1
|
Ebrahim NA, Elnagar MR, El-Gamal R, Habotta OA, Albadawi EA, Albadrani M, Bahashwan AS, Hassan HM. Melatonin mitigates doxorubicin induced chemo brain in a rat model in a NRF2/p53-SIRT1 dependent pathway. Heliyon 2024; 10:e38081. [PMID: 39386846 PMCID: PMC11462207 DOI: 10.1016/j.heliyon.2024.e38081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/03/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Cancer is a critical health problem, and chemotherapy administration is mandatory for its eradication. However, chemotherapy like doxorubicin (Dox) has serious side-effects including cognitive impairment or chemo brain. Melatonin is a neuroprotective agent that has antioxidant, and anti-inflammatory effects. We aimed to explore melatonin's effect on Dox-induced chemo brain to discover new mechanisms associated with Dox-induced neurotoxicity and try to prevent its occurrence. Thirty-two male albino rats had been equally divided into four groups; control, melatonin-administrated, Dox-induced chemo brain, and melatonin + Dox treated. On the 9th day, brain had been excised after scarification and had been assessed for reactive oxygen species measurement, histopathological analysis, immunohistochemical, gene and protein expressions for the nuclear factor erythroid 2-related factor 2 (Nrf2), p53 and Silent information regulator 2 homolog 1 (SIRT1). Our results show that melatonin coadministration diminished Dox induced hippocampal and prefrontal cortex (PFC) cellular degeneration. It alleviated Nitric Oxide (NO) level and reversed the decline of antioxidant enzyme activities. It also upregulated Nrf2, SIRT1 and downregulated p53 gene expression in rats receiving Dox. Moreover, melatonin elevated the protein expression level of Nrf2, SIRT1 and reduced p53 corresponding to immunohistochemical results. The data suggested that melatonin can mitigate Dox-induced neurotoxicity by aggravating the endogenous antioxidants and inducing neurogenesis through activation of Nrf2/p53-SIRT1signaling pathway in adult rats' PFC. These effects were associated with Nrf2, SIRT1 activation and p53 inhibition. This could be guidance to add melatonin as an adjuvant supplement to Dox regimens to limit its adverse effect on the brain function.
Collapse
Affiliation(s)
- Neven A. Ebrahim
- Department of Basic Medical Sciences, College of Medicine, Taibah University, Madinah, Saudi Arabia
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed R. Elnagar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Egypt
- Pharmacology Department, College of Pharmacy, The Islamic University, Najaf, 54001, Iraq
| | - Randa El-Gamal
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
- Medical Experimental Research Centre (MERC), Faculty of Medicine, Mansoura University, Egypt
- Department of Medical Biochemistry, Faculty of Medicine, Horus University, New Damietta, Egypt
- Department of Medical Biochemistry, Faculty of Medicine, New Mansoura University, Mansoura, Egypt
| | - Ola Ali Habotta
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University, Egypt
| | - Emad A. Albadawi
- Department of Basic Medical Sciences, College of Medicine, Taibah University, Madinah, Saudi Arabia
| | - Muayad Albadrani
- Department of Family and Community Medicine and Medical Education, College of Medicine, Taibah University, Madinah, Saudi Arabia
| | - Abdulrahman S. Bahashwan
- Department of Basic Medical Sciences, College of Medicine, Taibah University, Madinah, Saudi Arabia
| | - Hend M. Hassan
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Human Anatomy and Embryology Department, Faculty of Medicine, New Mansoura University, Egypt
| |
Collapse
|
2
|
Meyer CT, Smith BN, Wang J, Teuscher KB, Grieb BC, Howard GC, Silver AJ, Lorey SL, Stott GM, Moore WJ, Lee T, Savona MR, Weissmiller AM, Liu Q, Quaranta V, Fesik SW, Tansey WP. Expanded profiling of WD repeat domain 5 inhibitors reveals actionable strategies for the treatment of hematologic malignancies. Proc Natl Acad Sci U S A 2024; 121:e2408889121. [PMID: 39167600 PMCID: PMC11363251 DOI: 10.1073/pnas.2408889121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
WD40 Repeat Domain 5 (WDR5) is a highly conserved nuclear protein that recruits MYC oncoprotein transcription factors to chromatin to stimulate ribosomal protein gene expression. WDR5 is tethered to chromatin via an arginine-binding cavity known as the "WIN" site. Multiple pharmacological inhibitors of the WDR5-interaction site of WDR5 (WINi) have been described, including those with picomolar affinity and oral bioavailability in mice. Thus far, however, WINi have only been shown to be effective against a number of rare cancer types retaining wild-type p53. To explore the full potential of WINi for cancer therapy, we systematically profiled WINi across a panel of cancer cells, alone and in combination with other agents. We report that WINi are unexpectedly active against cells derived from both solid and blood-borne cancers, including those with mutant p53. Among hematologic malignancies, we find that WINi are effective as a single agent against leukemia and diffuse large B cell lymphoma xenograft models, and can be combined with the approved drug venetoclax to suppress disseminated acute myeloid leukemia in vivo. These studies reveal actionable strategies for the application of WINi to treat blood-borne cancers and forecast expanded utility of WINi against other cancer types.
Collapse
Affiliation(s)
- Christian T. Meyer
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO80309
- Duet BioSystems, Nashville, TN37212
| | - Brianna N. Smith
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN37232
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN37232
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN37232
| | - Kevin B. Teuscher
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37240
| | - Brian C. Grieb
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| | - Gregory C. Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN37240
| | - Alexander J. Silver
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| | - Shelly L. Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN37240
| | - Gordon M. Stott
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD21701-4907
| | - William J. Moore
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD21702-1201
| | - Taekyu Lee
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37240
| | - Michael R. Savona
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| | | | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN37232
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN37232
| | - Vito Quaranta
- Duet BioSystems, Nashville, TN37212
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37240
| | - Stephen W. Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37240
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN37240
- Department of Chemistry, Vanderbilt University, Nashville, TN37240
| | - William P. Tansey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37240
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN37240
| |
Collapse
|
3
|
Lei M, Lin H, Shi D, Hong P, Song H, Herman B, Liao Z, Yang C. Molecular mechanism and therapeutic potential of HDAC9 in intervertebral disc degeneration. Cell Mol Biol Lett 2023; 28:104. [PMID: 38093179 PMCID: PMC10717711 DOI: 10.1186/s11658-023-00517-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is the major cause of low-back pain. Histone deacetylase 9 (HDAC9) was dramatically decreased in the degenerative nucleus pulposus (NP) samples of patients with intervertebral disc degeneration (IVDD) according to bioinformatics analysis of Gene Expression Omnibus (GEO) GSE56081 dataset. This study aims to investigate the role of HDAC9 in IVDD progression. METHODS The contribution of HDAC9 to the progression of IVDD was assessed using HDAC9 knockout (HDAC9KO) mice and NP-targeted HDAC9-overexpressing mice by IVD injection of adenovirus-mediated HDAC9 under a Col2a1 promoter. Magnetic resonance imaging (MRI) and histological analysis were used to examine the degeneration of IVD. NP cells were isolated from mice to investigate the effects of HDAC9 on apoptosis and viability. mRNA-seq and coimmunoprecipitation/mass spectrometry (co-IP/MS) analysis were used to analyze the HDAC9-regulated factors in the primary cultured NP cells. RESULTS HDAC9 was statistically decreased in the NP tissues in aged mice. HDAC9KO mice spontaneously developed age-related IVDD compared with wild-type (HDAC9WT) mice. In addition, overexpression of HDAC9 in NP cells alleviated IVDD symptoms in a surgically-induced IVDD mouse model. In an in vitro assay, knockdown of HDAC9 inhibited cell viability and promoted cell apoptosis of NP cells, and HDAC9 overexpression had the opposite effects in NP cells isolated from HDAC9KO mice. Results of mRNA-seq and co-IP/MS analysis revealed the possible proteins and signaling pathways regulated by HDAC9 in NP cells. RUNX family transcription factor 3 (RUNX3) was screened out for further study, and RUNX3 was found to be deacetylated and stabilized by HDAC9. Knockdown of RUNX3 restored the effects of HDAC9 silencing on NP cells by inhibiting apoptosis and increasing viability. CONCLUSION Our results suggest that HDAC9 plays an important role in the development and progression of IVDD. It might be required to protect NP cells against the loss of cell viability and apoptosis by inhibiting RUNX3 acetylation and expression during IVDD. Together, our findings suggest that HDAC9 may be a potential therapeutic target in IVDD.
Collapse
Affiliation(s)
- Ming Lei
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Hui Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Deyao Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Pan Hong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Hui Song
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Bomansaan Herman
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Zhiwei Liao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Cao Yang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
4
|
Mia MAR, Dey D, Sakib MR, Biswas MY, Prottay AAS, Paul N, Rimti FH, Abdullah Y, Biswas P, Iftehimul M, Paul P, Sarkar C, El-Nashar HAS, El-Shazly M, Islam MT. The efficacy of natural bioactive compounds against prostate cancer: Molecular targets and synergistic activities. Phytother Res 2023; 37:5724-5754. [PMID: 37786304 DOI: 10.1002/ptr.8017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/17/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023]
Abstract
Globally, prostate cancer (PCa) is regarded as a challenging health issue, and the number of PCa patients continues to rise despite the availability of effective treatments in recent decades. The current therapy with chemotherapeutic drugs has been largely ineffective due to multidrug resistance and the conventional treatment has restricted drug accessibility to malignant tissues, necessitating a higher dosage resulting in increased cytotoxicity. Plant-derived bioactive compounds have recently attracted a great deal of attention in the field of PCa treatment due to their potent effects on several molecular targets and synergistic effects with anti-PCa drugs. This review emphasizes the molecular mechanism of phytochemicals on PCa cells, the synergistic effects of compound-drug interactions, and stem cell targeting for PCa treatment. Some potential compounds, such as curcumin, phenethyl-isothiocyanate, fisetin, baicalein, berberine, lutein, and many others, exert an anti-PCa effect via inhibiting proliferation, metastasis, cell cycle progression, and normal apoptosis pathways. In addition, multiple studies have demonstrated that the isolated natural compounds: d-limonene, paeonol, lanreotide, artesunate, and bicalutamide have potential synergistic effects. Further, a significant number of natural compounds effectively target PCa stem cells. However, further high-quality studies are needed to firmly establish the clinical efficacy of these phytochemicals against PCa.
Collapse
Affiliation(s)
- Md Abdur Rashid Mia
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Dipta Dey
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Musfiqur Rahman Sakib
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Md Yeaman Biswas
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology (JUST), Jashore, Bangladesh
| | - Abdullah Al Shamsh Prottay
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Niloy Paul
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Fahmida Hoque Rimti
- Bachelor of Medicine and Surgery, Chittagong Medical College, Chawkbazar, Bangladesh
| | - Yusuf Abdullah
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Partha Biswas
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology (JUST), Jashore, Bangladesh
| | - Md Iftehimul
- Department of Fisheries and Marine Bioscience, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Priyanka Paul
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| |
Collapse
|
5
|
Guo Y, Tang Y, Lu G, Gu J. p53 at the Crossroads between Doxorubicin-Induced Cardiotoxicity and Resistance: A Nutritional Balancing Act. Nutrients 2023; 15:nu15102259. [PMID: 37242146 DOI: 10.3390/nu15102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/19/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Doxorubicin (DOX) is a highly effective chemotherapeutic drug, but its long-term use can cause cardiotoxicity and drug resistance. Accumulating evidence demonstrates that p53 is directly involved in DOX toxicity and resistance. One of the primary causes for DOX resistance is the mutation or inactivation of p53. Moreover, because the non-specific activation of p53 caused by DOX can kill non-cancerous cells, p53 is a popular target for reducing toxicity. However, the reduction in DOX-induced cardiotoxicity (DIC) via p53 suppression is often at odds with the antitumor advantages of p53 reactivation. Therefore, in order to increase the effectiveness of DOX, there is an urgent need to explore p53-targeted anticancer strategies owing to the complex regulatory network and polymorphisms of the p53 gene. In this review, we summarize the role and potential mechanisms of p53 in DIC and resistance. Furthermore, we focus on the advances and challenges in applying dietary nutrients, natural products, and other pharmacological strategies to overcome DOX-induced chemoresistance and cardiotoxicity. Lastly, we present potential therapeutic strategies to address key issues in order to provide new ideas for increasing the clinical use of DOX and improving its anticancer benefits.
