inflammatory factors, and inhibiting NF-κB/MAPK signaling pathways. Therefore, the clinical application of CPP-SODs provide new therapeutic strategies for a variety of oxidative stress-related disorders, such as Parkinson's disease, diabetes, obesity, cardiac fibrosis, and premature aging.
Collapse
Affiliation(s)
- Xiao-Lu Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Ren-Wang Jiang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, China
| |
Collapse
|
2
|
Yeo EJ, Shin MJ, Yeo HJ, Choi YJ, Sohn EJ, Lee LR, Kwon HJ, Cha HJ, Lee SH, Lee S, Yu YH, Kim DS, Kim DW, Park J, Han KH, Eum WS, Choi SY. Tat-thioredoxin 1 reduces inflammation by inhibiting pro-inflammatory cytokines and modulating MAPK signaling. Exp Ther Med 2021; 22:1395. [PMID: 34650643 DOI: 10.3892/etm.2021.10831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/29/2021] [Indexed: 10/20/2022] Open
Abstract
Thioredoxin 1 (Trx1) serves a central role in redox homeostasis. It is involved in numerous other processes, including oxidative stress and apoptosis. However, to the best of our knowledge, the role of Trx1 in inflammation remains to be explored. The present study investigated the function and mechanism of cell permeable fused Tat-Trx1 protein in macrophages and a mouse model. Transduction levels of Tat-Trx1 were determined via western blotting. Cellular distribution of transduced Tat-Trx1 was determined by fluorescence microscopy. 2',7'-Dichlorofluorescein diacetate and TUNEL staining were performed to determine the production of reactive oxygen species and DNA fragmentation. Protein and gene expression were measured by western blotting and reverse transcription-quantitative PCR (RT-qPCR), respectively. Effects of skin inflammation were determined using hematoxylin and eosin staining, changes in ear weight and ear thickness, and RT-qPCR in ear edema animal models. Transduced Tat-Trx1 inhibited lipopolysaccharide-induced cytotoxicity and activation of NF-κB, MAPK and Akt. Additionally, Tat-Trx1 markedly reduced the production of inducible nitric oxide synthase, cyclooxygenase-2, IL-1β, IL-6 and TNF-α in macrophages. In a 12-O-tetradecanoylphorbol-13-acetate-induced mouse model, Tat-Trx1 reduced inflammatory damage by inhibiting inflammatory mediator and cytokine production. Collectively, these results demonstrated that Tat-Trx1 could exert anti-inflammatory effects by inhibiting the production of pro-inflammatory mediators and cytokines and by modulating MAPK signaling. Therefore, Tat-Trx1 may be a useful therapeutic agent for diseases induced by inflammatory damage.
Collapse
Affiliation(s)
- Eun Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Hyeon Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Yeon Joo Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Eun Jeong Sohn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Lee Re Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Hyun Ju Cha
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Sung Ho Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea.,Genesen Inc., Seoul 06181, Republic of Korea
| | - Sunghou Lee
- Department of Green Chemical Engineering, Sangmyung University, Cheonan, Chungcheongnam 31066, Republic of Korea
| | - Yeon Hee Yu
- Department of Anatomy and BK21 FOUR Project, College of Medicine, Soonchunhyang University, Cheonan, Chungcheongnam 31538, Republic of Korea
| | - Duk-Soo Kim
- Department of Anatomy and BK21 FOUR Project, College of Medicine, Soonchunhyang University, Cheonan, Chungcheongnam 31538, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Kyu Hyung Han
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| |
Collapse
|
3
|
How anthocyanin biosynthesis affects nutritional value and anti-inflammatory effect of black rice. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Quan W, Kong S, Ouyang Q, Tao J, Lu S, Huang Y, Li S, Luo H. Use of 18β-glycyrrhetinic acid nanocrystals to enhance anti-inflammatory activity by improving topical delivery. Colloids Surf B Biointerfaces 2021; 205:111791. [PMID: 34022703 DOI: 10.1016/j.colsurfb.2021.111791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/17/2021] [Accepted: 04/24/2021] [Indexed: 01/05/2023]
Abstract
18β-Glycyrrhetinic acid (GA) is often topically applied in clinical treatment of inflammatory skin diseases. However, GA has poor solubility in water, which results in poor skin permeability and low bioavailability. Nanocrystallization of drugs can enhance their permeability and improve bioavailability. We prepared GA nanocrystals (Nano GA) by high-pressure homogenization. These nanocrystals were characterized by photon correlation spectroscopy, scanning electron microscopy, thermogravimetric analysis, and X-ray diffractometry. The ability of Nano GA to improve dermal permeability was investigated ex vivo using Franz diffusion vertical cells and mouse skin. The topical anti-inflammatory activity of Nano GA was assessed in vivo by a 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced model in mouse ears. The average particle size of a GA nanocrystalline suspension was 288.6 ± 7.3 nm, with a narrow particle-size distribution (polydispersity index ∼0.13 ± 0.10), and the particle size of the lyophilized powder increased (552.0 ± 9.8 nm). After nanocrystallization, the thermal stability and crystallinity decreased but solubility increased significantly. Nano GA showed higher dermal permeability than Coarse GA. Macroscopic and staining-based observations of mouse ears and the levels of proinflammatory factors and myeloperoxidase revealed that the Nano GA hydrogel exhibited better anti-edema ability and more strongly inhibited inflammation development than the Coarse GA hydrogel and indomethacin hydrogel (positive drug). These results suggest that Nano GA could be an efficacious topical therapeutic agent for skin inflammation.
Collapse
Affiliation(s)
- Weiyan Quan
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Songzhi Kong
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Qianqian Ouyang
- The Marine Biomedical Research Institute of Guangdong Zhangjiang, Zhanjiang, 524023, China
| | - Jinlong Tao
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524001, China
| | - Sitong Lu
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yongmei Huang
- The Marine Biomedical Research Institute of Guangdong Zhangjiang, Zhanjiang, 524023, China
| | - Sidong Li
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China; The Marine Biomedical Research Institute of Guangdong Zhangjiang, Zhanjiang, 524023, China
| | - Hui Luo
- The Marine Biomedical Research Institute of Guangdong Zhangjiang, Zhanjiang, 524023, China.
| |
Collapse
|
5
|
Han EJ, Kim HS, Jung K, Asanka Sanjeewa KK, Iresha Nadeeka Madushani Herath KH, Lee W, Jee Y, Jeon YJ, Lee J, Kim T, Shanura Fernando IP, Ahn G. Sargassum horneri ethanol extract ameliorates TNF-α/IFN-γ-induced inflammation in human keratinocytes and TPA-induced ear edema in mice. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Shariev A, Menounos S, Laos AJ, Laxman P, Lai D, Hua S, Zinger A, McRae CR, Casbolt LS, Combes V, Smith G, Hung TT, Dixon KM, Thordarson P, Mason RS, Das A. Skin protective and regenerative effects of RM191A, a novel superoxide dismutase mimetic. Redox Biol 2020; 38:101790. [PMID: 33202300 PMCID: PMC7677716 DOI: 10.1016/j.redox.2020.101790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/12/2020] [Accepted: 11/02/2020] [Indexed: 12/31/2022] Open
Abstract
Superoxide dismutase (SOD) is known to be protective against oxidative stress-mediated skin dysfunction. Here we explore the potential therapeutic activities of RM191A, a novel SOD mimetic, on skin. RM191A is a water-soluble dimeric copper (Cu2+-Cu3+)-centred polyglycine coordination complex. It displays 10-fold higher superoxide quenching activity compared to SOD as well as significant antioxidant, anti-inflammatory and immunomodulatory activities through beneficial modulation of several significant inflammatory cytokines in vitro and in vivo. We tested the therapeutic potential of RM191A in a topical gel using a human skin explant model and observed that it significantly inhibits UV-induced DNA damage in the epidermis and dermis, including cyclobutane pyrimidine dimers (CPD), 8-oxo-guanine (8-oxoG) and 8-nitroguanine (8NGO). RM191A topical gel is found to be non-toxic, non-teratogenic and readily distributed in the body of mice. Moreover, it significantly accelerates excisional wound healing, reduces 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation and attenuates age-associated oxidative stress in skin, demonstrating both skin regenerative and geroprotective properties of RM191A. RM191A is a Cu3+ containing coordination complex with 10-fold higher superoxide quenching activity compared to superoxide dismutase. RM191A exhibits potent antioxidant, anti-inflammatory and immunomodulatory properties in vitro and in vivo. RM191A protects human skin explants against UV-induced oxidative stress and DNA damage. RM191A is non-toxic, non-teratogenic and readily bioavailable in mice. RM191A promotes wound healing, and attenuates TPA-induced inflammation as well as age-associated oxidative stress in mouse skin.
Collapse
Affiliation(s)
- Artur Shariev
- Department of Anatomy and Histology, School of Medical Sciences, University of Sydney, Australia; Bosch Institute, Faculty of Medicine and Health, University of Sydney, Australia
| | - Spiro Menounos
- St. George and Sutherland Clinical School, University of New South Wales, Sydney, Australia
| | - Alistair J Laos
- School of Chemistry, The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, Australia
| | - Pooja Laxman
- School of Chemistry, The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, Australia
| | - Donna Lai
- Bosch Institute, Faculty of Medicine and Health, University of Sydney, Australia
| | - Sheng Hua
- Bosch Institute, Faculty of Medicine and Health, University of Sydney, Australia
| | - Anna Zinger
- Department of Pathology, Faculty of Medicine and Health, University of Sydney, Australia
| | - Christopher R McRae
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Llewellyn S Casbolt
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Valery Combes
- School of Life Sciences, University of Technology, Sydney, Australia
| | - Greg Smith
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Tzong-Tyng Hung
- Biological Resources Imaging Laboratory, University of New South Wales, Sydney, Australia
| | - Katie M Dixon
- Department of Anatomy and Histology, School of Medical Sciences, University of Sydney, Australia; Bosch Institute, Faculty of Medicine and Health, University of Sydney, Australia
| | - Pall Thordarson
- School of Chemistry, The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, Australia
| | - Rebecca S Mason
- Bosch Institute, Faculty of Medicine and Health, University of Sydney, Australia; Department of Physiology, School of Medical Sciences, University of Sydney, Australia
| | - Abhirup Das
- St. George and Sutherland Clinical School, University of New South Wales, Sydney, Australia.
