1
|
Ma X, Huang T, Li X, Zhou X, Pan H, Du A, Zeng Y, Yuan K, Wang Z. Exploration of the link between COVID-19 and gastric cancer from the perspective of bioinformatics and systems biology. Front Med (Lausanne) 2024; 11:1428973. [PMID: 39371335 PMCID: PMC11449776 DOI: 10.3389/fmed.2024.1428973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
Background Coronavirus disease 2019 (COVID-19), an infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has caused a global pandemic. Gastric cancer (GC) poses a great threat to people's health, which is a high-risk factor for COVID-19. Previous studies have found some associations between GC and COVID-19, whereas the underlying molecular mechanisms are not well understood. Methods We employed bioinformatics and systems biology to explore these links between GC and COVID-19. Gene expression profiles of COVID-19 (GSE196822) and GC (GSE179252) were obtained from the Gene Expression Omnibus (GEO) database. After identifying the shared differentially expressed genes (DEGs) for GC and COVID-19, functional annotation, protein-protein interaction (PPI) network, hub genes, transcriptional regulatory networks and candidate drugs were analyzed. Results We identified 209 shared DEGs between COVID-19 and GC. Functional analyses highlighted immune-related pathways as key players in both diseases. Ten hub genes (CDK1, KIF20A, TPX2, UBE2C, HJURP, CENPA, PLK1, MKI67, IFI6, IFIT2) were identified. The transcription factor/gene and miRNA/gene interaction networks identified 38 transcription factors (TFs) and 234 miRNAs. More importantly, we identified ten potential therapeutic agents, including ciclopirox, resveratrol, etoposide, methotrexate, trifluridine, enterolactone, troglitazone, calcitriol, dasatinib and deferoxamine, some of which have been reported to improve and treat GC and COVID-19. Conclusion This research offer valuable insights into the molecular interplay between COVID-19 and GC, potentially guiding future therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kefei Yuan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen Wang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Rezaul Islam M, Rauf A, Akash S, Kumer A, Hussain MS, Akter S, Gupta JK, Thameemul Ansari L, Mahfoj Islam Raj MM, Bin Emran T, Aljohani AS, Abdulmonem WA, Thiruvengadam R, Thiruvengadam M. Recent perspective on the potential role of phytocompounds in the prevention of gastric cancer. Process Biochem 2023; 135:83-101. [DOI: 10.1016/j.procbio.2023.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
|
3
|
Pakravan S, Hemmati-Dinarvand M, Moghaddasi M, Fathi J, Nowrouzi-Sohrabi P, Hormozi M. Hydroxytyrosol's effect on the expression of apoptosis and oxidative stress related genes in BE (2)-C neuroblastoma cell line. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2023.101750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
4
|
Zhang W, Zhang R, Chang Z, Wang X. Resveratrol activates CD8+ T cells through IL-18 bystander activation in lung adenocarcinoma. Front Pharmacol 2022; 13:1031438. [PMCID: PMC9630476 DOI: 10.3389/fphar.2022.1031438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Resveratrol, a natural product, has demonstrated anti-tumor effects in various kinds of tumor types, including colon, breast, and pancreatic cancers. Most research has focused on the inhibitory effects of resveratrol on tumor cells themselves rather than resveratrol’s effects on tumor immunology. In this study, we found that resveratrol inhibited the growth of lung adenocarcinoma in a subcutaneous tumor model by using the β-cyclodextrin-resveratrol inclusion complex. After resveratrol treatment, the proportion of M2-like tumor-associated macrophages (TAMs) was reduced and tumor-infiltrating CD8T cells showed significantly increased activation. The results of co-culture and antibody neutralization experiments suggested that macrophage-derived IL-18 may be a key cytokine in the resveratrol anti-tumor effect of CD8T cell activation. The results of this study demonstrate a novel view of the mechanisms of resveratrol tumor suppression. This natural product could reprogram TAMs and CD8T effector cells for tumor treatment.
Collapse
Affiliation(s)
- Wei Zhang
- Emergency and Disaster Medical Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Ruohao Zhang
- School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Zhiguang Chang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Zhiguang Chang, ; Xiaobo Wang,
| | - Xiaobo Wang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Zhiguang Chang, ; Xiaobo Wang,
| |
Collapse
|
5
|
Huber R, Koval A, Marcourt L, Héritier M, Schnee S, Michellod E, Scapozza L, Katanaev VL, Wolfender JL, Gindro K, Ferreira Queiroz E. Chemoenzymatic Synthesis of Original Stilbene Dimers Possessing Wnt Inhibition Activity in Triple-Negative Breast Cancer Cells Using the Enzymatic Secretome of Botrytis cinerea Pers. Front Chem 2022; 10:881298. [PMID: 35518712 PMCID: PMC9062038 DOI: 10.3389/fchem.2022.881298] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
The Wnt signaling pathway controls multiple events during embryonic development of multicellular animals and is carcinogenic when aberrantly activated in adults. Breast cancer and triple-negative breast cancer (TNBC) in particular depend upon Wnt pathway overactivation. Despite this importance, no Wnt pathway-targeting drugs are currently available, which necessitates novel approaches to search for therapeutically relevant compounds targeting this oncogenic pathway. Stilbene analogs represent an under-explored field of therapeutic natural products research. In the present work, a library of complex stilbene derivatives was obtained through biotransformation of a mixture of resveratrol and pterostilbene using the enzymatic secretome of Botrytis cinerea. To improve the chemodiversity, the reactions were performed using i-PrOH, n-BuOH, i-BuOH, EtOH, or MeOH as cosolvents. Using this strategy, a series of 73 unusual derivatives was generated distributed among 6 scaffolds; 55 derivatives represent novel compounds. The structure of each compound isolated was determined by nuclear magnetic resonance and high-resolution mass spectrometry. The inhibitory activity of the isolated compounds against the oncogenic Wnt pathway was comprehensively quantified and correlated with their capacity to inhibit the growth of the cancer cells, leading to insights into structure-activity relationships of the derivatives. Finally, we have dissected mechanistic details of the stilbene derivatives activity within the pathway.