Collapse
Affiliation(s)
- Yuanfang Guo
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
| | - Guangping Lu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
6
|
Zhang H, Cai J, Li C, Deng L, Zhu H, Huang T, Zhao J, Zhou J, Deng K, Hong Z, Xia J. Wogonin inhibits latent HIV-1 reactivation by downregulating histone crotonylation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154855. [PMID: 37172478 DOI: 10.1016/j.phymed.2023.154855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Wogonin, a flavone isolated from Scutellaria baicalensis Georgi, is a commonly used phytochemical with anti-inflammatory and antitumor properties. However, the antiviral activity of wogonin against human immunodeficiency virus type 1 (HIV-1) has not been reported. PURPOSE The current study aimed to explore whether wogonin can suppress latent HIV-1 reactivation and the mechanism of wogonin in inhibiting proviral HIV-1 transcription. METHODS We assessed the effects of wogonin on HIV-1 reactivation using flow cytometry, cytotoxicity assay, quantitative PCR (qPCR), viral quality assurance (VQA), and western blot analysis. RESULTS Wogonin, a flavone isolated from S. baicalensis, significantly inhibited the reactivation of latent HIV-1 in cellular models and in primary CD4+ T cells from antiretroviral therapy (ART)-suppressed individuals ex vivo. Wogonin exhibited low cytotoxicity and long-lasting inhibition of HIV-1 transcription. Triptolide is a latency-promoting agent (LPA) that inhibits HIV-1 transcription and replication; wogonin had a stronger ability to inhibit HIV-1 latent reactivation than triptolide. Mechanistically, wogonin inhibited the reactivation of latent HIV-1 by inhibiting the expression of p300, a histone acetyltransferase, and decreasing the crotonylation of histone H3/H4 in the HIV-1 promoter region. CONCLUSION Our study found that wogonin is a novel LPA that can inhibit HIV-1 transcription by HIV-1 epigenetic silencing, which could bear promising significance for future applications of HIV-1 functional cure.
Collapse
Affiliation(s)
- Haitao Zhang
- Department of Infectious Diseases, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China; Ward 1 of infection Department, Shenzhen Third People's Hospital, The Second Hospital Affiliated with the School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jinfeng Cai
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Chunna Li
- Department of Infectious Diseases, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Lisi Deng
- Department of Infectious Diseases, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Hongqiong Zhu
- Department of Infectious Diseases, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Ting Huang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiacong Zhao
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiasheng Zhou
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Kai Deng
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhongsi Hong
- Department of Infectious Diseases, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.
| | - Jinyu Xia
- Department of Infectious Diseases, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.
| |
Collapse
|
7
|
Yin JY, Lu XT, Hou ML, Cao T, Tian Z. Sirtuin1-p53: a potential axis for cancer therapy. Biochem Pharmacol 2023; 212:115543. [PMID: 37037265 DOI: 10.1016/j.bcp.2023.115543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/12/2023]
Abstract
Sirtuin1 (SIRT1) is a conserved nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase that plays key roles in a range of cellular events, including the maintenance of genome stability, gene regulation, cell proliferation, and apoptosis. P53 is one of the most studied tumor suppressors and the first identified non-histone target of SIRT1. SIRT1 deacetylates p53 in a NAD+-dependent manner and inhibits its transcriptional activity, thus exerting action on a series of pathways related to tissue homeostasis and various pathological states. The SIRT1-p53 axis is thought to play a central role in tumorigenesis. Although SIRT1 was initially identified as a tumor promoter, evidence now indicates that SIRT1 may also act as a tumor suppressor. This seemingly contradictory evidence indicates that the functionality of SIRT1 may be dictated by different cell types and intracellular localization patterns. In this review, we summarize recent evidence relating to the interactions between SIRT1 and p53 and discuss the relative roles of these two molecules with regards to cancer-associated cellular events. We also provide an overview of current knowledge of SIRT1-p53 signaling in tumorigenesis. Given the vital role of the SIRT1-p53 pathway, targeting this axis may provide promising strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Jia-Yi Yin
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xin-Tong Lu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Meng-Ling Hou
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Ting Cao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Zhen Tian
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
8
|
Berlin IG, Jennings CC, Shin S, Kenealey J. Utilizing mixture design response surface methodology to determine effective combinations of plant derived compounds as prostate cancer treatments. Cancer Rep (Hoboken) 2023; 6:e1790. [PMID: 36772872 PMCID: PMC10075293 DOI: 10.1002/cnr2.1790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/22/2022] [Accepted: 01/21/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Prostate cancer (PC) is estimated to cause 13.1% of all new cancer cases in the United States in 2021. Natural bioactive compounds have drawn the interest of researchers worldwide in their efforts to find novel treatments for PC. Many of these bioactive compounds have been identified from traditional Chinese medicine (TCM) remedies often containing multiple bioactive compounds. However, in vitro studies frequently focus on the compounds in isolation. AIM We used mixture design response surface methodology (MDRSM) to assess changes in PC cell viability after 48 h of treatment to identify the optimal mixture of all 35 three-compound combinations of seven bioactive compounds from TCM. METHODS AND RESULTS We used berberine, wogonin, shikonin, curcumin, triptolide, emodin, and silybin to treat PC3 and LNCaP human PC cells at their IC50 concentrations that we calculated. These compounds modulate many chemotherapeutic pathways including intrinsic and extrinsic apoptosis, increasing reactive oxygen species, decreasing metastatic pathways, inhibiting cell cycle progression. We hypothesize that because these compounds bind to unique molecular targets to activate different chemotherapeutic pathways, they will act synergistically to decrease tumor cell viability. Results from MDRSM showed that two-way combinations were more effective than three-way or single compounds. Most notably wogonin, silybin, emodin and berberine responded well in two-compound combinations with each other in PC3 and LNCaP cells. We then conducted cell viability tests combining two bioactive compound ratios with docetaxel (Doc) and found significant results within the LNCaP cell line. In particular, mixtures of berberine and wogonin, berberine and silybin, emodin and berberine, and emodin and silybin reduced LNCaP cell viability up to an average of 90.02%. The two-compound combinations were significantly better than docetaxel treatment of LNCaP cells. CONCLUSION Within the PC3 cells, we show that a combination of berberine, wogonin and docetaxel is just as effective as docetaxel alone. Thus, we provide new combination treatments that are highly effective in vitro for treating androgen-dependent and androgen-independent PC.
Collapse
Affiliation(s)
- Ian Geddes Berlin
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah, USA
| | - Charity Conlin Jennings
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah, USA
| | - Spencer Shin
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah, USA
| | - Jason Kenealey
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
9
|
Mireștean CC, Iancu RI, Iancu DPT. p53 Modulates Radiosensitivity in Head and Neck Cancers-From Classic to Future Horizons. Diagnostics (Basel) 2022; 12:3052. [PMID: 36553058 PMCID: PMC9777383 DOI: 10.3390/diagnostics12123052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/08/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
p53, initially considered a tumor suppressor, has been the subject of research related to cancer treatment resistance in the last 30 years. The unfavorable response to multimodal therapy and the higher recurrence rate, despite an aggressive approach, make HNSCC a research topic of interest for improving therapeutic outcomes, even if it is only the sixth most common malignancy worldwide. New advances in molecular biology and genetics include the involvement of miRNA in the control of the p53 pathway, the understanding of mechanisms such as gain/loss of function, and the development of different methods to restore p53 function, especially for HPV-negative cases. The different ratio between mutant p53 status in the primary tumor and distant metastasis originating HNSCC may serve to select the best therapeutic target for activating an abscopal effect by radiotherapy as a "booster" of the immune system. P53 may also be a key player in choosing radiotherapy fractionation regimens. Targeting any pathway involving p53, including tumor metabolism, in particular the Warburg effect, could modulate the radiosensitivity and chemo-sensitivity of head and neck cancers.
Collapse
Affiliation(s)
- Camil Ciprian Mireștean
- Department of Oncology and Radiotherapy, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania
- Department of Surgery, Railways Clinical Hospital Iasi, 700506 Iași, Romania
| | - Roxana Irina Iancu
- Oral Pathology Department, Faculty of Dental Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Department of Clinical Laboratory, “St. Spiridon” Emergency Universitary Hospital, 700111 Iași, Romania
| | - Dragoș Petru Teodor Iancu
- Oncology and Radiotherapy Department, Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Department of Radiation Oncology, Regional Institute of Oncology, 700483 Iași, Romania
| |
Collapse
|
10
|
Apoptosis induction in human prostate cancer cells related to the fatty acid metabolism by wogonin-mediated regulation of the AKT-SREBP1-FASN signaling network. Food Chem Toxicol 2022; 169:113450. [DOI: 10.1016/j.fct.2022.113450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/04/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022]
|
11
|
Flavones: Six Selected Flavones and Their Related Signaling Pathways That Induce Apoptosis in Cancer. Int J Mol Sci 2022; 23:ijms231810965. [PMID: 36142874 PMCID: PMC9505532 DOI: 10.3390/ijms231810965] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer is a horrific disease that, to date, has no cure. It is caused by various factors and takes many lives. Apoptosis is a programmed cell death mechanism and if it does not function correctly in cancer cells, it can lead to severe disease. There are various signaling pathways for regulating apoptosis in cancer cells. Flavonoids are non-artificial natural bioactive compounds that are gaining attention as being capable of for inducing apoptosis in cancer cells. Among these, in this study, we focus on flavones. Flavones are a subclass of the numerous available flavonoids and possess several bioactive functions. Some of the most reported and well-known critical flavones, namely apigenin, acacetin, baicalein, luteolin, tangeretin, and wogonin, are discussed in depth in this review. Our main aim is to investigate the effects of the selected flavones on apoptosis and cell signaling pathways that contribute to death due to various types of cancers.
Collapse
|
12
|
Li HL, Shan SW, Stamer WD, Li KK, Chan HHL, Civan MM, To CH, Lam TC, Do CW. Mechanistic Effects of Baicalein on Aqueous Humor Drainage and Intraocular Pressure. Int J Mol Sci 2022; 23:ijms23137372. [PMID: 35806375 PMCID: PMC9266486 DOI: 10.3390/ijms23137372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 02/06/2023] Open
Abstract
Elevated intraocular pressure (IOP) is a major risk factor for glaucoma that results from impeded fluid drainage. The increase in outflow resistance is caused by trabecular meshwork (TM) cell dysfunction and excessive extracellular matrix (ECM) deposition. Baicalein (Ba) is a natural flavonoid and has been shown to regulate cell contraction, fluid secretion, and ECM remodeling in various cell types, suggesting the potential significance of regulating outflow resistance and IOP. We demonstrated that Ba significantly lowered the IOP by about 5 mmHg in living mice. Consistent with that, Ba increased the outflow facility by up to 90% in enucleated mouse eyes. The effects of Ba on cell volume regulation and contractility were examined in primary human TM (hTM) cells. We found that Ba (1–100 µM) had no effect on cell volume under iso-osmotic conditions but inhibited the regulatory volume decrease (RVD) by up to 70% under hypotonic challenge. In addition, Ba relaxed hTM cells via reduced myosin light chain (MLC) phosphorylation. Using iTRAQ-based quantitative proteomics, 47 proteins were significantly regulated in hTM cells after a 3-h Ba treatment. Ba significantly increased the expression of cathepsin B by 1.51-fold and downregulated the expression of D-dopachrome decarboxylase and pre-B-cell leukemia transcription factor-interacting protein 1 with a fold-change of 0.58 and 0.40, respectively. We suggest that a Ba-mediated increase in outflow facility is triggered by cell relaxation via MLC phosphorylation along with inhibiting RVD in hTM cells. The Ba-mediated changes in protein expression support the notion of altered ECM homeostasis, potentially contributing to a reduction of outflow resistance and thereby IOP.