| |
Collapse
|
7
|
Kim SM, Ha SE, Vetrivel P, Kim HH, Bhosale PB, Park JE, Heo JD, Kim YS, Kim GS. Cellular Function of Annexin A1 Protein Mimetic Peptide Ac2-26 in Human Skin Keratinocytes HaCaT and Fibroblast Detroit 551 Cells. Nutrients 2020; 12:nu12113261. [PMID: 33114438 PMCID: PMC7693871 DOI: 10.3390/nu12113261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022] Open
Abstract
Inflammation of the skin is the most common dermatological problem in human. The anti-inflammatory mediated responses of the skin cells provide a mechanism for combating these conditions. Annexin A1 (AnxA1) is one of the proteins that has been shown to have a potent anti-inflammatory effect. However, the effects and mechanisms of AnxA1 in skin keratinocyte and fibroblast have not been reported yet. In the current study, we hypothesized that Ac2-26, AnxA1 mimetic peptide, ameliorates inflammation and wrinkle formation in human skin cells. Therefore, we aimed to identify whether Ac2-26 has anti-inflammatory and anti-wrinkle effects in human keratinocyte (HaCaT) and fibroblast (Detroit 551) cells, respectively. Human HaCaT cells were stimulated by TNF-α/IFN-γ with or without Ac2-26, to identify the anti-inflammatory effect. Human Detroit 551 cells were treated with Ac2-26 to verify the anti-wrinkle effect. Initially, cell cytotoxicity was carried out in each cell line treated using Ac2-26 by MTT assay. Human MDA, IL-8, and procollagen secretion were detected by ELISA assay. The inflammatory chemokines were measured by qRT-PCR analysis. To demonstrate the mechanism, MAPK, NF-κB, JAK/STAT, and MMPs were analyzed by Western blotting. As a result, we identified that Ac2-26 significantly decreased the expression of TNF-α/IFN-γ-stimulated pro-inflammatory chemokines, including IL-1β, IL-6, IL-8, MDC, TARC, and TNF-α, by inhibiting the activation of MAPK, NF-κB, and JAK/STAT pathway in TNF-α/IFN-γ-stimulated HaCaT human keratinocytes. In addition, we also identified that Ac2-26 significantly induced collagen synthesis by generating pro-collagen, and suppressed collagen degradation by inhibiting the collagenase MMP-1 and MMP-8 expression. Collectively, these results suggest that Ac2-26 shows anti-inflammatory and anti-wrinkling effect. These effects may lead to the development of preventive and therapeutic application for inflammation-related skin disease and wrinkle formation.
Collapse
Affiliation(s)
- Seong Min Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (S.M.K.); (S.E.H.); (P.V.); (H.H.K.); (P.B.B.)
| | - Sang Eun Ha
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (S.M.K.); (S.E.H.); (P.V.); (H.H.K.); (P.B.B.)
| | - Preethi Vetrivel
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (S.M.K.); (S.E.H.); (P.V.); (H.H.K.); (P.B.B.)
| | - Hun Hwan Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (S.M.K.); (S.E.H.); (P.V.); (H.H.K.); (P.B.B.)
| | - Pritam Bhagwan Bhosale
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (S.M.K.); (S.E.H.); (P.V.); (H.H.K.); (P.B.B.)
| | - Jung Eun Park
- T-Stem Co., Ltd., Gyeongsangnam-do, Changwon 51573, Korea;
| | - Jeong Doo Heo
- Biological Resources Research Group, Bioenvironmental Science & Toxicology Division, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), 17 Jeigok-gil, Jinju 52834, Korea;
| | - Young Sil Kim
- T-Stem Co., Ltd., Gyeongsangnam-do, Changwon 51573, Korea;
- Correspondence: (Y.S.K.); (G.S.K.); Tel.: +82-55-607-0919 (Y.S.K.); +82-55-772-2346 (G.S.K.); Fax: +82-55-607-0914 (Y.S.K.); +82-55-772-2349 (G.S.K.)
| | - Gon Sup Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (S.M.K.); (S.E.H.); (P.V.); (H.H.K.); (P.B.B.)
- Correspondence: (Y.S.K.); (G.S.K.); Tel.: +82-55-607-0919 (Y.S.K.); +82-55-772-2346 (G.S.K.); Fax: +82-55-607-0914 (Y.S.K.); +82-55-772-2349 (G.S.K.)
| |
Collapse
|
8
|
Brandenburg MM, Rocha FG, Pawloski PL, Soley BDS, Rockenbach A, Scharf DR, Heiden G, Ascari J, Cabrini DA, Otuki MF. Baccharis dracunculifolia (Asteraceae) essential oil displays anti-inflammatory activity in models of skin inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2020; 259:112840. [PMID: 32268204 DOI: 10.1016/j.jep.2020.112840] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/23/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baccharis dracunculifolia (Asteraceae) is a commonly used plant in traditional medicine known as "alecrim-do-campo". Popularly it has been used as an immunostimulant, antibiotic, anti-inflammatory among other applications. So far, only a few studies have investigated the B. dracunculifolia anti-inflammatory effect and none has investigated the effectiveness of essential oil on skin diseases. AIM OF THE STUDY The study aimed at evaluating the topical anti-inflammatory activity of B. dracunculifolia essential oil (BdEO) in mice models of acute and chronic skin inflammation. MATERIALS AND METHODS BdEO was obtained from leaves and it was analyzed with Gas Chromatograph. Topical anti-inflammatory activity of BdEO (0.1, 0.3 and 1.0 mg/ear) was evaluated in Arachidonic Acid or TPA-induced acute and chronic skin inflammation in mice. Parameters such edema, cell migration and keratinocytes proliferation were evaluated. In addition, safety and a possible mechanism of action for BdEO essential oil were also investigated. RESULTS Our results indicate that mainly terpenoids compounds compose BdEO. In addition, topical treatment with BdEO inhibited inflammatory parameters in both acute and chronic models of skin inflammation. This protective effect was associated with reduced edema formation, smaller cellular influx into the inflamed tissue and reduction of keratinocytes hyperproliferation. Although BdEO appears to exert its anti-inflammatory effect through a corticosteroid pathway, no local or systemic side effects were observed. CONCLUSION Taken together, the present results showed that the essential oil obtained by hydrodistillation from B. dracunculifolia leaf samples exhibit remarkable topical anti-inflammatory properties. Therefore, our study demonstrated evidence for BdEO topical anti-inflammatory efficacy and safety, suggesting that it could be considered for developing of a new phytotherapeutic formulation as treatment for skin diseases.
Collapse
Affiliation(s)
| | | | | | - Bruna da Silva Soley
- Department of Pharmacology, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| | - Andressa Rockenbach
- Phytochemistry Laboratory, Universidade Tecnológica Federal do Paraná, Santa Helena, PR, Brazil.
| | - Dilamara Riva Scharf
- Chromatography Laboratory, Universidade Regional de Blumenau, Blumenau, SC, Brazil.
| | - Gustavo Heiden
- Embrapa Clima Temperado, Rodovia BR 392, km 78. Pelotas, RS, Brazil.
| | - Jociani Ascari
- Phytochemistry Laboratory, Universidade Tecnológica Federal do Paraná, Santa Helena, PR, Brazil.
| | | | - Michel Fleith Otuki
- Department of Pharmacology, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
9
|
Li D, Tang X, Liu C, Li H, Li S, Sun S, Zheng X, Wu P, Xu X, Zhang K, Ma H. Jasmine (Jasminum grandiflorum) Flower Extracts Ameliorate Tetradecanoylphorbol Acetate Induced Ear Edema in Mice. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20917498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Published data from in vitro assays support the anti-inflammatory effects of jasmine ( Jasminum grandiflorum Linn.) but limited studies are reported in animal models. Herein, the anti-inflammatory effects of jasmine flower extracts (JFEs) including ethanol extract (JF-EE), petroleum ether extract (JF-PEE), ethyl acetate extract (JF-EAE), and n-butanol extract (JF-BE) were evaluated in a mouse ear edema model. Acute mouse ear skin inflammation was induced by tetradecanoylphorbol acetate (TPA; 125 µg/mL) and then treated with JFEs (100 mg/mL) or dexamethasone (DEX; 6.25 mg/mL; as a positive control). Jasmine flower extracts alleviated ear edema by reducing TPA-increased ear thickness and ear weight by 30.8% to 64.1% and 24.0% to 47.1%, respectively, whereas DEX showed comparable activity (by 71.8% and 49.1%, respectively). Their anti-inflammatory effects were supported by data from the immunohistochemical assays. Jasmine flower extracts reduced the inflammatory cells (from 5.5- to 9.5-fold) and the expressions of inflammation related enzymes including cyclooxygenase-2 and inhibitor of kappa-B kinase (from 1.9- to 2.8-fold and from 7.1- to 11.0-fold, respectively). Findings from this study showed that JFEs were able to ameliorate TPA-induced mouse skin inflammation. However, future studies on the underlying mechanisms of jasmine flower’s anti-inflammatory effects are warranted.
Collapse
Affiliation(s)
- Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), China
| | - Xiaodan Tang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Chang Liu
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Huifang Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Shuzhen Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Shili Sun
- Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Tea Research Institute, Guangzhou, China
| | - Xi Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Panpan Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Xuetao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), China
| | - Hang Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute (Jiangmen), China
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
10
|
Yang Y, Wei Z, Teichmann AT, Wieland FH, Wang A, Lei X, Zhu Y, Yin J, Fan T, Zhou L, Wang C, Chen L. Development of a novel nitric oxide (NO) production inhibitor with potential therapeutic effect on chronic inflammation. Eur J Med Chem 2020; 193:112216. [PMID: 32208222 DOI: 10.1016/j.ejmech.2020.112216] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/07/2020] [Accepted: 03/07/2020] [Indexed: 02/08/2023]
Abstract
Inflammation is a complex biological response to stimuli. Activated macrophages induced excessively release of pro-inflammatory cytokines and mediators such as endogenous radical nitric oxide (NO) play a significant role in the progression of multiple inflammatory diseases. Both natural and synthetic chalcones possess a wide range of bioactivities. In this work, thirty-nine chalcones and three related compounds, including several novel ones, based on bioactive kava chalcones were designed, synthesized and their inhibitory effects on NO production in RAW 264.7 cells were evaluated. The novel compound (E)-1-(2'-hydroxy-4',6'-dimethoxyphenyl)-3-(3-methoxy-4-(3-morpholinopropoxy)phenyl)prop-2-en-1-one (53) exhibited a better inhibitory activity (84.0%) on NO production at 10 μM (IC50 = 6.4 μM) with the lowest cytotoxicity (IC50 > 80 μM) among the tested compounds. Besides, western blot analysis indicated that compound 53 was a potent down-regulator of inducible nitric oxide synthase (iNOS) protein. Docking study revealed that compound 53 also can dock into the active site of iNOS. Furthermore, at the dose of 10 mg/kg/day, compound 53 could both significantly suppress the progression of inflammation on collagen-induced arthritis (CIA) and adjuvant-induced arthritis (AIA) models. In addition, the structure-activity relationship (SAR) of the kava chalcones based analogs was also depicted.