Collapse
Affiliation(s)
- Robin Huber
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Alexey Koval
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, CMU, Geneva, Switzerland
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Margaux Héritier
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Sylvain Schnee
- Mycology Group, Research Department Plant Protection, Agroscope, Nyon, Switzerland
| | - Emilie Michellod
- Mycology Group, Research Department Plant Protection, Agroscope, Nyon, Switzerland
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Vladimir L. Katanaev
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, CMU, Geneva, Switzerland
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Katia Gindro
- Mycology Group, Research Department Plant Protection, Agroscope, Nyon, Switzerland
| | - Emerson Ferreira Queiroz
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| |
Collapse
|
6
|
Xu QH, Xiao Y, Li XQ, Fan L, Zhou CC, Cheng L, Jiang ZD, Wang GH. Resveratrol Counteracts Hypoxia-Induced Gastric Cancer Invasion and EMT through Hedgehog Pathway Suppression. Anticancer Agents Med Chem 2021; 20:1105-1114. [PMID: 32238142 DOI: 10.2174/1871520620666200402080034] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/10/2019] [Accepted: 02/18/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Gastric Cancer (GC) is one of the most malignant and lethal tumors worldwide. The hypoxic microenvironment is correlated with GC cell invasion, metastasis and Epithelial-Mesenchymal Transition (EMT). Resveratrol is a compound extracted from various plants, including grapes, berries, and some traditional Chinese medicines. Recently, the anticancer properties of resveratrol against many cancers have been reported in a range of studies. However, the exact mechanism through which resveratrol prevents GC invasion and metastasis under hypoxic conditions remains unclear. OBJECTIVE The objective of this study is to show to what extent resveratrol could inhibit the hypoxia-induced malignant biological behavior of GC. METHODS SGC-7901 cells were cultured in a consistent 3% O2 hypoxic condition or 21% O2 normal condition for 48 hours to establish an in vitro hypoxia model. Western blot and qRT-PCR were used to detect EMT markers of SGC- 7901 cells, including E-cadherin, HIF-1a, Vimentin, etc. Transwell Matrigel Invasion Assays were used to test the invasive ability of SGC-7901 cells. The siRNA targeting Gli-1 showed its role in hypoxia-induced EMT and invasion of SGC-7901 cells. RESULTS Resveratrol was found to significantly decrease HIF-1α protein levels induced by hypoxia in SGC-7901 cells. HIF-1α accumulation was found to promote cell proliferation, migration, and invasive capacities in addition to EMT changes through the activation of the Hedgehog pathway. These effects were found to be reversed by resveratrol. CONCLUSION Therefore, these data indicate that resveratrol may serve as a potential anticancer agent for the treatment of GC, even in a hypoxic tumor microenvironment.
Collapse
Affiliation(s)
- Qin-Hong Xu
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Ying Xiao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Xu-Qi Li
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Lin Fan
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Can-Can Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Liang Cheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Zheng-Dong Jiang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Guang-Hui Wang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| |
Collapse
|
7
|
Ashrafizadeh M, Rafiei H, Mohammadinejad R, Farkhondeh T, Samarghandian S. Anti-tumor activity of resveratrol against gastric cancer: a review of recent advances with an emphasis on molecular pathways. Cancer Cell Int 2021; 21:66. [PMID: 33478512 PMCID: PMC7818776 DOI: 10.1186/s12935-021-01773-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/11/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the most common cancers with high malignancy. In spite of the great development in diagnostic tools and application of anti-tumor drugs, we have not witnessed a significant increase in the survival time of patients with GC. Multiple studies have revealed that Wnt, Nrf2, MAPK, and PI3K/Akt signaling pathways are involved in GC invasion. Besides, long non-coding RNAs and microRNAs function as upstream mediators in GC malignancy. GC cells have acquired resistance to currently applied anti-tumor drugs. Besides, combination therapy is associated with higher anti-tumor activity. Resveratrol (Res) is a non-flavonoid polyphenol with high anti-tumor activity used in treatment of various cancers. A number of studies have demonstrated the potential of Res in regulation of molecular pathways involved in cancer malignancy. At the present review, we show that Res targets a variety of signaling pathways to induce apoptotic cell death and simultaneously, to inhibit the migration and metastasis of GC cells.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, 34956, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, 34956, Turkey
| | - Hossein Rafiei
- Department of Biology, Faculty of Sciences, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, 9318614139, Iran.