Collapse
Affiliation(s)
- Hoi-lam Li
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (H.-l.L.); (S.W.S.); (K.-k.L.); (H.H.-l.C.); (C.-h.T.); (T.C.L.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| | - Sze Wan Shan
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (H.-l.L.); (S.W.S.); (K.-k.L.); (H.H.-l.C.); (C.-h.T.); (T.C.L.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong
- Research Centre for Chinese Medicine Innovation (RCMI), The Hong Kong Polytechnic University, Hong Kong
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, NC 27708, USA;
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - King-kit Li
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (H.-l.L.); (S.W.S.); (K.-k.L.); (H.H.-l.C.); (C.-h.T.); (T.C.L.)
| | - Henry Ho-lung Chan
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (H.-l.L.); (S.W.S.); (K.-k.L.); (H.H.-l.C.); (C.-h.T.); (T.C.L.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong
- Research Centre for Chinese Medicine Innovation (RCMI), The Hong Kong Polytechnic University, Hong Kong
| | - Mortimer M. Civan
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Chi-ho To
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (H.-l.L.); (S.W.S.); (K.-k.L.); (H.H.-l.C.); (C.-h.T.); (T.C.L.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong
- Research Centre for Chinese Medicine Innovation (RCMI), The Hong Kong Polytechnic University, Hong Kong
| | - Thomas Chuen Lam
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (H.-l.L.); (S.W.S.); (K.-k.L.); (H.H.-l.C.); (C.-h.T.); (T.C.L.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong
- Research Centre for Chinese Medicine Innovation (RCMI), The Hong Kong Polytechnic University, Hong Kong
| | - Chi-wai Do
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (H.-l.L.); (S.W.S.); (K.-k.L.); (H.H.-l.C.); (C.-h.T.); (T.C.L.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong
- Research Centre for Chinese Medicine Innovation (RCMI), The Hong Kong Polytechnic University, Hong Kong
- Research Institute of Smart Ageing (RISA), The Hong Kong Polytechnic University, Hong Kong
- Correspondence:
| |
Collapse
|
13
|
Yan S, Zhang C, Ji X, Wu G, Huang X, Zhang Y, Zhang Y. MSC-ACE2 Ameliorates Streptococcus uberis-Induced Inflammatory Injury in Mammary Epithelial Cells by Upregulating the IL-10/STAT3/SOCS3 Pathway. Front Immunol 2022; 13:870780. [PMID: 35677060 PMCID: PMC9167935 DOI: 10.3389/fimmu.2022.870780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
In the dairy industry, Streptococcus uberis (S. uberis) is one of the most important pathogenic bacteria associated with mastitis in milk-producing cows, causing vast economic loss. To date, the only real effective method of treating and preventing streptococcal mastitis is antimicrobial therapy. In many inflammatory diseases, mesenchymal stem cells (MSCs) and angiotensin-converting enzyme 2 (ACE2) play an anti-inflammatory and anti-injurious role. Accordingly, we hypothesized that MSCs overexpressing ACE2 (MSC-ACE2) would ameliorate the inflammatory injury caused by S. uberis in mammary epithelial cells more efficiently than MSC alone. By activating the transcription 3/suppressor of cytokine signaling 3 (IL-10/STAT3/SOCS3) signaling pathway, MSC-ACE2 inhibited the NF-κB, MAPKs, apoptosis, and pyroptosis passways. Moreover, MSC-ACE2 overturned the downregulation of Occludin, Zonula occludens 1 (ZO-1), and Claudin-3 expression levels caused by S. uberis, suggesting that MSC-ACE2 promotes the repair of the blood-milk barrier. MSC-ACE2 demonstrated greater effectiveness than MSC alone, as expected. Based on these results, MSC-ACE2 effectively inhibits EpH4-Ev cell's inflammatory responses induced by S. uberis, and would be an effective therapeutic tool for treating streptococcal mastitis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuanshu Zhang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
14
|
Zhou Y, Dou F, Song H, Liu T. Anti-ulcerative effects of wogonin on ulcerative colitis induced by dextran sulfate sodium via Nrf2/TLR4/NF-κB signaling pathway in BALB/c mice. ENVIRONMENTAL TOXICOLOGY 2022; 37:954-963. [PMID: 35044701 DOI: 10.1002/tox.23457] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/02/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Ulcerative colitis (UC) is an inflammatory disease on the deepest lining of the colon and rectum. Wogonin is an antitumor flavonoid, which possesses various therapeutic properties. Even if the anti-colitis effect of wogonin was documented earlier, but the wogonin effect on inflammation underlying mechanism is not fully elucidated. In this present study, we hypothesized to study the oxidative damage, anti-inflammatory, and molecular action of wogonin on dextran sulfate sodium (DSS)-induced UC mice model. In methods, mice were categorized into four groups: that is, normal control, DSS alone, DSS + wogonin (30 mg/kg/day), and DSS + sulfasalazine (50 mg/kg/day). We determined the biochemical markers, inflammatory cytokines, histopathology of colon tissue, and western blot analysis. DSS significantly reduced body weight, colon length, and increased inflammation in the colon. Wogonin treatment prevented colonic ulceration, neutrophil infiltration, oxidative stress, pro-inflammatory cytokines, and histological changes. Oxidative damage and inflammatory mediators' elevation were also dramatically diminished by wogonin. Wogonin activates apoptosis via inhibiting Bcl-2 and augmenting Bax, caspase-3, and -9 expressions. Wogonin downregulated the COX-2 and iNOS, thereby repressing NF-κB. Wogonin regulated the Nrf2 signaling pathway and decreased TLR-4/NF-κB triggering. Taken together our study exposed that wogonin has a promising anti-ulcerative agent and recommended for good anti-inflammatory drug in the colon.
Collapse
Affiliation(s)
- Yadong Zhou
- Department of Gastrointestinal Surgery, 3201 Hospital, Hanzhong, China
| | - Fafu Dou
- Department of Gastrointestinal Surgery, 3201 Hospital, Hanzhong, China
| | - Huwei Song
- Department of General Surgery 2, Xi'an Children's Hospital, Xi'an, China
| | - Tao Liu
- Department of General Surgery 2, Xi'an Children's Hospital, Xi'an, China
| |
Collapse
|
15
|
Attri S, Kaur P, Singh D, Kaur H, Rashid F, Kumar A, Singh B, Bedi N, Arora S. Induction of apoptosis in A431 cells via ROS generation and p53-mediated pathway by chloroform fraction of Argemone mexicana (Pepaveraceae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:17189-17208. [PMID: 34664164 DOI: 10.1007/s11356-021-16696-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Argemone mexicana(Pepaveraceae) is an important medicinal plant commonly known as 'maxican prickly poppy' and is traditionally used to treat skin diseases. In the present study, the extract/fractions of aerial parts of A. mexicana after carrying out the organoleptic characteristics were sequentially extracted with the solvents of increasing polarities. Total fractions were examined for their radical scavenging activities in DPPH and DNA nicking assays. Among all, maximum antioxidant activity was shown by chloroform fraction (AmC) in DPPH assay with IC50 of 26.12 μg/ml, and DNA nicking assay showed 80.91% protective potential. The AmC fraction was analyzed for its antibacterial, cytotoxic potential, cell cycle analysis, mitochondrial membrane potential (MMP) and accumulation of reactive oxygen species (ROS) using A431 cell line. The AmC fraction exhibited remarkable antibacterial activity against bacterial strains in the order Klebsiella pneumoniae> Bacillussubtilis> Salmonella typhi> Staphylococcus epidermidis. The cytotoxic potential of the AmC fraction was analyzed in skin epidermoid carcinoma (A431) cells, osteosarcoma (MG-63) and cervical (HeLa) cell lines with a GI50 value of 47.04 μg/ml, 91.46 μg/ml and 102.90 μg/ml, respectively. The AmC fraction was extended further to explore its role in cell death using A431 cell line. Phase contrast and scanning electron microscopic studies on A431 cells exhibited all the characteristics indicative of apoptosis, viz., viability loss, cell shrinkage, cell rounding-off, DNA fragmentation and formation of apoptotic bodies. Flow cytometric analysis revealed enhanced ROS level, decreased MMP and arrest cell cycle at the G0/G1 phase further strengthened cell death by apoptosis. Increased expressions of apoptotic markers (p53, PUMA, cyt c, Fas and Apaf-1) were confirmed by RT-qPCR analysis. Furthermore, the AmC fraction was subjected to ultra-high-performance liquid chromatography, which revealed the presence of different polyphenols in the order: caffeic acid> epicatechin> kaempferol> chlorogenic acid> gallic acid> catechin> ellagic acid >umbeliferone> quercetin> coumaric acid. A critical analysis of results revealed that the AmC fraction induced cell death in epidermoid carcinoma cells via ROS and p53-mediated apoptotic pathway which may be ascribed to the presence of polyphenols in it.
Collapse
Affiliation(s)
- Shivani Attri
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Prabhjot Kaur
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Davinder Singh
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Harneetpal Kaur
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Farhana Rashid
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Avinash Kumar
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, 143005, Amritsar, Punjab, India
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, 143005, Amritsar, Punjab, India
| | - Saroj Arora
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
16
|
Banik K, Khatoon E, Harsha C, Rana V, Parama D, Thakur KK, Bishayee A, Kunnumakkara AB. Wogonin and its analogs for the prevention and treatment of cancer: A systematic review. Phytother Res 2022; 36:1854-1883. [DOI: 10.1002/ptr.7386] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/18/2021] [Accepted: 01/08/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Kishore Banik
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Elina Khatoon
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Choudhary Harsha
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Varsha Rana
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Dey Parama
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| | - Anupam Bishayee
- College of Osteopathic medicine Lake Erie College of Osteopathic Medicine Bradenton Florida USA
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering Indian Institute of Technology‐Guwahati Guwahati India
- DBT‐AIST International Center for Translational and Environmental Research Indian Institute of Technology‐Guwahati Guwahati India
| |
Collapse
|
17
|
Guo M, Wang Y, Zhao H, Wang D, Yin K, Liu Y, Li B, Xing M. Zinc antagonizes common carp (Cyprinus carpio) intestinal arsenic poisoning through PI3K/AKT/mTOR signaling cascade and MAPK pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 240:105986. [PMID: 34638088 DOI: 10.1016/j.aquatox.2021.105986] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) pollution is a serious and longstanding problem, which has obvious threaten to aquatic organisms. The study aimed to explore the mitigation effect of natural antioxidant zinc (Zn) on As toxicity in the foregut and midgut of common carp (Cyprinus carpio L.), and in-depth disclose related signal cascade. Carps were treated with Zn2+ (1 mg/L) and/or As3+ (2.83 mg/L) for a period of 30 days. Under As exposure, the foregut and midgut showed obvious burst of reactive oxygen species (ROS) and breakdown of antioxidant system. What followed is the activation of the endogenous and exogenous apoptotic pathways, and the rise of autophagy level prompted by the increase in LC3 II and the down-regulation of p62. Mitochondrial swelling, cristae fragmentation and autophagosomes were observed under the electron microscope, which also means the occurrence of apoptosis and autophagy. In addition, As induced the activation of p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK) and the inhibition of extracellular signal-related kinase (ERK) in MAPK signaling, and up-regulated the level of autophagy through the inhibition of the phosphatidylinositol 3 kinase (PI3K)/AKT/ mammalian target of rapamycin (mTOR) signaling cascade. However, Zn supplementation has clearly reversed the above phenomenon, and it basically has no effect on foregut and midgut. In conclusion, this study shows that Zn can alleviate the damage caused by subchronic As exposure, which provides a reference for the use of Zn preparations in aquaculture.
Collapse
Affiliation(s)
- Menghao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Dongxu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Kai Yin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yachen Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Baoying Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
18
|
Khan S. Wogonin and alleviation of hyperglycemia via inhibition of DAG mediated PKC expression. A brief insight. Protein Pept Lett 2021; 28:1365-1371. [PMID: 34711151 DOI: 10.2174/0929866528666211027113349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022]
Abstract
Protein kinase C (PKC) is a family of protein kinase enzymes that can phosphorylate other proteins and influence their functions, such as signal transduction, cell survival, and death. Increased diacylglycerol (DAG) concentrations, which are typically observed raised in hyperglycemic situations such as diabetes mellitus, can also activate PKC enzymes (DM). On the other hand, PKC isomers have been shown to play an essential role in diabetes and many hyperglycemic complications, most importantly atherosclerosis and diabetic cardiomyopathy (DCM). As a result, blocking PKC activation via DAG can prevent hyperglycemia and related consequences, such as DCM. Wogonin is a herbal medicine which has anti-inflammatory properties, and investigations show that it scavenge oxidative radicals, attenuate nuclear factor-kappa B (NF-κB) activity, inhibit several essential cell cycle regulatory genes, block nitric oxide (NO) and suppress cyclooxygenase-2 (COX-2). Furthermore, several investigations show that wogonin also attenuates diacylglycerol DAG levels in diabetic mice. Since the DAG-PKC pathway is linked with hyperglycemia and its complications, Wogonin-mediated DAG-PKC attenuation can help treat hyperglycemia and its complications.
Collapse
Affiliation(s)
- Shahzad Khan
- Department of Pathophysiology, Wuhan University School of Medicine, Hubei, Wuhan. China
| |
Collapse
|
19
|
Islam BU, Suhail M, Khan MK, Zughaibi TA, Alserihi RF, Zaidi SK, Tabrez S. Polyphenols as anticancer agents: Toxicological concern to healthy cells. Phytother Res 2021; 35:6063-6079. [PMID: 34679214 DOI: 10.1002/ptr.7216] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/13/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
Polyphenols are a group of diverse chemical compounds present in a wide range of plants. Various biological properties such as antiallergic, antiviral, antibacterial, anticarcinogenic, antiinflammatory, antithrombotic, vasodilatory, and hepatoprotective effect of different polyphenols have been reported in the scientific literature. The major classes of polyphenols are flavonoids, stilbenoids, lignans, and polyphenolic acids. Flavonoids are a large class of food constituents comprising flavones, isoflavanones, flavanones, flavonols, catechins, and anthocyanins sub-classes. Even with seemingly broad biological activities, their use is minimal clinically. Among the other concurrent problems such as limited bioavailability, rapid metabolism, untargeted delivery, the toxicity associated with these polyphenols has been a topic of concern lately. These polyphenols have been reported to result in different forms of toxicity that include organ toxicity, genotoxicity, mutagenicity, cytotoxicity, etc. In the present article, we have tried to unravel the toxicological aspect of these polyphenols to healthy cells. Further high-quality studies are needed to establish the clinical efficacy and toxicology concern leading to further exploration of these polyphenols.