Collapse
Affiliation(s)
- Youzhe Yang
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, PR China; Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China.
| | - Zhe Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, PR China
| | - Alexander Tobias Teichmann
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China
| | - Frank Heinrich Wieland
- Sichuan Provincial Center for Gynaecology and Breast Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China
| | - Amu Wang
- School of Science, Xihua University, Chengdu, 610039, PR China
| | - Xiangui Lei
- School of Science, Xihua University, Chengdu, 610039, PR China
| | - Yue Zhu
- School of Science, Xihua University, Chengdu, 610039, PR China
| | - Jinxiang Yin
- School of Science, Xihua University, Chengdu, 610039, PR China
| | - Tiantian Fan
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Li Zhou
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Chao Wang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, PR China.
| |
Collapse
|
11
|
Curcio MF, Batista WL, Castro ED, Strumillo ST, Ogata FT, Alkmim W, Brunialti MKC, Salomão R, Turcato G, Diaz RS, Monteiro HP, Janini LMR. Nitric oxide stimulates a PKC-Src-Akt signaling axis which increases human immunodeficiency virus type 1 replication in human T lymphocytes. Nitric Oxide 2019; 93:78-89. [PMID: 31539562 DOI: 10.1016/j.niox.2019.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 08/12/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
Human immunodeficiency virus (HIV) infections are typically accompanied by high levels of secreted inflammatory cytokines and generation of high levels of reactive oxygen species (ROS). To elucidate how HIV-1 alters the cellular redox environment during viral replication, we used human HIV-1 infected CD4+T lymphocytes and uninfected cells as controls. ROS and nitric oxide (NO) generation, antioxidant enzyme activity, protein phosphorylation, and viral and proviral loads were measured at different times (2-36 h post-infection) in the presence and absence of the NO donor S-nitroso-N-acetylpenicillamine (SNAP). HIV-1 infection increased ROS generation and decreased intracellular NO content. Upon infection, we observed increases in copper/zinc superoxide dismutase (SOD1) and glutathione peroxidase (GPx) activities, and a marked decrease in glutathione (GSH) concentration. Exposure of HIV-1 infected CD4+T lymphocytes to SNAP resulted in an increasingly oxidizing intracellular environment, associated with tyrosine nitration and SOD1 inhibition. In addition, SNAP treatment promoted phosphorylation and activation of the host's signaling proteins, PKC, Src kinase and Akt. Inhibition of PKC leads to inhibition of Src kinase strongly suggesting that PKC is the upstream element in this signaling cascade. Changes in the intracellular redox environment after SNAP treatment had an effect on HIV-1 replication as reflected by increases in proviral and viral loads. In the absence or presence of SNAP, we observed a decrease in viral load in infected CD4+T lymphocytes pre-incubated with the PKC inhibitor GF109203X. In conclusion, oxidative/nitrosative stress conditions derived from exposure of HIV-1-infected CD4+T lymphocytes to an exogenous NO source trigger a signaling cascade involving PKC, Src kinase and Akt. Activation of this signaling cascade appears to be critical to the establishment of HIV-1 infection.
Collapse
Affiliation(s)
- Marli F Curcio
- Department of Medicine/Infectious Diseases, Universidade Federal de São Paulo, São Paulo, Brazil.
| | - Wagner L Batista
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, Brazil
| | - Eloísa D Castro
- Department of Biochemistry/Molecular Biology, CTCMol, Universidade Federal de São Paulo, Brazil
| | - Scheilla T Strumillo
- Department of Biochemistry/Molecular Biology, CTCMol, Universidade Federal de São Paulo, Brazil
| | - Fernando T Ogata
- Structural and Functional Ecology of Ecosystems, Universidade Paulista, Sorocaba, Brazil
| | - Wagner Alkmim
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Milena K C Brunialti
- Department of Medicine/Infectious Diseases, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Reinaldo Salomão
- Department of Medicine/Infectious Diseases, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gilberto Turcato
- Department of Medicine/Infectious Diseases, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ricardo S Diaz
- Department of Medicine/Infectious Diseases, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Hugo P Monteiro
- Department of Biochemistry/Molecular Biology, CTCMol, Universidade Federal de São Paulo, Brazil
| | - Luiz Mário R Janini
- Department of Medicine/Infectious Diseases, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Chang SN, Khan I, Dey DK, Cho KH, Hwang BS, Bae KB, Kang SC, Park JG. Decursinol angelate ameliorates 12-O-tetradecanoyl phorbol-13-acetate (TPA) -induced NF-κB activation on mice ears by inhibiting exaggerated inflammatory cell infiltration, oxidative stress and pro-inflammatory cytokine production. Food Chem Toxicol 2019; 132:110699. [PMID: 31351099 DOI: 10.1016/j.fct.2019.110699] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/17/2019] [Accepted: 07/23/2019] [Indexed: 12/28/2022]
Abstract
Decursinol angelate (DA) is a pyranocoumarin purified from the roots of Angelica gigas. Here, we synthesized DA and determined its anti-inflammatory potential on TPA-induced mice ear inflammation. First, we evaluated the non-toxic behaviour of DA on HaCaT cells. Additionally, we observed the free radical scavenging potential of DA at 60 μM to be 50%. This finding was further supported by nitric oxide assay, malondialdehyde assay, H2DCFDA staining and western blotting analysis of antioxidant enzymes. DA also suppressed the activation and polarization of macrophage phagocytic activity on RAW 264.7 cells. We further evaluated the expression of ICAM-1, MCP-1, MIP-2 and MIP-1β on in-vivo model system. Consequently, DA significantly reduced the production of NF-κB and COX-2 induced proinflammatory cytokine levels on TPA induced ear edema. Inhibition of MAPK and transcriptional factor NF-κB was also validated by western blotting analysis of p-ERK, p-p38, IKKα, IKKγ, IκBα, NF-κB-p65. Immunohistochemistry and immunofluorescence staining of NFκB-p65, TNF-α and IL-1β were also performed to support the findings. Conclusively, these results suggest that topical administration of DA significantly inhibited the expression of pro-inflammatory cytokines by blocking the canonical NF-κB and MAPK pathway. Therefore, we suggest DA as a potent therapeutic compound against skin inflammation related diseases.
Collapse
Affiliation(s)
- Sukkum Ngullie Chang
- Department of Biotechnology, Daegu University, Gyeongsan, 38453, Republic of Korea
| | - Imran Khan
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea
| | - Debasish Kumar Dey
- Department of Biotechnology, Daegu University, Gyeongsan, 38453, Republic of Korea
| | - Kiu-Hyung Cho
- Research group, Gyeongbuk Institute for Bio Industry(GIB), Andong, 36728, Republic of Korea
| | - Buyng Su Hwang
- Nakdonggang National Institute of Biological Resources, Sangju, 37242, Republic of Korea
| | - Ki Beom Bae
- Advanced Bio Convergence Center, Pohang Technopark Foundation, Pohang, Gyeongbuk, 37668, Republic of Korea
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Gyeongsan, 38453, Republic of Korea.
| | - Jae Gyu Park
- Advanced Bio Convergence Center, Pohang Technopark Foundation, Pohang, Gyeongbuk, 37668, Republic of Korea
| |
Collapse
|
13
|
Topical treatment with a transient receptor potential ankyrin 1 (TRPA1) antagonist reduced nociception and inflammation in a thermal lesion model in rats. Eur J Pharm Sci 2018; 125:28-38. [DOI: 10.1016/j.ejps.2018.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/29/2018] [Accepted: 09/15/2018] [Indexed: 02/06/2023]
|
14
|
Wei Y, Sui DJ, Xu HM, Ouyang Z, Wu N, Wang DJ, Zhang XY, Qian DW. Atractylodes lancea rhizome water extract reduces triptolide-induced toxicity and enhances anti-inflammatory effects. Chin J Nat Med 2018; 15:905-911. [PMID: 29329647 DOI: 10.1016/s1875-5364(18)30006-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Indexed: 01/25/2023]
Abstract
The present study was designed to explore the influence of water extracts of Atractylodes lancea rhizomes on the toxicity and anti-inflammatory effects of triptolide (TP). A water extract was prepared from A. lancea rhizomes and co-administered with TP in C57BL/6 mice. The toxicity was assayed by determining serum biochemical parameters and visceral indexes and by liver histopathological analysis. The hepatic CYP3A expression levels were detected using Western blotting and RT-PCR methods. The data showed that the water extract of A. lancea rhizomes reduced triptolide-induced toxicity, probably by inducing the hepatic expression of CYP3A. The anti-inflammatory effects of TP were evaluated in mice using a xylene-induced ear edema test. By comparing ear edema inhibition rates, we found that the water extract could also increase the anti-inflammatory effects of TP. In conclusion, our results suggested that the water extract of A. lancea rhizomes, used in combination with TP, has a potential in reducing TP-induced toxicity and enhancing its anti-inflammatory effects.
Collapse
Affiliation(s)
- Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China.