| |
Collapse
|
8
|
Wang LY, Zhao S, Lv GJ, Ma XJ, Zhang JB. Mechanisms of resveratrol in the prevention and treatment of gastrointestinal cancer. World J Clin Cases 2020; 8:2425-2437. [PMID: 32607320 PMCID: PMC7322414 DOI: 10.12998/wjcc.v8.i12.2425] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/20/2020] [Accepted: 05/23/2020] [Indexed: 02/05/2023] Open
Abstract
Gastrointestinal (GI) cancer is one of the leading causes of cancer-related deaths worldwide. According to the Global Cancer Statistics, colorectal cancer is the second leading cause of cancer-related mortality, closely followed by gastric cancer (GC). Environmental, dietary, and lifestyle factors including cigarette smoking, alcohol intake, and genetics are the most important risk factors for GI cancer. Furthermore, infections caused by Helicobacter pylori are a major cause of GC initiation. Despite improvements in conventional therapies, including surgery, chemotherapy, and radiotherapy, the length or quality of life of patients with advanced GI cancer is still poor because of delayed diagnosis, recurrence and side effect. Resveratrol (3, 4, 5-trihydroxy-trans-stilbene; Res), a natural polyphenolic compound, reportedly has various pharmacologic functions including anti-oxidant, anti-inflammatory, anti-cancer, and cardioprotective functions. Many studies have demonstrated that Res also exerts a chemopreventive effect on GI cancer. Research investigating the anti-cancer mechanism of Res for the prevention and treatment of GI cancer has implicated multiple pathways including oxidative stress, cell proliferation, and apoptosis. Therefore, this paper provides a review of the function and molecular mechanisms of Res in the prevention and treatment of GI cancer.
Collapse
Affiliation(s)
- Li-Yan Wang
- Department of Pharmacy, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Shan Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning Province, China
| | - Guo-Jun Lv
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning Province, China
| | - Xiao-Jun Ma
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning Province, China
| | - Jian-Bin Zhang
- College of Pharmacy, Dalian Medical University, Dalian 116044, Liaoning Province, China
| |
Collapse
|
9
|
Wang X, Tang S, Qin F, Liu Y, Liang Z, Cai H, Mo L, Xiao D, Guo S, Ouyang Y, Sun B, Lu C, Li X. Proteomics and phosphoproteomics study of LCMT1 overexpression and oxidative stress: overexpression of LCMT1 arrests H 2O 2-induced lose of cells viability. Redox Rep 2020; 24:1-9. [PMID: 30898057 PMCID: PMC6748586 DOI: 10.1080/13510002.2019.1595332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Objectives: Protein phosphatase 2A (PP2A), a major serine/threonine
phosphatase, is also known to be a target of ROS. The methylation of PP2A can be
catalyzed by leucine carboxyl methyltransferase-1 (LCMT1), which regulates PP2A
activity and substrate specificity. Methods: In the previous study, we have showed that LCMT1-dependent
PP2Ac methylation arrests H2O2-induced cell oxidative
stress damage. To explore the possible protective mechanism, we performed
iTRAQ-based comparative quantitative proteomics and phosphoproteomics studies of
H2O2-treated vector control and LCMT1-overexpressing
cells. Results: A total of 4480 non-redundant proteins and 3801 unique
phosphopeptides were identified by this means. By comparing the
H2O2-regulated proteins in LCMT1-overexpressing and
vector control cells, we found that these differences were mainly related to
protein phosphorylation, gene expression, protein maturation, the cytoskeleton
and cell division. Further investigation of LCMT1 overexpression-specific
regulated proteins under H2O2 treatment supported the idea
that LCMT1 overexpression induced ageneral dephosphorylation of proteins and
indicated increased expression of non-erythrocytic hemoglobin, inactivation of
MAPK3 and regulation of proteins related to Rho signal transduction, which were
known to be linked to the regulation of the cytoskeleton. Discussion: These data provide proteomics and phosphoproteomics
insights into the association of LCMT1-dependent PP2Ac methylation and oxidative
stress and indirectly indicate that the methylation of PP2A plays an important
role against oxidative stress.
Collapse
Affiliation(s)
- Xinhang Wang
- a School of Preclinical Medicine , Guangxi Medical University , Nanning , People's Republic of China
| | - Shen Tang
- a School of Preclinical Medicine , Guangxi Medical University , Nanning , People's Republic of China
| | - Fu Qin
- b School of Public Health, Guangxi Medical University , Nanning , People's Republic of China.,c Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases , Guangxi Medical University , Nanning , People's Republic of China
| | - Yuyang Liu
- b School of Public Health, Guangxi Medical University , Nanning , People's Republic of China.,c Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases , Guangxi Medical University , Nanning , People's Republic of China
| | - Ziwei Liang
- b School of Public Health, Guangxi Medical University , Nanning , People's Republic of China.,c Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases , Guangxi Medical University , Nanning , People's Republic of China
| | - Haiqing Cai
- b School of Public Health, Guangxi Medical University , Nanning , People's Republic of China.,c Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases , Guangxi Medical University , Nanning , People's Republic of China
| | - Laiming Mo
- a School of Preclinical Medicine , Guangxi Medical University , Nanning , People's Republic of China
| | - Deqiang Xiao
- b School of Public Health, Guangxi Medical University , Nanning , People's Republic of China
| | - Songcao Guo
- b School of Public Health, Guangxi Medical University , Nanning , People's Republic of China
| | - Yiqiang Ouyang
- d Laboratory Animal Centre , Guangxi Medical University , Nanning , People's Republic of China
| | - Bin Sun
- b School of Public Health, Guangxi Medical University , Nanning , People's Republic of China.,c Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases , Guangxi Medical University , Nanning , People's Republic of China
| | - Cailing Lu
- b School of Public Health, Guangxi Medical University , Nanning , People's Republic of China.,c Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases , Guangxi Medical University , Nanning , People's Republic of China
| | - Xiyi Li
- b School of Public Health, Guangxi Medical University , Nanning , People's Republic of China.,c Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases , Guangxi Medical University , Nanning , People's Republic of China
| |
Collapse
|
10
|
Rambacher KM, Moniri NH. Cysteine redox state regulates human β2-adrenergic receptor binding and function. Sci Rep 2020; 10:2934. [PMID: 32076070 PMCID: PMC7031529 DOI: 10.1038/s41598-020-59983-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/05/2020] [Indexed: 01/08/2023] Open
Abstract
Bronchoconstrictive airway disorders such as asthma are characterized by inflammation and increases in reactive oxygen species (ROS), which produce a highly oxidative environment. β2-adrenergic receptor (β2AR) agonists are a mainstay of clinical therapy for asthma and provide bronchorelaxation upon inhalation. We have previously shown that β2AR agonism generates intracellular ROS, an effect that is required for receptor function, and which post-translationally oxidizes β2AR cysteine thiols to Cys-S-sulfenic acids (Cys-S-OH). Furthermore, highly oxidative environments can irreversibly oxidize Cys-S-OH to Cys-S-sulfinic (Cys-SO2H) or S-sulfonic (Cys-SO3H) acids, which are incapable of further participating in homeostatic redox reactions (i.e., redox-deficient). The aim of this study was to examine the vitality of β2AR-ROS interplay and the resultant functional consequences of β2AR Cys-redox in the receptors native, oxidized, and redox-deficient states. Here, we show for the first time that β2AR can be oxidized to Cys-S-OH in situ, moreover, using both clonal cells and a human airway epithelial cell line endogenously expressing β2AR, we show that receptor redox state profoundly influences β2AR orthosteric ligand binding and downstream function. Specifically, homeostatic β2AR redox states are vital toward agonist-induced cAMP formation and subsequent CREB and G-protein-dependent ERK1/2 phosphorylation, in addition to β-arrestin-2 recruitment and downstream arrestin-dependent ERK1/2 phosphorylation and internalization. On the contrary, redox-deficient β2AR states exhibit decreased ability to signal via either Gαs or β-arrestin. Together, our results demonstrate a β2AR-ROS redox axis, which if disturbed, interferes with proper receptor function.