Collapse
Affiliation(s)
- Badar Ul Islam
- Department of Biochemistry, J N Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Mohd Suhail
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Kaleem Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Torki A Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raed F Alserihi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,3D Bioprinting Unit, Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Syed Kashif Zaidi
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
20
|
Irvin L, Zavala Ortiz Y, Rivera KR, Nanda Vaidya B, Sherman SH, Batista RA, Negrón Berríos JA, Joshee N, Arun A. Micropropagation of Rare Scutellaria havanensis Jacq. and Preliminary Studies on Antioxidant Capacity and Anti-Cancer Potential. Molecules 2021; 26:molecules26195813. [PMID: 34641357 PMCID: PMC8510382 DOI: 10.3390/molecules26195813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 11/29/2022] Open
Abstract
We report the development of in vitro propagation protocols through an adventitious shoot induction pathway for a rare and medicinal Scutellaria havanensis. In vitro propagation studies using nodal explants showed MS medium supplemented with 10 µM 6-Benzylaminopurine induced the highest number of adventitious shoots in a time-dependent manner. A ten-day incubation was optimum for shoot bud induction as longer exposures resulted in hyperhydricity of the explants and shoots induced. We also report preliminary evidence of Agrobacterium tumefaciens EHA105-mediated gene transfer transiently expressing the green fluorescent protein in this species. Transformation studies exhibited amenability of various explant tissues, internode being the most receptive. As the plant has medicinal value, research was carried out to evaluate its potential antioxidant capacity and the efficacy of methanolic leaf extracts in curbing the viability of human colorectal cancer cell line HCT116. Comparative total polyphenol and flavonoid content measurement of fresh and air-dried leaf extract revealed that the fresh leaf extracts contain higher total polyphenol and flavonoid content. The HCT 116 cell viability was assessed by colorimetric assay using a 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide, showed a steady growth inhibition after 24 h of incubation. Scanning electron microscopy of leaf surface revealed a high density of glandular and non-glandular trichomes. This research provides a basis for the conservation of this rare plant and future phytochemical screening and clinical research.
Collapse
Affiliation(s)
- Lani Irvin
- Agricultural Research Station, Fort Valley State University, Fort Valley, GA 31030, USA; (L.I.); (B.N.V.); (S.H.S.); (N.J.)
| | - Yarelia Zavala Ortiz
- Institute of Sustainable Biotechnology, Inter American University of Puerto Rico, Barranquitas, PR 00794, USA; (Y.Z.O.); (K.R.R.); (R.A.B.); (J.A.N.B.)
| | - Kamila Rivera Rivera
- Institute of Sustainable Biotechnology, Inter American University of Puerto Rico, Barranquitas, PR 00794, USA; (Y.Z.O.); (K.R.R.); (R.A.B.); (J.A.N.B.)
| | - Brajesh Nanda Vaidya
- Agricultural Research Station, Fort Valley State University, Fort Valley, GA 31030, USA; (L.I.); (B.N.V.); (S.H.S.); (N.J.)
| | - Samantha H Sherman
- Agricultural Research Station, Fort Valley State University, Fort Valley, GA 31030, USA; (L.I.); (B.N.V.); (S.H.S.); (N.J.)
| | - Rosalinda Aybar Batista
- Institute of Sustainable Biotechnology, Inter American University of Puerto Rico, Barranquitas, PR 00794, USA; (Y.Z.O.); (K.R.R.); (R.A.B.); (J.A.N.B.)
| | - Juan A. Negrón Berríos
- Institute of Sustainable Biotechnology, Inter American University of Puerto Rico, Barranquitas, PR 00794, USA; (Y.Z.O.); (K.R.R.); (R.A.B.); (J.A.N.B.)
| | - Nirmal Joshee
- Agricultural Research Station, Fort Valley State University, Fort Valley, GA 31030, USA; (L.I.); (B.N.V.); (S.H.S.); (N.J.)
| | - Alok Arun
- Institute of Sustainable Biotechnology, Inter American University of Puerto Rico, Barranquitas, PR 00794, USA; (Y.Z.O.); (K.R.R.); (R.A.B.); (J.A.N.B.)
- Correspondence:
| |
Collapse
|
21
|
Xu DD, Hou XY, Wang O, Wang D, Li DT, Qin SY, Lv B, Dai XM, Zhang ZJ, Wan JB, Xu FG. A four-component combination derived from Huang-Qin Decoction significantly enhances anticancer activity of irinotecan. Chin J Nat Med 2021; 19:364-375. [PMID: 33941341 DOI: 10.1016/s1875-5364(21)60034-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Indexed: 12/30/2022]
Abstract
Huang-Qin Decoction (HQD) is a classic prescription for diarrhea in Chinese medicine treatment. Recent studies have demonstrated that HQD and its modified formulation PHY906 could ameliorate irinotecan (CPT-11) induced gastrointestinal (GI) toxicity and enhance its anticancer therapeutic efficacy. Nevertheless, which constituents in HQD are effective is still unclear so far. The study aims to screen out the key bioactive components combination from HQD that could enhance the anticancer effect of CPT-11. First, the potential bioactive constituents were obtained through system pharmacology strategy. Then the bioactivity of each constituent was investigated synthetically from the aspects of NCM460 cell migration, TNF-α release of THP-1-derived macrophage and MTT assay in HCT116 cell. The contribution of each constituent in HQD was evaluated using the bioactive index Ei, which taken the content and bioactivity into comprehensive consideration. And then, the most contributing constituents were selected out to form a key-component combination. At last, the bioefficacy of the key-component combination was validated in vitro and in vivo. As a result, a key-component combination (HB4) consisting of four compounds baicalin, baicalein, glycyrrhizic acid and wogonin was screened out. In vitro assessment indicated that HB4 could enhance the effect of CPT-11 on inhibiting cell proliferation and inducing apoptosis in HCT116. Furthermore, the in vivo study confirmed that HB4 and HQD have similar pharmacological activity and could both enhance the antitumor effect of CPT-11 in HCT116 xenograft model. Meanwhile, HB4 could also reduce the CPT-11 induced GI toxicity.
Collapse
Affiliation(s)
- Dou-Dou Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Ying Hou
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Ou Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Di Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Dan-Ting Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Si-Yuan Qin
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Bo Lv
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Min Dai
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Zun-Jian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Feng-Guo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
22
|
Kumar R, Harilal S, Parambi DGT, Narayanan SE, Uddin MS, Marathakam A, Jose J, Mathew GE, Mathew B. Fascinating Chemopreventive Story of Wogonin: A Chance to Hit on the Head in Cancer Treatment. Curr Pharm Des 2021; 27:467-478. [PMID: 32338206 DOI: 10.2174/1385272824999200427083040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/30/2020] [Indexed: 11/22/2022]
Abstract
Cancer, global havoc, is a group of debilitating diseases that strikes family as well as society. Cancer cases are drastically increasing these days. Despite many therapies and surgical procedures available, cancer is still difficult to control due to limited effective therapies or targeted therapies. Natural products can produce lesser side effects to the normal cells, which are the major demerit of chemotherapies and radiation. Wogonin, a natural product extracted from the plant, Scutellaria baicalensis has been widely studied and found with a high caliber to tackle most of the cancers via several mechanisms that include intrinsic as well as extrinsic apoptosis signaling pathways, carcinogenesis diminution, telomerase activity inhibition, metastasis inhibition in the inflammatory microenvironment, anti-angiogenesis, cell growth inhibition and arrest of the cell cycle, increased generation of H2O2 and accumulation of Ca2+ and also as an adjuvant along with anticancer drugs. This article discusses the role of wogonin in various cancers, its synergism with various drugs, and the mechanism by which wogonin controls tumor growth.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Pharmacy, Kerala University of Health Sciences, Thrissur, Kerala, India
| | - Seetha Harilal
- Department of Pharmacy, Kerala University of Health Sciences, Thrissur, Kerala, India
| | - Della G T Parambi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Sakaka, Al Jouf, 2014, Saudi Arabia
| | - Siju E Narayanan
- P.G. Department of Pharmacology, College of Pharmaceutical Sciences, Government Medical College, Kannur-670503, India
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Akash Marathakam
- Department of Pharmaceutical Chemistry, National College of Pharmacy, Calicut, India
| | - Jobin Jose
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Science, NITTE Deemed to be University, Manglore, 575018, India
| | - Githa E Mathew
- Department of Pharmacology, Grace College of Pharmacy, Palakkad, India
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, 678557, Kerala, India
| |
Collapse
|
23
|
Fluorescence live cell imaging revealed wogonin targets mitochondria. Talanta 2021; 230:122328. [PMID: 33934785 DOI: 10.1016/j.talanta.2021.122328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023]
Abstract
Scutellaria baicalensis is one of the widely used Chinese traditional medicines, and wogonin is one of major active components in it. However, the mechanism of action of wogonin has largely remained unclear. In this work, we designed a fluorescent probe, namely ATTO565-WGN, by conjugating wogonin with the fluorophore ATTO565 based on Mannich reaction via a flexible chain linker. In vitro assays verified that the ATTO565-WGN conjugate has a similar anti-proliferative activity to wogonin against human A549 and HeLa cancer cell lines. Combining co-localization and competition studies, confocal fluorescence imaging clearly demonstrated that the fluorescent wogonin probe predominantly located in mitochondrial area of living cells, indicating that wogonin acts at mitochondrion to exert its pharmacological functions. Significantly, the conjugated ATTO565 fluorophore conferred the wogonin probe STED (Stimulated Emission Depletion) feature, enabling STED fluorescence living cell imaging with a 55 nm of ultrahigh spatial resolution. This will greatly beneficial for the in situ investigation of interactions between wogonin and biological targets at the finely organized and dynamic mitochondria of living cells. Moreover, this work also provides novel insights into rational design of mitochondrion targeting fluorescence probes for ultrahigh resolution living cell imaging.
Collapse
|
24
|
Kalimuthu K, Kim JH, Park YS, Luo X, Zhang L, Ku JL, Choudry MHA, Lee YJ. Glucose deprivation-induced endoplasmic reticulum stress response plays a pivotal role in enhancement of TRAIL cytotoxicity. J Cell Physiol 2021; 236:6666-6677. [PMID: 33586156 DOI: 10.1002/jcp.30329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022]
Abstract
Abnormalities of the tumor vasculature result in insufficient blood supply and development of a tumor microenvironment that is characterized by low glucose concentrations, low extracellular pH, and low oxygen tensions. We previously reported that glucose-deprived conditions induce metabolic stress and promote tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced cytotoxicity. In this study, we examined whether the metabolic stress-associated endoplasmic reticulum (ER) stress response pathway plays a pivotal role in the enhancement of TRAIL cytotoxicity. We observed no significant cytotoxicity when human colorectal cancer SW48 cells were treated with various doses of TRAIL (2-100 ng/ml) for 4 h or glucose (0-25 mM) for 24 h. However, a combination of TRAIL and low glucose-induced dose-dependent apoptosis through activation of caspases (-8, -9, and -3). Studies with activating transcription factor 4 (ATF4), C/EBP-homologous protein (CHOP), p53 upregulated modulator of apoptosis (PUMA), or death receptor 5 (DR5)-deficient mouse embryonic fibroblasts or HCT116 cells suggest that the ATF4-CHOP-PUMA axis and the ATF4-CHOP-DR5 axis are involved in the combined treatment-induced apoptosis. Moreover, the combined treatment-induced apoptosis was completely suppressed in BH3 interacting-domain death agonist (Bid)- or Bcl-2-associated X protein (Bax)-deficient HCT116 cells, but not Bak-deficient HCT116 cells. Interestingly, the combined treatment-induced Bax oligomerization was suppressed in PUMA-deficient HCT116 cells. These results suggest that glucose deprivation enhances TRAIL-induced apoptosis by integrating the ATF4-CHOP-PUMA axis and the ATF4-CHOP-DR5 axis, consequently amplifying the Bid-Bax-associated mitochondria-dependent pathway.