| | - Dan-Juan Sui
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Hai-Miao Xu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Ouyang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Na Wu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Du-Jun Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Xiao-Yan Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Da-Wei Qian
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
15
|
HPLC profile and antiedematogenic activity of Ximenia americana L. (Olacaceae) in mice models of skin inflammation. Food Chem Toxicol 2018; 119:199-205. [DOI: 10.1016/j.fct.2018.04.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/14/2018] [Accepted: 04/18/2018] [Indexed: 12/20/2022]
|
16
|
Kim DW, Lee SH, Shin MJ, Kim K, Ku SK, Youn JK, Cho SB, Park JH, Lee CH, Son O, Sohn EJ, Cho SW, Park JH, Kim HA, Han KH, Park J, Eum WS, Choi SY. PEP-1-FK506BP inhibits alkali burn-induced corneal inflammation on the rat model of corneal alkali injury. BMB Rep 2016; 48:618-23. [PMID: 25817214 PMCID: PMC4911203 DOI: 10.5483/bmbrep.2015.48.11.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Indexed: 11/20/2022] Open
Abstract
FK506 binding protein 12 (FK506BP) is a small peptide with a single FK506BP domain that is involved in suppression of immune response and reactive oxygen species. FK506BP has emerged as a potential drug target for several inflammatory diseases. Here, we examined the protective effects of directly applied cell permeable FK506BP (PEP-1-FK506BP) on corneal alkali burn injury (CAI). In the cornea, there was a significant decrease in the number of cells expressing pro-inflammation, apoptotic, and angiogenic factors such as TNF-α, COX-2, and VEGF. Both corneal opacity and corneal neovascularization (CNV) were significantly decreased in the PEP-1-FK506BP treated group. Our results showed that PEP-1-FK506BP can significantly inhibit alkali burn-induced corneal inflammation in rats, possibly by accelerating corneal wound healing and by reducing the production of angiogenic factors and inflammatory cytokines. These results suggest that PEP-1-FK506BP may be a potential therapeutic agent for CAI. [BMB Reports 2015; 48(11): 618-623]
Collapse
Affiliation(s)
- Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, Gangneung 25457, Korea
| | - Sung Ho Lee
- R&D Center, Lumieye Genetics Co., Ltd. Seoul 06198, Korea
| | - Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Kibom Kim
- R&D Center, Lumieye Genetics Co., Ltd. Seoul 06198, Korea
| | - Sae Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea
| | - Jong Kyu Youn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Su Bin Cho
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Jung Hwan Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Chi Hern Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Ora Son
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Eun Jeong Sohn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jong Hoon Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Korea
| | - Hyun Ah Kim
- Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Pyongchon 14068, Korea
| | - Kyu Hyung Han
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| |
Collapse
|
17
|
Seo WY, Youn GS, Choi SY, Park J. Butein, a tetrahydroxychalcone, suppresses pro-inflammatory responses in HaCaT keratinocytes. BMB Rep 2016; 48:495-500. [PMID: 25541056 PMCID: PMC4641232 DOI: 10.5483/bmbrep.2015.48.9.259] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Indexed: 01/29/2023] Open
Abstract
Up-regulation of cell adhesion molecules and proinflammatory cytokines contributes to enhanced monocyte adhesiveness and infiltration into the skin, during the pathogenesis of various inflammatory skin diseases, including atopic dermatitis. In this study, we examined the anti-inflammatory effects of butein, a tetrahydroxychalcone, and its action mechanisms using TNF-α-stimulated keratinocytes. Butein significantly inhibited TNF-α-induced ICAM-I expression and monocyte adhesion in human keratinocyte cell line HaCaT. Butein also decreased TNF-α-induced pro-inflammatory mediators, such as IL-6, IP-10 and MCP-1, in HaCaT cells. Butein decreased TNF-α-induced ROS generation in a dose-dependent manner in HaCaT cells. In addition, treatment of HaCaT cells with butein suppressed TNF-α-induced MAPK activation. Furthermore, butein suppressed TNF-α-induced NF-kappaB activation. Overall, our results indicate that butein has immunomodulatory activities by inhibiting expression of proinflammatory mediators in keratinocytes. Therefore, butein may be used as a therapeutic agent for the treatment of inflammatory skin diseases. [BMB Reports 2015; 48(9): 495-500]
Collapse
Affiliation(s)
- Won Yong Seo
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Gi Soo Youn
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
18
|
Goh AR, Youn GS, Yoo KY, Won MH, Han SZ, Lim SS, Lee KW, Choi SY, Park J. Aronia melanocarpa Concentrate Ameliorates Pro-Inflammatory Responses in HaCaT Keratinocytes and 12-O-Tetradecanoylphorbol-13-Acetate-Induced Ear Edema in Mice. J Med Food 2016; 19:654-62. [PMID: 27331630 DOI: 10.1089/jmf.2015.3624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abnormal expression of pro-inflammatory mediators such as cell adhesion molecules and cytokines has been implicated in various inflammatory skin diseases, including atopic dermatitis. In this study, we investigated the anti-inflammatory activity of Aronia melanocarpa concentrate (AC) and its action mechanisms using in vivo and in vitro skin inflammation models. Topical application of AC on mouse ears significantly suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear edema formation, as judged by measuring ear thickness and weight, and histological analysis. Topical administration of AC also reduced the expression of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 in TPA-stimulated mouse ears. Pretreatment with AC suppressed TNF-α-induced ICAM-I expression and subsequent monocyte adhesiveness in human keratinocyte cell line HaCaT. In addition, AC significantly decreased intracellular reactive oxygen species (ROS) generation as well as mitogen-activated protein kinase (MAPK) activation in TNF-α-stimulated HaCaT cells. AC and its constituent cyanidin 3-glucoside also attenuated TNF-α-induced IKK activation, IκB degradation, p65 phosphorylation/nuclear translocation, and p65 DNA binding activity in HaCaT cells. Overall, our results indicate that AC exerts anti-inflammatory activities by inhibiting expression of pro-inflammatory mediators in vitro and in vivo possibly through suppression of ROS-MAPK-NF-κB signaling pathways. Therefore, AC may be developed as a therapeutic agent to treat various inflammatory skin diseases.
Collapse
Affiliation(s)
| | - Gi Soo Youn
- 1 Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University , Chuncheon, Korea
| | - Ki-Yeon Yoo
- 2 Department of Oral Anatomy, College of Dentistry, Gangneung-Wonju National University , Gangneung, Korea
| | - Moo Ho Won
- 3 Department of Neurobiology, School of Medicine, Kangwon National University , Chuncheon, Korea
| | - Sang-Zin Han
- 4 Department of Life Science, Hallym University , Chuncheon, Korea
| | - Soon Sung Lim
- 5 Department of Food Science and Nutrition, Hallym University , Chuncheon, Korea
| | - Keun Wook Lee
- 1 Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University , Chuncheon, Korea
| | - Soo Young Choi
- 1 Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University , Chuncheon, Korea
| | - Jinseu Park
- 1 Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University , Chuncheon, Korea
| |
Collapse
|
19
|
Song Z, Zhao X, Liu M, Jin H, Cui Y, Hou M, Gao Y. Recombinant human brain natriuretic peptide attenuates LPS-induced cellular injury in human fetal lung fibroblasts via inhibiting MAPK and NF-κB pathway activation. Mol Med Rep 2016; 14:1785-90. [PMID: 27314600 DOI: 10.3892/mmr.2016.5400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 02/19/2016] [Indexed: 11/05/2022] Open
Abstract
Inflammatory responses are vital in lung injury diseases, particularly acute respiratory distress syndrome (ARDS). Recombinant human brain natriuretic peptide (rhBNP) has been shown to exhibit anti‑inflammatory effects in vivo in our previous studies. The present study aimed to investigate the mechanisms underlying the anti‑inflammatory effects of rhBNP on lipopolysaccharide (LPS)-induced human fetal lung fibroblasts (HFL-1). The results showed that LPS induced a significant increase in the leakage of lactate dehydrogenase and the secretion of interleukin (IL)‑1β. Activation of p38, extracellular-signal regulated kinase (ERK) 1/2, c‑Jun NH2-terminal kinase (JNK) mitogen‑activated protein kinases (MAPK)s, and nuclear factor (NF)‑κB in HFL‑1 cells was also observed following treatment with LPS. Treatment with rhBNP (0.1 µM) reduced the production of IL‑1β at the protein and mRNA levels. Moreover, rhBNP decreased the phosphorylation of p38, ERK1/2 and JNK induced by LPS. However, the JNK inhibitor, SP600125, significantly inhibited LPS‑induced IL‑1β production. These results indicate that the inhibition of IL‑1β by may dependent upon the JNK signaling pathway. The LPS‑induced NF‑κB activation was also suppressed by rhBNP, and IL‑1β production was inhibited by the NF‑κB inhibitor. Furthermore, NF‑κB activation was attenuated by the JNK inhibitor, indicating that NF‑κB activation was dependent on the JNK signaling pathway. The present study suggests that rhBNP exhibits an anti‑inflammatory effect on LPS‑induced HFL‑1 cell injury via the inhibition of MAPK and NF‑κB signaling pathways and may exhibit therapeutic potential for acute lung injury and ARDS.
Collapse
Affiliation(s)
- Zhi Song
- Department of Emergency and Critical Care Medicine, The General Hospital of Shenyang Military, Shenyang, Liaoning 110016, P.R. China
| | - Xiu Zhao
- Department of Oral Medicine, The Shenyang Medical College, Shenyang, Liaoning 110034, P.R. China
| | - Martin Liu
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hongxu Jin
- Department of Emergency and Critical Care Medicine, The General Hospital of Shenyang Military, Shenyang, Liaoning 110016, P.R. China
| | - Yan Cui
- Department of Emergency and Critical Care Medicine, The General Hospital of Shenyang Military, Shenyang, Liaoning 110016, P.R. China
| | - Mingxiao Hou
- Department of Emergency and Critical Care Medicine, The General Hospital of Shenyang Military, Shenyang, Liaoning 110016, P.R. China
| | - Yan Gao
- Department of Emergency and Critical Care Medicine, The General Hospital of Shenyang Military, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
20
|
Siddiqui F, Naqvi S, Abidi L, Faizi S, Avesi L, Mirza T, Farooq AD. Opuntia dillenii cladode: Opuntiol and opuntioside attenuated cytokines and eicosanoids mediated inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2016; 182:221-234. [PMID: 26900126 DOI: 10.1016/j.jep.2016.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/15/2016] [Accepted: 02/16/2016] [Indexed: 06/05/2023]
Abstract
ETHANOPHARMACOLOGICAL RELEVANCE Opuntia dillenii Haw (Nagphana) traditionally used against inflammation. The present study addressed the anti-inflammatory activity of O. dillenii derived methanol extract, fractions and pure compounds and their underlying mechanism of action. MATERIALS AND METHODS O. dillenii cladode methanol extract was subjected to vacuum liquid chromatography (VLC) furnishing two main fractions viz (T-1 and -2) leading to isolation of opuntiol (aglycone) and opuntioside (O-glucoside), respectively. Anti-inflammatory activity of extract, fractions, pure compounds and reference drugs were evaluated using: (1) arachidonic acid (AA) and 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-induced ear edema accompanied by histological studies of mice ear sections and phospholipase A2 (PLA2)-induced mice paw edema. (2) Carrageenan and glycogen-induced peritonitis in rodents. In parallel levels of leukotriene B4 (LTB4) and reactive oxygen species (ROS) were also determined via HPLC and fluoroemetrically using 2', 7'-dichlorodihydrofluorescein diacetate (DCFH-DA) dye, respectively. Additionally, levels of prostaglandin E2 (PGE2), tumor necrosis factor (TNF-α), interleukins IL-1β and -6 were measured by ELISA assay. RESULTS O. dillenii methanol extract, fractions and pure compounds reduced AA and TPA-induced ear punch weight in a dose dependent fashion. The corresponding IC50 values obtained also suppressed inflammatory features observed histologically. Furthermore, paw edema and peritonitis were also attenuated. Similar to indomethacin and diclofenac sodium, opuntioside reduced PGE2 levels of inflamed ear which was comparatively 1.3× better than opuntiol. However, opuntiol was more potent in reducing LTB4 levels in rat neutrophils with an IC50 value of 19±3.3μΜ, while opuntioside was ineffective. Opuntiol also effectively suppressed ROS (37%) and cytokine levels (TNF-α, IL-1β and -6) by ~50% and comparable to dexamethasone. CONCLUSIONS O. dillenii cladodes possess anti-inflammatory properties via inhibition of arachidonic acid metabolites and cytokines. Opuntiol (aglycone) emerged as a dual inhibitor of cyclooxygenase (COX) and lipooxygenase (LOX) pathways. It also suppressed ROS and cytokine levels. However, opuntioside manifested its selectivity towards COX (PGE2) pathway without affecting LTB4 levels. The present report describing the anti-inflammatory activity of opuntiol and opuntioside for the first time thereby, supporting and justifying the traditional use of O. dillenii against inflammation and may serve as lead compound in designing of new anti-inflammatory agents.