Collapse
Affiliation(s)
- Kalyn M Rambacher
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA30341, United States
| | - Nader H Moniri
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA30341, United States.
| |
Collapse
|
11
|
Tian X, Guo S, Zhang S, Li P, Wang T, Ho CT, Pan MH, Bai N. Chemical characterization of main bioactive constituents in Paeonia ostii seed meal and GC-MS analysis of seed oil. J Food Biochem 2019; 44:e13088. [PMID: 31646682 DOI: 10.1111/jfbc.13088] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/24/2019] [Accepted: 10/02/2019] [Indexed: 12/01/2022]
Abstract
The seeds of tree peony (Paeonia ostii) are promulgated as emerging edible oil crops. However, biological properties of principal constituents of peony seeds were not well studied. Fifteen main constituents including suffruticosols A and B, trans-ε-viniferin, ampelopsin E, resveratrol, trans-resveratrol-4'-O-β-d-glucopyranoside, paeoniflorin, luteolin, luteolin-4'-O-β-d-glucopyranoside, apigenin, kaempferol, oleanic acid, betulinic acid, hederagenin, and caffeic acid were isolated and identified. Their cytotoxicity against human tumor cell lines (COLO205, HT-29, HepG2, AGS, and HL-60) were evaluated. Among them, trans-ε-viniferin showed the most potent cytotoxicity against HL-60 cells (IC50 5.6 μM); ampelopsin E exhibited the most obvious antiproliferative properties on COLO205 (IC50 78.1 μM) and HT-29 (IC50 4.2 μM) cells, and betulinic acid showed the strongest growth inhibitory effects on HepG2 (IC50 6.6 μM) and AGS (IC50 5.4 μM) cells. Three enzymes (tyronsinase, α-glucosidase, and acetylcholinesterase) inhibitory activities of 12 compounds were also screened. Stilbene compounds, especially suffruticosols A and B, showed a significant inhibitory activity on all three enzymes. PRACTICAL APPLICATIONS: The cytotoxicity of 15 main constituents from peony seeds against COLO205, HT-29, HepG2, AGS, and HL-60 cells were evaluated. Among them, trans-ε-viniferin showed the most potent cytotoxicity against HL-60 cells (IC50 5.6 μM); ampelopsin E exhibited the most obvious antiproliferative properties on COLO205 (IC50 78.1 μM) and HT-29 (IC50 4.2 μM) cells, and betulinic acid showed the strongest growth inhibitory effects on HepG2 (IC50 6.6 μM) and AGS (IC50 5.4 μM) cells. Collectively, these results suggested that Paeonia ostii seed (POS) extracts are potential candidates for anticancer agents.