Collapse
Affiliation(s)
- Kalishwaralal Kalimuthu
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jin Hong Kim
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yong Seok Park
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xu Luo
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Lin Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ja-Lok Ku
- Department of Biomedical Sciences/Department of Medicine, Laboratory of Cell Biology, Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - M Haroon A Choudry
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yong J Lee
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
25
|
Jabir M, Sahib UI, Taqi Z, Taha A, Sulaiman G, Albukhaty S, Al-Shammari A, Alwahibi M, Soliman D, Dewir YH, Rizwana H. Linalool-Loaded Glutathione-Modified Gold Nanoparticles Conjugated with CALNN Peptide as Apoptosis Inducer and NF-κB Translocation Inhibitor in SKOV-3 Cell Line. Int J Nanomedicine 2020; 15:9025-9047. [PMID: 33235450 PMCID: PMC7680166 DOI: 10.2147/ijn.s276714] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/03/2020] [Indexed: 12/28/2022] Open
Abstract
Background Linalool is a monoterpene compound with various potential therapeutic applications in several medical fields. Previous studies have indicated the activity of linalool against cell lines; however, its high level of toxicity restricts its use. The aim of this study was to design and manufacture compounds with a novel structure that can be used for loading linalool, to reduce its toxicity and improve its reachable ability. Methods We synthesized and characterized a new molecule for loading linalool onto gold nanoparticles (GNPs) capped with glutathione and conjugated with a CALNN peptide. Linalool was loaded onto the GNPs via the reaction of the surface groups of both linalool and the GNPs. Moreover, the target peptide could be loaded onto the surface of the GNPs via a chemical reaction. The cytotoxic effects of linalool–GNP (LG) and linalool–GNP–CALNN peptide (LGC) conjugates against ovarian cancer cells were investigated, as were the possible mechanisms underlying the induction of apoptosis. Results Our findings illustrated the significant antiproliferative effect of LG and LGC on SKOV-3 cells. The cytotoxicity assay demonstrated that LG and LGC were selectively toxic in cancer cells and induced apoptosis by activating caspase-8, the p53 protein, and various proteins involved in apoptosis. The present data demonstrated that LG and LGC have a high therapeutic potential and should be given particular consideration as anticancer drug-delivery systems, as LG and LGC were remarkably more cytotoxic against a cancer cell line than were linalool and GNPs alone. Conclusion We concluded that LG and LGC are promising compounds that can be used for treating ovarian cancer (SKOV-3) cells via the induction of apoptosis through extrinsic and intrinsic pathways.
Collapse
Affiliation(s)
- Majid Jabir
- University of Technology, Department of Applied Science, Baghdad, Iraq
| | - Usama I Sahib
- University of Technology, Department of Applied Science, Baghdad, Iraq
| | - Zainab Taqi
- University of Technology, Department of Applied Science, Baghdad, Iraq
| | - Ali Taha
- University of Technology, Department of Applied Science, Baghdad, Iraq
| | - Ghassan Sulaiman
- University of Technology, Department of Applied Science, Baghdad, Iraq
| | - Salim Albukhaty
- University of Misan, Department of Basic Science, Misan, Iraq
| | - Ahmed Al-Shammari
- Al-Mustansiriyah University, Iraqi Center for Cancer and Medical Genetic Research, Experimental Therapy Department, Baghdad, Iraq
| | - Mona Alwahibi
- King Saud University, Department of Botany and Microbiology, Riyadh 11495, Saudi Arabia
| | - Dina Soliman
- King Saud University, Department of Botany and Microbiology, Riyadh 11495, Saudi Arabia
| | - Yaser Hassan Dewir
- King Saud University, College of Food and Agriculture Sciences, Riyadh 11451, Saudi Arabia.,Kafrelsheikh University, Faculty of Agriculture, Kafr El-Sheikh 33516, Egypt
| | - Humaira Rizwana
- King Saud University, Department of Botany and Microbiology, Riyadh 11495, Saudi Arabia
| |
Collapse
|
26
|
Wogonin Suppresses IL-10 Production in B Cells via STAT3 and ERK Signaling Pathway. J Immunol Res 2020; 2020:3032425. [PMID: 32566686 PMCID: PMC7285295 DOI: 10.1155/2020/3032425] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/12/2020] [Accepted: 04/15/2020] [Indexed: 12/31/2022] Open
Abstract
Wogonin (5,7-dihydroxy-8-methoxyflavone) is an ingredient of the extracts from Scutellaria baicalensis, which has documented a wide spectrum of anti-inflammatory and antitumor activities, including inhibiting regulatory T cells, regulating effector T cell functions, and mediating macrophage immunity. However, the potential effect of Wogonin on B cells has not been fully understood. Here, our results showed that Wogonin inhibited IL-10 secretion in B cells. When purified B cells were activated by lipopolysaccharide (LPS) in vitro, the amount of IL-10 production in supernatant was decreased by Wogonin significantly. The protective role of B cells on dextran sulfate sodium- (DSS-) induced colitis was alleviated after exposure to Wogonin. Furthermore, administration of Wogonin on LPS-treated B cells suppressed phosphorylation of STAT3 and ERK, but not AKT. Interestingly, among those IL-10 signaling-associated transcription factors, mRNA and protein levels of Hif-1α were specifically decreased by Wogonin. Overall, our study indicates that Wogonin suppresses potentially IL-10 production in B cells via inhibition of the STAT3 and ERK signaling pathway as well as inhibition of mRNA and protein levels of the transcription factor Hif-1α. These results provide novel and potential molecular targets of Wogonin in B cells and help us further understand its mechanism of action, which could potentially improve its clinical application in the future.
Collapse
|
27
|
Khan S, Kamal MA. Can Wogonin be Used in Controlling Diabetic Cardiomyopathy? Curr Pharm Des 2020; 25:2171-2177. [PMID: 31298148 DOI: 10.2174/1381612825666190708173108] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/26/2019] [Indexed: 11/22/2022]
Abstract
Diabetes Mellitus (DM) is now a well-known factor which initiates many metabolic derangements in various tissues and organs including liver, muscle, pancreas, adipose tissue, cardiovascular and nervous system. Cardiovascular complications are the most crucial , and their effects are so intensive that their derangement leads to cardiac failure even in the absence of ischemic heart diseases. This entity of cardiac pathology in DM is often regarded as diabetic cardiomyopathy (DCM). Recently, many plant-derived drugs have been tested to control and alleviate DCM. Wogonin is one of the drugs the characteristics of which have been deeply studied. Wogonin is a flavonoid having yellow color pigment in their leaves and is obtained from the roots of plant Scutellaria Baicalensis Georgi. Wogonin has long been used as an active anti-cancer drug in Chinese medicine practice. In recent past wogonin has shown to possess notable anti-inflammatory, and anti-allergic properties. Wogonin has demonstrated to possess anti-oxidant, anti-viral, anti-inflammatory and also anti-thrombotic properties. Wogonin has shown to alleviate apoptosis, and ER stress in the cells and this property can also be used in the treatment of cardiovascular diseases. Notably, wogonin has been documented to have an extensive margin of safety as well as displays little or no organ toxicity following extended intravenous administration. In this review, we discuss recently discovered therapeutic potential of wogonin in the treatment of DCM.
Collapse
Affiliation(s)
- Shahzad Khan
- Department of Pathophysiology, Wuhan University School of Medicine, Hubei, Wuhan V, China
| | - Mohammad A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia.,Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia.,Novel Global Community Educational Foundation, Australia
| |
Collapse
|
28
|
Su WW, Huang JY, Chen HM, Lin JT, Kao SH. Adenine inhibits growth of hepatocellular carcinoma cells via AMPK-mediated S phase arrest and apoptotic cascade. Int J Med Sci 2020; 17:678-684. [PMID: 32210718 PMCID: PMC7085215 DOI: 10.7150/ijms.42086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Adenine exhibits potential anticancer activity against several types of malignancies. However, whether adenine has anticancer effects on hepatocellular carcinoma (HCC) cells is incompletely explored. Methods: Human HCC cell lines HepG2 and SK-Hep-1 (p53-wild type) and Hep3B (p53-deficient) were used as cell model. Cell growth and cell cycle distribution were determined using MTT assay and flow cytometric analysis, respectively. Protein expression and phosphorylation were assessed by Western blot. Involvement of AMP-activated protein kinase (AMPK) was evaluated using specific inhibitor and small inhibitory RNA (siRNA). Results: Adenine treatments (0.5 - 2 mM) clearly decreased the cell growth of Hep G2 and SK-Hep-1 cells to 72.5 ± 3.4% and 71.3 ± 4.6% of control, respectively. In parallel, adenine also induced sub-G1 and S phase accumulation in both HCC cells. However, adenine did not affect the cell growth and cell cycle distribution of Hep3B cell. Western blot analysis showed that adenine reduced expression of cyclin A/D1 and cyclin-dependent kinase (CDK)2 and upregulated p53, p21, Bax, PUMA, and NOXA in HepG2 cell. Moreover, adenine induced AMPK activation that was involved in the p53-associated apoptotic cascade in HepG2 cells. Inhibition of AMPK activation or knockdown of AMPK restored the decreased cell growth of HepG2 and SK-Hep-1 cells in response to adenine. Conclusions: These findings reveal that adenine reduces the cell growth of HepG2 and SK-Hep-1 but not Hep3B cells, attributing to the AMPK/p53-mediated S phase arrest and apoptosis. It suggests that adenine has anticancer potential against p53-wild type HCC cells and may be beneficial as an adjuvant for HCC treatment.
Collapse
Affiliation(s)
- Wei-Wen Su
- Division of Gastroenterology, Department of Internal Medicine, Changhua Christian Hospital, Changhua 50006, Taiwan
| | - Jen-Yu Huang
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Han-Min Chen
- Institute of Applied Science and Engineering, Catholic Fu Jen University, New Taipei 24205, Taiwan
| | - Jiun-Tsai Lin
- Energenesis Biomedical Co. Ltd., Taipei 11492, Taiwan
| | - Shao-Hsuan Kao
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan.,Institute of Medicine, Chung Shan, Medical University, Taichung 40201, Taiwan.,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
29
|
Xing F, Sun C, Luo N, He Y, Chen M, Ding S, Liu C, Feng L, Cheng Z. Wogonin Increases Cisplatin Sensitivity in Ovarian Cancer Cells Through Inhibition of the Phosphatidylinositol 3-Kinase (PI3K)/Akt Pathway. Med Sci Monit 2019; 25:6007-6014. [PMID: 31402794 PMCID: PMC6703084 DOI: 10.12659/msm.913829] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Wogonin (5,7-dihydroxy-8-methoxyflavone), one of flavonoids isolated from the Scutellaria baicalensis, has been regarded as an anticancer candidate because of its maximal efficacy in cancer cells. This study aimed to explore the possible mechanism that wogonin uses to enhance the sensitivity of ovarian cancer cells to cisplatin chemotherapy. Material/Methods The growth inhibition rates of ovarian cancer cells SKOV3/DDP and C13* were assessed by Cell Counting Kit-8 (CCK-8) assay. The apoptosis was assessed under a fluorescence microscope following staining with Hoechst. We further analyzed the expression of Bcl-2, cleaved caspases-3, cleaved-PARP, and phospho-Akt by western blotting. Results In the present study, we found that wogonin reduced proliferation of ovarian cancer cells SKOV3, SKOV3/DDP, OV2008, and C13* in dose- and time-dependent manners and it sensitized cisplatin-induced cytotoxicity. Moreover, treatment with wogonin also increased cisplatin-resistant SKOV3/DDP and C13* cells to low dose cisplatin-induced cell apoptosis. Additionally, such treatment resulted in a significant decrease in phosphorylated Akt. Conclusions Wogonin could significantly increase the sensitivity of cisplatin-resistant ovarian cancer cells to cisplatin by downregulating the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Feng Xing
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China (mainland)
| | - Cong Sun
- Department of Obstetrics and Gynecology, First Hospital of Zibo, Zibo, Shandong, China (mainland)
| | - Ning Luo
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China (mainland)
| | - Yuanying He
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China (mainland)
| | - Mengmeng Chen
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China (mainland)
| | - Siyu Ding
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China (mainland)
| | - Chenghua Liu
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China (mainland)
| | - Lijin Feng
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China (mainland)
| | - Zhongping Cheng
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China (mainland)
| |
Collapse
|
30
|
Badawy AM, El-Naga RN, Gad AM, Tadros MG, Fawzy HM. Wogonin pre-treatment attenuates cisplatin-induced nephrotoxicity in rats: Impact on PPAR-γ, inflammation, apoptosis and Wnt/β-catenin pathway. Chem Biol Interact 2019. [DOI: https://doi.org/10.1016/j.cbi.2019.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Chen J, Huang C, Liu F, Xu Z, Li L, Huang Z, Zhang H. Methylwogonin exerts anticancer effects in A375 human malignant melanoma cells through apoptosis induction, DNA damage, cell invasion inhibition and downregulation of the mTOR/PI3K/Akt signalling pathway. Arch Med Sci 2019; 15:1056-1064. [PMID: 31360200 PMCID: PMC6657243 DOI: 10.5114/aoms.2018.73711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/24/2017] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION The main purpose of the present research was to study the anticancer effects of methylwogonin in A375 human malignant melanoma cells by evaluating its effects on apoptosis, DNA fragmentation, cancer cell invasion and the mTOR/PI3K/AKT signalling pathway. MATERIAL AND METHODS Effects on cell cytotoxicity were evaluated by MTT assay while a clonogenic assay determined the effects of methylwogonin on colony formation. Fluorescence microscopy evaluated apoptotic effects of methylwogonin in these cells using acridine orange/propidium iodide and Hoechst 33342 staining dyes. Gel electrophoresis evaluated the effects of methylwogonin on DNA fragmentation while the Matrigel invasion assay evaluated the effects of the drug on cancer cell invasion. Effects of methylwogonin on the mTOR/PI3K/AKT signalling pathway were evaluated by western blot assay. RESULTS Methylwogonin induces concentration-dependent as well as time-dependent growth inhibitory effects inducing significant cytotoxicity in these cancer cells. Methylwogonin led to dose-dependent inhibition of colony formation in A375 human malignant melanoma cells. The number of cell colonies decreased significantly as the methylwogonin dose increased from 0, 50, 150, to 300 μM. Methylwogonin treatment of cells at lower doses led to yellow fluorescence (early apoptosis), which changed to red/orange fluorescence, indicating late apoptosis at higher doses. Similar results were obtained using Hoechst 33342 staining, revealing that 50, 150 and 300 μM doses of methylwogonin led to significant morphological changes including chromatin condensation, fragmented nuclei and cellular shrinkage. DNA ladder formation was also observed, and this effect increased with increasing doses of methylwogonin. Methylwogonin also inhibited cancer cell invasion in a dose-dependent manner. CONCLUSIONS Different doses of methylwogonin led to concentration-dependent downregulation of phosphorylated PI3K, AKT and mTOR.