Collapse
Affiliation(s)
- Faheema Siddiqui
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Sabira Naqvi
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Lubna Abidi
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Chemistry, Jinnah University for Women, Karachi 74600, Pakistan.
| | - Shaheen Faizi
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Lubna Avesi
- Pathology Department, Dow International Medical College (DIMC), Dow University of Health Sciences, Karachi 74200, Pakistan.
| | - Talat Mirza
- Pathology Department, Dow International Medical College (DIMC), Dow University of Health Sciences, Karachi 74200, Pakistan.
| | - Ahsana Dar Farooq
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
21
|
Liu TP, Chen YP, Chou CM, Chiu TT, Chen CT. Therapeutic evaluation of HIV transduction basic domain-conjugated superoxide dismutase solution on suppressive effects of the formation of peroxynitrite and expression of COX-2 in murine skin. J Biomed Sci 2016; 23:11. [PMID: 26786970 PMCID: PMC4719741 DOI: 10.1186/s12929-016-0226-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 01/12/2016] [Indexed: 01/18/2023] Open
Abstract
Background Homeostasis of reactive oxygen species (ROS) in the skin is regulated by antioxidant defenses. The inflammatory states of skin diseases which range from acute rashes to chronic conditions are related to the level of ROS. The involvement of superoxide dismutase (SOD) in restoring the antioxidant capacity can then neutralize the inflammatory response. Results We found that denatured Tat-SOD formulated in an aqueous medium could be delivered into mouse skin and the penetration signals of Tat-SOD were detected in the epidermis and dermis. According to immunohistochemical staining, Tat-SOD successfully suppressed inflammation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA), the expression of sodium nitroferricyanide (SNP)-induced cyclooxygenase-2 (COX-2), and the production of nitrotyrosine proteins. In nerve growth factor (NGF) induced differentiated PC12 pheochromocytoma cells, we demonstrated that the denatured Tat-SOD regained its antioxidant activity and effectively protected PC12 cells from DNA fragmentation induced by paraquat. Using a luciferase reporter assay, the data was shown Tat-SOD protected PC12 cells from ROS damage, through suppression of COX-2 or nuclear factor-κB (NF-κB) activity occurred at the transcriptional level. Conclusion We showed that Tat-SOD inhibited SNP-induced COX-2 expression similarly to celecoxib and prevented the formation of peroxynitrite as 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. The results suggest that denatured Tat-SOD solution may perform potential protein therapy for patients suffering from disorders related to ROS.
Collapse
Affiliation(s)
- Tsang-Pai Liu
- Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan.,Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yi-Ping Chen
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Chih-Ming Chou
- Department of Biochemistry and Molecular Cell Biology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ting-Ting Chiu
- Department of Biochemistry and Molecular Cell Biology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chien-Tsu Chen
- Department of Biochemistry and Molecular Cell Biology, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
22
|
Chu H, Tang Q, Huang H, Hao W, Wei X. Grape-seed proanthocyanidins inhibit the lipopolysaccharide-induced inflammatory mediator expression in RAW264.7 macrophages by suppressing MAPK and NF-κb signal pathways. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 41:159-166. [PMID: 26708200 DOI: 10.1016/j.etap.2015.11.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/27/2015] [Accepted: 11/28/2015] [Indexed: 06/05/2023]
Abstract
Grape-seed proanthocyanidins (GSPs) have been shown to function as an anti-oxidant and anti-inflammatory agent with little toxicity in vivo and in vitro. However, little is known about their anti-inflammatory properties and mechanisms of action. The specific focus being its effects on the MAP kinases and nuclear factor-kappaB (NF-κB) signal transduction pathways in lipopolysaccharide (LPS) -stimulated RAW264.7 cells. GSPs extract has been found to suppress the mRNA expression of pro-inflammatory cytokines like tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and inflammatory molecule of cyclooxygenase-2 (COX-2) while mRNA level of IL-10 was greatly promoted. Furthermore, GSPs extract inhibited the expression of phosphorylated ERK, JNK and P38, as well as phosphorylated IKKα/β and NF-κB p65 subunit. In conclusion, our results show that GSPs extract showed its anti-inflammatory and immunomodulatory properties by suppressing the activation of MAP kinases and NF-κB signal transduction pathways.
Collapse
Affiliation(s)
- Hongqian Chu
- Department of Toxicology, School of Public Health, Peking University, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qiuqiong Tang
- Department of Toxicology, School of Public Health, Peking University, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Hongpeng Huang
- Department of Toxicology, School of Public Health, Peking University, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China.
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China.
| |
Collapse
|
23
|
Saraswathi V, Ganesan M, Perriotte-Olson C, Manickam DS, Westwood RA, Zimmerman MC, Ahmad IM, Desouza CV, Kabanov AV. Nanoformulated copper/zinc superoxide dismutase attenuates vascular cell activation and aortic inflammation in obesity. Biochem Biophys Res Commun 2015; 469:495-500. [PMID: 26692492 DOI: 10.1016/j.bbrc.2015.12.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/08/2015] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Endothelial cell (EC) oxidative stress can lead to vascular dysfunction which is an underlying event in the development of cardiovascular disease (CVD). The lack of a potent and bioavailable anti-oxidant enzyme is a major challenge in studies on antioxidant therapy. The objective of this study is to determine whether copper/zinc superoxide dismutase (CuZnSOD or SOD1) after nanoformulation (nanoSOD) can effectively reduce EC oxidative stress and/or vascular inflammation in obesity. METHODS Human aortic endothelial cells (HAECs) were treated with native- or nanoSOD for 6 h followed by treatment with linoleic acid (LA), a free fatty acid, for 6-24 h. To determine the in vivo relevance, the effectiveness of nanoSOD in reducing vascular cell activation was studied in a mouse model of diet-induced obesity. RESULTS We noted that nanoSOD was more effectively taken up by ECs than native SOD. Western blot analysis further confirmed that the intracellular accumulation of SOD1 protein was greatly increased upon nanoSOD treatment. Importantly, nanoSOD pretreatment led to a significant decrease in LA-induced oxidative stress in ECs which was associated with a marked increase in SOD enzyme activity in ECs. In vivo studies showed a significant decrease in markers of EC/vascular cell activation and/or inflammation in visceral adipose tissue (VAT), thoracic aorta, and heart collected from nanoSOD-treated mice compared to obese control mice. Interestingly, the expression of metallothionein 2, an antioxidant gene was significantly increased in nanoSOD-treated mice. CONCLUSION Our data show that nanoSOD is very effective in delivering active SOD to ECs and in reducing EC oxidative stress. Our data also demonstrate that nanoSOD will be a useful tool to reduce vascular cell activation in VAT and aorta in obesity which, in turn, can protect against obesity-associated CVD, in particular, hypertension.
Collapse
Affiliation(s)
- Viswanathan Saraswathi
- Department of Internal Medicine/Division of Diabetes, Endocrinology, and Metabolism, University of Nebraska Medical Center, Omaha, NE, USA; Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA; VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA.
| | - Murali Ganesan
- Department of Internal Medicine/Division of Diabetes, Endocrinology, and Metabolism, University of Nebraska Medical Center, Omaha, NE, USA; VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Curtis Perriotte-Olson
- Department of Internal Medicine/Division of Diabetes, Endocrinology, and Metabolism, University of Nebraska Medical Center, Omaha, NE, USA; VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Devika S Manickam
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rachel A Westwood
- Department of Internal Medicine/Division of Diabetes, Endocrinology, and Metabolism, University of Nebraska Medical Center, Omaha, NE, USA; VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Matthew C Zimmerman
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Iman M Ahmad
- Radiation Science Technology Education, College of Allied Health Professions, University of Nebraska Medical Center, Omaha, USA
| | - Cyrus V Desouza
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA; Department of Internal Medicine/Division of Diabetes, Endocrinology, and Metabolism, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alexander V Kabanov
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
24
|
Jeong SJ, Lim HS, Seo CS, Kim JH, Jin SE, Yoo SR, Shin HK. Traditional herbal formula Jakyakgamcho-tang (Paeonia lactiflora and Glycyrrhiza uralensis) impairs inflammatory chemokine production by inhibiting activation of STAT1 and NF-κB in HaCaT cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:326-32. [PMID: 25765840 DOI: 10.1016/j.phymed.2014.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/28/2014] [Accepted: 12/14/2014] [Indexed: 05/08/2023]
Abstract
A traditional herbal formula Jakyakgamcho-tang (JYGCT; Paeonia lactiflora and Glycyrrhiza uralensis) has been used for treatment of backache, muscle pain, acute abdominal pain, neuralgia, bronchial asthma, and painful peripheral neuropathy in Oriental medicine. We report on our experiments using the HaCaT human keratinocyte cell line showing that a traditional herbal formula JYGCT has inhibitory effects on inflammatory responses in skin. Stimulation with tumour necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) caused a significant increase in the production of the following chemokines: thymus- and activation-regulated chemokine (TARC)/CCL17; macrophage-derived chemokine (MDC)/CCL22; regulated on activation, normal T-cell expressed and secreted (RANTES)/CCL5; and interleukin-8 (IL-8) in HaCaT cells. By contrast, treatment with JYGCT extract significantly reduced the production of TARC, MDC, RANTES, and IL-8, but caused no cytotoxicity, compared with TNF-α and IFN-γ-treated control cells. Consistently, JYGCT extract downregulated the mRNA expression of TARC, MDC, RANTES, and IL-8 induced by TNF-α and IFN-γ in a dose-dependent manner. In addition, TNF-α and IFN-γ markedly increased the phosphorylation of signal transducer and activator of transcription 1 (STAT1) and the nuclear translocation of nuclear factor kappa B (NF-κB) in HaCaT cells. By contrast, TNF-α and IFN-γ-induced activation of STAT1 and NF-κB activation was inhibited by JYGCT treatment in a dose-dependent manner. Our data indicate that JYGCT attenuates TNF-α and IFN-γ-mediated chemokine production by targeting the STAT1 and NF-κB signalling in keratinocytes. Our findings suggest that JYGCT has potential as a therapeutic drug candidate for the treatment of inflammatory skin diseases.