Collapse
Affiliation(s)
- Xiao Tian
- College of Food Science and Technology, Northwest University, Xi'an, China
| | - Sen Guo
- College of Food Science and Technology, Northwest University, Xi'an, China.,College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, Xi'an, China
| | - Shanshan Zhang
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, Xi'an, China
| | - Peisheng Li
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Tianyi Wang
- College of Food Science and Technology, Northwest University, Xi'an, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Naisheng Bai
- College of Food Science and Technology, Northwest University, Xi'an, China
| |
Collapse
|
12
|
Rauf A, Imran M, Butt MS, Nadeem M, Peters DG, Mubarak MS. Resveratrol as an anti-cancer agent: A review. Crit Rev Food Sci Nutr 2017; 58:1428-1447. [DOI: 10.1080/10408398.2016.1263597] [Citation(s) in RCA: 387] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Imran
- Department of Diet and Nutritional Sciences, Imperial College of Business Studies, Lahore, Pakistan
| | - Masood Sadiq Butt
- Faculty of Food, Nutrition and Home Sciences, Agriculture University of Faisalabad, Faisalabad, Pakistan
| | - Muhammad Nadeem
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, Pakistan
| | - Dennis G. Peters
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | | |
Collapse
|
13
|
Xie YX, Liao R, Pan L, Du CY. ERK pathway activation contributes to the tumor-promoting effects of hepatic stellate cells in hepatocellular carcinoma. Immunol Lett 2017; 188:116-123. [PMID: 28668554 DOI: 10.1016/j.imlet.2017.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/05/2017] [Accepted: 06/26/2017] [Indexed: 01/24/2023]
Abstract
BACKGROUND Activated hepatic stellate cell (aHSC) play a critical role in hepatocellular carcinoma (HCC) progression crosstalking with cancer cell via various signaling pathways. The aim of our study is to explore the tumor-promoting effects of aHSCs on HCC via ERK pathway. METHODS α-SMA, p-ERK and p-JNK expression levels in tumoral and peritumoral tissues of HCC were assessed by immunohistochemical and western blotting. The protein and mRNA expression levels in human hepatoma cell treated with aHSC conditioned medium (CM) were determined by western blotting and real-time quantitative PCR, respectively. Cell migration and invasion abilities were assessed using transwell assays. The proliferation ability of HCC cells induced by aHSCs-CM was detected by CCK-8 assay and cell cycle analysis. RESULTS We found that aHSC number was positively correlated with p-ERK expression levels in tumoral tissues and aHSC-CM could time-dependently promote PCNA, p-ERK expression in HCC cells. Moreover, aHSC-CM enhanced HCC cells proliferation via ERK. Additionally, aHSC upregulated c-jun and cyclinD1 expression levels, accelerating the transition from G1 to the S phase of HCC cells, and this effect could be arrested by inhibiting ERK pathway. Furthermore, aHSC-CM promoted migration and invasion of HCC cells via ERK. Epithelial-mesenchymal transitions (EMT) phenomenon could be reversed by ERK suppression. CONCLUSION High expression of p-ERK and aHSCs may be associated with the aggressive behavior of HCC cells. Secretions from aHSCs could promote proliferation and EMT of HCC cells via ERK1/2/c-jun/cyclinD1 axis or ERK pathway.
Collapse
Affiliation(s)
- Yu-Xiao Xie
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Rui Liao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Long Pan
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Cheng-You Du
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
14
|
Zulueta A, Caretti A, Signorelli P, Ghidoni R. Resveratrol: A potential challenger against gastric cancer. World J Gastroenterol 2015; 21:10636-10643. [PMID: 26457023 PMCID: PMC4588085 DOI: 10.3748/wjg.v21.i37.10636] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/09/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is the fourth most common cancer and the second leading cause of cancer-related mortality in the world. Late diagnosis and classical therapeutic approaches such as surgery, chemotherapy and radiotherapy make this disease a still threatening tumor. Genetic asset, environmental stress, dietary habit and infections caused by Helicobacter pylori (H. pylori) are the major causes concurring to GC initiation. A common mechanism is induction of radicals resulting in gastric mucosal injury. A regular food intake of antioxidant and radical scavenging agents has been proposed to exert protection against tumorigenesis. Resveratrol belongs to the polyphenol flavonoids class of antioxidants produced by a restricted number of plants. Resveratrol exerts bactericidal activity against H. pylori and is a powerful antioxidant, thus acting as a tumor preventive agent. Resveratrol intracellular signaling results in growth arrest and apoptosis, so that it can be directed against tumor progression. Resveratrol therapeutic potential against GC initiation and progression are reviewed here.
Collapse
|
15
|
Sakaba Y, Awata H, Morisugi T, Kawakami T, Sakudo A, Tanaka Y. 15-Deoxy-Δ12,14-prostaglandin J2 induces PPARγ- and p53-independent apoptosis in rabbit synovial cells. Prostaglandins Other Lipid Mediat 2014; 109-111:1-13. [PMID: 24680891 DOI: 10.1016/j.prostaglandins.2014.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 02/10/2014] [Accepted: 02/21/2014] [Indexed: 01/15/2023]
Abstract
A ligand of peroxisome proliferator-activated receptor γ (PPARγ), 15-deoxy-Δ(12,14)-prostaglandin J2 (15d-PGJ2) induces apoptosis in various cells. However, the mechanism appears to be complex and cell-type specific. We investigated the mechanism of 15d-PGJ2-induced apoptosis of rabbit synovial cells. Exposure to 15d-PGJ2 resulted in DNA fragmentation accompanied by caspase-3 and -9 activations in the cells, suggesting occurrence of mitochondria-mediated apoptosis. Although the exposure also induced remarkable increase in p53 protein, its transcriptional activity was rather reduced, suggesting non-necessity of p53 in 15d-PGJ2-induced apoptosis. Covalent binding of 15d-PGJ2 to cellular proteins including p53 resulted in their insolubilization. N-acetylcysteine inhibited not only the 15d-PGJ2-induced apoptotic events but also the protein insolubilizations via its interaction with 15d-PGJ2. The studies using a PPARγ-agonist and -antagonist showed noninvolvement of PPARγ in 15d-PGJ2-induced apoptosis. The pre-exposure to pro-inflammatory cytokines did not affect the cytotoxicity of 15d-PGJ2 in synovial cells. Taken together, these results show that 15d-PGJ2 induces a mitochondria-mediated apoptotic pathway in p53- and PPARγ-independent manners.