Collapse
Affiliation(s)
- Jiaorong Chen
- Department of Anatomy and Histology and Embryology, Basic Medical College, Hubei University of Traditional Chinese Medicine, Wuhan, China
| | - Chunmei Huang
- Pathology Department, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangfang Liu
- Pathology Department, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihui Xu
- Endocrinology Department, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Li
- Pathology Department, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Huang
- Pathology Department, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongfeng Zhang
- Pathology Department, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Wang M, Qiu S, Qin J. Baicalein induced apoptosis and autophagy of undifferentiated thyroid cancer cells by the ERK/PI3K/Akt pathway. Am J Transl Res 2019; 11:3341-3352. [PMID: 31312348 PMCID: PMC6614652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 05/31/2019] [Indexed: 06/10/2023]
Abstract
Thyroid cancer is the most common endocrine system malignancy, and undifferentiated thyroid cancer is one of the most invasive tumors. Studies have found that baicalein, a major flavonoid separated from the root of Scutellaria baicalensis Georgi, has an inhibitory effect on a variety of malignant tumor cells. However, the effect of baicalein on undifferentiated thyroid cancer has not yet been investigated. In the present study, follicular undifferentiated thyroid cancer cells (FRO) were treated with different concentrations of baicalein (10 μM, 20 μM, 40 μM, 80 μM) for 12 h, 24 h, 36 h, or 48 h; then, the cell viability and clonogenicity were measured. Cell cycles and cell apoptosis were measured by flow cytometer after FRO cells were treated with baicalein for 36 h or 48 h. After FRO cells were treated with baicalein for 48 h, the expression of apoptosis-related proteins (Bcl-2, Bax, Caspase-3 and Caspase-8), autophagy-related proteins (Beclin-1, p62, Atg5 and Atg12) and the phosphorylation levels of ERK and Akt in FRO cells were measured by Western blot. The results showed that baicalein reduced the cell viability and cell colony numbers of FRO cells in a dose- and time-dependent manner. Baicalein also induced cell apoptosis and arrested the cell cycles of FRO cells. Baicalein decreased the ratio of Bcl-2/Bax but increased the expression of Caspase-3 and Caspase-8. Furthermore, baicalein induced autophagy in FRO cells. It significantly increased the expression of Beclin-1, Atg5, p62 and Atg12. Baicalein significantly decreased the ratios of p-ERK/ERK and p-Akt/Akt, indicating that it suppressed the ERK and PI3K/Akt pathways. In conclusion, baicalein could suppress the growth of undifferentiated thyroid cancer cells by inducing apoptosis and autophagy. The inhibition of the ERK and PI3K/Akt pathways may be involved in the mechanism.
Collapse
Affiliation(s)
- Min Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine Shanghai 200080, China
| | - Shenglong Qiu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine Shanghai 200080, China
| | - Jun Qin
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine Shanghai 200080, China
| |
Collapse
|
33
|
Weixin L, Lixia M, Leiyan W, Yuxiao Z, Haifeng Z, Sentai L. Effects of silkworm pupa protein hydrolysates on mitochondrial substructure and metabolism in gastric cancer cells. JOURNAL OF ASIA-PACIFIC ENTOMOLOGY 2019; 22:387-392. [DOI: 10.1016/j.aspen.2019.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
34
|
Badawy AM, El-Naga RN, Gad AM, Tadros MG, Fawzy HM. Wogonin pre-treatment attenuates cisplatin-induced nephrotoxicity in rats: Impact on PPAR-γ, inflammation, apoptosis and Wnt/β-catenin pathway. Chem Biol Interact 2019; 308:137-146. [PMID: 31103702 DOI: 10.1016/j.cbi.2019.05.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/09/2019] [Accepted: 05/15/2019] [Indexed: 02/08/2023]
Abstract
Cisplatin, a platinum chemotherapeutic agent, is used in a diversity of malignancies; nevertheless, the excessive nephrotoxicity following cisplatin treatment is the dose-limiting devastating reaction. This study was designed to explore the possible nephroprotective impact of wogonin, a forceful anti-oxidant, anti-inflammatory, and anti-tumor agent, in a rat model of cisplatin-induced renal injury. The potential nephroprotective mechanisms were additionally investigated. Wogonin was given at a dose of 40 mg/kg. Acute nephrotoxicity was indicated by a significant rise in BUN, and serum creatinine levels in cisplatin-injected rats. Also, cisplatin enhanced the lipid peroxidation, diminished GSH, catalase, and PPAR-γ levels. Additionally, cisplatin-injected rats showed a significant rise in tissue levels of IL-1β, TNF-α, NF-kB, and caspase-3 enzymatic activity. Notably, the pre-treatment with wogonin ameliorated the nephrotoxicity indices, oxidative stress, inflammation, and apoptosis induced by cisplatin. Also, wogonin up-regulated PPAR-γ expression. The involvement of Wnt/β-catenin pathway was debatable; however, our findings showed that it was significantly induced by cisplatin. Wogonin pre-treatment markedly attenuated Wnt/β-catenin pathway. Collectively, these findings imply that wogonin is a promising nephroprotective agent that improves the therapeutic index of cisplatin via reducing oxidative stress, inflammation as well as inducing PPAR-γ. Also, Wnt/β-catenin pathway is partially involved in the pathogenesis of cisplatin nephrotoxicity.
Collapse
Affiliation(s)
- Alaa M Badawy
- Department of Pharmacology, The National Organization for Drug Control and Research, Cairo, Egypt
| | - Reem N El-Naga
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Amany M Gad
- Department of Pharmacology, The National Organization for Drug Control and Research, Cairo, Egypt
| | - Mariane G Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Hala M Fawzy
- Department of Pharmacology, The National Organization for Drug Control and Research, Cairo, Egypt
| |
Collapse
|
35
|
TP53 Polymorphism Contributes to the Susceptibility to Bipolar Disorder but Not to Schizophrenia in the Chinese Han Population. J Mol Neurosci 2019; 68:679-687. [DOI: 10.1007/s12031-019-01330-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022]
|
36
|
Jiao W, Han Q, Xu Y, Jiang H, Xing H, Teng X. Impaired immune function and structural integrity in the gills of common carp (Cyprinus carpio L.) caused by chlorpyrifos exposure: Through oxidative stress and apoptosis. FISH & SHELLFISH IMMUNOLOGY 2019; 86:239-245. [PMID: 30176333 DOI: 10.1016/j.fsi.2018.08.060] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/24/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
As one of the mucosal lymphatic tissues, the gill is an important immune organ in fish. Water environmental pollutants enter fish body through the gill. Therefore, the gill is the initial site where pollutants produce toxic effects in water. Chlorpyrifos (CPF), a broad-spectrum organophosphate insecticide, is widely used for agricultural pests and causes river pollution. In the present study, we investigated histopathological effect, oxidative stress indexes (SOD, GSH, T-AOC, and MDA), and apoptosis-related genes (P53, PUMA, Bax, Bcl-2, Apaf-1, Caspase-9, and Caspase-3) in the gills of common carp exposed to CPF. The results indicated that CPF exposure decreased SOD, T-AOC, and GSH; increased MDA; decreased Bcl-2 mRNA expression; and increased P53, PUMA, Bax, Apaf-1, Caspase-9, and Caspase-3 mRNA expressions in common carp gills. Our results proved that CPF exposure caused oxidative stress and apoptosis in common carp gills; CPF exposure destroyed the structural integrity and affected the immune function through oxidative stress and apoptosis in common carp gills. These will provide evidence for the toxic effects of water environmental pollutants on immune function and structural integrity in fish gills.
Collapse
Affiliation(s)
- Wanying Jiao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qi Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yanmin Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Huijie Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Houjuan Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
37
|
Liu Z, Wu X, Lv J, Sun H, Zhou F. Resveratrol induces p53 in colorectal cancer through SET7/9. Oncol Lett 2019; 17:3783-3789. [PMID: 30881498 PMCID: PMC6403518 DOI: 10.3892/ol.2019.10034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 09/04/2018] [Indexed: 12/26/2022] Open
Abstract
Resveratrol is one of the most promising phytoalexins for use as an anti-cancer agent, which is present in the skin of red grapes and berries. Resveratrol has been demonstrated to modulate a number of signalling pathways that are involved in carcinogenesis. In the present study, the function of resveratrol as a pro-apoptotic agent in colorectal cancer cell lines, including HCT116, CO115 and SW48, was investigated. The results revealed that resveratrol supressed cell viability. Additionally, resveratrol enhanced the expression of tumour protein p53 (p53) and p53 target genes, including Bcl2 associated X, apoptosis regulator and Bcl2 binding component 3 that have a pivotal role in p53-dependent apoptosis. Furthermore, treating cells with resveratrol upregulated SET domain containing lysine methyltransferase 7/9 (SET7/9) expression, which positively regulates p53 through its mono-methylation at lysine 372, compared with untreated cells. Furthermore, treating cells with resveratrol induced the expression of apoptotic markers including cleaved caspase-3 and poly (ADP-ribose) polymerases (PARP) compared with untreated cells. However, the genetic knockdown of SET7/9 by short hairpin RNA attenuated the resveratrol-driven overexpression of p53, cleaved caspase-3 and PARP. Collectively, these results reveal the molecular mechanisms by which resveratrol induces p53 stability in colon cancer that results in the activation of p53-mediated apoptosis.
Collapse
Affiliation(s)
- Zhonglun Liu
- Department of Clinical Laboratory, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222002, P.R. China
| | - Xiaohong Wu
- Department of General Surgery, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214200, P.R. China
| | - Jingjing Lv
- Department of Clinical Comprehensive Experiment Centre, Lianyungang Oriental Hospital, Lianyungang, Jiangsu 222042, P.R. China
| | - Hui Sun
- Department of Clinical Comprehensive Experiment Centre, Lianyungang Oriental Hospital, Lianyungang, Jiangsu 222042, P.R. China
| | - Feiqin Zhou
- Department of Medical Examination Centre, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214200, P.R. China
| |
Collapse
|
38
|
Network Pharmacology and Bioinformatics Approach Reveals the Therapeutic Mechanism of Action of Baicalein in Hepatocellular Carcinoma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7518374. [PMID: 30891079 PMCID: PMC6390240 DOI: 10.1155/2019/7518374] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/09/2019] [Indexed: 12/29/2022]
Abstract
Liver cancer is the fourth leading cause of cancer death worldwide, and hepatocellular carcinoma (HCC) accounts for the greatest proportion of these deaths. Baicalein, a flavonoid isolated from the root of Scutellariae radix, is considered a potential candidate to treat HCC. However, the underlying molecular mechanisms remain poorly understood. In the present study, a network pharmacological approach was combined with microarray data (GSE95504) acquired from the Gene Expression Omnibus database to reveal the therapeutic mechanisms of action of baicalein at a systemic level. We identified 38 baicalein targets and 76 differently expressed genes (DEGs) following treatment with baicalein, including 55 upregulated and 21 downregulated genes. The DEGs were significantly enriched in the biological functions of apoptosis, endoplasmic reticulum stress, and PERK-mediated unfolded protein response. Protein-protein interaction (PPI) network construction and topological screening revealed a core module of PPIs including two baicalein targets, TP53 and CDK1, and two downregulated DEGs, HSPA1A and HSPA1B. Expression and survival data for these genes in the module derived from Gene Expression Profiling Interactive Analysis (GEPIA) were subjected to Kaplan–Meier analysis of overall survival and disease-free survival. Overexpression of CDK1, BRCA1, TUBB, HSPA1A, HSPA1B, and HSPA4 was associated with significantly worse overall survival, while overexpression of CDK1, CLU7, BRCA1, and TUBB was associated with significantly worse disease-free survival. These data suggest that baicalein exerts therapeutic effects against HCC via a PPI network involving TP53, CDK1, HSPA1A, and HSPA1B.