Collapse
Affiliation(s)
- Soo-Jin Jeong
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea
| | - Hye-Sun Lim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea; Division of Allergy and Chronic Respiratory Diseases, Center for Biomedical Sciences, Korea National Institute of Health, Chungcheongbuk-do 361-951, Republic of Korea
| | - Chang-Seob Seo
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea
| | - Jung-Hoon Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea; Division of Pharmacology, Pusan National University School of Korean Medicine, Yangsan City, Gyeongnam 626-870, Republic of Korea
| | - Seong-Eun Jin
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea
| | - Sae-Rom Yoo
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea
| | - Hyeun-Kyoo Shin
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea.
| |
Collapse
|
25
|
Hernández-Valle E, Herrera-Ruiz M, Salgado GR, Zamilpa A, Ocampo MLA, Aparicio AJ, Tortoriello J, Jiménez-Ferrer E. Anti-inflammatory effect of 3-O-[(6'-O-palmitoyl)-β-D-glucopyranosyl sitosterol] from Agave angustifolia on ear edema in mice. Molecules 2014; 19:15624-37. [PMID: 25268718 PMCID: PMC6271596 DOI: 10.3390/molecules191015624] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/11/2014] [Accepted: 09/12/2014] [Indexed: 11/16/2022] Open
Abstract
In Mexico Agave angustifolia has traditionally been used to treat inflammation. The aim of this study was to measure the anti-inflammatory effect of the extract of A. angustifolia, the isolation and identification of active compounds. From the acetone extract two active fractions were obtained, (AsF13 and AaF16). For the characterization of pharmacological activity, the acute inflammatory model of mouse ear edema induced with TPA was used. The tissue exposed to TPA and treatments were subjected to two analysis, cytokine quantification (IL-1β, IL-6, IL-10 and TNF-α) and histopathological evaluation. The active fraction (AaF16) consisted principally of 3-O-[(6'-O-palmitoyl)-β-D-glucopyranpsyl] sitosterol. In AaF13 fraction was identified β-sitosteryl glucoside (2) and stigmasterol (3). The three treatments tested showed a concentration-dependent anti-inflammatory effect (AaAc Emax = 33.10%, EC50 = 0.126 mg/ear; AaF13 Emax = 54.22%, EC50 = 0.0524 mg/ear; AaF16 Emax = 61.01%, EC50 = 0.050 mg/ear). The application of TPA caused a significant increase on level of IL-1β, IL-6 and TNFα compared with basal condition, which was countered by any of the experimental treatments. Moreover, the experimental treatments induced a significant increase in the levels of IL-4 and IL-10, compared to the level observed when stimulated with TPA. Therefore, the anti-inflammatory effect of Agave angustifolia, is associated with the presence of 3-O-[(6'-O-palmitoyl)-β-D-glucopyranosyl] sitosterol.
Collapse
Affiliation(s)
- Elizabeth Hernández-Valle
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina No. 1, Xochitepec, Morelos CP 62790, Mexico.
| | - Maribel Herrera-Ruiz
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina No. 1, Xochitepec, Morelos CP 62790, Mexico.
| | - Gabriela Rosas Salgado
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Leñeros s/n. Col. Volcanes, Cuernavaca, Morelos CP 62350, Mexico.
| | - Alejandro Zamilpa
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina No. 1, Xochitepec, Morelos CP 62790, Mexico.
| | - Martha Lucia Arenas Ocampo
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional (IPN), Km 6 carr. Yautepec-Jojutla, calle Ceprobi No. 6 col. San Isidro, Yautepec, Morelos CP 62731, Mexico.
| | - Antonio Jiménez Aparicio
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional (IPN), Km 6 carr. Yautepec-Jojutla, calle Ceprobi No. 6 col. San Isidro, Yautepec, Morelos CP 62731, Mexico.
| | - Jaime Tortoriello
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina No. 1, Xochitepec, Morelos CP 62790, Mexico.
| | - Enrique Jiménez-Ferrer
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina No. 1, Xochitepec, Morelos CP 62790, Mexico.
| |
Collapse
|
26
|
Youn GS, Kwon DJ, Ju SM, Rhim H, Bae YS, Choi SY, Park J. Celastrol ameliorates HIV-1 Tat-induced inflammatory responses via NF-kappaB and AP-1 inhibition and heme oxygenase-1 induction in astrocytes. Toxicol Appl Pharmacol 2014; 280:42-52. [PMID: 25064159 DOI: 10.1016/j.taap.2014.07.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/12/2014] [Accepted: 07/13/2014] [Indexed: 01/08/2023]
Abstract
HIV-1 Tat causes extensive neuroinflammation that may progress to AIDS-related encephalitis and dementia. Celastrol possesses various biological activities such as anti-oxidant, anti-tumor, and anti-inflammatory activities. In this study, we investigated the modulatory effects of celastrol on HIV-1 Tat-induced inflammatory responses and the molecular mechanisms underlying its action in astrocytes. Pre-treatment of CRT-MG human astroglioma cells with celastrol significantly inhibited HIV-1 Tat-induced expression of ICAM-1/VCAM-1 and subsequent monocyte adhesiveness in CRT-MG cells. In addition, celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory chemokines, such as CXCL10, IL-8, and MCP-1. Celastrol decreased HIV-1 Tat-induced activation of JNK MAPK, AP-1, and NF-κB. Furthermore, celastrol induced mRNA and protein expression of HO-1 as well as Nrf2 activation. Blockage of HO-1 expression using siRNA reversed the inhibitory effect of celastrol on HIV-1 Tat-induced inflammatory responses. These results suggest that celastrol has regulatory effects on HIV-1 Tat-induced inflammatory responses by blocking the JNK MAPK-AP-1/NF-κB signaling pathways and inducing HO-1 expression in astrocytes.
Collapse
Affiliation(s)
- Gi Soo Youn
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 200-702, Republic of Korea
| | - Dong-Joo Kwon
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 200-702, Republic of Korea
| | - Sung Mi Ju
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 200-702, Republic of Korea
| | - Hyangshuk Rhim
- Department of Biomedical Sciences, Department of Medical Life Sciences, College of Medicine, the Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Yong Soo Bae
- Department of Biological Science, College of Natural Sciences, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 200-702, Republic of Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 200-702, Republic of Korea.
| |
Collapse
|
27
|
Kim MJ, Jeong HJ, Kim DW, Sohn EJ, Jo HS, Kim DS, Kim HA, Park EY, Park JH, Son O, Han KH, Park J, Eum WS, Choi SY. PEP-1-PON1 protein regulates inflammatory response in raw 264.7 macrophages and ameliorates inflammation in a TPA-induced animal model. PLoS One 2014; 9:e86034. [PMID: 24465855 PMCID: PMC3900452 DOI: 10.1371/journal.pone.0086034] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/04/2013] [Indexed: 12/30/2022] Open
Abstract
Paraoxonase 1 (PON1) is an antioxidant enzyme which plays a central role in various diseases. However, the mechanism and function of PON1 protein in inflammation are poorly understood. Since PON1 protein alone cannot be delivered into cells, we generated a cell permeable PEP-1-PON1 protein using protein transduction domains, and examined whether it can protect against cell death in lipopolysaccharide (LPS) or hydrogen peroxide (H2O2)-treated Raw 264.7 cells as well as mice with 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced skin inflammation. We demonstrated that PEP-1-PON1 protein transduced into Raw 264.7 cells and markedly protected against LPS or H2O2-induced cell death by inhibiting cellular reactive oxygen species (ROS) levels, the inflammatory mediator’s expression, activation of mitogen-activated protein kinases (MAPKs) and cellular apoptosis. Furthermore, topically applied PEP-1-PON1 protein ameliorates TPA-treated mice skin inflammation via a reduction of inflammatory response. Our results indicate that PEP-1-PON1 protein plays a key role in inflammation and oxidative stress in vitro and in vivo. Therefore, we suggest that PEP-1-PON1 protein may provide a potential protein therapy against oxidative stress and inflammation.
Collapse
Affiliation(s)
- Mi Jin Kim
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon, Gangwondo, Korea
| | - Hoon Jae Jeong
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon, Gangwondo, Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Kangnung-Wonju National University, Gangneung, Gangwondo, Korea
| | - Eun Jeong Sohn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon, Gangwondo, Korea
| | - Hyo Sang Jo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon, Gangwondo, Korea
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-Si, Chungcheonnamdo, Korea
| | - Hyun Ah Kim
- Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Pyongchon, Kyunggido, Korea
| | - Eun Young Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Korea
| | - Jong Hoon Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Korea
| | - Ora Son
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon, Gangwondo, Korea
| | - Kyu Hyung Han
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon, Gangwondo, Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon, Gangwondo, Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon, Gangwondo, Korea
- * E-mail: (WSE); (SYC)
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon, Gangwondo, Korea
- * E-mail: (WSE); (SYC)
| |
Collapse
|
28
|
Inhibition of inflammatory mediators contributes to the anti-inflammatory activity of KYKZL-1 via MAPK and NF-κB pathway. Toxicol Appl Pharmacol 2013; 272:221-9. [DOI: 10.1016/j.taap.2013.05.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 04/11/2013] [Accepted: 05/10/2013] [Indexed: 11/19/2022]
|
29
|
Park MK, Cho SA, Lee HJ, Lee EJ, Kang JH, Kim YL, Kim HJ, Oh SH, Choi C, Lee H, Kim SY. Suppression of Transglutaminase-2 is Involved in Anti-Inflammatory Actions of Glucosamine in 12-O-Tetradecanoylphorbol-13-Acetate-Induced Skin Inflammation. Biomol Ther (Seoul) 2013; 20:380-5. [PMID: 24009824 PMCID: PMC3762271 DOI: 10.4062/biomolther.2012.20.4.380] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/06/2012] [Accepted: 07/10/2012] [Indexed: 01/21/2023] Open
Abstract
Glucosamine (GS) is well known for the treatment of inflam-mation. However, the mechanism and efficacy of GS for skin inflammation are unclear. The aim of this study was to evaluate the effects and mechanism of GS in the mouse 12-O-tetradecanoyl 13-acetate (TPA)-induced ear edema model. TPA-induced ear edema was evoked in ICR or transglutaminase 2 (Tgase-2) (-/-) mice. GS was administered orally (10-100 mg/kg) or topically (0.5-2.0 w/v %) prior to TPA treatment. Orally administered GS at 10 mg/kg showed a 76 or 57% reduction in ear weight or myeloperoxidase, respectively, and a decreased expression of cyclooxy-genase-2 (COX-2), NF-κB and Tgase-2 in TPA-induced ear edema by western blot and immunohistochemistry. Role of Tgase-2 in TPA ear edema is examined using Tgase-2 (-/-) mice and TPA did not induce COX-2 expression in ear of Tgase-2 (-/-) mice. These observations suggested that Tgase-2 is involved in TPA-induced COX-2 expression in the inflamed ear of mice and anti-inflammatory effects of glucosamine is mediated through suppression of Tgase-2 in TPA ear edema.