Collapse
Affiliation(s)
- Yukiko Sakaba
- Department of Biometabolic Chemistry, School of Health Sciences, Faculty of Medicine, University of The Ryukyus, Uehara 207, Nishihara-Cho, Okinawa 903-0215, Japan
| | - Hisataka Awata
- Department of Clinical Physiology, School of Health Sciences, Faculty of Medicine, University of The Ryukyus, Uehara 207, Nishihara-Cho, Okinawa 903-0215, Japan
| | - Toshiaki Morisugi
- Department of Oral and Maxillofacial Surgery, School of Medicine, Nara Medical University, Shijo-Cho 840, Kashihara, Nara 634-8521, Japan
| | - Tetsuji Kawakami
- Department of Oral and Maxillofacial Surgery, School of Medicine, Nara Medical University, Shijo-Cho 840, Kashihara, Nara 634-8521, Japan
| | - Akikazu Sakudo
- Department of Biometabolic Chemistry, School of Health Sciences, Faculty of Medicine, University of The Ryukyus, Uehara 207, Nishihara-Cho, Okinawa 903-0215, Japan
| | - Yasuharu Tanaka
- Department of Biometabolic Chemistry, School of Health Sciences, Faculty of Medicine, University of The Ryukyus, Uehara 207, Nishihara-Cho, Okinawa 903-0215, Japan.
| |
Collapse
|
16
|
Lee HE, Choi ES, Shin JA, Lee SO, Park KS, Cho NP, Cho SD. Fucoidan induces caspase-dependent apoptosis in MC3 human mucoepidermoid carcinoma cells. Exp Ther Med 2013; 7:228-232. [PMID: 24348795 PMCID: PMC3861359 DOI: 10.3892/etm.2013.1368] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 10/21/2013] [Indexed: 01/05/2023] Open
Abstract
Fucoidan is a sulfated polysaccharide present in brown algae that has been identified to exhibit multiple biological effects. In this study, the apoptotic effects of fucoidan in MC3 human mucoepidermoid carcinoma (MEC) cells were investigated. The apoptotic effects of fucoidan on MC3 MEC cells were evaluated by cell proliferation assay, 4′,6-diamidino-2-phenylindole staining and western blot analysis. The results showed that fucoidan decreased cell proliferation and induced caspase-dependent apoptosis in MC3 MEC cells. Fucoidan downregulated the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, whereas phospho-p38 mitogen-activated protein kinase or phospho-c-Jun NH2-terminal kinase (JNK) levels were not altered. In addition, fucoidan significantly decreased the expression levels of myeloid cell leukemia-1 (Mcl-1). These results suggest that fucoidan is able to modulate the ERK1/2 pathway and thereby regulate Mcl-1 protein expression and induce apoptosis in MC3 MEC cells. Therefore, fucoidan may be a promising agent for the treatment of human MEC.
Collapse
Affiliation(s)
- Hang-Eun Lee
- Department of Oral Pathology, School of Dentistry, Institute of Oral Bioscience, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Eun-Sun Choi
- Department of Oral Pathology, School of Dentistry, Institute of Oral Bioscience, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Ji-Ae Shin
- Department of Oral Pathology, School of Dentistry, Institute of Oral Bioscience, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Syng-Ook Lee
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466, USA
| | - Ki-Soo Park
- Department of Translational Research, Korea Health Industry Development Institute (KHIDI), Cheongwon-gun 363-951, Republic of Korea
| | - Nam-Pyo Cho
- Department of Oral Pathology, School of Dentistry, Institute of Oral Bioscience, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry, Institute of Oral Bioscience, Chonbuk National University, Jeonju 561-756, Republic of Korea
| |
Collapse
|
17
|
Chung MY, Lim TG, Lee KW. Molecular mechanisms of chemopreventive phytochemicals against gastroenterological cancer development. World J Gastroenterol 2013; 19:984-993. [PMID: 23467658 PMCID: PMC3582010 DOI: 10.3748/wjg.v19.i7.984] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 10/12/2012] [Accepted: 01/24/2013] [Indexed: 02/06/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide. Commonly used cancer treatments, including chemotherapy and radiation therapy, often have side effects and a complete cure is sometimes impossible. Therefore, prevention, suppression, and/or delaying the onset of the disease are important. The onset of gastroenterological cancers is closely associated with an individual’s lifestyle. Thus, changing lifestyle, specifically the consumption of fruits and vegetables, can help to protect against the development of gastroenterological cancers. In particular, naturally occurring bioactive compounds, including curcumin, resveratrol, isothiocyanates, (-)-epigallocatechin gallate and sulforaphane, are regarded as promising chemopreventive agents. Hence, regular consumption of these natural bioactive compounds found in foods can contribute to prevention, suppression, and/or delay of gastroenterological cancer development. In this review, we will summarize natural phytochemicals possessing potential antioxidant and/or anti-inflammatory and anti-carcinogenic activities, which are exerted by regulating or targeting specific molecules against gastroenterological cancers, including esophageal, gastric and colon cancers.
Collapse
|
18
|
Gweon EJ, Kim SJ. Resveratrol induces MMP-9 and cell migration via the p38 kinase and PI-3K pathways in HT1080 human fibrosarcoma cells. Oncol Rep 2012; 29:826-34. [PMID: 23229870 DOI: 10.3892/or.2012.2151] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 11/02/2012] [Indexed: 11/06/2022] Open
Abstract
Trans-3,4',5-trihydroxystilbene (resveratrol) is a grape polyphenol present in various plants, food products, red wine and grapes. Resveratrol has anti-inflammatory, anticarcinogenic, anti-oxidant and anti-aging properties. Matrix metalloproteinases (MMPs) are key enzymes involved in the degradation of the extracellular matrix, and their expression may be regulated in cancer metastasis. In the present study, we aimed to evaluate the effect of resveratrol on MMPs and cell migration, and to understand the mechanism of action in HT1080 human fibrosarcoma cells. We found that resveratrol inhibited HT1080 cell viability at various concentrations as detected by the MTT assay and FACS analysis. However, resveratrol dramatically increased the activation and expression of MMP-9 in a dose- and time-dependent manner, as determined by gelatin zymography assay and western blot analysis. We also discovered that resveratrol enhanced the migratory ability of HT1080 cells, as determined by the wound healing assay, and decreased the phosphorylation of p38 kinase. Moreover, the Akt kinase was inhibited by resveratrol in the HT1080 cells. The inhibition of p38 and Akt kinases with SB203580 and LY294002 further increased resveratrol-induced MMP-9 as well as cell migration in the HT1080 cells. Our results suggest that resveratrol regulates MMP-9 and migratory abilities through the p38 kinase and PI-3K pathways in HT1080 human fibrosarcoma cells.