Collapse
|
39
|
Wang H, Li H, Chen F, Luo J, Gu J, Wang H, Wu H, Xu Y. Baicalin extracted from Huangqin (Radix Scutellariae Baicalensis) induces apoptosis in gastric cancer cells by regulating B cell lymphoma
(Bcl-2)/Bcl-2-associated X protein and activating caspase-3 and caspase-9. J TRADIT CHIN MED 2018; 37:229-5. [PMID: 29960296 DOI: 10.1016/s0254-6272(17)30049-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To evaluate the effects of baicalin in human gastric cancer cells, including apoptosis-inducing
effects, and to investigate its underlying mechanisms of action. METHODS Cell proliferation and apoptosis assays were performed to investigate the anti-proliferation effects of baicalin in human gastric cancer BGC-823 and MGC-803 cells. Real time-quantitative
polymerase chain reaction and Western blotting analysis were performed to elucidate the molecular
mechanisms underlying the anti-tumor properties of baicalin. RESULTS In BGC-823 and MGC-803 gastric cancer cells treated with 80, 120, and 160 μmol/L baicalin
for 48 h, a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay showed that
baicalin significantly inhibited cell proliferation in a dose-dependent manner, while flow cytometric
analysis demonstrated that baicalin could induce apoptosis, also in a dose-dependent manner.
Moreover, baicalin up-regulated the expression of caspase-3, caspase-9, and B cell lymphoma
(Bcl-2)-associated X protein and down-regulated the expression of Bcl-2 at both the mRNA and
protein level. CONCLUSION Baicalin has potential as a therapeutic
agent for gastric cancer by inducing apoptosis in cancer cells.
Collapse
|
40
|
Zhao Y, Zhang L, Wu Y, Dai Q, Zhou Y, Li Z, Yang L, Guo Q, Lu N. Selective anti-tumor activity of wogonin targeting the Warburg effect through stablizing p53. Pharmacol Res 2018; 135:49-59. [PMID: 30031170 DOI: 10.1016/j.phrs.2018.07.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 06/15/2018] [Accepted: 07/12/2018] [Indexed: 01/11/2023]
Abstract
Most cancer cells generate energy through aerobic glycolysis to enable their rapid growth and proliferation, which is a phenomenon known as Warburg effect. Inhibition of aerobic glycolysis reduces lactate and ATP generation in cancer cells, and ultimately kills tumor cells. Increasing evidence suggests that wogonin, a flavonoid isolated from Scutellaria baicalensis Georgi, exhibits potent anti-tumor effects in vivo and in vitro. However, the role of wogonin in the aerobic glycolysis of tumor cells has not yet been elucidated. In this study, the effect of wogonin on glucose uptake, lactate generation and ATP content is assessed in colon, ovarian and hepatocellular cancer cells. The results indicate that wogonin reduces glycolysis and cell proliferation in cancer cells expressing wild-type p53 but not mutated p53. Wogonin increases the expression of p53 and p53-inducible glycolysis and apoptosis regulator (TIGAR), while decreases glucose transporter 1 (GLUT1) and some key glycolytic enzymes. Expressing wild-type and mutant-type p53 in HCT116 p53-/- cells proved that the inhibitory effect of wogonin on glycolysis in cancer cells is dependent on wild type p53. Mechanistically, wogonin induced the phosphorylation and acetylation of p53 and inhibited the expression of MDM2 to enhance the stability of p53. Furthermore, wogonin suppressed the growth and glycolysis of transplanted wild-type p53 expressing A2780 cells on nude mice, but did not affect mutant-type p53 expressing HT-29 cells. In conclusion, these findings explain the broad anti-tumor effect of wogonin, and offer a novel avenue for the therapeutic strategy in cancer.
Collapse
Affiliation(s)
- Yikai Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Lulu Zhang
- Department of Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, PR China
| | - Yifan Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Qinsheng Dai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Yuxin Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Zhiyu Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Lin Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China; Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China.
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China; Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China.
| |
Collapse
|
41
|
Zhang Y, Wang H, Liu Y, Wang C, Wang J, Long C, Guo W, Sun X. Baicalein inhibits growth of Epstein-Barr virus-positive nasopharyngeal carcinoma by repressing the activity of EBNA1 Q-promoter. Biomed Pharmacother 2018; 102:1003-1014. [PMID: 29710517 DOI: 10.1016/j.biopha.2018.03.114] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) can establish a life-long latent infection in the host and is associated with various human malignancies, including nasopharyngeal carcinoma (NPC), the most common cancer originated from nasopharynx. EBV nuclear antigen 1 (EBNA1) is the only viral protein absolutely demanded for segregation, replication, transcription and maintenance of EBV viral genome in host cells. Baicalein, a bioactive flavonoid compound purified from the root of Scutellariae baicaleinsis, displays anti-inflammatory, immunosuppressive, and anti-tumor properties. In this study, the therapeutic effects and functional mechanism of baicalein on EBV-positive human NPC were determined. Cell Counting Kit-8 assays and cell formation colony were performed to investigate that baicalein can suppress proliferation of EBV-infected human NPC cells. Flow cytometric and hoechst 33258 staining results indicated that baicalein induced cell cycle arrest and apoptosis. Western blotting results demonstrated that baicalein down-regulates EBNA1 expression but not reduces the stability and half-life of EBNA1 in EBV-infected NPC cells. Additionally, the mRNA level of EBNA1 was examined by real time-PCR, the activity of EBNA1 Q promoter (Qp) was determined by dual luciferase reporter assay. Considering that transcription factor specificity protein 1 (Sp1) can maintain EBNA1 Qp active. Further analyses also elucidated that baicalein inhibits the expression of Sp1 while knock-down Sp1 by specific shRNAs decreases the expression and transcription levels of EBNA1. Therefore, the results suggested that baicalein may decrease EBNA1 expression level in EBV-positive NPC cells via inhibiting the activity of EBNA1 Q-promoter while over-expression of EBNA1 attenuate the inhibitory effect of baicalein. Finally, it was found that baicalein may strongly reduce growth of tumor in the mouse xenograft model of EBV-positive NPC. These results indicated that baicalein inhibits growth of EBV-positive NPC by repressing the activity of EBNA1 Q-promoter. Baicalein may be used as a therapeutic agent to treat EBV-positive NPC.
Collapse
Affiliation(s)
- Yaqian Zhang
- Stat Key Laboratory of Virology, Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Huan Wang
- Stat Key Laboratory of Virology, Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Yu Liu
- Stat Key Laboratory of Virology, Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Chao Wang
- Stat Key Laboratory of Virology, Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Jingchao Wang
- Stat Key Laboratory of Virology, Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Cong Long
- Stat Key Laboratory of Virology, Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Wei Guo
- Department of Pathology and Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Xiaoping Sun
- Stat Key Laboratory of Virology, Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, PR China; State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
42
|
Hlosrichok A, Sumkhemthong S, Sritularak B, Chanvorachote P, Chaotham C. A bibenzyl from Dendrobium ellipsophyllum induces apoptosis in human lung cancer cells. J Nat Med 2018; 72:615-625. [PMID: 29488156 DOI: 10.1007/s11418-018-1186-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 01/31/2018] [Indexed: 12/22/2022]
Abstract
Failure of current chemotherapeutic drugs leads to the recurrence of tumor pathology and mortality in lung cancer patients. This study aimed to evaluate the anticancer activity and related mechanisms of 4,5,4'-trihydroxy-3,3'-dimethoxybibenzyl (TDB), a bibenzyl extracted from Dendrobium ellipsophyllum Tang and Wang, in human lung cancer cells. Cytotoxicity of TDB (0-300 µM) in different types of human lung cancer cells (H460, H292 and H23) and human dermal papilla cells (DPCs) was evaluated via MTT viability assay. Selective anticancer activity of TDB against human lung cancer cells was demonstrated with a high IC50 (approximately > 300 µM) in DPCs, while IC50 in human lung cancer H460, H292 and H23 cells was approximately 100 ± 5.18, 100 ± 8.73 and 188.89 ± 8.30 µM, respectively. After treatment with 50 µM of TDB for 24 h, flow cytometry analysis revealed the significant increase of early and late apoptosis with absence of necrosis cell death in human lung cancer cells. The up-regulation of p53, a tumor-suppressor protein, was elucidated in human lung cancer cells treated with 10-50 µM of TDB. Alteration to down-stream signaling of p53 including activation of pro-apoptosis protein (Bcl-2-associated X protein; Bax), reduction of anti-apoptosis (B cell lymphoma 2; Bcl-2 and myeloid cell leukemia 1; Mcl-1) and suppression on protein kinase B (Akt) survival pathway were notified in TDB-treated lung cancer cells. The information obtained from this study strengthens the potential development of TDB as an anticancer compound with a favorable human safety profile and high efficacy.
Collapse
Affiliation(s)
- Anirut Hlosrichok
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Somruethai Sumkhemthong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Boonchoo Sritularak
- Departments of Pharmacognosy and Pharmaceutical Botany, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.,Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand. .,Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
43
|
Hong ZP, Wang LG, Wang HJ, Ye WF, Wang XZ. Wogonin exacerbates the cytotoxic effect of oxaliplatin by inducing nitrosative stress and autophagy in human gastric cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 39:168-175. [PMID: 29433678 DOI: 10.1016/j.phymed.2017.12.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 12/05/2017] [Accepted: 12/17/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Gastric cancer remains one of the leading cause of death in the world. Drug combinations are potential approaches to provide more efficient treatments that minimize side effects. PURPOSE We investigated the pharmacological effects of the combination of wogonin with oxaliplatin on gastric cancer cells in vitro and in vivo. METHODS AND RESULTS In the present study, we found that wogonin enhanced the cytotoxicity of oxaliplatin; the drug combination resulted in strong synergistic inhibition of the cell viability in BGC-823 cells and in a zebrafish xenograft model. Interestingly, the combined treatment of wogonin and oxaliplatin modulated the expression of phospho-JNK (Thr183/Tyr185), phospho-ULK1 (Ser555) and the formation of LC3II. Confocal imaging data consistently showed that wogonin exacerbates the oxaliplatin-induced dissipation of the mitochondrial membrane potential (ΔΨm) and formation of peroxynitrite in BGC-823 cells. Moreover, wogonin allows a reduction in oxaliplatin dose when they are combined; therefore, it is a relevant strategy for reducing the side effects of oxaliplatin while achieving the same response. CONCLUSION These results suggest that wogonin can be a potential therapeutic candidate for enhancing the efficacy of oxaliplatin in gastric cancer treatment.
Collapse
Affiliation(s)
- Zhi-Pan Hong
- Department of Tumor Surgery, Chifeng Municipal Hospital, Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, China
| | - Li-Guo Wang
- Department of Tumor Surgery, Chifeng Municipal Hospital, Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, China
| | - Hui-Juan Wang
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei-Feng Ye
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xue-Zhi Wang
- Department of Tumor Surgery, Chifeng Municipal Hospital, Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, China.
| |
Collapse
|
44
|
Cheng CS, Chen J, Tan HY, Wang N, Chen Z, Feng Y. Scutellaria baicalensis and Cancer Treatment: Recent Progress and Perspectives in Biomedical and Clinical Studies. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:25-54. [DOI: 10.1142/s0192415x18500027] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Scutellaria baicalensis (Huangqin in Chinese) is a major traditional Chinese medicine (TCM) herb, which has a long history of use in the treatment of a variety of symptoms correlated with cancer. In the past decade, the potential of S. baicalensis and single compounds derived from it as anticancer agents targeting various pathways has received extensive research attention. Specifically, the proliferation and metastases inhibiting properties of the single compounds in cancer have been studied; however, the underlying mechanisms remain unclear. This review summarizes the various mechanisms, pathways and molecular targets involved in the anticancer activity of S. baicalensis and its single compounds. However, the aim of this review is to provide a more thorough view of the last 10 years to link traditional use with modern research and to highlight recently discovered molecular mechanisms. Extracts and major flavonoids derived from S. baicalensis have been found to possess anticancer effects in multiple cancer cell lines both in vitro and in vivo. Further investigation is warranted to better understand the underlying mechanisms and to discover novel targets and cancer therapeutic drugs that may improve both the survival and quality of life of cancer patients.