Collapse
Affiliation(s)
- Mi Kyung Park
- College of Pharmacy, Dongguk University, Goyang 410-820, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Liu F, Sun GQ, Gao HY, Li RS, Soromou LW, Chen N, Deng YH, Feng HH. Angelicin regulates LPS-induced inflammation via inhibiting MAPK/NF-κB pathways. J Surg Res 2013; 185:300-9. [PMID: 23816246 DOI: 10.1016/j.jss.2013.05.083] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/26/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Angelicin is a furocoumarin found in Psoralea corylifolia L. fruit. The purpose of this study was to investigate the protective ability of angelicin against inflammation in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and LPS-induced in vivo acute lung injury model. MATERIALS AND METHODS The concentrations of tumor necrosis factor alpha (TNF-α) and interleukin (IL)-6 in the culture supernatants of RAW 264.7 cells were determined 24 h after LPS administration. ALI was induced by intratracheal instillation of LPS. Six hours after LPS inhalation, bronchoalveolar lavage fluid and lung tissue samples were obtained for enzyme-linked immunosorbent assay, histologic, and Western blotting analyses. RESULTS The results showed that pretreatment with angelicin markedly downregulated TNF-α and IL-6 levels in vitro and in vivo, and significantly decreased the amount of inflammatory cells, lung wet-to-dry weight ratio, and myeloperoxidase activity in LPS-induced ALI mice. Furthermore, Western blotting analysis results demonstrated that angelicin blocked the phosphorylation of IκBα, NF-κBp65, p38 MAPK, and JNK in LPS-induced ALI. CONCLUSIONS These results suggest that angelicin was potentially advantageous to prevent inflammatory diseases by inhibiting NF-κB and MAPK pathways. Our data indicated that angelicin might be a potential new agent for prevention of inflammatory reactions and diseases in the clinic.
Collapse
Affiliation(s)
- Fang Liu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Kwon DJ, Ju SM, Youn GS, Choi SY, Park J. Suppression of iNOS and COX-2 expression by flavokawain A via blockade of NF-κB and AP-1 activation in RAW 264.7 macrophages. Food Chem Toxicol 2013; 58:479-86. [PMID: 23727179 DOI: 10.1016/j.fct.2013.05.031] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 05/03/2013] [Accepted: 05/17/2013] [Indexed: 12/22/2022]
Abstract
Flavokawain A, a major constituent of chalcones derived from kava extracts, exerts various biological activities such as anti-tumor activities. In this study, we examined the suppressive effect of flavokawain A on LPS-induced expression of pro-inflammatory mediators and the molecular mechanisms responsible for these activities in the murine macrophages. Flavokawain A significantly suppressed expression of iNOS and COX-2, as well as the subsequent production of NO and PGE2 in the LPS-stimulated RAW 264.7 cells. Flavokawain A significantly inhibited LPS-induced activation of NF-κB and AP-1 signaling pathways. In addition, flavokawain A inhibited activation of JNK and p38 MAPK which was responsible for expression of iNOS and COX-2 in the LPS-stimulated RAW 264.7 cells. Furthermore, flavokawain A suppressed LPS-induced expression of pro-inflammatory cytokines, such as TNF-α, IL-1β and IL-6. These results suggest that flavokawain A may exert anti-inflammatory responses by suppressing LPS-induced expression of pro-inflammatory mediators via blockage of NF-κB-AP-1-JNK/p38 MAPK signaling pathways in the murine macrophages.
Collapse
Affiliation(s)
- Dong-Joo Kwon
- Department of Biomedical Science, Hallym University, Chunchon, Republic of Korea
| | | | | | | | | |
Collapse
|
32
|
Joh EH, Jeong JJ, Kim DH. Inhibitory effect of echinocystic acid on 12-O-tetradecanoylphorbol-13-acetate-induced dermatitis in mice. Arch Pharm Res 2013; 37:225-31. [PMID: 23515933 DOI: 10.1007/s12272-013-0092-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 03/02/2013] [Accepted: 03/03/2013] [Indexed: 12/13/2022]
Abstract
The rhizome of Codonopsis lanceolata (family Campanulaceae), which contains lancemaside A as a main constituent, is frequently used in the traditional Chinese medicine for the treatment of inflammatory diseases. Lancemaside A exhibits anti-inflammatory effect in vitro and in vivo. However, orally administered lancemaside A is metabolized to echinocystic acid by the intestinal microflora and the metabolite is absorbed into the blood. Therefore, to understand whether echinocystic acid is effective against skin inflammatory diseases, we assessed its inhibitory effect against 12-O-tetra decanoylphorbol-13-acetate (TPA)-induced ear inflammation in mice. Topically administered echinocystic acid potently suppressed TPA-induced ear swelling. The suppression rates at 0.05 and 0.10 % concentrations were 65 and 73 %, respectively. Echinocystic acid also inhibited TPA-induced myeloperoxidase activity, as well as COX-2, iNOS, TNF-α and IL-1β expressions. Echinocystic acid inhibited NF-κB in TPA-treated mouse ears, as well as in lipopolysaccharide-stimulated peritoneal macrophages. Its potency is comparable with that of dexamethasone. These findings indicate that echinocystic acid may ameliorate inflammatory diseases, such as dermatitis.
Collapse
Affiliation(s)
- Eun-Ha Joh
- Radioisotope Research Division, Department of Research Reactor Utilization, Korea Atomic Energy Research Institute (KAERI), Daejeon, 305-353, South Korea
| | | | | |
Collapse
|
33
|
Suppression of MAPK and NF-κB Pathways by Limonene Contributes to Attenuation of Lipopolysaccharide-Induced Inflammatory Responses in Acute Lung Injury. Inflammation 2012. [DOI: 10.1007/s10753-012-9571-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Lee MH, Choi HM, Hahm DH, Her E, Yang HI, Yoo MC, Kim KS. Analgesic and anti-inflammatory effects in animal models of an ethanolic extract of Taheebo, the inner bark of Tabebuia avellanedae. Mol Med Rep 2012; 6:791-6. [PMID: 22825254 DOI: 10.3892/mmr.2012.989] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 07/09/2012] [Indexed: 11/05/2022] Open
Abstract
Taheebo, the purple inner bark of the Bignoniaceae tree Tabebuia avellanedae Lorentz ex Griseb, which is found in tropical rain forests in northeastern Brazil, has been used as a traditional medicine for various diseases for more than 1,500 years. In the current study, various animal models were used to demonstrate the analgesic and anti-inflammatory properties of its ethanolic extract, thereby investigating its potential as a therapeutic treatment for diseases with pain and inflammation. In the hot plate and writhing tests for the in vivo analgesic effect test of Taheebo, a 200 mg/kg dose of the extract induced a significant anti-nociceptive effect and increased the pain threshold by approximately 30% compared with the control. In vascular permeability and tetradecanoylphorbol acetate (TPA)‑, arachidonic acid- and carrageenan-induced paw edema tests for anti-inflammatory effects, treatment with 200 mg/kg Taheebo led to significant anti-inflammatory effects and inhibited inflammation by 30-50% compared with the control. At 100 mg/kg, the extract decreased the levels of pain and inflammation in all tested models, but the degree of inhibition was not statistically significant. The results suggest that the ethanolic extract of the inner bark of Tabebuia avellanedae has the potential to be developed as a therapeutic or supportive drug against diseases with accompanying pain and inflammation, including osteoarthritis.
Collapse
Affiliation(s)
- Mu Hong Lee
- East-West Bone and Joint Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
35
|
Xian YF, Lin ZX, Xu XY, Su ZR, Chen JN, Lai XP, Ip SP. Effect of Rhizoma Polygonati on 12-O-tetradecanoylphorbol-acetate-induced ear edema in mice. JOURNAL OF ETHNOPHARMACOLOGY 2012; 142:851-856. [PMID: 22710295 DOI: 10.1016/j.jep.2012.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/30/2012] [Accepted: 06/06/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhizoma Polygonati is originated from the dried rhizomes of Polygonatum sibircum Red. It has long been used in traditional Chinese medicine for the treatment of inflammatory disorders. AIM OF THE STUDY The present study aims to investigate the anti-inflammatory effect of aqueous extract of Rhizoma Polygonati (ERP) in a mouse model of inflammation induced by 12-O-tetradecanoylphorbol-acetate (TPA). MATERIALS AND METHODS The anti-inflammatory effect was evaluated by measuring the ear thickness and activity of myeloperoxidase (MPO). The anti-inflammatory mechanism was explored by determining the protein and mRNA levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6. RESULTS The results showed that ERP significantly decreased the ear thickness and MPO activity in mouse model of inflammation induced by TPA. In addition, ERP also remarkably inhibited the protein and mRNA levels of iNOS, COX-2, TNF-α, IL-1β, and IL-6. CONCLUSIONS These results indicate that ERP has potential anti-inflammatory effect on TPA-induced inflammatory in mice, and the anti-inflammatory effect may be mediated, at least in part, by inhibiting the mRNA expression of a panel of inflammatory mediators including iNOS, COX-2, TNF-α, IL-1β, and IL-6.
Collapse
Affiliation(s)
- Yan-Fang Xian
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | | | | | | | | | | | | |
Collapse
|
36
|
Characterization of 99mTc-labeled cytokine ligands for inflammation imaging via TNF and IL-1 pathways. Nucl Med Biol 2012; 39:905-15. [PMID: 22749187 DOI: 10.1016/j.nucmedbio.2012.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/01/2012] [Accepted: 05/03/2012] [Indexed: 01/12/2023]
Abstract
INTRODUCTION TNFR2-Fc and IL-1ra-Fc are recombinant cytokine ligands that target TNF and IL-1. TNFR2-Fc-IL-1ra, a dual-domain agent that incorporates both ligands, allows bifunctional binding of IL-1 receptors and TNF. This study was designed to characterize (99m)Tc-labeled forms of these ligands, (99m)Tc-IL-1ra-Fc (IF), (99m)Tc-TNFR2-Fc (TF), and (99m)Tc-TNFR2-Fc-IL-1ra (TFI), for inflammation imaging. METHODS The cytokine ligands were labeled with (99m)Tc by a direct approach via 2-iminothiolane (2-IT) reduction at various 2-IT/protein molar ratios. In vivo inflammation targeting studies were carried out in a mouse ear edema model created by topical application of 12-O-tetradecanoyl-phorbol-13-acetate (TPA) on the right ear of ICR mice. RESULTS Radiolabeling yields increased with increasing amounts of 2-IT. When the 2-IT/protein ratio reached 1000, the radiolabeling yield was greater than 90% without significant colloid production. TPA-treated ears showed high radioligand uptake, which was clearly detected by SPECT and autoradiographic imaging. The activities (%ID/g) in the inflamed and control ears at 3h after injection were 2.76 ± 0.20 vs. 0.69 ± 0.12 for IF, 5.86 ± 0.40 vs. 2.86 ± 0.61 for TF, and 7.61 ± 0.86 vs. 1.99 ± 0.31 for TFI (P<0.05 vs. controls). TFI showed significantly higher uptake in the inflamed ears compared to TF and IF (P<0.05). Blocking study results indicated specificity of radioligand binding with decreased radioactive uptake in the inflamed ears. Western blotting and ELISA analysis further confirmed a high expression of IL-1β and TNF-α in the inflamed ears. CONCLUSIONS (99m)Tc-labeled cytokine ligands are a promising approach for detecting and understanding the inflammatory process. TFI may be more useful than the single-domain ligands for noninvasive detection of inflammatory sites.