Collapse
Affiliation(s)
- Eun Jeong Gweon
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, Chungnam 314-701, Republic of Korea
| | | |
Collapse
|
19
|
Wang Z, Li W, Meng X, Jia B. Resveratrol induces gastric cancer cell apoptosis via reactive oxygen species, but independent of sirtuin1. Clin Exp Pharmacol Physiol 2012; 39:227-32. [PMID: 22211760 DOI: 10.1111/j.1440-1681.2011.05660.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The currently available chemotherapeutic regimens against gastric cancer are not very effective, leading to high recurrence and poor survival. Resveratrol is a naturally occurring polyphenol with potent apoptosis-inducing activity. However, the mechanism underlying its actions remains unknown. In the present study, human gastric adenocarcinoma SGC7901 cells were treated with resveratrol (0, 25, 50, 100 and 200 μmol/L) for 48 h, and cellular apoptosis DNA damage were determined. In certain experiments, cells were incubated with superoxide dismutase (100 U/mL), catalase (300 U/mL) or sirtinol (10 μmol/L) to determine the role of reactive oxygen species (ROS) and sirtuin1 in resveratrol-induced cellular apoptosis. Treatment with resveratrol (50-200 μmol/L) for 48 h significantly induced apoptosis and DNA damage in human gastric cancer SGC7901 cells. This was due to the increased generation of ROS following resveratrol treatment because incubation of cells with superoxide dismutase (100 U/mL) or catalase (300 U/mL) attenuated resveratrol-induced cellular apoptosis. Interestingly, treatment with resveratrol (25-200 μmol/L) did not affect the level and activity of sirtuin1, whereas the sirtuin1 inhibitor sirtinol (10 μmol/L) significantly reduced sirtuin1 activity. Furthermore, treatment with sirtinol (10 μmol/L) did not have any effect on apoptosis induced by resveratrol. These data provide evidence that resveratrol induces apoptosis via ROS, but independent of sirtuin1, in the human gastric cancer cell line SGC7901.
Collapse
Affiliation(s)
- Zhengguang Wang
- Department of Pharmacology, Anhui Medical University, Hefei, China
| | | | | | | |
Collapse
|
20
|
Caloric Restriction and the Nutrient-Sensing PGC-1α in Mitochondrial Homeostasis: New Perspectives in Neurodegeneration. Int J Cell Biol 2012; 2012:759583. [PMID: 22829833 PMCID: PMC3399559 DOI: 10.1155/2012/759583] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 06/08/2012] [Indexed: 12/25/2022] Open
Abstract
Mitochondrial activity progressively declines during ageing and in many neurodegenerative diseases. Caloric restriction (CR) has been suggested as a dietary intervention that is able to postpone the detrimental aspects of aging as it ameliorates mitochondrial performance. This effect is partially due to increased mitochondrial biogenesis. The nutrient-sensing PGC-1α is a transcriptional coactivator that promotes the expression of mitochondrial genes and is induced by CR. It is believed that many of the mitochondrial and metabolic benefits of CR are due to increased PGC-1α activity. The increase of PGC-1α is also positively linked to neuroprotection and its decrement has been involved in the pathogenesis of many neurodegenerative diseases. This paper aims to summarize the current knowledge about the role of PGC-1α in neuronal homeostasis and the beneficial effects of CR on mitochondrial biogenesis and function. We also discuss how PGC-1α-governed pathways could be used as target for nutritional intervention to prevent neurodegeneration.
Collapse
|
21
|
Histone deacetylase inhibitors facilitate dihydroartemisinin-induced apoptosis in liver cancer in vitro and in vivo. PLoS One 2012; 7:e39870. [PMID: 22761917 PMCID: PMC3386188 DOI: 10.1371/journal.pone.0039870] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/28/2012] [Indexed: 02/06/2023] Open
Abstract
Liver cancer ranks in prevalence and mortality among top five cancers worldwide. Accumulating interests have been focused in developing new strategies for liver cancer treatment. We have previously showed that dihydroartemisinin (DHA) exhibited antitumor activity towards liver cancer. In this study, we demonstrated that histone deacetylase inhibitors (HDACi) significantly augmented the antineoplastic effect of DHA via increasing apoptosis in vitro and in vivo. Inhibition of ERK phosphorylation contributed to DHA-induced apoptosis, due to the fact that inhibitor of ERK phosphorylation (PD98059) increased DHA-induced apoptosis. Compared with DHA alone, the combined treatment with DHA and HDACi reduced mitochondria membrane potential, released cytochrome c into cytoplasm, increased p53 and Bak, decreased Mcl-1 and p-ERK, activated caspase 3 and PARP, and induced apoptotic cells. Furthermore, we showed that HDACi pretreatment facilitated DHA-induced apoptosis. In Hep G2-xenograft carrying nude mice, the intraperitoneal injection of DHA and SAHA resulted in significant inhibition of xenograft tumors. Results of TUNEL and H&E staining showed more apoptosis induced by combined treatment. Immunohistochemistry data revealed the activation of PARP, and the decrease of Ki-67, p-ERK and Mcl-1. Taken together, our data suggest that the combination of HDACi and DHA offers an antitumor effect on liver cancer, and this combination treatment should be considered as a promising strategy for chemotherapy.