Collapse
Affiliation(s)
- Chien-Shan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, P. R. China
| | - Jie Chen
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, P. R. China
- Department of Orthopedics, Shanghai Institute of Orthopedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Hor-Yue Tan
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, P. R. China
| | - Ning Wang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, P. R. China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Yibin Feng
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, P. R. China
| |
Collapse
|
45
|
Therapy Effects of Wogonin on Ovarian Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9381513. [PMID: 29181409 PMCID: PMC5664191 DOI: 10.1155/2017/9381513] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 08/23/2017] [Accepted: 09/10/2017] [Indexed: 02/06/2023]
Abstract
Background Wogonin is a plant monoflavonoid and has been reported to induce apoptosis of cancer cells and show inhibitory effect on cancer cell growth. However, the detailed and underlying molecular mechanisms are not elucidated. In this study, we investigated the molecular and biological effects of wogonin in human ovarian A2780 cancer cells. Materials and Methods We determined the effects of wogonin on the changes of cell cycling and apoptotic responses of cells. Western blot analysis was used to measure the effects of wogonin on protein expressions. Results Our results showed that treatment with wogonin inhibited the cancer cell proliferation, decreased the percentage of G0/G1 subpopulation, and reduced invasiveness of A2780 cells. Exposure to wogonin also resulted in downregulated protein levels of estrogen receptor alpha (ER-α), VEGF, Bcl-2, and Akt and increased expressions of Bax and p53. In addition, exposure to wogonin increased caspase-3 cleavage and induced apoptosis in A2780 cells. Our study further showed that MPP, a specific ER-α inhibitor, significantly enhanced antitumor effects of wogonin in A2780 cells. Conclusion Our results suggest a potential clinical impact of wogonin on management of ovarian cancer.
Collapse
|
46
|
Vargas AJ, Sittadjody S, Thangasamy T, Mendoza EE, Limesand KH, Burd R. Exploiting Tyrosinase Expression and Activity in Melanocytic Tumors. Integr Cancer Ther 2017; 10:328-40. [DOI: 10.1177/1534735410391661] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Melanoma is an aggressive tumor that expresses the pigmentation enzyme tyrosinase. Tyrosinase expression increases during tumorigenesis, which could allow for selective treatment of this tumor type by strategies that use tyrosinase activity. Approaches targeting tyrosinase would involve gene transcription or signal transduction pathways mediated by p53 in a direct or indirect manner. Two pathways are proposed for exploiting tyrosinase expression: ( a) a p53-dependent pathway leading to apoptosis or arrest and ( b) a reactive oxygen species–mediated induction of endoplasmic reticulum stress in p53 mutant tumors. Both strategies could use tyrosinase-mediated activation of quercetin, a dietary polyphenol that induces the expression of p53 and modulates reactive oxygen species. In addition to antitumor signaling properties, activation of quercetin could complement conventional cancer therapy by the induction of phase II detoxification enzymes resulting in p53 stabilization and transduction of its downstream targets. In conclusion, recent advances in tyrosinase enzymology, prodrug chemistry, and modern chemotherapeutics present an intriguing and selective multitherapy targeting system where dietary bioflavonoids could be used to complement conventional cancer treatments.
Collapse
|
47
|
Rong LW, Wang RX, Zheng XL, Feng XQ, Zhang L, Zhang L, Lin Y, Li ZP, Wang X. Combination of wogonin and sorafenib effectively kills human hepatocellular carcinoma cells through apoptosis potentiation and autophagy inhibition. Oncol Lett 2017; 13:5028-5034. [PMID: 28599504 DOI: 10.3892/ol.2017.6059] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/21/2017] [Indexed: 02/05/2023] Open
Abstract
The small molecule multi-kinase inhibitor sorafenib has become the standard systemic treatment for patients with advanced hepatocellular carcinoma (HCC) and renal cell carcinoma. Similar to other kinase inhibitors, drug resistance hinders its clinical use; thus, combination therapy to improve sorafenib sensitivity is a promising approach. The present study shows for the first time that the combination of sorafenib and wogonin exerts a significant potentiation of cytotoxicity in a number of human HCC cell lines in a dose-dependent manner. Enhanced cell death was due to potentiation of apoptosis, which was demonstrated by increased apoptotic cell populations, caspase activation and suppression of cell death by the pan-caspase inhibitor carbobenzoxy-valyl-alanyl-aspartyl. Sorafenib induced autophagy activation, which was shown by autophagic flux. Suppression of autophagy with the autophagy inhibitors chloroquine or 3-methyladenine significantly enhanced cytotoxicity, suggesting that sorafenib-induced autophagy is cytoprotective. Notably, wogonin effectively inhibited sorafenib-induced autophagy. Altogether, our results indicate that the combination of wogonin and sorafenib effectively kills human HCC cells. This occurs, at least in part, through autophagy inhibition, which potentiates apoptosis. Thus, wogonin could be an ideal candidate for increasing sorafenibs activity in HCC therapy, which warrants further investigation in vivo.
Collapse
Affiliation(s)
- Li-Wen Rong
- Laboratory of Molecular and Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Rui-Xue Wang
- Laboratory of Molecular and Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xue-Lian Zheng
- Laboratory of Molecular and Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xu-Qin Feng
- Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lei Zhang
- Laboratory of Molecular and Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lin Zhang
- Laboratory of Molecular and Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Immunology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yong Lin
- Laboratory of Molecular and Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhi-Ping Li
- Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xia Wang
- Laboratory of Molecular and Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Immunology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
48
|
Liu RX, Song GH, Wu PG, Zhang XW, Hu HJ, Liu J, Miao XS, Hou ZY, Wang WQ, Wei SL. Distribution patterns of the contents of five biologically activate ingredients in the root of Scutellaria baicalensis. Chin J Nat Med 2017; 15:152-160. [PMID: 28284428 DOI: 10.1016/s1875-5364(17)30030-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Indexed: 11/30/2022]
Abstract
As an important herbaceous plant, Scutellaria baicalensis Georgi (Chinese skullcap) is geographically widespread and commonly used throughout the world. In the Chinese medicine market, S. baicalensis has been divided into two primary types, "Ku Qin" (WXR) and "Tiao Qin" (TST). Moreover, TST is also divided into different grades according to the diameter of roots. To explore the distribution patterns of the contents of five biologically activate ingredients (FBAI), we used six-year-old cultivated S. baicalensis and analyzed its growth characteristics as well as the quality difference among different types and diameters in roots. Throughout the entire root, we discovered that contents of the FBAI all initially increased and subsequently decreased from the top to the bottom of the roots. The baicalin content of WXR was less than that of TST. On the contrary, the contents of baicalein, wogonin, and oroxylin A in WXR were up to about two times higher than that in TST. We also found that the 0 to 40 cm part of the S. baicalensis root possessed about 87% of the root biomass and about 92% of the contents of the active ingredients.
Collapse
Affiliation(s)
- Rong-Xiu Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Guo-Hu Song
- Chengde Pharmaceutical Co., Ltd Affiliated to China National Group Corp. of Traditional & Herbal Medicine, Chengde 067000, China
| | - Pei-Gen Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Xue-Wen Zhang
- Chengde Pharmaceutical Co., Ltd Affiliated to China National Group Corp. of Traditional & Herbal Medicine, Chengde 067000, China
| | - Hui-Juan Hu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Jia Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Xiao-Su Miao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Zhi-Yan Hou
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Wen-Quan Wang
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100094, China.
| | - Sheng-Li Wei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| |
Collapse
|
49
|
Anti-tumor activity of wogonin, an extract from Scutellaria baicalensis, through regulating different signaling pathways. Chin J Nat Med 2017; 15:15-40. [PMID: 28259249 DOI: 10.1016/s1875-5364(17)30005-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/06/2016] [Indexed: 12/14/2022]
Abstract
Wogonin is a plant flavonoid compound extracted from Scutellaria baicalensis (Huang-Qin or Chinese skullcap) and has been studied thoroughly by many researchers till date for its anti-viral, anti-oxidant, anti-cancerous and neuro-protective properties. Numerous experiments conducted in vitro and in vivo have demonstrated wogonin's excellent tumor inhibitory properties. The anti-cancer mechanism of wogonin has been ascribed to modulation of various cell signaling pathways, including serine-threonine kinase Akt (also known as protein kinase B) and AMP-activated protein kinase (AMPK) pathways, p53-dependent/independent apoptosis, and inhibition of telomerase activity. Furthermore, wogonin also decreases DNA adduct formation with a carcinogenic compound 2-Aminofluorene and inhibits growth of drug resistant malignant cells and their migration and metastasis, without any side effects. Recently, newly synthesized wogonin derivatives have been developed with impressive anti-tumor activity. This review is the succinct appraisal of the pertinent articles on the mechanisms of anti-tumor properties of wogonin. We also summarize the potential of wogonin and its derivatives used alone or as an adjunct therapy for cancer treatment. Furthermore, pharmacokinetics and side effects of wogonin and its analogues have also been discussed.
Collapse
|
50
|
Peng MX, Wang XY, Wang F, Wang L, Xu PP, Chen B. Apoptotic Mechanism of Human Leukemia K562/A02 Cells Induced by Magnetic Ferroferric Oxide Nanoparticles Loaded with Wogonin. Chin Med J (Engl) 2017; 129:2958-2966. [PMID: 27958228 PMCID: PMC5198531 DOI: 10.4103/0366-6999.195466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background: Traditional Chinese medicine wogonin plays an important role in the treatment of leukemia. Recently, the application of drug-coated magnetic nanoparticles (MNPs) to increase water solubility of the drug and to enhance its chemotherapeutic efficiency has attracted much attention. Drugs coated with MNPs are becoming a promising way for better leukemia treatment. This study aimed to assess the possible molecular mechanisms of wogonin-coated MNP-Fe3O4 (Wog-MNPs-Fe3O4) as an antileukemia agent. Methods: After incubated for 48 h, the antiproliferative effects of MNPs, wogonin, or Wog-MNPs-Fe3O4 on K562/A02 cells were determined by methyl thiazolyl tetrazolium (MTT) assay. The apoptotic rates of K562/A02 cells treated with either wogonin or Wog-MNPs-Fe3O4 were determined by flow cytometer (FCM) assay. The cell cycle arrest in K562/A02 cells was determined by FCM assay. The elementary molecular mechanisms of these phenomena were explored by Western blot and reverse transcriptase polymerase chain reaction (RT-PCR). Results: With cell viabilities ranging from 98.76% to 101.43%, MNP-Fe3O4 was nontoxic to the cell line. Meanwhile, the wogonin and Wog-MNPs-Fe3O4 had little effects on normal human embryonic lung fibroblast cells. The cell viabilities of the Wog-MNPs-Fe3O4 group (28.64–68.36%) were significantly lower than those of the wogonin group (35.53–97.28%) in a dose-dependent manner in 48 h (P < 0.001). The apoptotic rate of K562/A02 cells was significantly improved in 50 μmol/L Wog-MNPs-Fe3O4 group (34.28%) compared with that in 50 μmol/L wogonin group (23.46%; P < 0.001). Compared with those of the 25 and 50 μmol/L wogonin groups, the ratios of G0/G1-phase K562/A02 cells were significantly higher in the 25 and 50 μmol/L Wog-MNPs-Fe3O4 groups (all P < 0.001). The mRNA and protein expression levels of the p21 and p27 in the K562/A02 cells were also significantly higher in the Wog-MNPs-Fe3O4 group compared with those of the wogonin group (all P < 0.001). Conclusions: This study demonstrated that MNPs were the effective drug delivery vehicles to deliver wogonin to the leukemia cells. Through increasing cells arrested at G0/G1-phase and inducing apoptosis of K562/A02 cells, MNPs could enhance the therapeutic effects of wogonin on leukemia cells. These findings indicated that MNPs loaded with wogonin could provide a promising way for better leukemia treatment.
Collapse
Affiliation(s)
- Miao-Xin Peng
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Xiao-Yue Wang
- Department of Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Fan Wang
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Lei Wang
- Department of Hematology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu 210009, China
| | - Pei-Pei Xu
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Bing Chen
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| |
Collapse
|