Collapse
|
37
|
Kwon EM, Kim CG, Goh AR, Park JS, Jun JG. Preparation of Benzoyloxy Benzophenone Derivatives and Their Inhibitory Effects of ICAM-1 Expression. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.6.1939] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Monascus purpureus-fermented products and oral cancer: a review. Appl Microbiol Biotechnol 2012; 93:1831-42. [DOI: 10.1007/s00253-012-3891-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/04/2012] [Accepted: 01/06/2012] [Indexed: 11/26/2022]
|
39
|
Huo M, Chen N, Chi G, Yuan X, Guan S, Li H, Zhong W, Guo W, Soromou LW, Gao R, Ouyang H, Deng X, Feng H. Traditional medicine alpinetin inhibits the inflammatory response in Raw 264.7 cells and mouse models. Int Immunopharmacol 2012; 12:241-8. [DOI: 10.1016/j.intimp.2011.11.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 11/22/2011] [Accepted: 11/28/2011] [Indexed: 11/30/2022]
|
40
|
Kwon DJ, Bae YS, Ju SM, Goh AR, Youn GS, Choi SY, Park J. Casuarinin suppresses TARC/CCL17 and MDC/CCL22 production via blockade of NF-κB and STAT1 activation in HaCaT cells. Biochem Biophys Res Commun 2012; 417:1254-9. [DOI: 10.1016/j.bbrc.2011.12.119] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 12/23/2011] [Indexed: 12/23/2022]
|
41
|
Anti-inflammatory effect of transduced PEP-1-Cyclophilin A in Raw 264.7 cells and 12-O-tetradecanoylphorbol-13-acetate-induced mice. Life Sci 2011; 89:896-904. [DOI: 10.1016/j.lfs.2011.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Revised: 09/21/2011] [Accepted: 09/22/2011] [Indexed: 11/24/2022]
|
42
|
Xian YF, Mao QQ, Ip SP, Lin ZX, Che CT. Comparison on the anti-inflammatory effect of Cortex Phellodendri Chinensis and Cortex Phellodendri Amurensis in 12-O-tetradecanoyl-phorbol-13-acetate-induced ear edema in mice. JOURNAL OF ETHNOPHARMACOLOGY 2011; 137:1425-1430. [PMID: 21875660 DOI: 10.1016/j.jep.2011.08.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/15/2011] [Accepted: 08/04/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cortex Phellodendri is derived from the dried bark of Phellodendron chinense Schneid. or Phellodendron amurense Rupr. Traditionally, Cortex Phellodendron Chinensis (CPC) and Cortex Phellodendron Amurensis (CPA) are used interchangeably under the name "Huang Bai" for the treatment of gastroenteritis, abdominal pain or diarrhea. The present study aims to compare the anti-inflammatory effect of ethanol extracts of Cortex Phellodendri Chinensis (ECPC) and Cortex Phellodendri Amurensis (ECPA) in a mouse model of inflammation induced by 12-O-tetradecanoylphorbol-acetate (TPA). MATERIALS AND METHODS The anti-inflammatory effect was evaluated by measuring the ear thickness, activity of myeloperoxidase (MPO) and the production reactive oxygen species (ROS). The anti-inflammatory mechanism was explored by determining the protein and mRNA levels of cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6. RESULTS The results showed that both ECPC and ECPA significantly decreased the ear thickness, MPO activity and the ROS level in mouse model of inflammation induced by TPA. In addition, ECPC and ECPA also remarkably inhibited the protein and mRNA levels of TNF-α, IL-1β, IL-6 and COX-2. Interestingly, ECPC has better anti-inflammatory effect than that of ECPA. CONCLUSIONS These results indicate that both ECPC and ECPA have potential anti-inflammatory effect on TPA-induced inflammatory in mice, and ECPC is more effective than ECPA. The anti-inflammatory effect of the herbal drugs may be mediated, at least in part, by down-regulating the mRNA expression of a panel of inflammatory mediators including TNF-α, IL-1β, IL-6 and COX-2.
Collapse
Affiliation(s)
- Yan-Fang Xian
- School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, PR China
| | | | | | | | | |
Collapse
|
43
|
Lee J, Kim S, Shin DH, Kim HJ, Lee K. Neuroprotective effect of Cu,Zn-superoxide dismutase fused to a TCTP-derived protein transduction domain. Eur J Pharmacol 2011; 666:87-92. [DOI: 10.1016/j.ejphar.2011.05.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 05/16/2011] [Accepted: 05/22/2011] [Indexed: 11/24/2022]
|
44
|
Song HY, Ju SM, Goh AR, Kwon DJ, Choi SY, Park JS. Suppression of TNF-alpha-induced MMP-9 expression by a cell-permeable superoxide dismutase in keratinocytes. BMB Rep 2011; 44:462-7. [DOI: 10.5483/bmbrep.2011.44.7.462] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
45
|
Kwon SW, Sohn EJ, Kim DW, Jeong HJ, Kim MJ, Ahn EH, Kim YN, Dutta S, Kim DS, Park J, Eum WS, Hwang HS, Choi SY. Anti-inflammatory effect of transduced PEP-1-heme oxygenase-1 in Raw 264.7 cells and a mouse edema model. Biochem Biophys Res Commun 2011; 411:354-9. [DOI: 10.1016/j.bbrc.2011.06.147] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 06/22/2011] [Indexed: 10/18/2022]
|
46
|
Kim SY, Jeong HJ, Kim DW, Kim MJ, An JJ, Sohn EJ, Kang HW, Shin MJ, Ahn EH, Kwon SW, Kim DS, Cho SW, Park J, Eum WS, Choi SY. Transduced PEP-1-FK506BP inhibits the inflammatory response in the Raw 264.7 cell and mouse models. Immunobiology 2011; 216:771-81. [DOI: 10.1016/j.imbio.2010.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Revised: 12/19/2010] [Accepted: 12/19/2010] [Indexed: 01/22/2023]
|
47
|
Ahn EH, Kim DW, Kim DS, Woo SJ, Kim HR, Kim J, Lim SS, Kang TC, Kim DJ, Suk KT, Park JS, Luo Q, Eum WS, Hwang HS, Choi SY. Levosulpiride, (S)-(-)-5-Aminosulfonyl-N-[(1-ethyl-2-pyrrolidinyl) methyl]-2-methoxybenzamide, enhances the transduction efficiency of PEP-1-ribosomal protein S3 in vitro and in vivo. BMB Rep 2011; 44:329-34. [DOI: 10.5483/bmbrep.2011.44.5.329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
48
|
Casuarinin suppresses TNF-α-induced ICAM-1 expression via blockade of NF-κB activation in HaCaT cells. Biochem Biophys Res Commun 2011; 409:780-5. [PMID: 21621513 DOI: 10.1016/j.bbrc.2011.05.088] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 05/14/2011] [Indexed: 12/30/2022]
Abstract
Hippophae rhamnoides has been extensively used in oriental traditional medicines for treatment of asthma, skin diseases, gastric ulcers, and lung disorders. In this study, we isolated casuarinin from the leaves of H.rhamnoides and examined the effect of casuarinin on the TNF-α-induced ICAM-1 expression in a human keratinocytes cell line HaCaT. Pretreatment with casuarinin inhibited TNF-α-induced protein and mRNA expression of ICAM-1 and subsequent monocyte adhesiveness in HaCaT cells. Casuarinin significantly inhibited TNF-α-induced NF-κB activation. In addition, casuarinin inhibited activation of ERK and p38 MAPK in a dose-dependent manner. Furthermore, pretreatment with casuarinin decreased TNF-α-induced pro-inflammatory mediators, such as IL-1β, IL-6, IL-8, and MCP-1. These results demonstrated that casuarinin exerts its anti-inflammatory activity by suppressing TNF-α-induced expression of ICAM-1 and pro-inflammatory cytokines/chemokines via blockage of activation of NF-κB and ERK/p38 MAPK and can be used as a therapeutic agent against inflammatory skin diseases.
Collapse
|
49
|
Otuki MF, Bernardi CA, Prudente AS, Laskoski K, Gomig F, Horinouchi CDS, Guimarães CL, Ferreira J, Delle-Monache F, Cechinel-Filho V, Cabrini DA. Garcinia gardneriana (Planchon & Triana) Zappi. (Clusiaceae) as a Topical Anti-inflammatory Alternative for Cutaneous Inflammation. Basic Clin Pharmacol Toxicol 2011; 109:56-62. [DOI: 10.1111/j.1742-7843.2011.00689.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
50
|
Abstract
Immunophilin, FK506-binding protein 12 (FK506BP), is a receptor protein for the immunosuppressive drug FK506 by the FK506BP/FK506 complex. However, the precise function of FK506BP in inflammatory diseases remains unclear. Therefore, we examined the protective effects of FK506BP on atopic dermatitis (AD) in tumor necrosis factor-α (TNF-α)/interferon-γ (IFN-γ)-induced HaCaT cells and 2,4-dinitrofluorobenzene-induced AD-like dermatitis in Nishiki-nezumi Cinnamon/Nagoya (NC/Nga) mice using a cell-permeable PEP-1-FK506BP. Transduced PEP-1-FK506BP significantly inhibited the expression of cytokines, as well as the activation of NF-κB and mitogen-activated protein kinase (MAPK) in TNF-α/IFN-γ-induced HaCaT cells. Furthermore, topical application of PEP-1-FK506BP to NC/Nga mice markedly inhibited AD-like dermatitis as determined by a histological examination and assessment of serum IgE levels, as well as cytokines and chemokines. These results indicate that PEP-1-FK506BP inhibits NF-κB and MAPK activation in cells and AD-like skin lesions by reducing the expression levels of cytokines and chemokines, thus suggesting that PEP-1-FK506BP may be a potential therapeutic agent for AD.
Collapse
|