Collapse
|
22
|
Lan D, Lu M, Sharma S, Mellon PL, Olefsky JM, Webster NJG. Trans-resveratrol inhibits phosphorylation of Smad2/3 and represses FSHβ gene expression by a SirT1-independent pathway in LβT2 gonadotrope cells. Reprod Toxicol 2011; 32:85-92. [PMID: 21679764 DOI: 10.1016/j.reprotox.2011.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 04/22/2011] [Accepted: 05/12/2011] [Indexed: 12/20/2022]
Abstract
Resveratrol (trans-3,5,4'-trihydroxystilbene), a polyphenol found in red wine, has multiple beneficial activities that are similar to caloric restriction. In this study, we analyzed the effect of resveratrol on the gonadotropin genes, follicle-stimulating hormone (FSHβ) and luteinizing hormone (LHβ) in LβT2 immortalized mouse gonadotrope cells. Resveratrol specifically inhibited activin-induced FSHβ mRNA and protein expression, and reduced activin-stimulated Smad2/3 phosphorylation. Knockdown of SirT1 gene expression or SirT1 inhibition did not block repression of FSHβ expression or suppression of Smad2/3 phosphorylation, but did increase p53 acetylation. Taken together, our results suggest that resveratrol down-regulates Smad2/3 phosphorylation and suppresses FSHβ expression via a SirT1-independent pathway.
Collapse
Affiliation(s)
- Debin Lan
- Department of Medicine, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
23
|
Vigilanza P, Aquilano K, Baldelli S, Rotilio G, Ciriolo MR. Modulation of intracellular glutathione affects adipogenesis in 3T3-L1 cells. J Cell Physiol 2011; 226:2016-24. [DOI: 10.1002/jcp.22542] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Puissant A, Robert G, Fenouille N, Luciano F, Cassuto JP, Raynaud S, Auberger P. Resveratrol promotes autophagic cell death in chronic myelogenous leukemia cells via JNK-mediated p62/SQSTM1 expression and AMPK activation. Cancer Res 2010; 70:1042-52. [PMID: 20103647 DOI: 10.1158/0008-5472.can-09-3537] [Citation(s) in RCA: 299] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Autophagy that is induced by starvation or cellular stress can enable cancer cell survival by sustaining energy homeostasis and eliminating damaged organelles and proteins. In response to stress, cancer cells have been reported to accumulate the protein p62/SQSTM1 (p62), but its role in the regulation of autophagy is controversial. Here, we report that the plant phytoalexin resveratrol (RSV) triggers autophagy in imatinib-sensitive and imatinib-resistant chronic myelogenous leukemia (CML) cells via JNK-dependent accumulation of p62. JNK inhibition or p62 knockdown prevented RSV-mediated autophagy and antileukemic effects. RSV also stimulated AMPK, thereby inhibiting the mTOR pathway. AMPK knockdown or mTOR overexpression impaired RSV-induced autophagy but not JNK activation. Lastly, p62 expression and autophagy in CD34+ progenitors from patients with CML was induced by RSV, and disrupting autophagy protected CD34+ CML cells from RSV-mediated cell death. We concluded that RSV triggered autophagic cell death in CML cells via both JNK-mediated p62 overexpression and AMPK activation. Our findings show that the JNK and AMPK pathways can cooperate to eliminate CML cells via autophagy.
Collapse
Affiliation(s)
- Alexandre Puissant
- INSERM 895, Team 2: Cell Death Differentiation and Cancer, Laboratoire d'Oncohématologie, Centre Hospitalier Universitaire de Nice, Nice, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Zhou R, Fukui M, Choi HJ, Zhu BT. Induction of a reversible, non-cytotoxic S-phase delay by resveratrol: implications for a mechanism of lifespan prolongation and cancer protection. Br J Pharmacol 2009; 158:462-74. [PMID: 19563536 DOI: 10.1111/j.1476-5381.2009.00268.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE Resveratrol (RES) has been shown to prolong lifespan and prevent cancer formation. At present, the precise cellular mechanisms of RES actions are still not clearly understood, and this is the focus of this study. EXPERIMENTAL APPROACH Using human hepatocellular carcinoma-derived HepG2 cells as a model, we studied RES-induced changes in cell growth, cell cycle progression and apoptosis. KEY RESULTS RES at lower concentrations induced a strong but reversible S-phase delay and mild DNA synthesis inhibition, yet without causing apoptotic or necrotic cell death. At high concentrations, RES induced apoptosis, which is mainly mediated by the mitochondrial pathway. Overall, RES was a relatively weak apoptotic agent. Mechanistically, MEK inhibition was identified as an important early signalling event for RES-induced apoptosis. In comparison, activation of CDK2 and checkpoint kinase 2, and inhibition of phosphatidylinositol 3'-kinase/Akt signalling pathway contributed to the induction by RES of a reversible, non-cytotoxic S-phase delay. CONCLUSION AND IMPLICATIONS It is hypothesized that the induction of a non-cytotoxic S-phase delay may represent a useful mechanistic strategy for lifespan prolongation and cancer prevention. When cell cycles are selectively slowed down in the S phase, it would cumulatively increase the total lifespan of an organism if the total numbers of cell divisions of a given organism are assumed to remain basically constant. Likewise, when cells proceed through the cell cycles at a reduced pace during DNA replication, it may allow cells more time to repair the damaged DNA, and thereby reduce the chances for mutagenesis and tumour initiation.
Collapse
Affiliation(s)
- Ru Zhou
- Department of Pharmacology, Toxicology and Therapeutics, School of Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|